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ABSTRACT 
 

   Defects in glucose and energy metabolism and abnormalities in cardiovascular risk factors in 

subjects with the metabolic syndrome have not been fully elucidated.  Furthermore, little is known 

whether low-grade inflammation and endothelial dysfunction are evident in the healthy offspring of 

type 2 diabetic patients, who are at high risk of developing type 2 diabetes.  

   The aim of this study was to investigate metabolic defects and early changes in levels of cytokines 

and adhesion molecules in subjects at high risk of type 2 diabetes. 

   Altogether 129 non-diabetic offspring of type 2 diabetic patients were studied. Insulin sensitivity was 

assessed by the euglycemic hyperinsulinemic clamp, insulin secretion with an intravenous glucose 

tolerance test and energy expenditure with indirect calorimetry. Body composition and abdominal fat 

distribution were determined with CT. Levels of C-reactive protein (CRP), inflammatory cytokines, 

and adhesion molecules were measured in plasma. 

   Of the study subjects those with the metabolic syndrome were characterized by insulin resistance, 

an excess of intra-abdominal fat, lower energy expenditure and higher lipid oxidation during 

hyperinsulinemia, lower levels of adiponectin and higher levels of pro-inflammatory cytokines and 

adhesion molecules as compared to subjects without the metabolic syndrome. Offspring of type 2 

diabetic patients were found to have abnormally high levels of hs-CRP, interleukin-1β (IL-1β), and 

interleukin-1 receptor antagonist (IL-1Ra), whereas levels of tumour necrosis factor-α (TNF-α) and 

interleukin-6 ( IL-6) were not elevated. Offspring of type 2 diabetic subjects were insulin-resistant with 

regard to the suppression of insulin-induced cytokine responses. The levels of adhesion molecules 

were not increased, but levels of the inflammatory markers correlated with the levels of adhesion 

molecules.  

   In conclusion, the metabolic syndrome leads to multiple defects in glucose and energy metabolism, 

hypoadiponectinemia, and elevated levels of pro-inflammatory cytokines and adhesion molecules. 

The level of anti-inflammatory IL-1Ra seems to be the most sensitive marker of cytokine response in 

subjects with high risk of type 2 diabetes. The cytokine response is disturbed during hyperinsulinemia 

in insulin-resistant offspring of type 2 diabetic patients, and is especially linked to fat-derived 

cytokines, highlighting the crucial role of adipose tissue in the disease process.  

 
National Library of Medicine Classification: WK 810, WK 820, QZ 150, QW 568, WG 500, QU 55.7 

Medical Subject Headings: Diabetes Mellitus, Type 2; Risk Factors; Inflammation; Biological Markers; 

Endothelium, vascular/physiopathology; Cytokines; C-Reactive Protein; Cell Adhesion Molecules; Glucose 

Clamp Technique; Glucose Tolerance Test; Calorimetry, Indirect; Energy Metabolism; Body Composition; 

Abdominal Fat; Metabolic Syndrome X; Lipid Metabolism; Hyperinsulinism; Adiponectin; Interleukin-1beta; 

Interleukin-6; Interleukin 1 Receptor Antagonist Protein; Tumor Necrosis Factor-alpha; Glucose 

Metabolism Disorders 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is good to have an end to journey toward, 
but it is the journey that matters, in the end. 

(Ernest Hemingway) 
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1. INTRODUCTION 
  

   The incidence of type 2 diabetes has been increasing worldwide, mostly due 

to the increasing prevalence of obesity, sedentary lifestyle  and  longer life 

expectancy (1,2). The clustering of cardiovascular risk factors associated with 

insulin resistance and abdominal obesity is known as the metabolic syndrome. 

Individuals with the metabolic syndrome are at risk for the development of both 

type 2 diabetes and cardiovascular disease. At present, various definitions for 

metabolic syndrome exist. Information on metabolic defects in glucose and 

energy metabolism in subjects with the metabolic syndrome is limited. 

   Low-grade inflammation has been suggested to contribute to the 

pathogenesis of type 2 diabetes (3,4). Inflammation can be seen in individuals 

who progress to type 2 diabetes years in advance of disease onset. The 

offspring of type 2 diabetic patients are ideal subjects for studies of early 

defects in the pathogenesis of type 2 diabetes. These individuals are at high 

risk for developing type 2 diabetes, but only three previous studies have 

reported the levels of pro-inflammatory cytokines in this population. In these 

studies, levels of only one cytokine, TNF- α, were investigated and the results 

were contradictory (5-7). 

   In this study, we performed a detailed metabolic characterization of the 

offspring of type 2 diabetic subjects to investigate the metabolic abnormalities 

related to the metabolic syndrome. Furthermore, we measured multiple 

inflammatory and anti-inflammatory cytokines to investigate whether the innate 

immune system is activated in the early pre-diabetic state. We also determined 

the levels of adhesion molecules and their association with inflammatory 

markers to evaluate, whether endothelial function is impaired in subjects at high 

risk of type 2 diabetes. 
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2. REVIEW OF THE LITERATURE 
  

2.1. Type 2 diabetes 
 
   Type 2 diabetes is the most common metabolic disease in the world and it 

accounts for 90-95% of all cases with diabetes (8). The prevalence of type 2 

diabetes is increasing at an exponential rate with the obesity epidemic (8) and is 

seen in ever-younger age groups (8,9). Type 2 diabetes develops because 

pancreatic ß-cells eventually fail to produce enough insulin to compensate for  

insulin resistance (10). 

   Type 2 diabetes is associated with aging, obesity and physical inactivity. 

However, due to increasing incidence of obesity and physical inactivity among 

young people, the age of onset of type 2 diabetes is substantially lower than 

previously. Insulin resistance precedes the onset of type 2 diabetes by years or 

decades (11,12). Type 2 diabetic patients are exposed mainly to macrovascular 

complications. The risk for coronary heart disease is two- to fourfold higher 

compared to nondiabetic populations (13). Furthermore, cardiovascular disease 

accounts for 58% of all deaths attributable to diabetes (14,15). In type 2 diabetic 

patients, the most common cerebrovascular disease is ischaemic stroke. In the 

UKPDS Study, stroke occurred in 6 % of patients in the 10 years after diagnosis 

of diabetes (16). The long-term microvascular complications of type 2 diabetes 

include retinopathy, nephropathy, peripheral neuropathy and autonomic 

neuropathy.  

 

2.2. Risk factors of type 2 diabetes 
 

2.2.1. Obesity and fat distribution 

 
   Obesity is a major risk factor for type 2 diabetes, and 60-90 % of type 2 

diabetic patients are obese (17,18). In a large U.S. cohort of 84,941 middle- 

aged women, the presence of overweight or obesity was the single most 

important predictor of type 2 diabetes (19). In a cohort of 51,529 middle-aged 
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men, the risk of type 2 diabetes was associated strongly with overall adiposity 

(18). Men with body mass index (BMI) of ≥ 35 kg / m² had a 42.1 fold greater 

risk for type 2 diabetes than men with a BMI < 23 kg / m².  

   Although overall obesity increases the risk of  type 2 diabetes, the 

accumulation of fat in the abdominal region may be an even more powerful risk 

factor (20). In particular, intra-abdominal fat is detrimental to glucose 

metabolism and insulin sensitivity (21). Fat distribution is partially genetically 

determined (22). First-degree relatives of type 2 diabetic subjects have an 

increased waist-to-hip ratio (WHR) compared to their spouses without a family 

history of type 2 diabetes (23). 

 

2.2.2. Lifestyle factors 

 

   Physical inactivity increases insulin-mediated glucose uptake (24), improves 

insulin sensitivity (25) and decreases the amount of visceral fat (26-28). In 

persons with impaired glucose tolerance (IGT), lifestyle interventions including 

regular physical activity have been shown to reduce the subsequent 

development of type 2 diabetes by more than half (29,30). In a systematic 

review by Jeon et al (31) moderate-intensity physical activity was shown to 

reduce the risk of type 2 diabetes even in those who did not achieve weight 

loss. 

   Moderate physical activity has been shown to reduce the risk of type 2 

diabetes independently of age and BMI in a cohort of 7735 men (32). Also, The 

Nurse’s Health Study showed that greater leisure-time physical activity, in terms 

of both duration and intensity, was associated with a reduced risk of type 2 

diabetes (33). In addition, approximately half the cases of type 2 diabetes in this 

study could have been prevented by combining healthy diet, regular exercise, 

abstinence from smoking, and moderate alcohol consumption (19). Even 

among obese women (BMI > 30), the combination of healthy diet and regular 

exercise was associated with a 24 percent reduction in the risk of developing 

type 2 diabetes (19). Thus, healthy diet and adequate exercise decrease the 
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risk of developing type 2 diabetes, independently of the effect on body weight, 

and regardless of the presence or absence of obesity. 

   Active smoking is associated with an increased risk of type 2 diabetes (19,34-

37). The number of cigarettes smoked daily and the number of pack-years of 

exposure were closely associated with impaired fasting glucose and type 2 

diabetes in a cohort of middle-aged Japanese men (36). Cigarette smoking 

causes insulin resistance in peripheral tissues, whereas insulin secretion may 

be unimpaired or over-stimulated (38-40). 

   Dietary patterns. In the KANWU study, insulin sensitivity was improved by a 

diet that was high in monounsaturated fatty acids and low in saturated fatty 

acids (41). In the Iowa Women’s Health Study, the amount of dietary vegetable 

fat was inversely related to the incidence of diabetes (42). Moreover, 

substituting polyunsaturated fatty acids for saturated fatty acids reduced the 

rate of developing type 2 diabetes. 

   Several epidemiological studies have suggested  that diets rich in whole 

grains (43-45) or cereal fiber (19,44,46,47) may protect against diabetes. This 

effect may be mediated by positive effects on body weight and also by slowing 

gastrointestinal absorption. Schulze et al. (48) suggested that a diet high in 

sugar-sweetened soft drinks, refined grains, diet soft drinks, and processed 

meat and low in wine, coffee, cruciferous vegetables, and yellow vegetables 

may increase the risk of type 2 diabetes, possibly by exacerbating inflammatory 

processes. 

 

2.2.3. Other risk factors 

 

   Low-grade inflammation. Pickup et al. (49,50) were the first to suggest that 

type 2 diabetes is an inflammatory condition characterized by elevated 

concentrations of acute phase inflammatory reactants in the plasma. Elevated 

circulating inflammatory markers such as C-reactive protein (CRP) and 

interleukin-6 (IL-6) predict the development of type 2 diabetes (51-53). Pickup et 

al. (54) hypothesized that many of the abnormalities seen in type 2 diabetes 

and impaired glucose tolerance are mal-adaptations of the normal innate 
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immune system response to environmental threats. Although the markers of 

low-grade inflammation are increased in type 2 diabetes, the degree of immune 

activation in this disease is far below that seen in acute infections (3). 

   Endothelial dysfunction. The innermost layer of blood vessels, called the 
“endothelium”, is biologically active and responsible for the regulation of several 

important functions (55), including vascular tone, platelet adhesion, coagulation 

and leukocyte adherence. The term “endothelial dysfunction”  refers specifically  

to the impairment of endothelium-dependent relaxation, and is caused by a loss 

of the normal nitric oxide (NO) bioactivity within the vessel wall (56). Endothelial 

function deteriorates with age, as well as in the presence of diabetes, obesity, 

hypertension, smoking and hypercholesterolemia (55), which are all major risk 

factors for the development of atherosclerosis.  

   Depression. The meta-analysis by Knol et al. identified depression as a risk 

factor for type 2 diabetes, comparable in significance to smoking and lack of 

physical activity. The pathophysiological mechanisms responsible for this 

association remain unclear (57). 

   Birth weight. In 1993, Barker et al. reported a relationship between low birth 

weight and an increased risk of developing type 2 diabetes in adulthood (58). 

