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Abstract 
Prevalence of obesity is rapidly increasing all over the world. Even though the explosion of obesity 
epidemic is a result of environment that favours unhealthy diet and sedentary lifestyle the genes 
contribute to individual's susceptibility to obesity. High energy intake and low energy expenditure 
can lead to obesity. The melanocortin system, located in the hypothalamus, is an important central 
regulator of energy intake, and potentially also energy expenditure. Rare mutations in the MC4R 
gene leading to impaired melanocortin signalling can cause severe obesity. On the other hand, 
activation of energy expenditure by increased mitochondrial biogenesis in mice can prevent insulin 
resistance and diet-induced obesity, suggesting that impaired mitochondrial energy expenditure may 
cause obesity. In this thesis we examined mechanisms affecting energy expenditure and/or energy 
intake in a group of healthy offspring of subjects with type 2 diabetes and in a group of healthy  
subjects together with family members of patients with familial combined hyperlipidemia. Insulin 
sensitivity was measured with the hyperinsulinemic euglycemic clamp and energy expenditure with 
indirect calorymetry. First, we demonstrated that insulin-stimulated increase in energy expenditure 
was strongly associated with insulin sensitivity in humans. Furthermore, we showed that adipose 
tissue silent information regulator 1 (SIRT1) mRNA and the expression of several other genes 
regulating mitochondrial function correlated with energy expenditure (EE) and insulin sensitivity 
during hyperinsulinemia. These findings support the possibility that molecules activating SIRT1, 
enhancing mitochondrial biogenesis and energy expenditure can potentially be used to treat 
metabolic disease. Our results that the Val103Ile polymorphism of the melanocortin receptor-4 
(MC4R) associates with energy expenditure support the view that the central melanocortin system 
and in particular MC4R regulate not only energy intake but also energy expenditure. In addition, we 
observed that common inactivating polymorphisms of melanocortin receptor-3 gene (MC3R) were 
associated with substrate oxidation and first-phase insulin release. These results are in line with 
animal studies suggesting that defects in the MC3R signalling lead to impaired lipid oxidation. 
Polymorphisms of melanin concentrating hormone-1 gene (MCHR1) were also investigated but they 
did not have any significant associations with obesity or metabolic parameters. In this work we 
present the close association between energy expenditure, genes regulating mitochondrial function 
and insulin sensitivity, and an association between gene polymorphisms in the melanocortin system 
and energy expenditure. However, the exact mechanisms how these genes can predispose to obesity 
remains to be determined. 
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1 Introduction 

 

   Obesity is a growing public health concern all over the world. World Health Organization 

estimated that 1.6 billion adults were overweight and 400 million obese in the year 2005 

(http://www.who.int/topics/obesity/en/). Although the prevalence of obesity has exploded in 

Western Countries, it is noteworthy that obesity is rapidly increasing also in developing countries 

causing a major threat for their healthcare systems. The cause for the epidemic of obesity is the 

imbalance between energy consumed and energy ingested. The availability of inexpensive, energy 

dense and highly palatable food, together with a trend towards physical inactivity and sedentary 

lifestyle have created an environment that promotes obesity. In changed environment our ability to 

regulate energy balance and maintain normal weight is challenging. Obesity leads to harmful health 

consequences by increasing the risk for many obesity-associated diseases e.g. type 2 diabetes, 

cardiovascular disease, musculoskeletal disorders and some cancers (1). 

   Rapidly changing environment is the key element for worsening obesity epidemic. However, 

different individuals living in the same environment differ in their susceptibility to develop obesity. 

The important determinant of this susceptibility is heredity. The classical twin study Stunkard et al. 

(2) showed that BMI of identical twins who had reared apart had high correlation (r=0.70), whereas 

childhood environment had little or no influence. Indeed, family, twin and adoption studies have 

shown that weight is almost as highly hereditary trait as is height (3). Although rare gene mutations 

that cause serious form of early-onset obesity have been identified (4), our knowledge about the risk 

genes of common polygenic obesity have been limited until recently. 

   The regulation of balance between energy intake and energy expenditure is a complex interaction 

between central nervous system (CNS) and peripheral tissues, which are both under complex but 

strict control to maintain stable weight. Although the mechanisms regulating food intake and energy 

expenditure are insufficiently known, disturbances in the CNS causing increased food intake are 

able to induce significant changes in body's energy balance. Indeed, all mutations causing 

monogenic obesity in humans, discovered so far, mediate their effects via the CNS (4). On the other 

hand, in animal models impaired or enhanced energy expenditure in peripheral tissues can result in 

metabolic disease (5) or ability to resist diet induced obesity (6), respectively.  

   The key player in the CNS regulating energy balance is the melanocortin system of the 

hypothalamus (7). In the hypothalamic level melanocortin system includes anorexigenic neurons 

expressing pro-opiomelanocortin/cocaine amphetamine related transcript (POMC/CART) and 
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orexigenic neurons expressing agouti related peptide/neuropeptide Y (AGRP/NPY). These neurons 

receive input from our environment and peripheral tissues, integrate this information, and project to 

brainstem and areas of higher cognitive functions to regulate energy expenditure in peripheral 

tissues and our eating behavior. An essential downstream factor mediating the effects of the 

melanocortin system is melanocortin-4 receptor (MC4R). Melanocortin system has broad effects on 

energy metabolism since it regulates energy intake and energy expenditure, but also substrate 

oxidation (8) and the activity of the autonomic nervous system (9). 

   Regarding energy expenditure in peripheral tissues, increasing evidence have evolved that factors 

regulating function of mitochondria contribute to energy expenditure and metabolic disease. For 

example, genes regulating oxidative phosphorylation are down-regulated in subjects with insulin 

resistance (10, 11). Moreover, pharmacological activation of silent information regulator 1 (SIRT1), 

that modulates cellular metabolism to correspond nutritional status, has shown to induce 

mitochondrial biogenesis protecting mice from diet induced obesity.  

   In the present study we investigated the relationship of energy expenditure, insulin sensitivity and 

SIRT1 mRNA expression, and the association of obesity and common polymorphisms in genes 

encoding MC4R, melanocortin-3 receptor (MC3R) and melanin concentrating hormone receptor-1 

(MCHR1). 
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2 Review of the literature 
  
2.1 General aspects of obesity 
2.1.1 Definition and epidemiology of obesity 

   The most commonly used parameter to measure obesity is body mass index (BMI), that is 

determined by weight (kg) divided with height (m) squared. The definitions of overweight and 

obesity have changed over the years complicating the comparisons of epidemiological data in 

different populations in different times. Currently the World Health Organization (WHO) and 

National Institutes of Health (NIH) define overweight as BMI 25.0 - 29.9 kg/m2, obesity 30.0 - 39.9 

kg/m2 and morbid obesity higher than 40 kg/m2 (12, 13).  

   The epidemic of obesity is a major public health concern. In the United States (US) the prevalence 

of obesity (the proportion of individuals of the entire population whose BMI > 30 kg/m2) increased 

in 1960-1980 about 0.1 % per year. However, starting in 1980's the rate increased rapidly by 5-10 

fold, and the proportion of obese individuals increased with 0.5 - 1.0 % per year (14). Epidemic of 

obesity affected all segments of society, including all age groups, men and women and ethnic 

backgrounds. Later epidemiological surveys have shown that an increase in body weight is 

continuing in the US. In 2003-2004 17.1 % of children and adolescents were overweight and 32.2 % 

of adults were obese (15). Similar trends have been observed in the European populations (16). 

Latest surveys reporting the prevalence of obesity range from 4 - 36 % in Europe with a 

considerable geographical variation, highest rates in Southern and Eastern Europe and lowest rates 

in Western and Northern Europe (17). Increasing prevalence of obesity is not a threat only in 

Western countries but also low income countries (18). 

 

2.1.2 Obesity-related diseases 

  Obesity is associated with many diseases that can be attributable to two different etiologies (1). 

The excess fat mass causes metabolic changes in the body increasing the risk of cardiovascular 

disease, type 2 diabetes, hypertension, polycystic ovary syndrome in women, and some cancers. 

Obesity can cause diseases directly, because of increased weight and fat mass, e.g. osteoarthritis and 

sleep apnea, and obese subjects often suffer from psychiatric disorders, even though the causal 

association is under debate. 

 

2.1.2.1 Diseases caused by increased fat accumulation in the body 
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   Adipose tissue can be considered as an active endocrine organ. In obesity increased fat mass 

results especially from hypertrophia (enlarged) of fat cells (19). Enlarged fat cells secrete increased 

amounts of free fatty acids, adipokines and inflammatory peptides, which cause metabolic changes 

in the body favoring the development of type 2 diabetes and atherosclerosis. Especially the 

distribution of fat is important for its activity. Fat that accumulates intra-abdominally (visceral 

obesity, so called "apple obesity"), which is typical for men, is more harmful. In contrast, 

subcutaneous adipose tissue that accumulates on hips (so called "pear obesity"), which is typical for 

women, is less hazardous. In addition, obesity leads to harmful ectopic fat accumulation for 

example in liver, skeletal muscle and pancreas resulting to insulin resistance and lipotoxicity in 

these organs (20). 

   Type 2 diabetes is tightly associated with overweight and obesity. It has been estimated that 65 % 

of diabetes cases are attributable to overweight and the risk increases dramatically with the degree, 

duration and more central distribution of obesity in both genders (21, 22). A 14-year follow-up of 

The Nurses' Health Study showed that in the US women the risk of type 2 diabetes started to 

increase at BMI levels above 22 kg/m2. Subjects with BMI 35 kg/m2 or more during the follow-up, 

had up to a 93-fold increase in the risk of diabetes compared to those who had BMI < 22 kg/m2 (22). 

In the Health Professionals Follow-Up Study, men whose BMI was 35 kg/m2 or more had a 42-fold 

risk of developing type 2 diabetes during a 5-year follow-up than men whose BMI was < 23 kg/m2 

(21). Furthermore, overweight or obese subjects who are gaining weight were at higher risk of 

developing diabetes than those whose body weight had remained stable during the last years (23).  

   Cardiovascular diseases are the major concern for health of overweight and obese subjects. In 

the Nurses' Health Study the risk to develop coronary heart disease was 3.3-fold in women with 

BMI 29 kg/m2 or greater compared to women with BMI < 21 kg/m2. (24). Furthermore, weight gain 

increases this risk significantly, regardless of initial BMI (25). The mechanisms behind increased 

cardiovascular risk in obesity are closely related to  the metabolic syndrome, insulin resistance, and 

type 2 diabetes (26). Metabolic syndrome favors the development of atherogenic lipid triad that is 

characterized by high serum triglycerides (TGs), low high density lipoprotein (HDL) cholesterol 

and increased concentrations of small dense low density lipoprotein (small dense-LDL) cholesterol. 

In addition, low grade inflammation in the metabolic syndrome enhances atherosclerosis, as well as 

hyperglycemia in full developed diabetes. Moreover, hypertension is more common in obese 

subjects (27) further increasing the cardiovascular risk.  
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   Liver diseases commonly associate with obesity. Non-alcoholic fatty liver disease (NAFLD) and 

its more serious form non-alcoholic steatohepatitis (NASH), are closely related to the metabolic 

syndrome and type 2 diabetes. NAFLD is characterized by hepatomegaly, elevated liver enzymes 

and steatosis of liver tissue, that can progress to steatohepatitis, fibrosis and cirrhosis ultimately 

leading to liver failure (28). In addition, cholelithiasis is more common in obese subjects than in 

normal weight subjects (29).  

   Some cancers are related to obesity. These include cancers of colon, kidney, prostate cancer in 

men, endometrium and breast cancer in women (30, 31). The pathological mechanisms how obesity 

can cause cancer are not well known, but the large diversity of obesity related cancers suggests that 

multiple factors are involved, possibly insulin resistance, insulin-like growth factors, sex steroids, 

inflammation and increased oxidative stress. 

   Polycystic ovary syndrome (PCOS) is a common cause of infertility among women (32). The 

cause of PCOS is poorly known but insulin resistance, related to obesity, is considered to be a key 

pathophysiological abnormality resulting in compensatory hyperinsulinemia (33). These metabolic 

changes together with inappropriate gonadotropin release and increased concentration of androgens 

result in anovulation, irregular menorrhea, hirsutism and infertility. However, lean women may also 

have PCOS suggesting that hormonal background of this syndrome is complex. 

 

2.1.2.2 Diseases caused directly by increased body mass 

   Obesity can cause or worsen disease directly because of increased body mass. For example, 

obesity has deleterious effect on osteoarthritis. This is likely attributable to the excess body weight 

that puts more pressure on knees and hips (34). Furthermore, a moderate weight loss, about 5 %, 

improves physical disability caused by osteoarthritis (35). Pulmonary function is also impaired in 

obesity because of abdominal pressure on diaphragm reducing residual lung volume. This may lead 

to obesity hypoventilation syndrome, characterized by dyspnea, chronic hypercapnia and sleep 

disordered breathing (36). In addition obesity causes sleep apnea because increased fat depots in the 

pharyngeal area can obstruct the airways. 