However, a meta-analysis of 14 articles by Harder et al. (59) demonstrated a U-

shaped correlation between birth weight and later risk of type 2 diabetes. Thus, 

high birth weight seems to increase the risk of type 2 diabetes to the same 

extent as low birth weight. 

   Infection. Several studies have demonstrated the association of Chlamydia 

pneumoniae infection and metabolic syndrome, insulin resistance, and coronary 

artery disease (60-63). However, the association was not confirmed in some 

studies or disappeared after adjusting for body weight (62,64). Moreover, 

antibiotic prevention treatment failed to reduce the prevalence of secondary 

coronary events in a large clinical trial (65,66).  Wang et al. (67), demonstrated 

in their recent study, that Chlamydia pneumoniae infection plays a causal role 

on the development of insulin resistance and type 2 diabetes in obese C57BL/6 

mice. This finding may be useful in the study of Chlamydia pneumoniae 

vaccination for type 2 diabetes control (67). 
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   Hyperglycemia is common in critically ill patients (68) and it may lead to 

complications such as severe infections, polyneuropathy, multiple organ failure 

and death (69). In a study by Jacob et al (69), sepsis-induced inflammatory 

responses were exacerbated in a non-obese rat model of type 2 diabetes, 

suggesting that the observed increase in inflammatory response is due to the 

diabetic phenotype. Type 2 diabetes is more prevalent among patients with HIV 

infection especially among patients receiving protease inhibitors (70). 

Furthermore, chronic hepatitis C infection has been associated with type 2 

diabetes in several observational studies (71). 

 
2.3. Genetics of type 2 diabetes 
 
   Type 2 diabetes has a strong heritability. First, type 2 diabetes clusters in 

families (72). Second, the concordance rate of type 2 diabetes in monozygotic 

twins (50 – 96%) is higher than that in dizygotic twins (10-37%) (73-76). Third, 

the prevalence of type 2 diabetes varies among ethnic populations, being 

highest in American Indian tribes (~40%) and lowest in Colombian Amerindians 

(0%) and traditional Brazilian Amerindians (0%) (77). The risk for type 2 

diabetes increases approximately two- to fourfold when one or both parents 

have type 2 diabetes (78-80).  

   The inheritance of type 2 diabetes does not follow the Mendelian pattern. 

Type 2 diabetes is a multi-factorial disease in which individual risk is defined by 

the complex interplay between genetic and environmental factors (81). Although 

causal genes have been identified for many monogenic forms of diabetes (82), 

elucidation of the genetic background of type 2 diabetes proceeded slowly until 

2007. Five genome-wide studies have now been published, increasing the 

number of confirmed type 2 diabetes susceptibility loci from three (PPRAG, 

KCNJ11, TCF7L2) to nine with the addition of CDKAL1, CDKN2A/B, IGF2BP2, 

HHEX/IDE, FTO and SLC30A8) (83). In a recent meta-analysis six new loci 

were detected, including JAZF, CDC123/CAMK1D, TSPAN8/LGR5, THADA, 

ADAMTS9 and NOTCH2 gene regions (84). The majority of type 2 diabetes 

gene variants have been implicated in decreased β-cell insulin secretion, 
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supporting the crucial role of β-cell dys-regulation in the pathogenesis of type 2 

diabetes (85). All of the recently identified candidate genes regulate insulin 

secretion, whereas genes regulating insulin sensitivity have not been found (86) 

 

2.4. Pathophysiology of type 2 diabetes 
 

   Type 2 diabetes is a progressive, heterogeneous disease characterized by 

varying degrees of insulin resistance and relative insulin deficiency. Although 

sedentary lifestyle and obesity seem to be the triggering pathogenic factors, 

both genetic and environmental elements are essential to the development of 

this disease. Furthermore, hyperglycemia itself can impair and destroy ß-cells, 
and thus eventually stop insulin production (87).  

   Insulin is the key hormone in blood glucose regulation. It has diverse functions 

including stimulation of nutrient transport into cells, regulation of gene 

expression, modification of enzymatic activity and regulation of energy 

homeostasis via actions in the arcuate nucleus (88). Normoglycaemia is 

maintained by a balanced interplay between insulin action and insulin secretion 

(89). Normally, the pancreatic ß-cell can adapt to changes in insulin action. A 

decrease in insulin action is followed by an up-regulation of insulin secretion, 

and vice versa (89). 

   A continued decline in pancreatic ß-cell function is critical in defining the risk 

and development of type 2 diabetes (90). The Pima Indians have a higher 
prevalence of type 2 diabetes than any other population in the world. These 

individuals are often insulin-resistant, and progress to type 2 diabetes through 

excessive loss of their ß-cell mass (91). β-cell failure progresses even when the 

glucose level is within the normal range (92).  

   The offspring of type 2 diabetic subjects are also at increased risk of 

developing type 2 diabetes, and have been shown to possess impaired ß-cell 

function even in the presence of normal glucose tolerance (93). In these 

individuals, the decline in glucose tolerance over time is strongly correlated to 

the loss of ß-cell function (94). Impaired ß-cell function is reversible to a certain 

degree (95). Even in the presence of initial severe hyperglycemia, ß-cell 
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function can be restored when euglycemia is attained pharmacologically, by 

bariatric surgery or by life-style changes (96). Pancreatic ß-cell regeneration 

does occur in adults through a combination of replication from existing ß-cells, 

plus ß-cell neogenesis from precursor cells within the adult pancreatic ducts 
(97). 

   Over the past few decades there has been much debate regarding the relative 

importance of insulin resistance and ß-cell dysfunction in the pathophysiology of 

type 2 diabetes. Several studies have suggested that insulin resistance is the 

primary abnormality, and that ß-cell dysfunction is a late event arising from the 

increased secretory demand placed on the ß-cells by prolonged insulin 

resistance (98). In contrast, others have suggested that impaired β-cell function 

is a prerequisite for the progression from NGT to hyperglycemia (99-101). For 

example, the UKPDS (102) and the longitudinal study in Pima Indians (91) 

suggest that the major determinant of glucose intolerance is a progressive loss 

of β-cell function. Kahn (103), however, concludes that both insulin resistance 

and β-cell dysfunction are present very early in the natural history of diabetes. 

In any case, type 2 diabetes occurs when the β-cells can no longer sustain 

insulin secretion in the setting of insulin resistance (104). 

   Several mechanisms have been proposed to induce ß-cell loss in type 2 

diabetes (105). These include glucose toxicity (106), reactive oxygen species 

(107) and inflammatory cytokines such as IL-1ß (108). Normoglycaemia can be 

maintained until approximately 60% of the ß-cell mass is lost (109). Interleukin-

1ß contributes to ß-cell glucotoxicity in the pathogenesis of type 2 diabetes 

(108). Long-term exposure of cultured human islets to elevated glucose levels 

leads to ß-cell production and release of IL-1ß (108). In turn, IL-1ß acts back on 

the ß-cells to induce impaired function and apoptosis (110). This effect is 

mediated by closure of adenosine triphosphate (ATP)-sensitive K+ (KATP) 

channels, which are key regulators of ß-cell function and survival (110). ß-cells 

ATP-sensitive K+ (KATP) channels are octamers composed of four inwardly 

rectifying K+ channels and four sulfonylurea receptors (111). Sulfonylureas block 

K+ (KATP) channels, stimulating the effect of glucose in eliciting insulin release 

(112).  Maedler et al (111) showed that the sulfonylurea glibenclamide induces 
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ß-cell apoptosis in human islets. Therefore, sulfonylureas, may have adverse 

effects on ß-cell mass (111). Interestingly, leptin has been shown to modulate 

IL-1ß-induced apoptosis in human ß-cells (113) 
 
2.5. Low-grade inflammation and type 2 diabetes 
 
2.5.1. C-reactive protein and cytokines as markers of low-grade inflammation 

    

Innate immunity.  Immunity is divided into two systems determined by the speed 

and specificity of the reaction (114). The innate immune system is a non-

specific primary defence mechanism against environmental threats such as 

microbial infection and physical or chemical injury. It does not exhibit a memory 

response, and it reacts similarly to a variety of organisms and threats.  In 

contrast, the adaptive or so-called acquired immune system acts as a second 

line of defence, and also protects in the event of re-exposure to a previously 

encountered pathogen.   

  All protective mechanisms of the innate immune system are encoded in the 

germline of the host (115). These include passive physical (e.g. epithelial cell 

layers, mucociliary blanket), chemical and microbiological barriers (114). 

However, in most cases the immediate host defence is provided by the active 

elements of the immune system (neutrophils, macrophages, monocytes, 

complement, cytokines and acute phase proteins).  

Although the innate and adaptive immune systems have distinct functions, they 

usually act together. The innate response represents the initial, rapid line of 

host defence,  whereas the adaptive response becomes prominent after several 

days, when antigen-specific T and B cells have undergone clonal expansion 

(116). An important function of the innate immune system is the control of the 

adaptive immune response (117). 

   Inflammation is a consequence of the activation of innate immunity.  

Inflammation causes local effects, whereas a systemic reaction is known as an 

acute-phase response. This response is designed to restore homeostasis after 

environmental threats (118) and is characterized by changes in the 
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concentrations of acute-phase reactants (119,120). The concentrations of some 

of these proteins increase for example, C-reactive protein (CRP), fibrinogen and 

serum amyloid A, while the concentrations of others decrease for example, 

albumin and transferrin (118). Acute phase proteins are mostly synthesized in  

the liver, and their production is stimulated by cytokines of the innate immune 

response – mainly interleukin-6 (IL-6) and tumour necrosis factor (TNF)-α (121).  

   Cytokines. Cytokines are low molecular weight messenger molecules 

secreted by virtually all cells and have a variety of functions (114). Cytokines 

bind to specific receptors on target cells and mediate intracellular signals. 

Typically these molecules affect cell activation, division, apoptosis or 

movement. They act either in an autocrine (on the producer cells), paracrine (on 

cells near-by) or endocrine fashion (via bloodstream). Cytokines are generally 

classified as interleukins, growth factors, chemokines, interferons or colony-

stimulating factors. They can also be divided by their inflammatory activity into 

pro- and anti-inflammatory subgroups. Cytokines allow an organism to respond 

rapidly to an immune challenge by coordinating an appropriate immune 

response. A balance between the inflammatory and anti-inflammatory 

responses is essential for normal cellular function. Unbalanced cytokine 

production is associated with many diseases. 

   Cytokines are often produced in cascade, as one cytokine stimulates its target 

cells to make additional cytokines. Cytokines can act synergistically or 

antagonistically. As cytokines have an effect on the expression of other 

inflammatory factors and on each other, the question of a possible causal 

relationship of cytokines and diseases is very complicated (122). 

   The measurement of cytokine levels is useful for investigating disease 

pathogenesis, and cytokine levels serve as diagnostic and prognostic indicators 

in many diseases (123). Immunoassays are the most widely used techniques 

(124). The concentrations of cytokines in biological fluids are often near the 

lower limit of detection. Thus, the sensitivity of assays should be defined 

appropriately, taking the variability of the assay into account (65). There is also 

the possibility that cytokines are transported to target organs by circulating 

monocytes, resulting in undetectable cytokine levels in the plasma (65). 
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Furthermore, the measurement of IL-1 agonists (IL-1α and IL-1ß) without 

measurement of IL-1 receptor antagonist (IL-1Ra) cannot give a complete 

picture of the biological role of IL-1 in pathological or physiological processes 

(65). Cytokine levels reflect a sum of the production, removal and retention of 

these molecules. Frozen stored samples are preferred (123). 

   C-reactive protein (CRP). CRP is an acute-phase reactant produced by 

hepatocytes primarily in response to IL-6, although its production is also 

regulated by other cytokines, including IL-1 and TNF-α (119). Serum levels of 

CRP rise dramatically in response to infection, inflammation and injury (125). 