 

2.1.3 Risk factors of obesity 

   There is agreement that changes in our environment are the driving force of obesity epidemic (37). 

However, heritability obviously contributes to individual differences in body weight in our changing 
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environment (2). In other words, our environment  favors the development of obesity but some 

individuals appear to be genetically more vulnerable to weight gain than others.  

 

2.1.3.1 Environmental risk factors 

   Our environment has changed substantially during the last century. Rapid industrial development 

has moved human kind from hunter-gatherers to society of highly efficient agriculture and industrial 

food production. Earlier risk of famine has changed to unlimited supply of convenient, inexpensive, 

energy-dense food. Together with physical inactivity this has hazardous consequences to our health. 

   It is likely that increased energy intake has had a major impact on the development of obesity. In 

Western countries a call for inexpensive, energy-dense food have created competition between food 

industry companies who as a marketing strategy increase portions and aim their products for 

families, children and adolescents. This is supported by the findings showing that increased food 

availability and consumption in the US in 1980's corresponds tightly with the prevalence of 

overweight and obesity, that expanded at the same time in all segments of society (38).  

   At the same time when caloric intake has increased, the physical activity and energy expenditure 

have decreased. Although physical inactivity plays a role in obesity epidemic, there are arguments 

that it is not as important as changes in energy intake. This view is supported by the fact that the 

major part of the energy expenditure is non-modifiable basal thermogenesis, and many human 

populations entail less volitional physical activity, contrary to energy intake (38). On the other hand, 

if energy intake and expenditure do not match this causes an "energy gap" resulting in obesity. For 

example, it has been estimated that at the population level this "energy gap" could be reversed with 

only a 15 minutes walk each day (39). 

   Fetal and childhood growth are also related to the risk of obesity and metabolic diseases later in 

life. Helsinki Birth Cohort Study showed that adulthood obesity was associated with high birth 

weight and high BMI at all ages from 6 months to 12 years (40). It is noteworthy that growth 

trajectories of obesity and type 2 diabetes differ from each other. Subjects who later develop insulin 

resistance, type 2 diabetes and coronary heart disease follow trajectory characterized by premature 

birth or low birth weight, low weight at early childhood and rapid increase in body weight from 4 to 

12 years of age (41, 42).  

 

2.1.3.2 Genetic risk factors 
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   Although weight is highly hereditary trait our genes have not changed during the last few 

generations when epidemic of obesity has evolved. Therefore, the change in our environment is 

considered as a driving force for epidemic of obesity (43). However, there is a considerable 

variation in weight among individuals living in the similar environment, showing that some 

individuals are more susceptible to develop obesity than are others. Indeed, family, twin and 

adoption studies have shown that genes are the key players determining individual’s susceptibility 

to weight gain (2, 3). Therefore, obesity is a result of a complex interaction between environment, 

lifestyle and genes. 

   1962 James Neel presented “thrifty gene hypothesis” to explain the relationship of environment 

and heredity (44). This concept assumes that regulatory systems of energy balance and weight have 

been under intense selective pressure. “Thrifty genes” were possibly beneficial for ancient 

populations that lived in the environment where food was available only sporadically and efficient 

mechanism to store energy as fat helped to survive through famine. This could explain why our 

protection mechanisms for obesity are weak, whereas human body can efficiently resist starvation, 

by down-regulating energy expenditure (45). “Thrifty gene hypothesis” achieved wide acceptance 

but it has received also criticism and it has been recently challenged (46, 47). The critics have 

presented the notion that the periods of famine in the past did not have enough selective pressure to 

select "thrifty genes", and if they had, then all individuals would be obese. An alternative hypothesis 

is that the genes favoring the development of obesity are a result from a genetic drift after human 

ancestors were released from predation and selective pressure was disappeared ("drifty gene" 

hypothesis, or predation release hypothesis). 

 

2.2 Pathophysiology of obesity 
 
   To maintain the stable energy balance and weight, the CNS receives signals from peripheral 

tissues about body’s energy status and environment, integrates this information, and coordinates 

appropriate response to food intake and energy expenditure. Disturbances in this sensing – 

integration – response pathway may lead to inappropriately high food intake with low energy 

expenditure, and ultimately obesity. 
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Figure 1. The central nervous system works as an integrative component of energy balance. It 
receives signals from other organs and senses the current energy status, together with information 
received from environment the central nervous system regulates behavior and energy expenditure.  

 

2.2.1 Sensory component of energy balance 

   To maintain the stable weight it is essential to recognize the current metabolic condition and 

therefore the CNS senses several neuroendocrine factors from different peripheral organs that 

mediate information about body’s energy status. 

 

2.2.1.1 Adipokines 

   Adipose tissue secretes several adipokines that can cross the blood brain barrier in the arcuate 

nucleus of the hypothalamus. The first discovered and the best known adipokine mediating 

information about energy homeostasis from adipose tissue to brain is leptin (48-51). Leptin is 

secreted in relation to fat tissue and it inhibits food intake and increases energy expenditure (52). 

Leptin mediates its effects on energy balance by increasing the activity of the melanocortin system 

in the CNS via leptin receptor that is densely expressed in the arcuate nucleus of the hypothalamus 

(53-55). In the hypothalamic level melanocortin system includes anorexigenic POMC neurons and 

orexigenic NPY/AGRP neurons. These neurons project to other areas of the CNS regulating food 
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intake, thermogenesis, lipid oxidation and insulin sensitivity in peripheral organs (7). Leptin can 

activate many metabolic pathways, important mediators of leptin’s functions down-stream from the 

leptin receptor are corticotropine releasing hormone (CRH) and tyreotropin releasing hormone 

(TRH). Leptin is also known to indirectly regulate the expression of orexigenic melanin 

concentrating hormone (MCH) expression in the CNS. 

   Genetic defects in the leptin signalling pathway have been recognized to be rare causes of 

monogenic early onset obesity. Indeed, leptin deficiency leads to obesity in children and sub-

cutaneous treatment with leptin has dramatic and sustained beneficial effects on phenotypic 

abnormalities related to leptin deficiency (56). 

   Although the discovery of leptin was a remarkable breakthrough in obesity research, it was 

disappointing to discover that it was not a solution for common polygenic obesity. In contrast, obese 

animals and humans have hyperleptinemia attributable to leptin resistance, i.e. leptin is unable to 

mediate its anorexigenic effects (57). These findings suggest that leptin cannot protect humans from 

obesity. Instead, the lack of leptin appears to protect from starvation.  

   Another important adipokine is adiponectin (58). Adiponectin is exceptional adipokine since its 

concentration in blood correlates negatively with obesity (59). Low levels of circulating adiponectin 

are especially related to visceral obesity and metabolic syndrome (60, 61). A recent study has shown 

that adiponectin also has a central effect and it stimulates food intake and decreases energy 

expenditure with a direct effect on the CNS (62).  

 

2.2.1.2 Gut hormones 

   Gastrointestinal tract is recognized to work as an endocrine organ that secretes several gut 

peptides which regulate satiety and short-term energy balance. In addition, gut peptides are known 

to affect glucose homeostasis by regulating insulin and glucagon release from the pancreas.  

   Cholecystokinin (CCK), secreted in response to food ingestion, is involved in the regulation of gut 

motility, secretion of exocrine pancreas, and contraction of the gallbladder (63). CCK induces 

satiety and exogenous CCK administration reduces the meal size in animals and humans (64). 

However, continuous intra-peritoneal infusion of CCK did not reduce the food intake, since smaller 

meal size was compensated with more frequent eating in rats, emphasizing the role of CCK in the 

regulation of short term eating behavior. The mechanisms how CCK regulates satiety are not known. 

However, the finding that central effects of CCK can be blocked by vagotomy suggest a vagal 

contribution (65). There is also evidence that CCK mediates its effects, at least partly, through the 
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melanocortin system since MC4R-KO mouse has attenuated response to anorexigenic effect of 

CCK (66). 

   Ghrelin is an endogenous growth hormone-secretagogue, which acts on the growth hormone-

secretagogue receptor (GHS-R) and it is expressed and secreted predominantly from the stomach 

(67). Ghrelin is secreted between the meals and stimulates food intake in animals (68) and humans 

(69) whereas eating suppresses ghrelin secretion suggesting a role for ghrelin in particular in the 

initiation of eating. Peripherally administrated ghrelin causes the activation of orexigenic 

NPY/AGRP neurons through GHS-R:s of the hypothalamic arcuate nucleus (70, 71) demonstrating 

an interaction between ghrelin and the melanocortin system. 

   So called incretins include glucagon like peptide-1 (GLP-1) and glucose-dependent 

insulinotrophic polypeptide (GIP). GLP-1 is secreted from the L-cells and GIP from the K-cells of 

the intestine (72). The half life of incretins is less than two minutes in the circulation and they are 

cleaved by dipeptidyl peptidase-4 (DPP-4) (73). GLP-1 and GIP enhance insulin secretion after a 

meal. This incretin effect was found when study subjects were given oral or intravenous glucose and 

insulin levels after an oral administration were considerably higher than after an intravenous 

administration (74) even though the amount of glucose was similar. This results from a rapid release 

of GLP-1 and GIP after glucose or fat ingestion, which enhance glucose-dependent secretion of 

insulin (72) and inhibit the secretion of glucagon (75) from pancreatic islets. It is not fully known 

how L-cells recognize ingested lipid and glucose since GLP-1 is secreted very rapidly after 

ingestion (within minutes), although nutrients have not reached the L-cells.  Therefore, it has been 

suggested that the autonomic nervous system recognizes the ingested meal and mediates the 

information to intestinal cells that secrete GLP-1 (76) via the CNS and the vagus nerve (77). In 

addition to pancreatic effects, GLP-1 has direct anorexigenic effect in the CNS to eating behaviour. 

Intra-cerebroventricular administration of GLP-1 reduces eating and drinking in animals (78, 79) 

and in humans subcutaneous GLP-1 receptor mimetics promote satiety, decrease appetite and lead 

to weight loss in healthy, diabetic and obese individuals. Weight reducing effects may be 

attributable to the inhibition of gastric emptying leading to reduced food intake (80). The findings 

that incretin effect is attenuated in subjects with type 2 diabetes (81), have given background for the 

development of a new class of type 2 diabetes drugs. These drugs enhance incretin effect with 

exogenous incretin mimetics or preventing the disappearance of endogenous incretins with DPP-4 

inhibitors (82). The effect of incretins was also demonstrated by a study where obese subjects 

underwent gastric bypass surgery and consequently their incretin secretion improved together with 
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weight loss. A total of 69 % of those who initially had type 2 diabetes developed remission whereas 

in the obese control group without weight loss, the rate was only 16 % (27). 

   Peptide Tyrosine Tyrosine (PYY) is a member of pancreatic polypeptide family and secreted from 

the pancreas. Peripherally given PYY3-36, the circulating form of PYY, has been reported to inhibit 

food intake and to reduce body weight (83-85). This observation was suspected to be mediated by 

increased anorexigenic levels of POMC mRNA in neurons of the arcuate nucleus (86). However, 

the role of PYY has remained contradictory since other studies have not been able reproduce the its 

effect on body weight (87). 

 

2.2.1.3 Glucose and long-chain fatty acids 

Circulating nutrients regulate the appetite and energy expenditure indirectly through i.e. insulin, 

adipokines and gut hormones (88, 89). However, nutrients may have direct effects on the regulation 

of energy metabolism in the CNS. The brain is dependent on a constant supply of glucose and it has 

specialized neurons to monitor and respond to the availability of glucose (90). These neurons 

include glucose-excited and glucose-inhibited neurons. Glucose is transported through blood-brain 

barrier and taken into the cells by high-capacity high-affinity glucose transporter 3 (GLUT3). Intra-

cellular glucose metabolism increases the ratio of ATP to ADP causing ATP to bind to the ATP-

sensitive K+ (KATP) channel closing it and depolarizing cell membrane resulting in the influx of 

calcium through voltage dependent calcium channels, and ultimately increased neuronal activity. 

Although KATP-channel is important in glucose sensing (91) it is not the only determinant of 

neuronal glucose sensing since KATP-channel is present in many neurons without glucose sensing 

capability. Instead, there is evidence that glucokinase (GK) could be the primary regulator of 

glucose sensing in neurons since the function of glucose-excited and glucose-inhibited neurons can 

be considerably changed with GK blockade (92-94). Although the function of glucosensing neurons 

is clearly established, their significance to obesity and metabolic diseases is not clear, and some 

POMC-neuron specific glucose sensing manipulation models have revealed contrary phenotypes 

(95-97). 

   The significance of long-chain fatty acids for energy sensing was shown in an elegant series of 

studies (98-100). Intacerebroventricular administration of long-chain fatty acids directly down-

regulated the expression of orexigenic NPY decreasing food intake and hepatic glucose production 

in rats (98).This effect is induced by increased intracellular long-chain fatty acid coenzyme A in 

hypothalamic neurons. Indeed, a similar phenotype can be induced by blocking the carnitine 
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palmitoyl transferase-1 enzyme that also leads to long-chain fatty acid accumulation into the cytosol 

(99). At least in animals the disruption of this nutrient sensing pathway is able to contribute to 

obesity (100). However, its relevance to human obesity has not yet been established. 

 

2.2.1.4 Insulin 

Insulin can cross blood brain-barrier in proportion to serum insulin levels (101, 102) and reach 

insulin receptors that are expressed widely in the CNS. Although neurons are able to get glucose 

without insulin receptor, insulin is an important signal for the CNS about body's energy homeostasis 

and a regulator of appetite. Intracerebroventricular infusion of insulin reduces food intake and 

weight (103, 104), whereas mice with the CNS specific insulin receptor knockout (NIRKO-mouse) 

develop diet-sensitive obesity, increased adipose mass, hyperleptinemia and insulin resistance (105), 

proving evidence that impaired insulin signalling in the CNS results in positive energy balance and 

metabolic diseases. 

   The anorexigenic effect of insulin is, at least in part, mediated through its inhibitory effect on 

orexigenic AGRP/NPY neurons and increasing expression of anorexigenic POMC (104, 106, 107). 

These effects of insulin on hypothalamic neuropeptides are analogous to the effects of leptin. 

However, the molecular signalling cascades are distinct. Insulin mediates its effects on POMC and 

AGRP expression through PI3K and forkhead-O transcription factor (FOXO1), whereas leptin also 

activates STAT3 phosphorylation. Both of these cascades results in increased POMC and decreased 

AGRP expression leading to reduced appetite (108). Central effects of insulin are not restricted to 

the regulation of the appetite because efferent feed back loops from the CNS also regulate hepatic 

glucose production. This was shown in a study where intracerebroventricular injections of insulin 

mimetics diminished hepatic glucose output (109). This effect appeared to be mediated via KATP-ion 

channels rather than melanocortin neurons since the blocking of KATP-channels prevented the 

central effects of insulin on hepatic glucose production whereas the blocking of melanocortin 

receptors did not affect hepatic glucose production.  

   Studying insulin actions in CNS is challenging since in addition to neuropeptide expression 

insulin may affect also synaptic plasticity of the neuronal pathways (110), and electrical activity of 

POMC and AGRP neurons that will ultimately determine neuropeptide/neurotransmitter release 

(111, 112). 

 

2.2.2 CNS - Integrative component of energy balance 
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2.2.2.1 Melanocortin and NPY systems (CNS) 

Arcuate nucleus (ARC) of the hypothalamus and nucleus of the tractus solitarius (NTS) of the 

brainstem, are key anatomical areas in the CNS to control appetite and energy expenditure. The 

ARC lies near the bottom of the third brain ventricle and has neuronal connections with NTS, which 

receives vagal input from the autonomic nervous system and gastrointestinal tract (113, 114). The 

ARC is also connected to many other hypothalamic nuclei and areas that control higher cognitive 

functions. In addition, many humoral factors can cross blood-brain barrier in the ARC. This 

framework provides a large amount of neurohumoral signals from our body and environment to the 

ARC (115, 116), where satiety and adiposity signals integrate resulting in appropriate balance 

between anabolic and catabolic neuronal pathways. Furthermore, the anabolic and catabolic 

neuronal pathways, which are both expressed in the ARC, interact with other neuronal circuits. This 

results in appropriate eating behavior and peripheral energy metabolism by efferent neurons that 

send connections also to peripheral tissues e.g. liver, skeletal muscle and adipose tissue.  

   The melanocortin system of the CNS is a target of afferent vagal and humoral signals e.g. insulin, 

adipokines, long-chain fatty acids and ghrelin (7, 117, 118). Melanocortin neurons located in the 

ARC include two types of neurons. First, neurons that express pro-opiomelanocortin (POMC) and 

cocaine-amphetamine related transcript (CART). These POMC/CART neurons work as an 

anorexigenic pathway (melanocortin agonists with catabolic effect) that inhibit appetite and increase 

energy expenditure via activation of MC4Rs. POMC/CART neurons are neuroendocrine cells where 

pre-hormone POMC is further cleaved to α-melanocyte stimulating hormone (α-MSH), β-MSH and 

γ-MSH. α-MSH is a potent MC4R agonist inhibiting food intake and increasing energy expenditure. 

Second, the ARC contains neurons that express agouti-related peptide (AGRP) and neuropeptide Y 

(NPY) which are potent antagonists of the MC4R. These AGRP/NPY neurons increase appetite and 

decrease energy expenditure (melanocortin antagonists with anabolic effect). POMC/CART and 

AGRP/NPY neurons have projections to other areas of the CNS for example NTS of the brain stem 

and spinal cord (119). The balance between anorexigenic and orexigenic neurotransmitters 

determines eating behavior and energy expenditure.  
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Figure 2. Schematic presentation of the melanocortin system. The net effect on energy balance 
results from the balance between orexigenic NPY/AGRP and anorexigenic POMC neurons. Note 
the crucial location of melanocortin-4 receptor to mediate the effects of the melanocortin system. 
MC3R = melanocortin-3 receptor, MC4R = melanocortin-4 receptor, LEPR = leptin receptor, 
Y2R=neuropeptide Y2 receptor GHS-R = ghrelin receptor. 

 

Blocking the activation of the melanocortin system  leads to obesity. For example, MC4R-KO mice 

are characterized by obesity syndrome with hyperphagia, hyperglycemia and hyperinsulinemia 

(120), whereas MC3R-KO mice have normal weight but increased adiposity, possibly due to 

inability to increase lipid oxidation (121). POMC deficiency leads to the absence of all 

melanocortins, including α-MSH and ACTH, resulting in early-onset of obesity and adrenal 

insufficiency and altered pigmentation (122). In addition, transgenic overexpression of AGRP leads 

to obesity due to chronic MC4R and MC3R antagonism (123). In contrast, hyperactivating the 

melanocortin system with the ablation of AGRP neurons in adult mice leads to starvation (124, 125).  

   Genetic defects in MC4R are the most common causes of monogenic early-onset obesity in 

children (126, 127). POMC-deficiency in humans leads to a rare syndrome of early onset of obesity, 

adrenal insufficiency and red hair phenotype (128). Missense mutation in the coding region of 

NPY/AGRP 
neuron POMC 

neuron 

Target 
neuron 

Food 
intake

MC4R 

Target 
neuron 

Energy 
expenditure

MC4R 

MC3R 
MC3R MC3R 

LEPR 
LEPR 

LEPR 

GHS-R 

Y2R 
Y2R 



 31

POMC derived peptide β-MSH leads to obese phenotype in humans, indicating that α-MSH is not 

the only significant POMC cleaved melanocortin regulating energy metabolism (129).  

   Upstream from the melanocortin system. Leptin is an anorexigenic regulator of hypothalamic 

melanocortin neurons, which also express leptin receptors (LEPR). Leptin crosses blood-brain 

barrier and up-regulates POMC expression and excitability of neurons, whereas AGRP/NPY 

expression and excitability of neurons is down-regulated. Indeed, the significance of hypothalamic 

melanocortin neurons for anorexigenic effect of leptin was demonstrated in a study with leptin 

receptor deficient mice (db/db). These mice are obese and hyperleptinemic because of leptin 

resistance due to a defect in leptin sensing. However, transgenic specific restoration of leptin 

receptor into hypothalamic neurons can normalize the expression of POMC, AGRP and NPY and 

rescue the mice from obesity and diabetes (130).  

   Leptin activates many intra-cellular signalling cascades in melanocortin neurons. One of the best 

known mechanisms is the activation of LEPR associated Janus kinase 2 (Jak2) tyrosine kinase, 

resulting in Jak2 autophosphorylation and phosphorylation of intracellular tyrosine residues on 

LEPR (131-133). This leads to phosphorylation of STAT3 (signal transducer and activator of 

transcription 3), a transcription factor regulating POMC gene expression (131, 133-135). Although 

STAT3 is crucial for leptin's anorexigenic effects (134), melanocortin neurons are activated by 

leptin even in STAT3-KO mouse (136). Therefore, leptin is able to mediate its effects to POMC 

neurons also by Jak2-STAT3 independent intracellular cascades, such as phosphatidylinositol 3-

kinase (PI3K) that is shown to mediate leptin-dependent acute depolarization of POMC neurons. 

Blunting PI3K in mice prevents leptin to mediate its anorexigenic effect. However, also these mice 

are able to maintain normal weight (137, 138). These examples emphasize the remarkable ability of 

the CNS to activate compensatory signalling cascades if one fails. Indeed, leptin regulates also 

AMPK and mTOR pathways in hypothalamic neurons. In addition, cell specific knockout of leptin 

receptor from POMC neurons in mouse results in only mildly obese and hyperleptinemic phenotype 

(139), suggesting that the melanocortin system is not the only target for leptin. 

   An interesting pathophysiological phenomenon in obesity is leptin resistance, i.e. leptin's inability 

to mediate its anorexigenic effects (140). Obesity can induce leptin resistance at least with two 

different mechanism, blood-brain barrier changes more impenetrable for leptin and leptin's ability to 

activate its signalling cascades impairs (141). High fat diet in mouse has been shown to produce 

reversible leptin resistance by both mechanisms, ultimately leading to inability to down-regulate 

AGRP and NPY expression in the hypothalamus (141, 142). Recently it was suggested that 
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perturbations in post-translational processing of proteins in endoplasmic reticulum, so called 

endoplasmic reticulum stress, is a major factor for leptin resistance (143). Moreover, treatment with 

chemical chaperons that improve the function of endoplasmic reticulum could decrease the stress 

and worked as leptin sensitizers. This finding may give opportunities to overcome leptin resistance 

in the future. 

    Downstream from the melanocortin system. MC4R is a seven transmembrane G-protein 

coupled receptor and the far most important downstream receptor for mediating the effects of 

melanocortin neurons on appetite and energy expenditure (7). MC4R is blocked by orexigenic 

AGRP and activated by anorexigenic α-MSH. Although appetite regulation appears to be the most 

important mechanism to control energy balance in the melanocortin system, studies with MC4R-KO 

mice have revealed that also energy expenditure is regulated by MC4Rs (144). Interestingly, 

melanocortin pathways have functional divergence in the control of appetite and energy expenditure. 

To regulate appetite POMC/CART and AGRP/NPY neurons of the ARC projects to MC4Rs in the 

paraventricular hypothalamus and amygdala, whereas energy expenditure regulating neurons project 

elsewhere to the CNS (145). At intra-cellular level the anorexigenic effects of MC4R activation are 

possibly mediated by the inhibition of the activity of AMP-activated protein kinase (AMPK), 

whereas MC4R antagonists induce AMPK activity and increase in appetite (146). MC4R agonist 

have been shown to up-regulate brain-derived neurotrophic factor (BDNF) that is considered to be a 

factor that participates in the MC4R downstream signalling and control of energy balance (147). 

   In addition to energy balance, the central melanocortin system regulates substrate metabolism in 

peripheral tissues together with insulin. This was shown when intracerebroventricular infusion of 

melanocortin agonist potentiated the insulin's effect on glucose uptake in the liver and adipose tissue, 

whereas melanocortin antagonist exerted opposite effects (148). From anatomical point of view, the 

central melanocortin system has been shown to send efferent neurons polysynaptically via multiple 

CNS nuclei to brown adipose tissue in mice (149), giving background for the CNS and adipose 

tissue interaction. Indeed, the connections of the melanocortin system and adipose tissue were also 

confirmed in a study where MC3R and MC4R blockade promoted lipid uptake, triglyceride 

synthesis and lipid accumulation into white adipose tissue. In contrast, MC3R and MC4R activation 

results in lipid mobilization and enhancement in insulin sensitivity (8).  

   The central melanocortin system can regulate lipid metabolism not only in the liver and adipose 

tissue, but also in skeletal muscle by increasing AMPK phosphorylation (150). AMPK is a central 

factor of energy metabolism in skeletal muscle that increases β-oxidation, stimulates glucose uptake 
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and mitochondrial biogenesis (151). In mice with high fat diet-induced leptin resistance, an increase 

in AMPK activity was shown for a centrally given melanocortin agonist, but not for leptin, 

suggesting that the leptin signalling cascade is functional downstream from the leptin receptor 

although leptin resistance prevents leptin to activate the melanocortin system. 

   The melanin concentrating hormone (MCH) is a neuroendocrine factor that increases appetite and 

inhibits energy expenditure (152). Melanin concentrating hormone receptor 1 (MCHR1) is 

expressed widely in the CNS (153) but also in adipocytes (154), skeletal muscle (155) and 

pancreatic β-cells (156). MCHR1 is an interesting candidate target for anti-obesity drugs (157).  