CRP is widely used as part of the diagnostic workup, to monitor disease status, 

and to monitor treatment results (126). About 90% of apparently healthy 

individuals have CRP concentrations < 3 mg/l and 99% have concentrations < 

10 mg /l (127). Chronically elevated CRP is a strong risk factor for 

cardiovascular events (128), suggesting that inflammation is an important 

contributor to atherosclerosis. High-sensitivity CRP (hs-CRP) identifies patients 

with unstable coronary lesions who have previously gone unrecognized by 

traditional coronary heart disease markers (129). C-reactive protein itself may 

also contribute to the pathogenesis of atherothrombosis by having a direct 

effect on human endothelial cells (130). Parental injection of human CRP 

enhanced markedly tissue damage via a complement-dependent mechanism, in 

experimental acute myocardial infarction produced by coronary artery ligation 

(131). On the contrary, CRP plays an important role in host defense by 

complement activation, opsonization and by inducing phagocytosis (132). There 

are data indicating that elevated hs-CRP levels predict the development of the 

metabolic syndrome (133) and type 2 diabetes (134). 

 

2.5.2. Low-grade inflammation, insulin resistance, metabolic syndrome and type 

2 diabetes 

 

  The concept that activated innate immunity may be the common antecedent of 

type 2 diabetes provides an exciting and novel approach to the understanding 

of the pathogenesis of type 2 diabetes (121). The first data to give rise to the 
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inflammation hypothesis came from cross-sectional studies in the 1960s 

demonstrating that systemic concentrations of many immune mediators appear 

to be chronically up-regulated in type 2 diabetes (135,136). A simplified model 

for the role of low-grade inflammation in insulin resistance, type 2 diabetes and 

endothelial dysfunction is given in Figure 1. 

   In 1993 Hotamisligil et al. (137) demonstrated that TNF-α is over-expressed in 

obese mice and rats, thus providing the first link between insulin resistance and 

a pro-inflammatory cytokine. TNF-α is also expressed in human adipocytes and 

its concentration is decreased by weight loss (138). Dandona et al. (139) 

demonstrated that obesity is associated with increased plasma concentrations 

of TNF-α, which fall with weight loss. Further studies showed that obesity is a 

state of chronic inflammation, as indicated by increased plasma concentrations 

of CRP (140), IL-6 (141) and plasminogen activator inhibitor-1 (PAI-1) (142). 

   In 1993 Crook et al. (143) showed that circulating concentrations of CRP, 

serum amyloid A, α1-acid glycoprotein and sialic acid were increased in type 2 

diabetic patients but not in type 1 diabetic patients, thus linking  for the first time 

type 2 diabetes with an activated acute phase response. Pickup et al. (50) 

hypothesized that the similar dyslipidemia seen in both type 2 diabetes and the 
acute phase response might be cytokine-mediated and might provide a unifying 

mechanism for these conditions. Pickup et al. (50) also observed significant 

increases of serum sialic acid, α-1 acid glycoprotein, and IL-6 levels and urinary 

albumin excretion rates in non-diabetic subjects, type 2 diabetic patients without 

syndrome X [hyperinsulinemia, impaired glucose tolerance, hypertension, 

increased triglyceride, decreased HDL-cholesterol (144)] and type 2 diabetic 

patients with syndrome X, with the highest levels occurring in this last group. 

They concluded that type 2 diabetes is associated with an elevated acute-phase 

response, which is closely involved in the pathogenesis of this disease. 

Furthermore, abnormalities of the innate immune system could contribute to 

hypertriglyceridemia, low HDL cholesterol, hypertension, glucose intolerance, 

insulin resistance and accelerated atherosclerosis in type 2 diabetes (50). This 

disorder of innate immunity also has wide-ranging effects on psychological 

behaviour, sleeping patterns, reproductive hormones, haemostasis, metal ion 
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metabolism and capillary permeability (54). All these abnormalities are often 

observed in type 2 diabetes. Thus, based on these findings, the evident 

mechanism for the development of type 2 diabetes is the long-term activation of 

the innate immune system, resulting in chronic inflammation and eliciting 

disease instead of repair in individuals who subsequently develop type 2 

diabetes (54). 

   Several cross-sectional studies have confirmed that levels of acute-phase 

reactants (such as CRP and sometimes IL-6, TNF-α and fibrinogen) are 

positively correlated with measures of insulin resistance (140,145-148). In a 

study by Temelkova-Kurktschiev, inflammatory markers were related to insulin 

resistance but not to insulin secretion (149). In one study, levels of IL-6 but not 

levels of TNF- α were increased in subjects with IGT or IFG compared with 

levels in individuals with normal glucose tolerance (150). The association of 

low-grade inflammation with newly diagnosed (151) or established type 2 

diabetes (152-155) was also confirmed by an observation of elevated 

concentrations of acute phase reactants such as CRP and IL-6. 
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Figure 1. Simplified model for the role of low-grade inflammation in the aetiology of type 2 

diabetes and endothelial dysfunction. Several factors such as over-nutrition, physical inactivity 

and obesity activate inflammatory signalling pathways and cause insulin resistance. Obesity 

leads to an inflammatory response by itself and by inducing increased lipolysis and release of 

free fatty acids (FFA). As a consequence of FFA and cytokine release the synthesis of adhesion 

molecules is up-regulated leading to impaired endothelial nitric oxide production and endothelial 

dysfunction. Cytokines act directly on pancreatic ß-cells by impairing insulin secretion and 

inducing ß-cell apoptosis. Defective insulin secretion leads to impaired glucose tolerance.  

Modified from ref (156). 

2.5.3. Markers of inflammation as risk factor for type 2 diabetes 

 

   The Atherosclerosis Risk in Communities-study was the first to show that 

several inflammatory markers, including white blood cell count, low serum 

albumin, α1-acid glycoprotein, fibrinogen and sialic acid, are predictive of later 

type 2 diabetes in a middle-aged population (51,157). Recently, this hypothesis 

has been strongly supported by several studies including  the  Women’s Health 

Study showing that elevated CRP and IL-6 levels were associated with the 

development of type 2 diabetes on healthy middle-aged women (53). In elderly 

subjects in the U.S. Cardiovascular Health Study baseline CRP was particularly 

high in those older individuals who later developed type 2 diabetes (158). 

Low-grade inflammation 

Obesity Over-nutrition 

Physical 

Type 2 

diabetes 

Atherosclerosis 

Vasodilatory reserve ↓ 

Endothelial nitric oxide ↓ 

Free fatty acids ↑ 

Lipolysis ↑ 

ß-cell 

Impaired glucose 

tolerance 
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Similar findings have been reported in Pima Indians (white blood count) (159), 

in multiethnic subjects in the U.S. Insulin Resistance and Atherosclerosis Study 

(CRP, fibrinogen, and PAI-1) (160), in women in the Nurse’s Health Study 

(CRP) (161), in Scottish men in the West of Scotland Coronary Prevention 

Study (CRP) (162), in the U.S. National Health and Nutrition Examination 

Survey (white blood count, erythrocyte sedimentation rate) (163), in Japanese 

men (white blood count) (164),  in participants in the Prospective Investigation 

into Cancer and Nutrition (EPIC)-Potsdam Study in Germany (IL-6, with 

additional risk of IL-6 and IL-1β combined) (165), and in middle-aged men in the 

MONICA Augsburg Study in Germany (CRP) (166). In the Mexico City Diabetes 

Study, elevated CRP levels were significant predictors of diabetes in women but 

not in men. The authors suggested that low-grade inflammation may have a 

greater effect in perturbing the actions of insulin in females than in males (133). 

In a population-based study of 923 middle-aged subjects in Pieksämäki, East-

Finland, women with metabolic syndrome had higher levels of hs-CRP and IL-

1Ra than did men with metabolic syndrome (167). Low-grade inflammation in 

women may thus explain, why the metabolic syndrome is a stronger predictor of 

cardiovascular disease in women than in men (167). 

 

2.5.4. Possible mechanisms of activated innate immunity in type 2 diabetes 

 

   Type 2 diabetes is associated with a general activation of the innate immune 

system, in which there is a chronic, cytokine-mediated state of low-grade 

inflammation. These changes are adaptive mechanisms designed to restore 

homeostasis during and after external threats. How chronic inflammation can 

cause type 2 diabetes is not clear. The possibility that the inflammatory changes 

might be a consequence of type 2 diabetes rather than a contributor to its 

development has been debated (3). Prospective studies have reported subtle 

pro-inflammatory changes many years before the onset of the disease 

(51,53,157). 

   Obesity.  The link between obesity and inflammation has raised the question 

of whether obesity-induced inflammation plays a pathogenic role in the 
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development and progression of type 2 diabetes. In obese subjects, 

hypertrophied adipocytes secrete large amounts of the macrophage 

chemoattractant MCP-1, perhaps contributing to macrophage infiltration into 

adipose tissue (168). Macrophage recruitment results in a pro-inflammatory 

state in obese adipose tissue. Infiltrating macrophages secrete large amounts of 

pro-inflammatory cytokines, such as TNF-α, IL-6 and IL-1ß. The excess of 

circulating triglycerides and free fatty acids results in the accumulation of 

activated lipids in skeletal muscle, disrupting functions such as mitochondrial 

oxidative phosphorylation and insulin-stimulated glucose transport, thus 

triggering insulin resistance (168).  

   Genetic factors.  Genetic influence on innate immunity is suggested from 

studies showing that subjects with the highest transcription rates of genes 

encoding TNF-α and IL-6 are prone to develop obesity, insulin resistance and 

type 2 diabetes (169). 

   In the meta-analysis of more than 20,000 subjects by Huth et al.(170), the GC 

and CC genotypes of IL-6-174G>C were associated with a decreased risk of 

type 2 diabetes providing further evidence that immune mediators are causally 

related to type 2 diabetes. In a study by Fernandez-Real et al (171), a 

polymorphism of IL-6 gene was shown to influence the relationship among 

insulin sensitivity and postload glucose levels. Pannacciulli et al (172) showed 

that a family history of type 2 diabetes was associated with increased levels of 

C-reactive protein in non-smoking healthy women. 

   Diet. Dietary habits may contribute to the activation of innate immunity in 

genetically or metabolically predisposed individuals. Whole-grain diets with a 

low glycemic index probably decrease the risk of type 2 diabetes through 

induction of improved insulin resistance and ß-cell function (173), but 

modulation of inflammation may be another mechanism (174). The intake of 

foods with a high glycemic index is associated with hyperglycemia, and is thus a 

major stimulus for inflammation (175). Several cross-sectional studies have 

shown that omega-3 fatty acids have anti-inflammatory properties (176-178). A 

growing amount of evidence suggests an anti-inflammatory effect of fruit and 

vegetable consumption (179,180). Likewise, clinical trials of nut consumption 
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have reported decreases in inflammatory markers (181) and improvements in 

endothelial function (182). 

   Aging. Increased inflammatory activity accompanies aging. Several factors 

are likely to contribute to increased low-grade inflammatory activity in the 

elderly, including decreased production of sex steroids, smoking, 

atherosclerosis and higher relative or absolute amount of adipose tissue (183). 

Similarly, the incidence of type 2 diabetes is increased in the elderly. A low-

grade systemic inflammatory response is also evident in smokers, as confirmed 

by numerous population-based studies (184-187). In the Hoorn Study of a city 

population in the Netherlands aged 50-74 years and without a history of 

diabetes, the number of stressful life events in the previous 5 years was 

positively associated with the prevalence of newly detected type 2 diabetes 

(188). 

   Bacterial and viral infections.  Fernandez-Real et al. (189) hypothesized that 

burden of infection could be associated with chronic low-grade inflammation, 

resulting in insulin resistance before established atherosclerosis develops. 

Among apparently healthy men, herpes simplex virus (HSV)-2 seropositivity 

was modestly linked to insulin resistance, whereas  total pathogen burden 

(based on herpes simplex virus (HSV)-1, HSV-2, enteroviruses, and Chlamydia 

pneumoniae IgG serostatus) showed the strongest association with insulin 

resistance, especially when these two last pathogens caused seropositivity (63). 