   MCH-knockout (KO) mice are lean, hypophagic and have high metabolic rate (158). In contrast, 

over-expression of MCH in mice leads to obesity and insulin resistance and hyperplasia of 

pancreatic islets (159). The phenotype of MCHR1- KO mice is similar to that of MCH-KO mice 

(160). However, MCH-KO mice are hypophagic, whereas MCHR1-KO mice are slightly 

hyperphagic but still lean (161). The leanness of MCHR1-KO mice is explained by high metabolic 

rate and increased locomotor activity. Information on MCH and MCHR1 in humans is limited. 

Obese subjects have higher circulating MCH levels, and fasting also increases peripheral MCH 

levels (162). However, the relevance of these findings on obesity and metabolic disease remains to 

be determined. 

 

2.2.2.2 AMPK and mTOR in the CNS 

AMP-activated protein kinase (AMPK) is ubiquitously expressed evolutionarily conserved regulator 

of cellular pathways. AMPK is a downstream component of a kinase cascade that is activated when 

ATP is degraded and AMP/ATP ratio in the cell increases, for example during exercise. Activation 

of AMPK leads to ATP production (163). In addition, AMPK takes part in appetite regulation in 

melanocortin neurons and its activation in the hypothalamus is increased during fasting and 

inhibited by feeding (146). AMPK mediates the effects of  leptin, adiponectin, insulin, fatty acids 

and glucose in the CNS (164-166). However, in the hypothalamus AMPK is not a general energy 

sensor. The net effect of AMPK activation or inhibition on energy balance is dependent whether it 

happens in anorexigenic or orexigenic neurons of the hypothalamus. This was shown in a study 

where blocking of AMPK in POMC neurons resulted in obese phenotype with impaired energy 

expenditure and dysregulated food intake, whereas the blocking of AMPK in AGRP expressing 

neurons resulted in a lean phenotype (95). 
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Another molecule integrating peripheral signals in the CNS is mammalian target of rapamycin 

(mTOR). Like AMPK, mTOR is ubiqitously expressed conserved protein kinase that controls cell 

growth, transcription and translation, and cell cycle. Proximal energy signal for the activation of 

mTOR is a decrease in the AMP/ATP ratio of the cell (167). In the hypothalamus mTOR regulates 

food intake and the expression of mTOR in the hypothalamus is down-regulated by fasting and up-

regulated by feeding (168). Up-regulation of mTOR mediates anorexigenic effects of leptin and also 

some nutrients like leucine and hormones can affect mTOR activity and appetite (168). 

 

2.2.2.3 Other neurotransmitters with effects on weight 

   Many neurotransmitters, expressed in hypothalamic nuclei or elsewhere in the brain, take part in 

weight regulation. Indeed, several pharmacological substances that enhance or inhibit these 

neurotransmitters are known to affect appetite and weight. Some of these are tried to be used, used 

or under development to treat obesity. However, their usage is challenged by their psychiatric or 

autonomic nervous system side effects. 

 

Table 1. Neurotransmitters, their effects and their enhancers and inhibitors. 

Neurotransmitter 

 

Effect Enhancers/Inhibitors that are known to affect weight 

Endocannabinoids Anabolic Δ9-tetrahydrocannabinol / rimonabant 

Serotonin Catabolic tesofensine, sibutramine, fenfluramine, SSRIs / -- 

Noradrenalin Catabolic tesofensine, sibutramine, amphetamine / olanzapine 

Dopamine Catabolic tesofensine / olanzapine 

For reviews see (169-171). 

 

2.2.3 Energy expenditure in peripheral tissues 

 

   Energy production from nutrients and energy expenditure of a cell are strictly controlled by 

mechanisms and organelles that are ubiquitously expressed in all tissues. Energy expenditure is 

traditionally considered to form the other half of the equation contributing to energy balance.  

Recently, interest towards molecular mechanisms of energy expenditure has increased, since studies 

have suggested that low energy expenditure does not contribute only to positive energy balance and 

obesity but impaired energy expenditure could be the primary cause of metabolic diseases. 
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   Mitochondria are the "power plants" of a cell. Cell uses ATP for energy, that is produced by 

processing carbohydrates in the citric acid cycle and mitochondrial respiratory chain, where 

oxidative phosphorylation happens. Lipids are first degraded in β-oxidation, in mitochondria and 

then processed in the citric acid cycle and respiratory chain. Converting dietary calories into energy 

produces also reactive oxygen species (ROS) as a toxic side product. ROS is hypothesized to be 

attributable to many aging-related disorders in the cells (172). 

 

2.2.3.1 Caloric restriction studies 

   Caloric restriction increases mitochondrial activity, increases the life span in yeast, the worm 

Caenorhabditis elegans and fruit fly Drosophila (173). In humans, moderate caloric restriction 

(25 % of needed energy), results in decreased oxygen consumption and energy expenditure. Genes 

encoding proteins involved in mitochondrial function are up-regulated and oxidative stress reduced, 

suggesting that caloric restriction induces biogenesis of "more efficient" mitochondria that are 

possibly able to produce more energy from less nutrients with reduced oxygen demand (45). 

  

2.2.3.2 SIRT1-silent information regulator 1 

   Calorie restriction leads to increased lifespan and studies in unicellular yeast revealed that calorie 

restriction can be mimicked by activating silent information regulator protein 2 (Sir2) (174). Later a 

similar effect has been observed in mice by activating SIRT1, a mammalian homologue of Sir2 (6). 

Therefore, SIRT1 is considered to mediate positive effects of calorie restriction. Indeed, the 

expression of SIRT1 increases in the fasting state in several rodent and human tissues (175, 176). 

SIRT1 over-expressing mice are leaner, more glucose tolerant and metabolically more active than 

their littermate controls (177). 

 

   At molecular level SIRT1 is NAD+ -dependent deacetylase. Some of the SIRT1 deacetylace 

substrates are PGC1α (178), FOXO (179) and NF-κB (180). Thus, SIRT1 can regulate the activity 

of many transcription factors. Regarding metabolic diseases the activating effect of SIRT1 on 

PGC1α is especially interesting since deacetylation of PGC1α leads to the expression of genes that 

are required for oxidative phosphorylation and fatty acid oxidation. This will lead to the 

improvement in mitochondrial function and ultimately, to better insulin sensitivity, aerobic fitness 

and resistance to diet induced obesity (6). 
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2.2.3.3 Mitochondria in obesity and insulin resistance 

   Impaired mitochondrial function is linked to several diseases that are related to aging, including 

type 2 diabetes and obesity (172). Insulin resistance, an early hallmark of type 2 diabetes, has been 

shown to be associated with impaired fasting lipid oxidation in skeletal muscle (181). Muscle 

biopsies from patients with type 2 diabetes have exhibited reduced activity of the respiratory chain 

and decreased level of citrate synthase, suggesting impaired mitochondrial capacity (182). Moreover, 

non-invasive nuclear magnetic resonance spectroscopy studies have showed that healthy but insulin 

resistant elderly subjects have impaired mitochondrial activity, together with increased fat 

accumulation in skeletal muscle and liver, suggesting that intra-cellular lipid accumulation is 

possibly caused by impaired mitochondrial oxidative phosphorylation capacity (183). Similarly, 

studies of insulin resistant offspring of patients with type 2 diabetes have also reported impaired 

mitochondrial function and increased intra-myocellular lipid content in these individuals (184). 

Therefore, inherited or aging-related defect in mitochondrial oxidative phosphorylation is likely to 

cause the accumulation of intra-cellular lipid, such ad fatty acyl CoAs and diacylglycerol, ultimately 

leading to impaired insulin signalling (185) and insulin resistance. In humans the expression of 

genes that control mitochondrial activity have been down-regulated in insulin resistant states (10, 

11). Rats selected for over 11 generations according to low aerobic capacity and thus reflecting 

impaired mitochondrial function, have a phenotype with increased cardio-metabolic risk factors (5). 

   Physical activity and weight loss which improve insulin sensitivity stimulate mitochondrial 

biogenesis in sedentary subjects (186). Similarly, pharmacological activation of mitochondria with 

resveratrol, a SIRT1 activator, induced mitochondrial biogenesis and protected mice from metabolic 

disease and diet-induced obesity (6). 

   Although several studies have proven the close relationship of mitochondrial impairment and 

metabolic diseases, their causative or compensatory nature is still a matter of debate. Some studies 

have also suggested that impairment in oxidative phosphorylation capacity may have beneficial 

metabolic effects on metabolism, proposing that mitochondrial impairment would be compensatory 

mechanism for insulin resistance and obesity (187).  

 

2.3 Genetics of obesity 
 
   Indirect evidence, provided by family, twin and adoption studies, has suggested that considerable 

portion, about 40-70 %, of variation in BMI is explained by heritability (2, 188). Although obesity 
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does not develop without environment that favors positive energy balance, genetic factors have a 

strong influence on the susceptibility to develop obesity. Thus, weight is almost as heritable trait as 

is height (3). 

 

2.3.1 Monogenic obesity 

   The identification of genes causing severe early-onset obesity has been the major progress in the 

genetics of obesity during the last years. Although these rare monogenic cases represent only a 

small fraction of obesity at the population level, their impact on the understanding of mechanisms 

behind general obesity is important (4). 

 

2.3.1.1 Mutations in leptin and leptin receptor genes 

   Soon after the discovery of leptin, a study on two severely obese Pakistanian cousins was 

published. These cousins were homozygous for a frameshift mutation in the gene encoding leptin, 

which resulted in undetectable levels of serum leptin due to a truncated protein that was not secreted 

(189). These subjects were characterized by obesity, hyperphagia and increased food seeking 

behavior. Treatment with subcutaneous recombinant leptin dramatically ameliorated the condition 

of these patients with a decrease in body weight and normalization of endocrine and immunological 

functions (56, 190). Although leptin treatment in these rare cases was beneficial, supra-

physiological doses of peripherally administered leptin could only slightly decrease body weight in 

obese patients suffering from "common" polygenic obesity without leptin deficiency (191). This 

demonstrates the difficulty to overcome leptin resistance and achieve clinically significant benefit 

with exogenous leptin treatment in patients with a common form of obesity.  

   A rare mutation also in the leptin receptor, causing early onset obesity, has been described (192). 

Mutations in the leptin receptor gene are more common than are mutations in the leptin gene, and 

they cause similar phenotype, which is not so severe as is leptin deficiency (193). 

 

2.3.1.2 Mutations in the gene encoding POMC and prohormone converartase-1 (PC-1) 

   Homozygous mutations in the POMC gene may cause deficiency of all POMC derived peptides 

like α-MSH, resulting to absent MC4R activation, hyperphagia and early onset of obesity. These 

patients suffer also hypocortisolemia because of ACTH deficiency (128). Characteristic for these 

patients is pale skin and red hair consistent with a known role for POMC derived peptides in skin 

pigmentation. Heterozygous mutation in POMC predisposes to obesity suggesting that also milder 
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forms of obesity are possible if function of POMC is partially impaired (194).  Similar phenotype 

has been described in prohormone converartase-1 (PC1) deficiency. PC-1 cleaves POMC to its 

active peptides. Heterozygous mutations leading to obesity, hypocortisolemia, hypogonadism and 

hypoglycemia have been described (195). 

 

2.3.1.3 Mutations in the gene encoding MC4R 

   First heterozygous mutations in MC4R associating with obesity were reported in 1998 (196, 197). 

The prevalence of mutations in MC4R are estimated to vary from 6 % in patients with severe 

childhood obesity (127) to 1 - 2,5 % in adult subjects with BMI > 30 kg/m2 (198). Usually, 

functional mutations in MC4R result in intracellular retention of the receptor and therefore their 

signalling is blunted. The main clinical feature leading to obesity in MC4R deficiency is 

hyperphagia, which starts during the first year of life. These children also have accelerated linear 

growth that may be a consequence of hyperinsulinemia related to obesity. 

   Although there is no specific treatment for MC4R deficiency, some recommendations suggest that 

screening for MC4R mutations could be beneficial for children who present very obese phenotype 

from the first years of their life. Recognizing MC4R mutation carriers may emphasize the 

importance of controlling the feeding behavior of these children. In addition, obesity drugs that are 

aimed to activate the melanocortin system independent from MC4R, and possibly are available in 

the future, may represent specific treatment for these individuals. 

 

2.3.1.4 Mutations in genes encoding the brain derived neurotrophic factor (BDNF) and its receptor 

TrkB 

   BDNF is likely a downstream effector of MC4R and regulates energy balance and feeding 

behaviour (147). Mice that lack BDNF develop obesity due to increased food intake (199). In 

humans, mutations in the gene encoding BDNF or in the gene encoding its receptor TrkB are 

reported to lead to early-onset of obesity. These patients also develop complex syndrome 

characterized by impaired cognitive function, impaired short term memory and retarded 

development with disturbances in nociception. These finding demonstrate that BDNF is connecting 

the regulation of energy balance with higher cognitive function. 

 

2.3.2 Polygenic obesity 
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   Although some rare genetic mutations causing monogenic obesity have been found (4), only very 

recently common risk genes have been identified causing polygenic obesity at the population level. 

The difficulty to identify risk genes for polygenic obesity are demonstrated by promising reports 

about SNPs associated with obesity, e.g. polymorphisms located near genes encoding GAD2 (200, 

201), ENPP1 (202, 203) and INSIG-2 (204-206). However, these studies have not been widely 

replicated in other populations and therefore the significance of these polymorphisms have 

remained unclear. 

   The development of genome-wide association (GWA) studies has been a breakthrough in the 

genetics of polygenic diseases (207). GWA technique uses large population samples to screen SNPs 

most strongly associated with a certain clinical trait. SNPs with the strongest association are then 

genotyped in even larger replication samples, usually tens of thousands subjects, to identify true 

positive findings. The list of polygenic diseases whose risk genes have been identified in GWA 

studies is long and includes type 2 diabetes, coronary heart disease, dyslipidemia, cancers, 

autoimmune diseases and osteoporosis. Typical for risk genes identified by GWAs is that they 

increase the risk only modestly (1,15 – 1,30 fold). 

   The first widely replicated SNPs to contribute obesity in adults and children were SNPs located 

near the fat and obesity associated gene (FTO) (205, 208). The risk allele of FTO increases BMI by 

~0,36 kg/m2 per allele in adults and risk being obese (BMI >30 kg/m2) is 1,3 fold in a general adult 

population. The risk allele of FTO causes global obesity in the subcutaneus tissue rather than in the 

visceral tissue (209) and is associated also with type 2 diabetes that is found to be a consequence for 

obesity. Mechanisms how FTO predisposes to obesity are not known, but FTO is strongly expressed 

in the hypothalamic nuclei and it is proposed to take part in nucleic acid demethylation. Moreover, 

levels of FTO expression are regulated by fasting and feeding giving more evidence that the CNS is 

likely to be the main target of FTO (210).  

   After discovery of FTO, more polymorphisms related to obesity have been identified. 

Interestingly, common polymorphisms located 110-190 kB from the coding sequence of MC4R are 

also associated with polygenic obesity (211, 212) showing that the same gene contributes to rare 

monogenic form of obesity and common polygenic obesity. The important role of the CNS in 

polygenic obesity is emphasized by the latest GWA studies that have identified several obesity risk 

loci located near genes encoding transmembrane protein 18 (TMEM18), potassium channel 

tetramerisation domain containing 15 (KCTD15), SH2B adaptor protein 1 (SH2B1), glucosamine-6 

phosphate deaminase 2 (GNPDA2) and neuronal growth regulator 1 (NEGR1) that are expressed at 
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high levels in brain and hypothalamus. The other identified loci near mitochondrial carrier homolog 

2 (MTCH2) and brain-derived neurotrophic factor (BDNF) are also expressed in the brain. The exact 

mechanisms how these genes contribute to obesity remains to be determined, however, multiple 

possible effects are proposed like regulation of appetite, energy expenditure and behavioral aspects 

(213, 214). 
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3 Aims of the study 

 

   This study was undertaken to investigate the association of energy expenditure, insulin sensitivity 

and SIRT1 expression, and to investigate the effects of polymorphisms of genes regulating appetite 

and energy expenditure with obesity and metabolic disturbances. Our primary focus was in genes 

that regulate melanocortin system. 

 

   The specific aims of the study were the following: 

 

1. To investigate the association of energy expenditure and insulin sensitivity with SIRT1 

expression in adipose tissue. 

 

2. To investigate the effect of the most common genetic variant Val103Ile of MC4R on energy 

expenditure and other metabolic traits. 

 

3. To investigate the metabolic effects of common polymorphisms of MC3R. 

 

4. To investigate the association of common polymorphisms of MCHR1 with obesity and metabolic  

traits. 
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4 Subjects and methods 
 

4.1 Study populations 
4.1.1 Non-diabetic offspring of patients with type 2 diabetes (Study I, III and IV) 

   The subjects included healthy non-diabetic offspring of patients with type 2 diabetes (1-3 from 

each family). Exclusion criteria for the selection of the offspring were diabetes mellitus or other 

chronic disease that could potentially interfere with glucose metabolism, diabetes mellitus in both 

parents, pregnancy and age under 25 or over 50 years. Offspring with NGT, IFG and/or IGT were 

included into study. The diabetic patients (probands) were randomly selected among type 2 diabetic 

subjects living in the region of the Kuopio University Hospital. The number of offspring 

participants in Studies were from 216 to 247.  

   Metabolic studies were performed on three different visits, 1-2 months apart. On the first visit, 

subjects were interviewed regarding their medical history and life style and anthropometric 

measurements were done. Blood samples were collected to measure plasma glucose, insulin, C-

peptide and lipids after 12-hour fast followed by an oral glucose tolerance test (OGTT). On the 

second visit, indirect calorimetry was performed after a 12-hour fast followed by an intravenous 

glucose tolerance test (IVGTT) and 2-hour hyperinsulinemic euglycemic clamp. Indirect 

calorimetry was repeated during the last 30 minutes of clamp. On the third visit, a CT scan was 

performed to measure abdominal fat volume and distribution. 

 

4.1.2 Healthy control subjects and family members of patients with familial combined 

hyperlipidemia (Study II) 

   Study 2 included subjects who had undergone the hyperinsulinemic euglycemic clamp in our 

previous studies (215). This group consists of two subgroups. A healthy control subjects (Group 1A, 

n=124), and family members of patients with familial combined hyperlipidemia (Group 1B, n=105). 

All subjects had a normal glucose tolerance according to the World Health Organization criteria 

(1985), normal liver, kidney and thyroid function tests, no history of excessive alcohol intake, and 

no severe chronic diseases. In Group 1A subjects did not have hypertension, symptoms or signs of 

coronary heart disease or permanent drug treatment. 

 

4.1.3 Elderly subjects (Study II) 
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   This study group (Group 2, n=1013) was taken from a population-based study of elderly subjects 

(216, 217). A total of 1298 elderly subjects were a random sample of inhabitants from Kuopio, aged 

65-74 years at the baseline study in 1986-1988. Altogether 1054 subjects participated in the follow-

up study in 1990-1991, and DNA was taken during this visit. Blood samples were collected at both 

visits in the fasting state to measure plasma glucose, insulin and lipids followed by an OGTT. DNA 

was available for 1013 subjects, of whom 146 had type 2 diabetes and 867 did not. The mean 

follow-up period was 3.5 years (range 2.7-5.2 years). 

 

4.1.4 Metabolic syndrome in men, a population based study (Study IV) 

   Participants were drawn from an ongoing population-based cross-sectional study of men, aged 

from 45 to 70 years. A total of 1455 men were a random sample of inhabitants living in Kuopio.  

 

4.2 Methods 
4.2.1 Clinical and laboratory measurements  

 

4.2.1.1 Anthropometric measurements 

   Blood pressure (BP) was measured in a sitting position after a 5-min rest with a mercury 

sphygmomanometer. Height and weight were measured to the nearest 0.5 cm and 0.1 kg, 

respectively. Body mass index (BMI) was calculated as weight (kg) divided by height (m) squared. 

Waist (at the midpoint between the lateral iliac crest and lowest rib) was measured to the nearest 0.5 

centimeter. Body composition was determined with bioimpedance. 

 

4.2.1.2 Laboratory measurements  

   Blood glucose was measured by the glucose oxidase method (Glucose & Lactate Analyzer 2300 

Stat Plus, Yellow Springs Instrument Co., Inc, Ohio), and plasma  insulin and C-peptide  by 

radioimmunoassay (Phadeseph Insulin RIA 100, Pharmacia Diagnostics AB, Uppsala, Sweden, and 

125J RIA kit, Incstar Co., Stillwater, MN., respectively).  Cholesterol and triglyceride levels from 

the whole serum and from lipoprotein fractions were assayed by automated enzymatic methods 

(Roche Diagnostics, Mannheim, Germany) (218).  Serum FFAs were determined by an enzymatic 

method from Wako Chemicals GmbH (Neuss, Germany). Nonprotein urinary nitrogen was 

measured by automated Kjeldahl method. 
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4.1.2.3 Oral glucose tolerance test 

   2-hour OGTT (75g of glucose) was performed after overnight fasting. Blood samples to determine 

glucose and insulin levels were drawn at 0 and 120 minutes in all studies. Additional blood samples 

were drawn at 30, 60 and 90 minutes depending on the study protocol in different study populations. 

 

4.1.2.4 Intravenous glucose tolerance test (Studies I, III and IV) 

   IVGTT was performed to determine the first phase insulin release (219) (Studies 1, 3 and 4). After 

an overnight fast an intravenous cannula was placed into the left antecubittal vein and another 

cannula into the dorsum of the right hand which was placed in a heated box for arterialization of 

venous blood. Glucose was infused (300mg/kg in a 50% solution) within 30 seconds and blood 

samples were collected at -5, 0, 2, 4, 6, 8, 10, 20, 30, 40, 50 and 60 minutes to determine glucose 

and insulin levels. 

 

4.1.2.5 Hyperinsulinemic euglycemic clamp and indirect calorimetry (Studies I - IV) 

   The degree of insulin sensitivity was evaluated with the hyperinsulinemic euglycemic clamp and 

indirect calorimetry. Euglycemic clamp was performed after a 12-hour fast (Study II) or after 

IVGTT (Studies I, III and IV). Priming dose of insulin (Actrapid 100 IU/ml, Novo Nordisk, 

Gentofte, Denmark) was administered during the initial 10 minutes to raise plasma insulin 

concentration quickly to the desired level, where it was maintained by a continuous insulin infusion 

of 40 or 80 mU/min/m² body surface area. Under these study conditions hepatic glucose production 

is completely suppressed in nondiabetic subjects. Blood glucose was clamped at 5.0 mmol/l for the 

next 120 minutes by the infusion of 20 % glucose at varying rates according to blood glucose 

measurements performed at 5-minute intervals. The mean rates of glucose infusion during the last 

hour of the clamp were used to calculate the rates of insulin stimulated whole body glucose uptake 

(WBGU). 

   Indirect calorimetry was performed with a computerized flow-through canopy gas analyzer 

system (Deltatrac, Datex, Helsinki, Finland). Gas exchange was measured for 30 minutes after a 12-

hour fast and during the last 30 minutes of the euglycemic clamp. The rates of glucose and lipid 

oxidation were calculated according to Ferrannini (determined by indirect calorimetry during the 

last 20 minutes of the euglycemic clamp) (220). The rates of nonoxidative glucose disposal during 

the euglycemic clamp were estimated by subtracting glucose oxidation rate from the rates of 

WBGU. 
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4.2.2. Genotyping 

4.2.2.1 DNA extraction 

   Genomic DNA was extracted from peripheral blood leucocytes by the proteinase K-phenol-

chloroform extraction method (221). 

 

4.2.2.2 Polymerase chain reaction and genotyping 

   In Study II polymerase chain reactions (PCR) were performed with thermocyclers (PTC-100, 

Programmable Thermal Controller, MJ-research Inc, Watertown, MA, USA) and genotyping with 

Restriction Fragment Length Polymorphism (RFLP). PCR products carrying the site of Val103Ile 

polymorphism of MC4R gene were digested overnight with restriction enzyme Hinc II. This 

restriction site cuts amplified PCR product into two fragments if the G allele is present. The 

fragments were resolved on 9% polyacrylamide gel electrophoresis, and visualized by staining with 

ethidium bromide under ultraviolet illumination. 

   In Studies III – IV genotyping was performed using the Taqman allelic Discrimination Assays 

(Applied Biosystems). Genotyping reaction was amplified on a GeneAmp PCR system 2700 (95°C 

for 10 min, followed by 40 cycles of 95°C 15 s and 60°C 1 min), and fluorescence was detected on 

an ABI Prism 7000 Sequence Detection System (Applied Biosystems).  

 

4.2.3. Statistical analyses 

   Statistical analyses were performed with the SPSS/Win programs (version 9.0, 11.0 or 14.0, SPSS 

Inc. Ill.). Data are expressed as mean ± standard deviation (SD), unless indicated otherwise. 

Variables with skewed distribution (glucose when diabetics were included, insulin, TGs, FFAs, 

subcutaneous and intra-abdominal fat) were logarithmically transformed for statistical analyses. A 

P-value equal or less than 0.05 was considered statistically significant. 

   The differences between the two or three groups were tested using the analysis of variance 

(ANOVA) for continuous variables or the analysis of covariance (ANCOVA) using age, and body 

mass index as covariates, when appropriate. Interaction analyses, when done, were calculated with 

the ANCOVA. The χ2 test was used to test differences in non-continuous variables. Linear mixed 

model analysis was applied to adjust for confounding factors. For mixed model analysis we 

included the pedigree (coded as a family number) as a random factor, the genotype and gender as 

fixed factors, and BMI and age as covariates. Linear regression was used to calculate the 
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correlations between continuous variables. The incremental area under the insulin curve in an 

IVGTT was calculated by the trapezoidal method.   