In fact, the reduction of lifetime exposure to infectious diseases and other 

sources of inflammation has made an important contribution to the decline in 

old-age mortality (190).  

 

2.6. Endothelial dysfunction and type 2 diabetes 
 
   The endothelium is involved in the regulation of multiple functions, such as 

regulation of vascular tone, platelet adhesion, coagulation, fibrinolysis and 

leukocyte adherence (56). A key feature of endothelial dysfunction is the 

inability of arteries and arterioles to dilate fully in response to an appropriate 

stimulus. Dysfunctional endothelial cells are unable to produce nitric oxide (NO) 
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and prostacyclin to the same extent as healthy endothelial cells and therefore 

vasodilatation is reduced. The release of vasoconstricting factors, such as 

endothelin-1 and angiotensin-II, is also changed. Thus, endothelial dysfunction 

refers to an imbalance in the release of vasodilating and vasoconstricting 

factors (191,192). The molecular basis of this condition is complicated and far 

from understood (192). 

   Several methods to measuring endothelial dysfunction have been developed 

but no single method has been proven superior. Instead, different techniques 

seem to be complementary to one another (193). The reference method for 

assessing endothelial dysfunction is the quantitative coronary angiography with 

an intra-coronary ultrasound using a Doppler transducer. However, this 

technique is complicated and invasive. Therefore, simple non-invasive methods 

have been developed, e.g. flow-mediated vasodilatation and plethysmography.  

 

2.6.1.  Biomarkers of endothelial dysfunction  

 

   Measurement of endothelial biochemical markers may be the simplest method 

to monitoring endothelial function indirectly (193). A number of circulating 

markers are linked to endothelial dysfunction, including adhesion molecules, 

selectins, integrins, cytokines and fibrinolytic molecules. These all promote the 

adherence of monocytes and hence accelerate atherogenesis (194,195). 

   Sub-clinical tissue injury and adiposity induce the release of pro-inflammatory 

cytokines, especially TNF-α and IL-6, which stimulate an acute-phase response 

marked by elevated levels of CRP (140). When endothelial cells are activated 

by inflammatory cytokines, the increased expression of vascular cellular 

adhesion molecule (VCAM)-1, and intercellular adhesion molecule (ICAM)-1 

promote the adherence of monocytes. E-Selectin is absent in inactive cells but 

is rapidly induced by inflammatory cytokines. ICAM-1 and VCAM-1 are 

expressed by endothelial cells and leukocytes not only in response to 

inflammatory cytokines but also in response to elevated levels of free fatty 

acids, oxidized low-density lipoprotein cholesterol, and advanced glycosylation 

end products occurring in diabetes (196).  Adhesion molecules play a key role 
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in the early formation of atherosclerotic plaque by facilitating leukocyte rolling, 

adhesion and transmigration into the endothelial space (197). Thus, elevated 

plasma levels of adhesion molecules are an early marker of endothelial 

dysfunction and can be used as an indirect measure of endothelial dysfunction. 
    

2.6.2. Endothelial dysfunction, insulin resistance and type 2 diabetes 

 

  Endothelial dysfunction is an early abnormality in insulin-resistant states 

(156,198). In addition, systemic inflammation is associated with insulin 

resistance, incipient coronary vascular disease and diabetes (51,53,160,199). 

Large amounts of cytokines are released from adipose tissue (121) in an 

inflammatory process, which is driven by caloric excess and might be regulated 

by genetic factors. Cytokines exert a toxic effect on endothelial cells and cause 

increased capillary permeability (200) further aggravating the atherosclerotic 

process (121). Similarly, CRP promotes atherosclerosis and endothelial cell 

inflammation (201,202).   

   Endothelial dysfunction is a consistent finding in type 2 diabetes (203-205). 

There is also growing evidence supporting the hypothesis that endothelial 

dysfunction precedes the development of fullblown type 2 diabetic state. In the 

MONICA/ KORA Study, E-Selectin was predictive of type 2 diabetes (206). 

Elevated levels of plasminogen activator inhibitor (PAI-1) predicted the 

development of fullblown type 2 diabetes in the Insulin Resistance 

Atherosclerosis Study (160).  

   Furthermore, in the Framingham Offspring Study, PAI-1 and von Willebrand 

factor increased the risk of incident diabetes independent of other diabetes risk 

factors (207). Based on these findings, endothelial dysfunction seems to be a 

unifying link between cardiovascular disease and type 2 diabetes supporting the 

theory of common soil. 

   Insulin can also promote atherosclerosis by direct action on the arterial wall. It 

causes in-vitro proliferation of smooth muscle cells in animal models and in 

human beings (208). Several prospective epidemiological studies have 

confirmed that circulating insulin concentration is a cardiovascular risk factor 
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(209). Another possibility is that insulin resistance itself, by production of 

inflammatory cytokines, induces atherogenesis and that hyperinsulinemia could 

be body’s compensatory attempt to suppress the inflammation and overcome 

insulin resistance (55,121,156,189,200). Moreover, glucose has pro-

inflammatory effects, since it increases synthesis of reactive oxygen species 

and accentuates several inflammatory markers in vitro (121,189,210). 
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3. THE AIMS OF THE STUDY 
 

This study was undertaken to investigate metabolic defects and early changes 

in levels of cytokines and adhesion molecules in offspring of type 2 diabetic 

patients. The specific aims were: 

 

1. To investigate the metabolic defects in glucose and energy metabolism 

as well as the abnormalities in a variety of cardiovascular risk factors in 

subjects with the metabolic syndrome (Study I). 

2. To investigate the early changes in inflammatory markers in the offspring 

of type 2 diabetic patients (Study II). 

3. To characterize the role of various biomarkers of endothelial activation in 

a cohort of offspring of type 2 diabetic patients and to assess the 

association of adhesion molecules with inflammatory markers and 

metabolic parameters (Study III). 

4. To investigate the changes in the levels of cytokines and adhesion 

molecules in response to acute hyperinsulinemia in the offspring of type 

2 diabetic subjects (Study IV). 
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4. SUBJECTS AND METHODS 
 
4.1. Subjects 
 

   Healthy non-diabetic offspring of patients with type 2 diabetes were included 

in this study in 2000-2003. The probands were chosen from the North Savo 

area, which has a population of 250,000, of whom 4% carry a diagnosis of 

diabetes. Families for our study were sought from earlier diabetes studies, from 

among outpatient clinic and hospital ward patients, as well as through 

newspaper advertisements. Of the 130 suitable families that were identified, 50 

had to be excluded (43 because of IGT and 7 because of type 2 diabetes in 

spouse of type 2 diabetic proband). This left a total of 80 families consisting of 

130 offspring (one to three offspring from each family). The exclusion criteria for 

the offspring were: 1) diabetes mellitus or any other disease that could 

potentially disturb carbohydrate metabolism; 2) diabetes mellitus in both 

parents; 3) pregnancy; 4) any acute ongoing infection; 5) age under 25 or over 

50 years.The clamp study did not succeed in one subject, whose results were 

excluded from all analyses. The final study population consisted of 129 

subjects, and their characteristics are listed in Table 1. 

   The control group consisted of 19 healthy nondiabetic subjects, who were 

either medical students studying in the University of Kuopio or staff working in 

the Kuopio University Hospital. The demographics of the control group are 

given in Table 1. 

   In the first study, 119 non-diabetic offspring of diabetic probands and 19 

controls were included.  The second and the third study consisted of 129 

offspring and 19 controls, whereas in the fourth study, 40 offspring and 19 

controls were studied. 
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4.2. Study design 
 

   The studies were conducted on the metabolic ward of the Department of 

Medicine at the Kuopio University Hospital on three different occasions 1-2 

months apart. On day 1, the subjects were interviewed regarding their medical 

history, smoking, alcohol consumption and physical activity. Blood pressure was 

measured in sitting position after a 5-min rest with a mercury 

shygmomanometer. The average of three measurements was used to calculate 

systolic and diastolic blood pressure as well as the mean blood pressure ([2 x 

diastolic blood pressure + systolic blood pressure ]/ 3). Weight and height were 

measured to the nearest 0.1 cm and 0.5 kg, respectively. BMI was calculated as 

weight in kilograms divided by height in meters squared. Waist (at the midpoint 

between the lateral iliac crest and lowest rib) and hip circumference (at he level 

of trochanter major) were measured to the nearest 0.5 cm. Fasting blood 

samples were drawn after 12 hours fasting followed by an OGTT. Glucose 

tolerance status was evaluated according to the World Health Organization 

Criteria. 

   On day 2, body composition was determined by bioelectrical impedance. 

Thereafter, an intravenous glucose tolerance test (IVGTT) and euglycemic 

hyperinsulinemic clamp were performed after an overnight fast. Indirect 

calorimetry was performed during the last 30-min of the euglycemic clamp. On 

day 3, abdominal fat distribution was evaluated by CT and exercise test was 

performed to determine maximum oxygen uptake. 

 

4.3. Metabolic studies 
 

4.3.1. Oral glucose tolerance test 

 
   In a 2-hour OGTT (75 g of glucose) blood samples for plasma glucose and 

insulin determinations were drawn at 0, 30, 60, 90 and 120 min. Those with 

normal or impaired glucose tolerance according to the WHO criteria (211) were 
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included in the study. The subjects were advised to avoid vigorous exercise two 

days before the OGTT. 

 

4.3.2. Intravenous glucose tolerance test 

 
   An IVGTT was performed to determine the first phase insulin secretion 

capacity (212). After an overnight fast an intravenous catheter was placed into 

the left antecubital vein for the infusion of glucose. Another cannula for blood 

sampling was inserted into a vein in the dorsum of the right hand, which was 

placed in a heated (50°C) box for arterialization of venous blood. After baseline 

blood collection and indirect calorimetry a bolus of glucose (300 mg/kg in a 

50% solution) was given within 30 seconds into the antecubital vein in order to 

acutely raise the blood glucose level. Samples for the measurement of blood 

glucose and plasma insulin were drawn at –5, 0, 2, 4, 6, 8, 10, 20, 30, 40, 50 

and 60 min. 
  

4.3.3. Euglycemic clamp 

 
   The degree of insulin sensitivity was evaluated with the euglycemic 

hyperinsulinemic clamp technique (213). After an IVGTT, a priming dose of 

insulin (Actrapid 100 IU/ml, Novo Nordisk, Gentofte, Denmark) was 

administered during the initial 10 minutes to acutely raise plasma insulin to the 

desired level, where it was maintained by a continuous infusion rate of 40 

mU/min/m² body surface area. The resulting average plasma insulin 

concentration was 66.8 ± 14.91 mU/l and 59.49 ± 7.24 mU/l in offspring and 

controls, respectively. Blood glucose was clamped at 5.0 mmol/l for the next 

120 min by infusing 20% glucose at varying rates according to blood glucose 

measurements performed at 5-min intervals. The mean amount of glucose 

given was calculated for each 20-min interval and the mean value for the last 

20-min interval (the last 60 min interval in study I) was used to define the rates 

of whole body glucose uptake (WBGU). The resulting mean glucose 

concentration at 100-120 min was 5.07 ± 0.23 mmol/l and 5.03 ± 0.193 mmol/l 
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in offspring and controls, respectively. The mean coefficient for variation of 

blood glucose was < 4 %. Samples for plasma lactate, insulin and serum FFA 

measurements were drawn at 0 and 120 min. 
 

4.4. Indirect calorimetry 
 
   Indirect calorimetry was performed with a computerized flow-through canopy 

gas analyzer system (DELTATRAC®, TM Datex, Helsinki, Finland). Gas 

exchange was measured for 30 minutes in the fasting state (before an IVGTT) 

and during the last 30 minutes of the euglycemic clamp. The values obtained 

during the first 10 minutes were discarded and the mean value of the remaining 

20-min data was used for calculations of glucose and lipid oxidation. Protein 

oxidation was calculated on the basis of the urinary non-protein nitrogen 

excretion rate (214). The fraction of carbohydrate non-oxidation during the 

euglycemic clamp was estimated by subtracting the carbohydrate oxidation rate 

from the glucose infusion rate. 