   In Studies III and IV, Haploview software (222), available at 

http://www.broad.mit.edu/mpg/haploview/, was used to calculate the LD statistics. Haplotype 

estimation from unrelated individuals was performed by using the SNPHAP, available at 

http://www-gene.cimr.cam.ac.uk/clayton/software/. I genetic studies the allele frequencies were in 

Hardy-Weinberg equilibrium. 

 

   In Study IV, power calculations were used to estimate the power to detect minimal statistically 

significant differences (power = 0.8 and p < 0.05) under the dominant model with Java applets for 

power and sample size, available at http://www.cs.uiowa.edu/~rlenth/Power/.  

 

 

4.3 Approval of the Ethics Committee 
 

   Written informed consent was obtained from all study participants. The study protocols were 

approved by the Ethics Committee of the Kuopio University and Kuopio University Hospital. 
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5 Results 
5.1 SIRT1 mRNA expression, energy expenditure and insulin sensitivity 

(Study I) 

 5.1.1 Energy expenditure and insulin sensitivity  

   Energy expenditure (EE) during the clamp positively correlated with insulin sensitivity (r=0.375, 

P < 0.001; Figure 3).  Even stronger correlation was found between ΔEE (defined as EE during the 

clamp - EE in the fasting state) and insulin sensitivity (r=0.602, P < 0.001). In contrast, fasting EE 

was not correlated with insulin sensitivity (r = -0.004).  

     

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. (A) Correlation between the rates of whole body glucose uptake (WBGU) and fasting 
energy expenditure (univariate linear regression). (B) Correlation between the rates of WBGU and 
energy expenditure during the hyperinsulinemic clamp and (C) Correlation between the rates of 
WBGU and Δ energy expenditure (defined as energy expenditure during the clamp - energy 
expenditure in the fasting state). 
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   To further investigate the association of EE and insulin sensitivity we analyzed the rates of 

WBGU/LBM during the hyperinsulinemic clamp according to the tertiles of EE.  We did not find 

differences in WBGU among the tertiles of fasting EE, glucose oxidation or non-oxidative glucose 

disposal (data not shown). In contrast, subjects in the highest tertile of EE/LBM during the 

hyperinsulinemic clamp had highest WBGU/LBM (49.85 ± 15.43 in the lowest tertile vs. 55.02 ± 

15.46 in the middle tertile vs. 63.44 ± 18.76 in the highest tertile, µmol/kg of LBM/min, P < 0.001), 

which was attributable to both high glucose oxidation (19.54 ± 5.42 vs. 20.96 ± 5.62 vs. 22.75 ± 

6.11 µmol/kg of LBM/min, P = 0.007, respectively) and high non-oxidative glucose disposal (30.31 

± 12.81 vs. 34.06 ± 13.24 vs. 40.68 ± 16.52 µmol/kg of LBM/min, P < 0.001). These differences 

were even more pronounced across the tertiles of  ΔEE/LBM, where subjects in the highest tertile 

had highest WBGU/LBM (43.82 ± 13.25 vs. 55.75 ± 13.64 vs. 67.96 ± 16.31 µmol/kg of LBM/min, 

P < 0.001), attributable to both high glucose oxidation (17.51 ± 4.34 vs. 20.81 ± 5.45 vs. 24.58 ± 

5.31 µmol/kg of LBM/min, P < 0.001) and high non-oxidative glucose disposal (26.31 ± 12.08 vs. 

34.94 ± 12.24 vs. 43.38 ± 15.16 µmol/kg of LBM/min, P < 0.001). 

 

5.1.2 Substrate oxidation in the tertiles of ΔEE  

   Subjects in the highest ΔEE tertile used more glucose for energy production than did subjects in 

the lower ΔEE tertiles, as indicated by their higher respiratory quotient (RQ) in the fasting state (P = 

0.01) and during the hyperinsulinemic clamp (P < 0.001).   Subjects with the highest ΔEE had the 

lowest lipid oxidation in the fasting state (P < 0.001) and during the hyperinsulinemic clamp (P < 

0.001). In the fasting state, FFA levels were not different among the tertiles (P = 0.42), whereas 

during the hyperinsulinemic clamp subjects with the highest ΔEE had the lowest levels of FFAs 

(0.05 ± 0.03 vs. 0.04 ± 0.02 vs. 0.03 ± 0.03, mmol/L, P < 0.001). 

 

5.1.3 Determinants of the rates of whole body glucose uptake 

   To evaluate variables associated with the rates of WBGU/LBM during the hyperinsulinemic 

clamp we performed univariate linear regression analysis. High ΔEE was the best predictor of high 

WBGU/LBM, followed by low levels of total triglycerides and low intra-abdominal adipose tissue 

mass.  Other significant predictors of WBGU/LBM were low lipid oxidation during the 

hyperinsulinemic clamp and low subcutaneus adipose tissue mass.   
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   To explore the determinants of insulin-stimulated EE and WBGU/LBM, we measured adipose 

tissue mRNA expression of SIRT1 and PGC-1α.   SIRT1 mRNA expression correlated significantly 

with EE (r = 0.289, P = 0.010) and with WBGU/LBM (r = 0.334, P = 0.002) during the euglycemic 

clamp (Figure 4).  No statistically significant correlation was found between SIRT1 expression and 

EE in the fasting state (r = 0.142).  The correlation between SIRT1 expression and PGC-1α 

expression was 0.448 (P < 0.001).  PGC-1α expression correlated significantly only with 

WBGU/LBM (r = 0.387, P< 0.001) but not with EE during the clamp (r = 0.167). 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. (A) Correlation of adipose tissue SIRT1 mRNA expression level with energy expenditure 
during the hyperinsulinemic clamp in offspring of type 2 diabetic patients. (B) Correlation of 
adipose tissue SIRT1 mRNA expression level with the rates of whole body glucose uptake in 
offspring of type 2 diabetic patients.  

 

   We also measured adipose tissue mRNA levels of several target genes of SIRT1 and PGC-1α 

(Table 2).  SIRT1 mRNA expression correlated significantly with PGC-1β expression, estrogen-

related receptor α, nuclear respiratory factor -1, mitochondrial transcription factor A, and with 

several genes of the respiratory chain, including NADH dehydrogenase (ubiquinone) 1α 

subcomplex 2, cytochrome c oxidase subunit IV isoform 1and ATP synthase. SIRT1 mRNA 

expression also correlated with the expression of soluble superoxide dismutase 1 and catalase. The 

correlations of mRNA expression of these genes with PGC-1α expression were quite similar, but 

somewhat weaker. Neither SIRT1 mRNA expression nor PGC-1α mRNA expression correlated 

with superoxide dismutase 2. 

   Since we performed gene expression analysis from adipose tissue samples we determined Sirt1 

expression in 11 non-diabetic subjects also in skeletal muscle biopsies. We found that Sirt1 mRNA 
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expression in adipose tissue had a high correlation with skeletal muscle Sirt1 mRNA (r=0.655).  

Therefore, we believe that our results reflect metabolic changes also in skeletal muscle. 

 
Table 2. Pearson correlations between adipose tissue mRNA expression of SIRT1 and PGC-1α with 
adipose tissue mRNA expression of genes regulating mitochondrial function (N=81) 
 

 SIRT1 PGC1α
PGC-1β 
 

r = 0.358 
P = 0.001 

r = 0.152 
P = 0.179 

NRF1 
 

r = 0.286 
P = 0.010 

r = 0.235 
P = 0.036 

ESRRA 
 

r = 0.339 
P = 0.002 

r = 0.260 
P = 0.021 

TFAM 
 

r = 0.379 
P = 0.001 

r = 0.213 
P = 0.059 

NDUFA2 
 

r = 0.392 
P = 3.5×10-4 

r = 0.273 
P = 0.015 

CYCS 
 

r = 0.263 
P = 0.019 

r = 0.159 
P = 0.161 

COX4I1 
 

r = 0.332 
P = 0.003 

r = 0.262 
P = 0.020 

ATP5G1 
 

r = 0.248 
P = 0.027 

r = 0.196 
P = 0.084 

SOD1 
 

r = 0.460 
P = 2.0 ×10-5 

r = 0.348 
P = 0.002 

SOD2 
 

r = -0.046 
P = 0.689 

r = -0.009 
P = 0.940 

CAT 
 

r = 0.350 
P = 0.002 

r = 0.422 
P = 1.3×10-4 

 
PGC1-β =peroxisome proliferator-activated receptor gamma, coactivator 1 beta; NRF1= nuclear 
respiratory factor 1; ESRRA=estrogen related receptor alpha; TFAM=transcription factor A, 
mitochondrial; NDUFA2=NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2; CYCS= 
cytochrome c, somatic; COX4I1=cytochrome c oxidase subunit IV isoform 1; ATP5G1=ATP 
synthase, H+ transporting, mitochondrial F0 complex, subunit  C1; SOD1= superoxide dismutase 1, 
soluble; SOD2=superoxide dismutase 2, mitochondrial; CAT=catalase. Expressions of all genes 
were normalized to RPL0 expression 
 

5.2 The Val103Ile polymorphism of melanocortin-4 receptor regulates energy 

expenditure (Study II) 

5.2.1 The allele frequencies  

   We found the rare 103Ile allele of MC4R in eight subjects belonging to Group 1 (allele frequency 

0.02). In Group 2 we found 33 heterozygotes for the 103Ile allele and one homozygote for the 

103Ile allele (allele frequency 0.02). This homozygous subject was combined with heterozygous 
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subjects in all statistical analyses. The genotypes were in Hardy-Weinberg equilibrium in both study 

groups. No significant difference was observed in allele frequencies between subjects with (n=146, 

allele frequency 0.01) and without (n=867, 0.02) type 2 diabetes in Group 2 (p=0.349). 

 

5.2.2 Association with energy expenditure 

   In Group 1 we found an effect of the 103Ile allele on energy expenditure. Subjects with the 

Val103Ile genotype had higher energy expenditure in the fasting state compared to subjects with the 

Val103Val genotype [63.42 ± 13.40 in subjects with the Val103Ile genotype vs. 59.86 ± 7.33 

J/kg/min in subjects with the Val103Val genotype, p=0.007 adjusted for age, sex, BMI and the 

subgroup (1A/1B), Figure 5], whereas no significant difference was observed during the 

hyperinsulinemic clamp (67.56 ± 13.52 vs. 66.43 ± 9.29 J/kg/min, p=0.104, respectively). Subjects 

with the 103Ile allele also had higher rates of glucose oxidation in the fasting state (8.90 ± 6.15 vs. 

6.07 ± 4.38 µmol/kg/min, p=0.020) and during the hyperinsulinemic clamp (18.88 ± 4.63 vs. 17.60 

± 3.24 µmol/kg/min, p=0.031).  

 

 

 

 

 

 

 

 

 

 
Figure 5. The rates of energy expenditure in the fasting state and during the hyperinsulinemic 
clamp according to the Val103Val (open bars) and Val103Ile (black bars) genotypes of the 
melanocortin-4 receptor gene in middle-aged subjects. ANCOVA, adjusted for age, sex, BMI and 
the subgroup (1A/1B). 

 

   No significant differences were observed in the rates of WBGU (53.21 ± 17.49 vs. 53.31 ± 15.39 

µmol/kg/min, p=0.290) and non-oxidative glucose disposal (34.33 ± 15.43 vs. 35.60 ± 13.49 

µmol/kg/min, p=0.531) during the hyperinsulinemic clamp or lipid oxidation in the fasting state 

(0.55 ± 0.28 vs. 0.64 ± 0.35 mg/kg/min, p=0.338) and during the hyperinsulinemic clamp (-0.03 ± 

0.24 vs. 0.01 ± 0.25 mg/kg/min, p=0.199). However, the subjects with the Val103Ile genotype had 
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significantly lower levels of FFAs than the subjects with the Val103Val genotype in the fasting state 

(0.45 ± 0.18 vs. 0.56 ± 0.23 mmol/l, p=0.029), and the same trend was observed during the clamp 

(0.10 ± 0.05 vs. 0.13 ± 0.12 mmol/l, p=0.057). 