 

4.5. Body composition and fat distribution 
   
   Body composition was determined by bioelectrical impedance (RJL 

Systems®, Detroit, US) in the supine position after a 12-hour fast. Abdominal 

fat distribution was evaluated by CT (Siemens Volume Zoom, Forchheim, 

Germany) at the level of fourth lumbal vertebra. Subcutaneous and IAF were 

calculated as previously described (215). 

 

4.6. Cardiopulmonary exercise test 
 
   The cardiopulmonary test was performed with bicycle ergometer (Siemens 

Elema 380) until exhaustion. Respiratory gas exchange was analyzed 

continuously during the test with a computer-based system (Sensor Medics 

2900, Metabolic Measurement Cart / System, Yorba Linda, CA, USA). The 
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average values of oxygen uptake measured during the last 20 seconds of the 

exercise were used to calculate V0²-max. 

 

4.7. Biochemical assays and calculations 
 

   Blood and plasma glucose levels were measured by the glucose oxidase 

method (Glucose & Lactate Analyzer 2300 Stat Plus, Yellow Springs Instrument 

Co., Inc, Ohio, US). Plasma insulin and C-peptide were determined by 

radioimmunoassay (Phasedeph Insulin RIA 100, Pharmacia Diagnostics AB, 

Uppsala, Sweden). Serum lipid and lipoprotein concentrations were determined 

from fresh serum samples drawn after a 12-hour overnight fast. Cholesterol and 

triglyceride levels from the whole serum and from lipoprotein fractions were 

assayed by automated enzymatic methods (Roche Diagnostics, Mannheim, 

Germany). Plasma concentrations of TNF-α, IL-1β, IL-1Ra, IL-6, IL-10, IL-18 

and serum levels of soluble adhesion molecules (intercellular adhesion 

molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [ VCAM-1], E-Selectin 

and P-Selectin were measured with high-sensitivity assay kits from R&D 

Systems. IL-8 was measured using a kit from Biosource International 

(Camarillo, CA, USA). CRP was measured using an Immulite analyzer and a 

DPC High Sensitivity CRP assay (Diagnostic Products Corporation, Los 

Angeles, CA). Soluble vascular adhesion protein-1 (VAP-1) was measured 

using in-house sandwich ELISA. Plasma for determination of CRP, cytokines 

and adhesion molecules was stored at -70° C until analysis within 3.5 years. 

 

4.8. DNA analyses 
 
   Genotyping was performed either by direct sequencing (ABI prism genetic 

analyzator) (IL-1Ra gene: G114C), by restriction length polymorphism (IL-6 

gene: C-174G, IL-10 gene: A-592C, TNF-receptor 2 gene: M196R) or by 

TaqMan assays (CRP gene: G942C, G1059C, IL-1β gene: T511C, C3954T, IL-

10 gene: A1082G, TNF-α gene: G-308A). 
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4.9. Statistical analysis 
 
   All data analyses were performed with the SPSS 10.0, 11.0 or 14.0 for 

Windows programs (SPSS Inc, Chicago, Illinois, USA). The results for 

continuous variables are shown as mean ± SD or mean ± SEM as indicated. 

Variables with skewed distribution were logarithmically transformed for 

statistical analyses. The differences between the three groups were assessed 

by the analysis of variance (ANOVA) for continuous variables and by the ҳ² test 

for categorical variables. ANCOVA (Study I) and linear mixed model analysis 

(Studies II, III and IV) were applied to adjust for family relationship and other 

confounding factors. Correlation between continuous variables was tested 

using linear regression analysis. In factor analyses (Study I) the principal 

component method was used for extraction of the initial components. Factors 

with eigenvalues > 1 were retained and varimax rotation was applied for the 

elucidation of factors. Variable loadings > 0.4 were considered statistically 

significant in the interpretation of the factors. The incremental insulin areas 

under the curve were calculated by the trapezoidal method. 
 

4.10. Approval of the Ethics Committee 
 
   The Ethics Committee of Kuopio University Hospital approved the study 

protocol. All study subjects gave informed consent. 
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5. RESULTS 
 

5.1. Characteristics of the study subjects 
 

   The baseline clinical and laboratory characteristics of the study subjects are 

shown in Table 1. Of 129 subjects (Studies II and III), 20 (15.5%) had impaired 

glucose tolerance (IGT). In Study I, the subjects were grouped according to 

their metabolic syndrome (MetS) factor score. 
 
Table 1. Clinical and laboratory characteristics of the study subjects 

 
                                                                  Offspring of type 2 diabetic patients                          Controls              

                             

 Study I Studies  

II and III 

Study IV  

 N=119 N=129 N=40 N=19 

Men/Women 55/64 59/70 19/21 8/11 

Age (years) 35.5 ± 6.0 35.5 ± 6.3 36.5 ± 6.6 34.5 ± 4.5 

Body mass index (kg/m²) 26.1 ± 4.7 26.1 ± 4.6 28.1 ± 6.0 24.6 ± 2.6 

Waist (cm) 88 ± 12 88 ± 12 93 ± 15 82 ± 8 

Systolic blood pressure 

(mmHg) 

126 ± 11 127 ± 12 133 ± 15 124 ± 10 

Diastolic blood pressure 

(mmHg) 

84 ± 9 84 ± 10 89 ± 12 82 ± 10 

Fasting plasma glucose 

(mmol/L) 

5.1 ± 0.4 5.2 ± 0.4 5.2 ± 0.5 5.1 ± 0.6 

120 min plasma glucose 

(mmol/L) 

6.2 ± 1.4 6.3 ± 1.4 7.5 ± 1.4 5.6 ± 1.1 

Fasting plasma insulin 

(pmol/L) 

46.2 ± 22.5 46.8 ± 22.8 55.2 ± 29.4 47.9 ± 23.0 

120 min plasma insulin 

(pmol/L) 

245.6 ± 195.2 247.2 ± 189.6 367.2 ± 249.6 194.0 ± 107.2 

WBGU µmol/kg/min 57.34 ± 16.9 56.54 ± 16.87 50.0 ± 13.5 70.0 ± 27.9 

Total cholesterol (mmol/L) 4.90 ± 0.87 4.90 ± 0.87 4.9± 0.74 4.73 ± 0.96 

HDL cholesterol (mmol/L) 1.27 ± 0.28 1.27 ± 0.28 1.16 ± 0.29 1.37 ± 0.33 

Total triglycerides (mmol/L) 1.13 ± 0.60 1.14 ± 0.61 1.37 ± 0.69 1.24 ± 0.84 

HDL= high density lipoprotein 
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5.2. Factor analysis on the components of the metabolic syndrome   
       (Study I) 
 

   The metabolic syndrome was characterized by applying factor analysis in 119 

non-diabetic offspring of diabetic probands. A single factor, the metabolic 

syndrome factor, was identified using the following variables: 2-hour glucose, 

fasting insulin, body mass index, waist, HDL cholesterol, triglycerides, and 

mean blood pressure. Subjects with the highest factor score tertile were defined 

as having the metabolic syndrome. During hyperinsulinemia, the highest factor 

score tertile was associated with decreased rates of glucose oxidation 

(p<0.001, adjusted for gender, Figure 2A) and non-oxidative glucose disposal 

(P<0.001, adjusted for gender, Figure 2A), high rates of lipid oxidation 

(P=0.001, adjusted for gender, Figure 3C), low energy expenditure (P=0.031, 

adjusted for gender, Figure 3A), and impaired suppression of free fatty acids 

(P=0.003, adjusted for gender, Figure 3B).  

   The amount of intra-abdominal (Figure 2C) and subcutaneous fat (Figure 2D) 

increased with increasing metabolic syndrome factor score. In contrast, 

adiponectin level decreased significantly (P=0.001, adjusted for gender and 

intra- abdominal fat, Figure 2B) and maximum oxygen uptake was lower in high 

metabolic syndrome score subjects (P=0.012, Figure 3D). Furthermore, the 

metabolic syndrome was associated with high levels of C-reactive protein 

(P<0.001, adjusted for gender and intra-abdominal fat, Figure 4A), IL-1ß 

(P=0.015, Figure 4E), IL-1Ra (P=0.002, Figure 4D), IL-6 (P=0.042, Figure 4C) 

and IL-8 (P=0.014, Figure 4F), whereas TNF-α (Figure 4B) did not differ among 

the factor score tertiles. Levels of P-Selectin (P=0.056, Figure 5A) and ICAM-1 

(P=0.006, Figure 5C) increased with increasing metabolic syndrome score, 

whereas no change was observed in E-Selectin (Figure 5B) and VCAM-1 

(Figure 5D).   
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Figure 2. Rates of whole body glucose uptake (■ glucose oxidation, □ non-oxidative glucose 

disposal, P values given respectively (A), adiponectin concentration (B), intra-abdominal fat 

mass (C), and subcutaneous fat mass (D) according to the factor score tertile (I = lowest, II = 

middle, III = highest tertile) derived from factor analysis. P values are unadjusted. 
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Figure 3. Energy expenditure during the hyperinsulinemic clamp (A), free fatty acid levels 

during the hyperinsulinemic clamp (B), lipid oxidation during the hyperinsulinemic clamp (C), 

and maximal oxygen uptake during the exercise (D) according to the factor score tertiles (I = 

lowest, II = middle, III = highest tertile) derived from factor analysis. P values are unadjusted 
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Figure 4.  Fasting hs-C-reactive protein (A), and cytokine levels (B-F) according to factor score 

tertiles (I = lowest, II = middle, III = highest) derived from factor analysis. P values are 

unadjusted.  

 

 

 

 

 

 

 
 

 

 

 

           CRP

0

0,5

1

1,5

2

2,5

3

 (p
g/

m
l)

P=0.001

Interleukin 6

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

pg
/m

l

P=0.001

Interleukin 1- 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

pg
/m

l

P=0.001

I               II               III
  Factor score tertiles

β

           Tumor necrosis factor alpha

0
0,5

1
1,5

2
2,5

3
3,5

4

pg
/m

l

P=NS

  Interleukin 1 RA

0

100

200

300

400

500

600

pg
/m

l

P<0.001

Interleukin 8

0

0,2

0,4

0,6

0,8

1

1,2

pg
/m

l

P=0.020

I              II               III
 Factor score tertiles

A B

C D

E F

46



 

 
Figure 5. Fasting adhesion molecule levels (A-D) according to factor score tertiles (I = lowest,  

II = middle, III = highest) derived from factor analysis. P values are unadjusted. 

 

5.3. Inflammatory cytokines in the offspring of type 2 diabetic subjects 
(Study II)  
 
   A total of 19 control subjects and 129 offspring (109 with NGT and 20 with 

IGT) were included in the study. The rates of WBGU was lower in the IGT group 

than in controls (P<0.01, Figure 6A) and a similar, but not a statistically 

significant trend was observed in the NGT group compared to the control group. 

The first-phase insulin release did not compensatorily increase the IGT group 

(Figure 6B). The areas of both visceral (P<0.01, Figure 6C) and subcutaneous 

fat (P<0.05, Figure 6D) were greater in the IGT group compared to the control 

group. The differences persisted after adjustment for age, gender, BMI and 

familiality. The ratio of subcutaneous fat to visceral fat did not differ between the 

groups (data not shown). 
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Figure 6. Rates of WBGU (A), first-phase insulin secretion (B), visceral fat (C), and 

subcutaneous fat (D) in offspring of type 2 diabetic patients. □, control group; striped bar, NGT 

group; ■, IGT group. P value after adjustment for age, sex, BMI, and family relationship (mixed 

linear model). Data are means ± SEM. *P<0.01, **P<0.01, ***P<0.001 for IGT vs. control group 

 

  Levels of fasting cytokines are shown in Figure 7. CRP levels were 

significantly higher in the IGT group than in the control group. Levels of TNF-α 

did not differ significantly among the three groups, but after adjustment for age, 

sex, BMI, and familiality, a statistically significant difference was observed 

among the three groups. There were no significant differences in fasting levels 

of IL-6, IL-8, IL-10 and IL-18 (data not shown) among the three groups. 

Compared with the control group, levels of IL-1β were significantly higher in the 

NGT group, whereas there was a significant decrease in IL-1β levels in the IGT 

group. Levels of IL-1Ra increased linearly in the NGT and IGT groups 

compared with the control group. 
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Figure 7. Fasting cytokines in offspring of type 2 diabetic patients. White bars = control group, 

hatched bars = NGT group, black bars = IGT group. The individual data for IL-1β and IL-1Ra is 

shown in scattergrams (white bars in all respective groups). P-value after the adjustment for 

gender, body mass index and familiality (mixed linear model). Mean ± SEM. * P<0.05, **P<0.01, 

*** P<0.001, NGT or IGT vs. control group.  
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5.4. Markers of endothelial dysfunction and low-grade inflammation in the 
offspring of type 2 diabetic patients (Study III) 

   Fasting levels of VCAM-1, ICAM-1, E-Selectin and VAP-1 did not differ 

significantly among control, NGT and IGT groups (Figure 8). The subjects with 

IGT tended to have higher E-Selectin levels than control subjects (63.4 ± 6.8 

ng/ml versus 46.6 ± 5.1 ng/ml, P=0.052).  
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Fig. 8. The levels of fasting adhesion molecules by glucose tolerance status. P value after 

adjustment for sex, BMI,   smoking, antihypertensive medication and family relationship (mixed 

linear model). Data are means ± SEM. 

50



   No statistically significant correlations among fasting adhesion molecule levels 

were found in any of the three groups. In control group, VCAM-1 correlated with 

levels of TNF-α (0.482, P<0.05) and with the rates of whole body glucose 

uptake (WBGU) (0.732, P<0.01). An inverse correlation was observed between 

VCAM-1 level and fasting glucose (-0.549, P<0.05), 120 min glucose (-0.528, 

P<0.05) and amount of visceral fat (-0.639, P<0.01). ICAM-1 levels correlated 

significantly with IL-1Ra levels (0.526, P<0.05), BMI (0.633, P<0.01) and the 

amount of subcutaneous fat (0.695, P<0.01).The only significant correlation of 

E-Selectin was observed between the first- phase insulin secretion (-0.586, 

p<0.01). VAP-1 levels correlated inversely with levels of 120 min plasma 

glucose (-0.461, P<0.05). 

   Table 2 shows correlations of fasting cytokines, clinical and metabolic 

parameters with adhesion molecules in normoglycemic offspring of type 2 

diabetic patients.  VCAM-1 levels correlated significantly with levels of TNF-α 

(0.214, P<0.05) and IL-1β (0.224, P<0.05), whereas ICAM levels correlated with 

levels of CRP (0.271, P<0.01) and IL-6 (0.292, P<0.01). Levels of E-Selectin 

correlated significantly with levels of IL-8 (0.282, P<0.01) and IL-18 (0.268, 

P<0.01), and VAP-1 with IL-18 (0.222, P<0.05). Among the metabolic 

parameters, VCAM-1 levels correlated with 120 min plasma glucose (0.218, 

P<0.05), fasting plasma insulin (0.229, P<0.05) and 120 min plasma insulin 

(0.227, P<0.05).  ICAM-1 levels correlated significantly with BMI (0.278, 

p<0.01), (p<0.05), amount of visceral fat (0.243, p<0.05) and subcutaneous fat 

(0.212, p<0.05), and with fasting plasma insulin levels (0.220, P<0.05). A 

significant correlation was observed between E-Selectin and fasting plasma 

glucose levels (0.307, P<0.01), and amount of visceral fat (0.281, P<0.01).  E-

Selectin levels were inversely correlated with the rates of WBGU (-0.191, 

P<0.05). In contrast, levels of VAP-1 showed no significant correlations with any 

of the metabolic or inflammatory factors measured in the NGT group. 
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Table 2. Spearman correlations among fasting cytokines, clinical and metabolic parameters 

with adhesion molecules in normoglycemic offspring of type 2 diabetic patients. RRd = diastolic 

blood pressure, RRs= systolic blood pressure.  

 
 

 

 

 

 

 

 

 

 

 

*  P<0.05, ** P<0.01 

 

 
 

   Table 3 shows that among offspring with IGT, ICAM-1 levels correlated with 

IL-6 levels (0.605, P<0.01), and E-Selectin levels with IL-1β levels (0.565, 

P<0.01).  ICAM-1 levels also showed a significant positive correlation with BMI 

(0.565, P<0.01), amount of subcutaneous fat (0.570, P<0.05), fasting insulin 

levels (0.652, P<0.01), and 120 min insulin levels (0.620, P<0.01), but an 

 s-VCAM-1 s-ICAM-1 sE-Selectin s-VAP-1 

hs-CRP 0.121 0.271** -0.037 -0.163 

TNF-α 0.214* 0.016 -0.018 0.043 

IL-6 0.054 0.292** -0.035 -0.073 

IL-1β 0.224* 0.023 0.128 -0.062  

IL-1Ra 0.049 0.048 0.095 0.028 

IL-8 -0.022 -0.026 0.282** -0.071 

IL-10 0.180 0.093 0.173 0.088 

IL-18 -0.046 0.130 0.268** 0.222* 

RRs -0.007 -0.031 0.005 0.078 

RRd  0.044 -0.038 0.024 -0.063 

BMI 0.022 0.278** 0.047 0.039 

Fasting plasma glucose  0.074 0.095 0.307** 0.045 

120 min plasma glucose 0.218* 0.101 0.096 -0.007 

Fasting plasma insulin 0.229* 0.220* 0.129 0.081 

120 min plasma insulin 0.227* 0.168 -0.023 0.062 

LDL cholesterol  -0.193* 0.076 0.221* 0.021 

HDL cholesterol  -0.103 -0.186 -0.130 -0.139 

Total triglycerides  -0.095 0.192* 0.158 -0.004 

Visceral fat -0.013 0.243* 0.281** 0.106 

Subcutaneous fat 0.114 0.212* -0.013 0.012 

First-phase insulin secretion 0.053 0.190 -0.036 0.077 

Whole body glucose uptake 

40mU/L clamp /LBM  

-0.134 0.176 -0.191* 0.128 
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inverse correlation with the rates of whole body glucose uptake (-0.569, 

P<0.01). VCAM-1 and VAP-1 levels did not correlate significantly with cytokines 

or metabolic parameters in the IGT group. 
 

Table 3. Spearman correlations among fasting cytokines, clinical and metabolic parameters 

with adhesion molecules in offspring of type 2 diabetic patients having impaired glucose 

tolerance 

 
 

 s-VCAM-1 s-ICAM-1 sE-Selectin s-VAP-1 

CRP -0.083 0.351 0.024 -0.138 

TNF-α 0.101 -0.127 0.438 0.245 

IL-6 -0.199 0.605** -0.329 0.042 

IL-1β 0.214 0.153 0.565** 0.187 

IL-1Ra 0.087 0.343 0.086 -0.077 

IL- 8   0.033 -0.152 0.288 -0.295 

IL-10 -0.031 -0.297 0.316 -0.182 

IL-18  0.229 -0.087 0.405 0.071 

RRs  0.073 -0.135 0.471* -0.239 

RRd  -0.160 -0.063 0.305 -0.172 

Fat percent -0.062 0.416 0.044 0.110 

BMI -0.068 0.565** 0.141 0.018 

Fasting plasma glucose  0.194 -0.036 0.348 0.010 

120 min plasma glucose  0.022 0.202 -0.216 -0.249 

Fasting plasma insulin 0.080 0.652** 0.194 -0.028 

120 min plasma insulin -0.096 0.620** 0.092 -0.106 

LDL cholesterol  -0.138 0.019 -0.152 0.117 

HDL cholesterol  0.263 -0.508* 0.154 0.010 

Total triglycerides  -0.052 0.133 -0.022 -0.365 

Visceral fat -0.125 0.419 0.010 -0.018 

Subcutaneous fat -0.151 0.570* 0.041 -0.144 

First-phase insulin 

secretion 

-0.325 0.246 -0.133 -0.180 

Whole body glucose 

uptake 40mU/L clamp 

/LBM  

0.296 -0.569** -0.177 0.121 

*    P<0.05 , **  P< 0.01. 
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5.5. Changes in cytokine levels during acute hyperinsulinemia in offspring 
of type 2 diabetic subjects (Study IV) 
 
   Study IV included subjects 40 offspring of type 2 diabetic patients: 20 with 

normal glucose tolerance (NGT) and 20 subjects with impaired glucose 

tolerance (IGT), as assessed by an OGTT, and 19 healthy controls with no 

family history of type 2 diabetes. The groups were comparable with respect to 

gender, but differed significantly with respect to age (Control 34.5 ± 4.5, NGT 

34.6 ± 6.1, IGT 38.6 ± 6.6 years, P< 0.05), and tended to differ with respect to 

BMI ( 24.6 ± 2.6, 28.2 ± 6.1, 28.0 ± 6.2 kg/m², P=0.064). In addition, the 

offspring in the NGT and IGT groups were markedly insulin resistant, with 

significantly higher plasma insulin levels at 120 min in the OGTT as compared 

to controls. The NGT and IGT groups also had higher systolic blood pressure 

levels than did the control group (Control 124 ± 10, NGT 133 ± 13, IGT 133 ± 18 

mmHg, P<0.05). No difference in the first-phase insulin release between the 

study groups was found. 

   The changes in cytokine levels between the fasting state and the 

hyperinsulinemic state are shown in Figure 9. Levels of hs-CRP decreased 

significantly during hyperinsulinemia compared to the levels in the fasting state 

in all study groups (P<0.001). In contrast, levels of IL-6 increased significantly 

during hyperinsulinemia (P<0.001) in all groups, and the increase in the NGT 

and IGT groups was similar to that in the control group (P=0.294). The fasting 

and hyperinsulinemic levels of IL-1ß or IL-1Ra did not differ in any of the 

groups. In contrast, TNF-α and IL-8 levels decreased significantly (P<0.05) in 

the control group during hyperinsulinemia, but remained unchanged in the 

offspring with NGT or IGT. Hyperinsulinemia also significantly decreased the 

levels of IL-10 and IL-18 in the control group (P<0.05 and P<0.001, 

respectively), but not in the NGT and IGT groups.  
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Figure 9.  Changes in cytokine levels during the hyperinsulinemic euglycemic clamp. White 

bars = fasting levels of cytokines in control, NGT and IGT groups. Black bars = levels of 

cytokines during the hyperinsulinemic euglycemic clamp in the control, NGT and IGT groups. P-

value after the adjustment for body mass index, smoking and family relationship (mixed model). 

Mean ± SEM. *P < 0.05, *** P < 0.001. 
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   To investigate the effect of obesity on our results we performed further 

statistical analyses between non-obese and obese (cut-off point of BMI of 27.0 

kg/ m²) subjects in all study groups.  As shown in Table 4, changes in cytokine 

levels did not systematically differ between non-obese and obese subjects in 

any glucose tolerance category. Insulin did not have significant effects on the 

levels of any of the adhesion molecules in any group. 
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Table 4. Cytokine levels (pg/ml) in the fasting state and during hyperinsulinemia. BMI cut-off 

point of 27 kg/m² for non-obese and obese subjects.  Data are mean ± SD. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
*P<0.05, compared to control subjects within the same obesity status (non-obese or obese) 
a) P= 0.040, b) P= 0.028, c) P= 0.001, d) P=0.042 comparing non-obese vs. obese subjects 
within the same glucose tolerance group. 
 