 

5.2.3 Anthropometric measurements 

    
Table 3. Clinical and biochemical characteristics (mean ± SD) in the study groups 
according to the Val103Ile polymorphisms of the melanocortin-4 receptor gene 
 Group 1 Group 2 

 Val103Val 
n=221 

Val103Ile 
n=8 

Val103Val 
n=979 

Val103Ile 
n=34 

Gender (men /women) 142/79 6/2 359/620 9/25 

Age (years) 51.0 ± 9.8 56.3 ± 5.9 69.9 ± 2.9 68.7 ± 3.0 

Height (cm) 170 ± 9 168 ± 6 161 ± 9 159 ± 9 

Weight (kg) 77 ± 15 78 ± 17 71 ± 12 70 ± 12 

Waist to hip ratio 0.93 ± 0.08 0.97 ± 0.07 0.93 ± 0.08 0.90 ± 0.09 

Body mass index (kg/m²) 26.7  4.4 28.1  7.0 27.4 ± 4.1 27.5 ± 4.2 

Systolic blood pressure (mmHg) 134 ± 16 132 ± 15 157 ± 24 156 ± 23 

Diastolic blood pressure (mmHg) 85 ± 9 83 ± 6 82 ± 10 84 ± 10 

Fasting plasma glucose (mmol/l) 5.5 ± 0.6 5.4 ± 0.5 6.3 ± 2.1 5.8 ± 1.1 

Fasting plasma insulin (pmol/l) 62.3 ± 36.2 57.6 ± 26.7 96.0 ± 54.0 97.8 ± 52.2 

Total cholesterol  (mmol/l) 6.27 ± 1.29 7.03 ± 1.12 6.55 ± 1.28 6.74 ± 1.13 

HDL-cholesterol (mmol/l) 1.31 ± 0.28 1.34 ± 0.41 1.27 ± 0.33 1.29 ± 0.25 

Total triglycerides (mmol/l) 1.72 ± 1.13 2.33 ± 1.19 1.82 ± 0.92 1.89 ± 0.66 

Apolipoprotein B (g/l) 1.12 ± 0.32 1.21 ± 0.23 1.17 ± 0.28 1.17 ± 0.24 

All data are presented as mean ± standard deviation. HDL = high density lipoprotein. 
None of the comparisons between the genotype groups within Group 1 or Group 2 was 
statistically significant when adjusted for body mass index, age and sex (except weight 
that was adjusted for age and sex). Comparisons between the genotypes within Group 1 
were also adjusted for subgroup (1A/1B). 
 
   In Group 2 subjects with the103Ile allele gained weight (0.78 ± 3.98 kg) while subjects with the 

Val103Val genotype lost weight (-0.82 ± 3.98 kg) during the 3.5 year follow-up (p=0.038, adjusted 

for age, sex and BMI). Similar change was observed in BMI (0.37 ± 1.58 vs. -0.32 ± 1.55, kg/m², 

p=0.019, respectively).  
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   In Group 1 and Group 2 no significant differences were observed in weight, height,  

WHR, BMI, systolic or diastolic blood pressure, fasting glucose or insulin, total or HDL-

cholesterol, total triglycerides and apolipoprotein B according to the Val103Ile 

polymorphism (Table 3). 

 

5.3 The polymorphism of melanocortin-3 receptor and substrate oxidation 

(Study III) 

5.3.1 The allele frequencies and location of polymorphisms 

   The location of eight SNPs of MC3R, their minor allele frequencies (MAF) and LD statistics are 

shown in Figure 6. No carriers of the Ile/Asn 183 mutation were found in our study population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6. (A) Gene map shows SNPs genotyped in the melanocortin-3 receptor gene. Coding exon 
is marked by black box. Genotyped SNPs are shown with NCBI’s dbSNP accession numbers. (B) 
Linkage disequilibrium statistics (D', r2) and the minor allele frequencies (MAF) are shown among 
the SNPs of the melanocortin-3 receptor gene. 
 
   The coding region variants Lys/Thr 6 and Ile/Val 81 substitutions were almost in complete LD 

with each other, but had a substantially lower LD with non-coding region variants. Altogether 35 

subjects had the Lys/Thr 6 genotype and five subjects the Thr/Thr 6 genotype (the frequency of the 

Thr 6 allele 0.10). The Ile/Val 81 genotype was found in 33 subjects and the Val/Val 81 genotype in 
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five subjects (the frequency of the Val 81 allele 0.10). The five subjects homozygous for both Thr 6 

and Val 81 alleles were combined with heterozygotes in all statistical analyses. Two subjects carried 

the haplotypes which did not include either the Lys 6 Ile 81 or Thr 6 Val 81 combinations, and 

therefore they were excluded from all statistical analyses. 

5.3.2 The substrate oxidation  

   We found that lipid oxidation in the fasting state was significantly lower in carriers of the Lys 6 

and Ile 81 alleles compared to that of subjects with the Thr/Thr 6 and Val/Val 81 genotypes (0.85 ± 

0.38 vs.1.00 ± 0.43, mg/kg of LBM/min, p=0.022, respectively, adjusted for BMI, age, sex and 

family relationship, Figure 7A).  Similar results were obtained during the hyperinsulinemic clamp 

(0.32 ± 0.41 vs. 0.44 ± 0.34 mg/kg of LBM/min, p=0.021, respectively).  Glucose oxidation in the 

fasting state was significantly higher in carriers of the Lys 6 and Ile 81 alleles compared to subjects 

with the Thr/Thr 6 and Val/Val 81 genotypes (11.28 ± 4.64 vs. 9.71 ± 4.53 µmol/kg of LBM/min, 

p=0.031, Figure 7B), and similar, non-significant trend was observed during the hyperinsulinemic 

clamp. Levels of fasting FFAs were significantly lower in carriers of the Lys 6 and Ile 81 alleles 

(0.50 ± 0.19 vs. 0.60 ± 0.24 mmol/l, p=0.003, Figure 7C), whereas no differences were found in 

levels of FFAs during the hyperinsulinemic clamp.  

 

5.3.3 Energy expenditure and obesity 

   No differences were observed in the rates of energy expenditure in the fasting state or during the 

hyperinsulinemic clamp. Similarly, no statistically significant differences were observed in BMI, 

waist, BP, fasting glucose or insulin, subcutaneous or intra-abdominal fat measured by CT with 

respect to any SNPs screened. 

 

5.3.4 The association with insulin secretion and insulin sensitivity 

   We did not find differences in the rates of WBGU during the hyperinsulinemic euglycemic clamp 

between the risk alleles and the common genotypes of the SNPs. However, subjects with the 

Thr/Thr 6 and Val/Val 81 genotypes had lower first phase insulin secretion (insulin under the curve 

during the first 10 minutes of the IVGTT) than did subjects with the Lys 6 and Ile 81 alleles (2454 ± 

1538 vs. 3220 ± 1765 pmol/L × min, p=0.025, respectively). 
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Figure 7. (A) Lipid oxidation, (B) glucose oxidation and (C) fatty acid levels in the fasting state and 
during the hyperinsulinemic euglycemic clamp according to the Thr/Lys 6 and Val/Ile 81 
polymorphisms of the melanocortin-3 receptor gene. Subjects with the Thr/Thr 6 and Val/Val 81 
genotypes (black bars, n=176) vs. carriers of the Lys 6 and Ile 81 alleles (open bars, n=38). p-values 
are adjusted for BMI, age, sex and family relationship (linear mixed model analysis, n=214). LBM 
= lean body mass. 
 

5.3.5 The haplogenotype analysis  

   Five haplogenotypes were formed from the three SNPs that were associated with metabolic 

phenotypes (rs6014649, Thr/Lys 6 and Val/Ile 81), haplogenotype 111/111 (n=176, frequency 

0.815), haplogenotype 111/222 (n=27, 0.125), haplogenotype 222/222 (n=5, 0.023), haplogenotype 

111/122 (n=6, 0.028) and haplogenotype 111/221 (n=2, 0.009). Subjects with the 111/111 

haplogenotype were compared to carriers of the 222 haplotype (haplogenotypes 111/222 and 

222/222 combined). In the fasting state the 222 haplotype was associated with lower rates of lipid 

oxidation than the 111/111 haplogenotype (0.86 ± 0.40 vs. 1.00 ± 0.43, mg/kg of LBM/min, 

p=0.047) and higher rates of glucose oxidation (11.52 ± 4.82 vs. 9.71 ± 4.53 µmol/kg of LBM/min, 
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p=0.029). Thus, haplotype analysis did not identify haplogenotypes having an effect beyond those 

of individual SNPs.  

 

5.4 The polymorphisms of melanin concentrating hormone receptor-1 (Study 

IV) 

   We screened six SNPs of MCHR1 in offspring of type 2 diabetic subjects (Group 1). No 

significant differences in anthropometric measurements and glucose tolerance, energy expenditure, 

energy partitioning, insulin secretion, insulin sensitivity or body composition (Group 1) were found. 

We also generated nine haplogenotypes based on four SNPs (rs133070, rs133072, rs133073 and 

rs133074) of MCHR. The three most common haplogenotypes (the number of subjects at least 16) 

were not associated with any metabolic parameters. 

   rs133072 (MAF 0.33), which was in > 0.50 LD with other SNPs and thus covering most of 

genetic information of other SNPs, was also screened in Group 2 that was taken from a population-

based study of 1455 unrelated Finnish men, aged from 45 to 70 years. In this population, we did not 

find differences in BMI, waist, glucose or in insulin levels during an oral glucose tolerance test 

(OGTT) between different genotypes (data not shown). 
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6 Discussion 
 

6.1 Study subjects and methods 
6.1.1 Representativeness of the study subjects  

   Subjects in Studies I, III and IV were non-diabetic offspring of patients with type 2 diabetes who 

were randomly selected from people living in the Kuopio University Hospital region. Offspring of 

subjects with type 2 diabetes are known to have inherited insulin resistance (223, 224), and their 

lifetime risk of diabetes is approximately 40% (225). Therefore, young offspring (mean of our study 

subjects was 35.1 years) without any confounding co-morbidities are ideal to investigate the 

development of insulin resistance, type 2 diabetes and related conditions. Our study subjects were 

accurately phenotyped providing an opportunity to recognize early disturbances in glucose and lipid 

metabolism. The limitation of this study population is a relatively small size (n=216-247 during this 

work) for genetic association analysis. 

   In Study II we investigated the effect of a SNP having a low frequency. To maximize the 

statistical power we combined two subgroups who had undergone the hyperinsulinemic euglycemic 

clamp (215). The first group included healthy control subjects (Group 1A, n=124), and the second 

group family members of patients with familial combined hyperlipidemia (Group 1B, n=105). To 

further increase the statistical power we investigated elderly subjects (Group 2) who were identified 

from our large population based follow-up study (216, 217) that was a random sample of inhabitants 

from the Kuopio town, aged 65-74 years at the baseline study in 1986-1988. Since study protocol 

and characteristics in Group 2 differed from Groups 1A and 1B the data were analyzed separately. 

   Second group of participants in Study IV were drawn from ongoing study of metabolic syndrome 

in men. Importantly study group is population-based and large, including 1455 men from 45 to 70 

years of age, making it ideal for genetic analyses.  

 

6.1.2 Measurements 

   We used the hyperinsulinemic euglycemic clamp in combination with indirect calorimetry to 

measure insulin sensitivity and energy expenditure in Studies I-IV. This method is the golden 

standard for the evaluation of insulin sensitivity and whole body energy expenditure. However, it is 

time consuming and laborious limiting the number of subjects possible to examine.  

   In Studies IV we also used a sample from an ongoing large population-based study of Finnish men.  
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Obesity and metabolic syndrome are more common in men than in women and therefore it is likely 

that genetics of these conditions are easier to investigate in men. The study protocol included 

anthropometrical measurements, OGTT to measure glucose tolerance and the measurements of 

blood pressure and lipids and lipoproteins. 

 

6.2 Energy expenditure and insulin sensitivity 

 

   SIRT1 is a NAD+-dependent deacetylase that removes an acetyl group from a protein substrate 

while NAD+ is a co-substrate in this reaction. Several transcription factors are substrate proteins for 

SIRT1 and deacetylation regulates their function and gene transcription activity. In addition, SIRT1 

has genome instability suppressing properties through chromatin modification and it participates in 

DNA damage induced chromatin reorganization altering age-related changes in gene expression 

(226).  

   SIRT1 mediates the positive effects of caloric restriction and prolonged life span. Therefore, 

SIRT1 deficient mice are unable to adapt to the conditions of caloric restriction and achieve these 

benefits (227). SIRT1 activates PGC-1α by deacetylation which results in increased 

mitochondriogenesis (228, 229) and improved mitochondrial function. In contrast, impaired 

mitochondrial function is considered to be a contributing factor to insulin resistance (5, 183). 

Moreover, insulin resistance in human skeletal muscle has been associated with decreased 

mitochondrial oxidative capacity and ATP synthesis, and decreased expression of the genes that 

control mitochondrial activity, including PGC-1α (10, 11). These data demonstrate that energy 

expenditure and insulin resistance are closely associated. Even though the causality of energy 

expenditure is yet to be established, the observation that treatment with SIRT1 activator resveratrol 

improves PGC-1α expression, mitochondrial function and insulin sensitivity in mice (6) suggests 

that SIRT1 activators can be potentially used to treat obesity and type 2 diabetes. 

   We investigated the relationship of energy expenditure in the fasting state and during 

hyperinsulinemia with insulin sensitivity in humans, and observed that insulin-stimulated increase 

in EE was strongly associated with insulin sensitivity in offspring of patients with type 2 diabetes. 

In contrast, fasting energy expenditure did not correlate with insulin sensitivity. In addition, adipose 

tissue SIRT1 mRNA expression correlated with EE and insulin sensitivity during hyperinsulinemia. 