 
 
 

 Control NGT IGT P 
Fasting hs-CRP:       Non-Obese  1.10 ±1.60 2.83 ± 3.54 2.75 ± 3.43 0.257 
                                  Obese 2.21 ± 2.82 2.00 ± 1.77 3.51 ± 3.15 0.365 
Clamp hs-CRP:         Non-obese 1.01 ± 1.62 2.72 ± 3.46 2.44 ± 3.12 0.225 
                                  Obese 2.14 ± 2.87 1.85 ± 1.66 3.28 ± 2.97 0.324 
Fasting TNF-α:          Non-obese 3.41 ± 2.04 4.41 ± 2.78 5.12 ± 6.80 0.702 
                                  Obese 2.38 ± 0.38 2.32 ± 0.26 a) 2.51 ± 0.51 0.610 
Clamp TNF-α:           Non-obese 3.22 ± 1.90 4.57 ± 3.17 5.14 ± 7.07 0.559 
                                  Obese 2.21 ± 0.56 2.40 ± 0.28 2.40 ± 0.64 0.755 
Fasting IL-1-ß:           Non-obese 0.34 ± 0.19 0.65 ± 0.22 0.22 ± 0.15 0.000 
                                  Obese 0.45 ± 0.87 0.67 ± 0.23 0.23 ± 0.09 0.000 
Clamp IL-1-ß:            Non-obese 0.26 ± 0.16 0.67 ± 0.34 0.19 ± 0.12 0.000 
                                  Obese 0.45 ± 0.17 0.67 ± 0.28 0.28 ± 0.18 0.004 
Fasting IL-1Ra:         Non-obese 187.53 ± 63.86 358.56 ± 112.00 370.47 ±  342.53 0.003 
                                  Obese 256.43 ± 92.43 345.01 ± 242.31 574.57 ± 380.02* a) 0.087 
Clamp IL-1Ra:          Non-obese 182.47 ± 56.44 436.12 ± 251.47 350.38 ± 380.97 0.004 
                                  Obese 259.10 ± 132.62 349.63 ± 208.05 630.32 ± 415.77* b) 0.047 
Fasting IL-6:              Non-obese 0.86 ± 0.86 1.31 ± 0.64 0.82 ± 0.39 0.058 
                                  Obese 1.53 ± 1.45 1.21 ± 0.82 1.68 ±  0.66**c) 0.235 
Clamp IL-6 clamp:    Non-obese 2.57 ± 1.65 3.63 ± 2.85 4.11± 3.94 0.338 
                                  Obese 1.82 ± 0.99 3.24 ± 1.99 4.20 ± 2.17 0.112 
Fasting IL-8:              Non-obese 0.65 ± 0.27 1.18 ± 1.29 1.06 ± 1.09 0.951 
                                  Obese 0.79 ± 0.40 0.76 ± 0.64 0.82 ± 0.54 0.692 
Clamp IL-8:               Non-obese 0.53 ± 0.27 1,46 ±  1.40 0.93 ± 0.48 0.249 
                                 Obese 0.58 ± 0.33 0.60 ± 0.38 1.18 ± 1.46 0.282 
Fasting IL-10:           Non-obese 1.04 ± 0.61 1.47 ± 1.57 1.51 ± 1.66 0.825 
                                 Obese 1.06 ± 0.55 0.98 ± 0.82 1.05 ± 0.86 0.929 
Clamp IL-10:             Non-obese 0.97 ± 0.60 1.28 ± 1.23 1.39 ± 1.83 0.963 
                                 Obese 0.79 ± 0.41 1.02 ± 0.88 0.97 ± 0.76 0.907 
Fasting IL-18:           Non-obese 259.76 ± 89.14 224.03 ± 94.29 243.20 ± 0.67 0.602 
                                 Obese  278.43 ± 122.85 213.05 ± 50.54 298.93 ± 109.46 0.099 
Clamp IL -18:            Non-obese 234.63 ± 97.90 204.86 ± 75.32 201.66 ± 75.12 0.568 
                                 Obese 246.20 ± 112.24 194.55 ± 51.95 292.73 ± 106.75*d) 0.051 
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6. DISCUSSION 
 
6.1. Study population 
 

   The diabetic patients (probands) were selected from type 2 diabetic subjects 

living in the region of Kuopio University Hospital. The probands included 

participants in some of our previous studies, as well as individuals obtained 

through advertisements in local newspapers and health centers. Participation of 

probands required confirmation of type 2 diabetes according to the WHO criteria 

(216). Spouses of the probands were required to have normal glucose tolerance 

in an oral glucose tolerance test. Altogether 129 subjects from 78 families (1-3 

offspring from each family) were included in the study. The study group was 

limited to non-diabetic subjects without chronic diseases or medication that 

could potentially disturb glucose metabolism. The control subjects were healthy 

non-diabetic (based on an OGTT) volunteers without a family history of type 2 

diabetes. The study groups were representative samples either from the 

population of Kuopio University Hospital (controls) or from offspring of type 2 

diabetic subjects living in the same region. 

 

6.2. Study design  
   
   Given that the metabolic studies were thorough and complicated, the sample 

size was large. The study subjects underwent a detailed physiological and 

metabolic characterization. 

 

6.3. Study methods 

 
   We used the euglycemic hyperinsulinemic clamp to measure insulin 

sensitivity, because this method is widely recognized to be the “gold standard” 

(213). An insulin infusion rate of 40 mU/m² was used to produce 

hyperinsulinemia during the clamp which leads to a  complete suppression of 
hepatic glucose output in moderately obese and healthy subjects (217).   

58



A clamp duration of 120 min was used to achieve a steady-state of glucose 

disposal in non-diabetic subjects.  The steady state of glucose disposal was 

adequately achieved indicating that the clamp study was well performed. The 

first detectable finding of defective β-cell function has been considered to be an 

impairment of the first phase insulin secretion during an IVGTT, although the 

hyperbolic association between insulin secretion and insulin sensitivity may lead 

to overestimation of insulin secretion capacity in insulin-resistant subjects (218). 

Carrying out the euglycemic clamp immediately after an IVGTT has been 

previously shown to have no significant effect on subsequently measured 

metabolic indices (219). CT and MRI are the most accurate methods available 

for the assessment of abdominal fat; CT was chosen because of better 

availability. Laboratory and genetic analyses were performed using 

standardized methods in the research laboratories of clinical chemistry and 

medicine. 

   A linear mixed model was used to take into account the varying number of 

subjects among the families, and to adjust for familiality and other confounding 

factors. Factor analysis has many advantages compared to conventional 

statistical methods when studying the metabolic syndrome.  Factor analysis is 

preferable when there are complex inter-correlations between the variables 

included, as is clearly the case with the metabolic syndrome. Instead of using 

distinct cut-off points, this method permits evaluation of each of the multiple 

variables comprising the metabolic syndrome as a continuum. Furthermore, 

instead of scoring subjects only as having or not having the syndrome, the use 

of factor scoring allowed us to analyze the metabolic syndrome itself as a 

continuous variable. Factor analysis has some limitations. The formation of 

factors is sensitive to the selection of variables, as demonstrated also by our 

data (e.g. the inclusion of both systolic and diastolic blood pressure led to a two-

factor solution). Furthermore, the number of variables often affects the number 

of factors. However, despite these limitations, factor analysis is a powerful 
method for examining the clustering of cardiovascular risk factors belonging to 

the metabolic syndrome. 
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6.4.  Metabolic abnormalities in offspring of type 2 diabetic patients (Study I) 

 

   Factor analysis yielded important information about metabolic abnormalities 

associated with the metabolic syndrome in the offspring of our diabetic 

probands. Subjects with the metabolic syndrome belonged to the highest factor 

score tertile. Our study showed that subjects with the metabolic syndrome have 

an excess of intra-abdominal fat, hypoadiponectinemia, multiple defects in 

glucose and energy metabolism, as well as elevated levels of cytokines and 

adhesion molecules.  

   The basis of the metabolic syndrome seems to be a tight link between insulin 

resistance and an excess of visceral fat, although the primary abnormality 

remains to be elucidated. We observed that hyperinsulinemia was not able to 

suppress free fatty acid levels in subjects with the metabolic syndrome. This 

novel finding indicates that insulin resistance in people with the metabolic 

syndrome occurs not only in skeletal muscle, but also in adipose tissue. People 

with the metabolic syndrome have a well-known tendency to gain weight. In this 

study, we observed significantly lower energy expenditures in those of our 

subjects with the metabolic syndrome compared to those without; this could 

indicate both central insulin resistance and a lower increase in meal-induced 

thermogenesis. 

   We also found that levels of hs-CRP, inflammatory cytokines and adhesion 

molecules increased with increasing metabolic syndrome factor score. The 

most marked elevations were found in IL-1Ra and IL-1β levels, whereas TNF-α 

levels did not differ among the factor score tertiles. In addition, levels of P-

Selectin and ICAM-1 were associated with presence of the metabolic syndrome, 

whereas levels of E-Selectin and VCAM-1 were not.  

   The metabolic syndrome was associated with a high amount of intra-

abdominal fat, a low adiponectin level and elevated levels of cytokines and 

adhesion molecules. Adiponectin inhibits the expression of ICAM-1, VCAM-1, 

and E-Selectin (220) and has several anti-atherogenic (221,222) and anti-

inflammatory properties. Therefore, hypoadiponectinemia could be responsible 

for endothelial damage and maintenance of a low-grade inflammatory state. 
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   Our findings confirm the roles of low-grade inflammation and endothelial 

dysfunction in the metabolic syndrome. Previous studies have shown that 

elevated levels of CRP, IL-6 and TNF-α predict type 2 diabetes (51) and 

coronary heart disease (223). In our study, TNF- α levels did not significantly 

differ among the factor score tertiles. Instead, the most marked elevations were 

found in IL-1Ra and IL-1β levels, suggesting that these cytokines may be better 

markers for the metabolic syndrome than TNF- α. 

    

6.5. Changes in inflammatory cytokines in the offspring of type 2 diabetic 
patients (Studies II and IV). 
 
   The offspring of type 2 diabetic patients are at increased risk of developing 

type 2 diabetes. Therefore, the offspring of type 2 diabetic patients are ideal 

study subjects for investigating early findings in the pathogenesis of this 

disease. CRP and pro-inflammatory cytokine levels are elevated in both IGT 

and overt type 2 diabetes, and they predict the conversion to type 2 diabetes 

(54,161,165,224). However, only three previous studies have investigated 

whether low-grade inflammation is detectable in the offspring of type 2 diabetic 

patients. These studies measured levels of TNF-α, but not those of other pro-

inflammatory cytokines (5-7). In addition, the results of these studies are 

controversial. Kellerer et al. (5) reported that circulating TNF-α levels did not 

correlate with obesity-induced insulin resistance, whereas Costa et al. (7) 

showed that the TNF-α pathway could predispose to the development of type 2 

diabetes in the first-degree relatives of type 2 diabetic patients. Moreover, 

Maltezos et al. (6) observed significantly elevated concentrations of TNF-α in 

healthy non-diabetic offspring of type 2 diabetic subjects. 
   In this study, we observed increased levels of IL-1Ra in the normoglycemic 

offspring of type 2 diabetic patients, and even higher levels of IL-1Ra in 

offspring with IGT. These findings expand observations from previous studies 

that reported decreased concentrations of IL-1Ra in type 2 diabetes (225) and 

IL-1Ra overproduction in insulin resistance (226). Thus, individuals at risk for 

developing type 2 diabetes are characterized not only by an up-regulation of 
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pro-inflammatory immune mediators, but also by the up-regulation of the anti-

inflammatory cytokine IL-1Ra. 

   The function of IL-1Ra is to protect against the inflammatory effects of IL-1 

(227). Normally, enough IL-1Ra is produced to counteract IL-1-mediated 

inflammation (227). In the case of inflammation, there is an insufficient amount 

of IL-1Ra to control the activity of IL-1 (227). The imbalance between IL-1 and 

IL-1Ra has been extensively studied in experimental animal models of 

autoimmune diseases. In several diseases, either local overproduction of IL-1 

and /or underproduction of IL-1Ra predisposes to the development of disease, 

and the therapeutic administration of IL-1Ra is efficacious in preventing tissue 

damage (228). 