Moreover, SIRT1 expression correlated with the expression of several genes regulating 

mitochondrial function. Similar results have been reported with 8-h insulin infusion that increased 

mitochondrial mRNA transcript levels, mitochondrial protein synthesis, and ATP production (230). 
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This response was, however, blunted in type 2 diabetic patients. Thus, impaired mitochondrial 

fitness could be a consequence of impaired insulin action. Alternatively, primary mitochondrial 

dysfunction could lead to insulin resistance. A possible explanation for this hypothesis is given by 

observations that impaired mitochondrial function leads to increased intramyocellular lipid 

metabolites, such as fatty acyl Coentzyme A and diacylglycerol, which in turn leads to defects in the 

insulin signalling cascade through insulin receptor substrate-1. In contrast, in mice blunting acetyl-

CoA carboxylase-2, an enzyme that catalyzes lipid synthesis and inhibits lipid oxidation, enhanced 

energy expenditure and reduced intracellular diacylglycerol content leading to lean and insulin 

sensitive phenotype (231). However, given the fact that our human data is cross-sectional we can 

not determine the causality of the association between impaired energy expenditure and insulin 

sensitivity. 

 

6.3 Central nervous system and obesity 

   Discovery of leptin and leptin receptor were significant breakthroughs in obesity research (48, 49). 

However, it was disappointment that leptin was not the solution to common polygenic obesity. In 

fact, leptin appeared to protect humans from starvation, not from obesity. Actually obese subjects 

have high leptin levels but its effect is blunted because of leptin resistance. Nevertheless, leptin 

studies demonstrated how the inability of the CNS to sense body's energy balance can lead to 

obesity. Later rare genetic mutations were recognized in the leptin and melanocortin pathways 

causing impaired energy balance sensing in the CNS and leading to early-onset obesity in humans 

(4). The melanocortin system, and especially MC4R, is as an important mediator of energy balance 

downstream from leptin (7). Especially mutations in gene encoding MC4R were found to cause 

obesity in 3-5 % in child patients presenting severe obesity at young age. Similar results have been 

presented for mutations in the leptin receptor gene (193). Even though these examples of rare 

monogenic forms of obesity do not explain obesity at the population level, they give important clues 

about the mechanisms related to obesity. For example, all mutations causing monogenic obesity 

discovered so far mediate their effects via the CNS emphasizing the role of the CNS in obesity. 

These uncommon cases may also provide new insights to the regulation of energy balance. An 

innovative way to study the effects of leptin was recently demonstrated in leptin deficient patients. 

These patients were shown pictures of food and functional magnetic resonance imaging was 

performed to measure their brain responses in leptin deficient state and after leptin treatment (232). 

In leptin deficient state patients felt figures more attractive and neural circuits governing food intake 
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were more active. This example demonstrates the significance of emotions (e.g. motivation and 

rewarding) in the pathogenesis of obesity.  

   Recent development in the genetics have expanded our knowledge and revealed the essential role 

of the CNS as a regulator of polygenetic obesity (213). The first example was the discovery of FTO 

(208, 233) that is the gene most strongly associated with polygenic obesity discovered so far. FTO 

is robustly expressed in hypothalamic neurons and it is considered to take part in nucleic acid 

demethylation (210). Common polymorphisms of MC4R are also recognized as risk genes for 

polygenic obesity (211, 212).  

   The mechanisms leading to obesity in MC4R-KO mouse are increased energy intake and impaired 

energy expenditure (144). In humans, a mutation in MC4R can cause extreme obesity and babies 

who are homozygous for the mutation can have a complete loss of MC4R function which can lead 

to obesity at the age of 3-4 months, whereas heterozygous mutation carriers present milder forms of 

obesity (127). In contrast, the Val103Ile substitution of MC4R (the minor allele frequency is ~1%), 

appears to protect from obesity (234). We observed that the Val103Ile substitution of MC4R was 

associated with high rates of energy expenditure in the fasting state. This suggests that variants in 

MC4R in humans could regulate also energy expenditure, not only energy intake. Thus, genetic 

variation in MC4R is able to drive energy balance in both directions. Animal studies have revealed  

that the melanocortin system does not only regulate whole body energy balance but also takes part 

in peripheral lipid metabolism which may have an important role in the development of metabolic 

diseases (8). An interesting obesity phenotype is presented by MC3R-KO mouse that has normal 

weight but increased adiposity possibly due to inability to increase lipid oxidation (121). Indeed, we 

observed that the carriers of the inactivating (235) Lys 6 and Ile 81 alleles in the coding region of 

MC3R had lower lipid oxidation and higher glucose oxidation compared to those of the Thr/Thr 6 

and Val/Val 81 genotypes without a difference in energy expenditure or obesity. Even though the 

role of MC3R in obesity is not yet fully established it is possible that MC3R has an autoregulatory 

effect on the activity of AGRP and POMC neurons in the regulation of substrate oxidation. In 

addition, MC3R is expressed in adipocytes and leukocytes, and it has been shown to affect the 

immune system and inflammation (236, 237). Therefore, it is possible that the effect of MC3R is 

mediated peripherally. The melanocortin system affects also the autonomic nervous system, and it 

has been showed in animals (238) and humans (9) that melanocortin activity leads to higher blood 

pressure. These effects of the melanocortin system should not be overlooked since they may have a 

major impact in the treatment of obesity. 

   MCHR-1 is an interesting regulator of energy balance because unlike many other energy balance 

regulating receptors of the CNS, antagonism (not agonism) of MCHR1 leads to leanness (158). This 
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makes MCHR-1 an attractive target for drug development. Indeed, blockers of this receptor could 

potentially be used to treat obesity (157, 239). However, our knowledge regarding MCHR-1 is 

mostly based on animal studies and the role of this receptor in humans is limited.  In animals 

antagonists of this receptor have shown to affect also emotions and behaviour demonstrating the 

complex nature of this system. Our purpose was to examine if SNPs close to MCHR-1affect obesity 

or metabolic traits in humans as previously suggested (240). However, we could not confirm the 

association with obesity in a group of 1455 middle-aged men or association with metabolic traits in 

a group of 217 carefully phenotyped offspring of patients with type 2 diabetes. This may reflect 

insufficient statistical power or true difference between different populations demonstrating the 

difficulty of studying polygenic diseases such as obesity. 

 

6.4 Concluding remarks 

   Obesity predisposes to several diseases and especially the prevalence of type 2 diabetes has 

increased with the obesity epidemic. In the future the treatment of obesity related disease, such as 

diabetic micro- and macrovascular complications, will consume a growing proportion of health care 

resources. Therefore, knowledge on the pathophysiology and genetics of obesity is needed to 

develop new preventive and therapeutic approaches. 

   Small molecules activating SIRT1 can potentially represent a new class of drugs that can be used 

to treat metabolic diseases in the future (241). SIRT1 activation is considered to induce more 

efficient mitochondria that reduce oxidative stress by decreasing production of ROS, the toxic side 

product of oxidative phosphorylation. Therefore, SIRT1 activation is considered to mimic the 

positive effects of caloric restriction and lead to healthier metabolic condition and increased lifespan. 

However, all beneficial effects and possible side effects of these ubiquitously expressed molecules, 

which work as activators of several transcription factors regulating the expression of a wide 

spectrum of genes, are yet to be determined.  

   Increasing knowledge from genetic background of obesity has emphasized the significance of the 

CNS in control of body weight. The melanocortin system located in the hypothalamus is an 

important regulator of energy balance (7). These complex neuronal networks are closely related to 

higher cognitive and emotional functions and autonomic nervous system, forming a major challenge 

for drug development against obesity. Future studies should be aimed to elucidate these neuronal 

networks and neurotransmitters that control human behaviour, rewarding and motivation. The 

development of functional brain imaging may give new insights to this challenging field of 

neuroscience where feasibility of animal models is limited (232). 
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   Although risk genes identified by GWA studies give important clues to the pathophysiology of 

polygenic diseases, the risk alleles of eight identified obesity loci account only about 1 % of the 

entire variation of BMI (213), even though 70 % of variation of BMI is hereditary. Similarly, the 

risk alleles of 30 loci contributing to dyslipidemia account about 6-8 % of the entire variation, 

leaving a considerable amount of heritability unexplained (242). These observations have led to 

search more sophisticated methods beyond the DNA sequence to explore heritability of diseases. 

Therefore, regulations of gene expression have gained increasing attention in recent studies. Since 

identified SNPs only rarely are located in the coding sequence of genes, the variation in the 

promotor or regulatory regions that regulate gene expression and RNA processing (including 

alternative splicing) are likely to be important factors regulating susceptibility for polygenic 

diseases. Indeed, preliminary reports have shown that gene expression, that can be considered as 

quantitative trait (expression quantitative trait loci, eQTL), is inherited and closely related to 

metabolic diseases like obesity (243, 244). Methods that combine genotype, gene expression and 

clinical phenotype provide a step forward in recognizing metabolic pathways and causality in the 

pathophysiology of diseases. In the future, collecting genotype - gene expression databases that 

include samples from different tissues are needed to make progress in the genetics of complex 

diseases (245). 

   The information in DNA sequence is not fully explained  by SNPs. Other variations in DNA 

sequence, such as copy number variants (repeated DNA segments that may range from one kilobase 

from to several megabases), insertions or deletions may also contain important information. For 

example, copy number variants have been shown to have significant effects (246). However, copy 

number variants have been sequenced only in a small number of individuals so far (247), and 

therefore this remarkable variation in human genome is largely unexplored. In addition, a recent 

study revealed the first genomic deletion, 45-kb located close NEGR1, which predisposes to obesity 

(213).  

   The DNA sequence is not the only regulator of gene expression. So called epigenetic factors that 

are inherited but independent from DNA sequence take also part in regulation of gene expression. 

Epigenetics include DNA methylation and histone modification. DNA methylation occurs 

exclusively in cytosine (C) residues of the DNA. In mammals the DNA is globally methylated with 

the exception of so called CpG islands, which are DNA segments where CG dinucleotide occurs 

with its expected frequency, in contrast CG dinucleotide is depleted elsewhere in the genome. Even 

though the roles of methylation are not yet entirely established, it has been speculated that DNA 

methylation functions to maintain repressed chromatin state and stabilize the genome (248). 

Therefore, the methylation of promoters has been implicated to have silencing effect on gene 
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transcription. Given the fact that methylation demonstrates family clustering with intra-individual 

change during time (249), methylation provides dynamic and hereditary trait to regulate gene 

expression that still remains unexplored. Histones are important in chromatin structure. Unlike 

DNA methylation that has long term silencing effect for genes, histone modification is a dynamic 

process that provides regulation for rapid transcription and repair of DNA (250). 

   In addition, new methods to study gene-gene and gene-environment interactions are needed. 

Interactions are important mechanisms that can mask significant genetic associations. If the effect of 

a gene variant is dependent of other genetic or environmental factor, the net effect in entire study 

population can be neutral and association can is easily be missed. To identify these complex 

interactions larger population-based samples are needed. In addition, adequate phenotyping, which 

is often neglected to enlarge sample size, is necessary to make statistical sub-analyses. New 

innovative methods are also developed, these include systems biology based approach. These 

methods are based on the hypothesis that traits are not simply a sum of genetic variations. Instead, 

certain combinations of variants reflect system networks of environmental and genetic effects that 

contribute to traits and these networks can be recognized by combining information from several 

genetic variants, eQTLs and phenotypes (251, 252). 

   The methodology in genetic studies of obesity has taken huge steps during the last years, but still 

new methods need to be applied, including methods assessing the roles of epigenetics, mRNA 

processing and small non-coding RNAs (e.g. miRNAs).. Together with the systems biology 

approach these methods provide a step forward in recognizing metabolic pathways, their 

disturbances and causality in the development of disease and help developing new therapeutic 

options. 
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7 Main findings of the Studies I-IV 
 
   Study I showed that the insulin-stimulated increase in energy expenditure was strongly associated 

with insulin sensitivity in offspring of patients with type 2 diabetes.  Furthermore, adipose tissue 

SIRT1 mRNA expression correlated with energy expenditure, insulin sensitivity and expression of 

several genes regulating mitochondrial function. Therefore, compromised mitochondrial function, 

coordinated by low SIRT1 expression, is likely to contribute to insulin resistance and to type 2 

diabetes. 

   In Study II the Val103Ile substitution of MC4R was associated with high rates of energy 

expenditure in the fasting state and glucose oxidation and with low levels of FFAs. Therefore, the 

Val103Ile polymorphism of MC4R may determine the rates of energy expenditure and substrate 

oxidation in humans. 

   In Study III we observed that polymorphisms of MC3R affect substrate oxidation and first-phase 

insulin secretion. The carriers of the Lys 6 and Ile 81 alleles in the coding region of MC3R had 

lower lipid oxidation, lower FFA levels, higher glucose oxidation and higher first phase insulin 

secretion compared to subjects with the Thr/Thr 6 and Val/Val 81 genotypes. 

   In Study IV we could not demonstrate an association of SNPs of MCHR1 with metabolic variables.  
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