   Adipose tissue plays an important role in cytokine secretion, and may be a 

major source of pro-inflammatory cytokines (4). However, it is also an important 

source of IL-1Ra (229). Consistent with these findings is a marked elevation of 

IL-1Ra levels observed in human obesity (230). In our study, offspring with IGT 

offspring had a significantly higher amount of visceral and subcutaneous fat 

than did control subjects.  Together with increased IL-1Ra levels observed in 

these subjects, this supports previous findings of an association between 

obesity and elevated IL-1Ra levels. Somm et al. (231) have concluded that the 

overall effects of IL-1Ra promote weight gain and insulin resistance, thus 

favoring the development of type 2 diabetes. 

   Although IL-1Ra is considered a protective cytokine, we hypothesized that in 

the offspring at high risk of developing diabetes, increased levels of IL-1Ra 

might predispose them to insulin resistance, instead of protecting them from it. 

However, a recent clinical trial showed that blocking IL-1β signaling with IL-1Ra 

improved β-cell secretory function in patients with type 2 diabetes (232). 

Furthermore, in a study by Sauter et al (233), IL-1Ra was shown to improve β-

cell survival and function, thus supporting a role for IL-1Ra in the treatment of 

type 2 diabetes. In the Whitehall II cohort study, elevated levels of IL-1Ra were 

associated with an increased risk of developing type 2 diabetes (234). Herder et 

al. (234) speculated that the elevation of IL-1Ra levels in individuals at risk of 

developing type 2 diabetes may represent an attempt to counteract the pro-
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inflammatory effects of IL-1β and to preserve insulin secretion and insulin 

sensitivity - an effort that eventually fails. 

   The role of low-grade inflammation in insulin resistance and type 2 diabetes 

has been well established. Little is known about whether non-diabetic offspring 

of type 2 diabetic patients shows evidence of inflammation. We demonstrated 

that glucose-intolerant offspring of type 2 diabetic patients had elevated hs-

CRP-levels, which is in line with the findings of previous studies (3-8, 25). 

Interestingly, TNF-α and IL-6 levels did not differ among our study groups, 

suggesting that these conventionally determined cytokines may not be the best 

markers for low-grade inflammation in the pre-diabetic state. 

   We found that the levels of pro-inflammatory IL-1β were increased in 

normoglycemic offspring of type 2 diabetic patients, but decreased in glucose- 

intolerant offspring. In contrast, levels of IL-1Ra were increased in 

normoglycemic offspring, and were even higher in glucose-intolerant offspring. 

To determine the biologic activity of IL-1β, we calculated the ratio of levels of IL-

1Ra to IL-1β. Eizirik et al. (235) have shown that a 10- to 100-fold excess of IL-

1Ra over IL-1β suffices to block the effects of IL-1β on pancreatic islets. We 

found a greater than 100-fold excess of IL-1Ra to IL-1β, indicating decreased 

biological activity of IL-1β in the normoglycemic offspring, and even more 

markedly decreased activity in the glucose-intolerant offspring. This degree of 

IL-1Ra excess would be expected to block the biological activity of IL-1β in 

human islets. Consistent with previous studies, we suggested that it is unlikely 

that IL-1β would mediate β-cell failure during progression to type 2 diabetes. 

   IL-1β has been shown to mediate both impaired function and destruction of 

pancreatic β-cells during the development of autoimmune type 1 diabetes (236). 

The potential role of impaired β-cell function in the deterioration of glucose 

tolerance has been debated (237-239). Maedler et al. (108) have shown that IL-

1β is induced by elevated glucose concentrations when islets from non-diabetic 

organ donors are exposed to high glucose levels. Recently, Cnop et al. 

(94)observed that the decline in glucose tolerance over time in first-degree 

relatives of type 2 diabetic individuals is strongly related to the loss of β-cell 

function (94). However, the mechanisms underlying this progressive decline in 

63



β-cell function are not fully understood. Cnop et al. (94) concluded that insulin 

resistance is likely to be involved in the pathogenesis of type 2 diabetes, but the 

progressive loss of β-cell function appears to be the critical determinant for 

disease progression from NGT to IGT and then to type 2 diabetes. Although 

type 1 and type 2 diabetes have fundamental etiological differences, the 

induction of IL-1β by elevated glucose concentrations may connect type 2 and 

type 1 diabetes (108). 

   Insulin resistance and / or hyperinsulinemia predict the development of type 2 

diabetes (240) and cardiovascular disease (241) independently of other risk 

factors. There is only one previous study reporting the effects of acute 

hyperinsulinemia on levels of IL-8, and information regarding other cytokines 

remains unclear (242). We showed for the first time that acute hyperinsulinemia 

induced by the euglycemic hyperinsulinemic clamp significantly lowered the 

levels of TNF-α, IL-8, IL-10 and IL-18 in healthy control subjects. However, in 

both normoglycemic and glucose-intolerant offspring of type 2 diabetic subjects, 

hyperinsulinemia was unable to suppress cytokine levels. Therefore, we 

suggest that the offspring of type 2 diabetic patients are insulin resistant not 

only with regard to glucose metabolism, but also with regard to the inhibition of 

cytokine responses during hyperinsulinemia. The disturbed cytokine response 

was particularly linked with fat-derived cytokines, highlighting the crucial role of 

adipose tissue in this disease process. 

 

6.6. Changes of adhesion molecule levels in the offspring of type 2 
diabetic patients (Studies III and IV) 
 
   Low-grade inflammation and endothelial dysfunction precede the 

development of both type 2 diabetes and cardiovascular disease (CVD) (197). 

The presence of inflammation in the vascular endothelium links these diseases, 

and may contribute to the disease process itself. Levels of adhesion molecules 

have been previously shown to be elevated in insulin resistance (243,244), type 

2 diabetes (245) and CVD (246). Furthermore, the offspring of type 2 diabetic 

patients show evidence of endothelial dysfunction, as estimated by non-invasive 
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methods, blood levels of adhesion molecules, or both (204,247-249). Adhesion 

molecule expression is known to be induced by pro-inflammatory cytokines 

such as IL-1β, TNF-α and CRP, and therefore adhesion molecules are closely 

associated with the inflammatory process. 

   In our study, the levels of multiple endothelial biomarkers were measured in a 

large cohort (n= 129) of non-diabetic offspring of type 2 diabetic subjects. No 

increase in adhesion molecule levels (s-ICAM-1, s-VCAM-1, sE-Selectin) was 

observed in any of our subgroups. Our findings contradict those of earlier 
studies which reported elevated levels of adhesion molecules in the offspring of 

type 2 diabetic patients (248,249). The reason for these opposite findings is 

unclear, but might be related to the use of different protocols and / or the small 

sample sizes of previous studies. 

   We also studied the levels of vascular adhesion protein-1 (VAP-1) in the 

offspring of type 2 diabetic patients. Elevated levels of VAP-1 have been 

previously reported in patients with type 1 diabetes (250), but we observed no 

increase in the levels of VAP-1 in the offspring at high risk for type 2 diabetes. 

   In young first-degree relatives of type 2 diabetic individuals, an association 

between non-invasively measured endothelial dysfunction and clamp-derived 

insulin resistance has been demonstrated (247).  We observed an inverse 

correlation between rates of WBGU and E-Selectin levels in normoglycemic 

offspring and levels of ICAM-1 in the offspring of type 2 diabetic patients with 

IGT. Our findings confirm previous reports of a link between adhesion molecule 

levels and insulin resistance, and extend this data to healthy individuals at high 

risk of developing diabetes and CVD. 

   Our study demonstrated an association between levels of inflammatory 

markers and adhesion molecules, which is in line with previous studies showing 

a strong correlation between markers of endothelial dysfunction and 

inflammatory activity. Endothelial dysfunction is induced by cytokine-mediated 

low-grade inflammation, which in turn is an early finding in the process leading 

to type 2 diabetes. Therefore, we hypothesize that low-grade inflammation 

might be the primary abnormality preceding the elevation of adhesion molecule 

levels in incipient type 2 diabetes. 
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   We also investigated the effect of acute hyperinsulinemia on levels of 

adhesion molecules. Previous reports regarding the effect of hyperinsulinemia 

on adhesion molecule levels have been contradictory. In two studies, 

hyperinsulinemia increased levels of sE-Selectin in IGT subjects and in type 2 

diabetic subjects, whereas levels of sICAM-1 and sVCAM-1 remained 

unchanged (243,251). In our study, hyperinsulinemia did not alter adhesion 

molecule levels in any of the study groups. Our finding is in keeping with 

previous reports that the levels of sICAM-1, sVCAM-1 and sE-Selectin remain 

unaffected during hyperinsulinemia, and extend this data to healthy individuals 

who are genetically predisposed to develop type 2 diabetes. 

 

6.7. Concluding remarks 
 
   The present study adds information to the understanding of the metabolic 

abnormalities in offspring of type 2 diabetic patients. We showed that insulin 

resistance in people with the metabolic syndrome occurs not only in skeletal 

muscle, but also in adipose tissue, leading to multiple defects in glucose and 

energy metabolism, hypoadiponectinemia, and elevated levels of pro-

inflammatory cytokines and adhesion molecules.  

   The offspring of type 2 diabetic patients are insulin-resistant, and are 

characterized by an immune activation that includes up-regulation of pro-

inflammatory cytokines and of the anti-inflammatory cytokine IL-1Ra. Moreover, 

IL-1Ra seems to be the most sensitive marker for cytokine response in incipient 

type 2 diabetes. Further studies have confirmed our findings by showing that an 

elevation in levels of IL-1Ra precedes the onset of type 2 diabetes (234). In a 

recent clinical trial, the administration of IL-1Ra to patients with type 2 diabetes 
improved their β-cell function and glycemic control (232). It is therefore possible 

that in incipient type 2 diabetes, the increase in IL-1Ra levels reflects an attempt 

by the body to prevent the deleterious effects of IL-1β. The decreased levels of 

IL-1Ra seen in patients with type 2 diabetes may indicate that the body's 

attempt to antagonise the effects of IL-1β by initially increasing IL-1Ra 

production has failed. Thus, interventions to block the deleterious effects of IL-
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1β by the administration of IL-1Ra may provide new insight into the therapy and 

prevention of type 2 diabetes. 

   The offspring of type 2 diabetic patients are at high risk of developing type 2 

diabetes. In these individuals, continuous low-grade inflammation may 

contribute to type 2 diabetes development both by inducing insulin resistance 

and by reducing insulin secretion. Efforts to prevent development of the 
hyperglycemia that is the result of both insulin resistance and a progressive loss 

of β-cell function need to be intensified in order to prevent even greater 

numbers at-risk individuals from progressing to the type 2 diabetic state. 
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7. SUMMARY 
 
Study I: Insulin resistance in people with the metabolic syndrome is seen not 

only in skeletal muscle but also in adipose tissue, leading to multiple defects in 

glucose and energy metabolism, hypoadiponectinemia, and elevated levels of 

pro-inflammatory molecules and adhesion molecules. 

 

Study II: The offspring of type 2 diabetic patients have changes in levels of 

CRP, IL-1β, and IL-1Ra. The level of IL-1Ra is the most sensitive marker of 

cytokine response in incident type 2 diabetes. 

  

Study III:  The levels of adhesion molecules are not increased in the offspring of 

type 2 diabetic subjects and are not the best markers of endothelial dysfunction 

in the pre-diabetic state. Inflammatory markers and adhesion molecules are 

related suggesting that low-grade inflammation may precede the elevation of 

levels of adhesion molecules. 

 

Study IV: The offspring of type 2 diabetic subjects are not only insulin resistant 

with regard to glucose metabolism but also with regard to the suppression of 

cytokine responses. The disturbed cytokine response is especially linked to fat-

derived cytokines highlighting the crucial role of adipose tissue in this process. 
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Multiple Abnormalities in Glucose and Energy Metabolism
and Coordinated Changes in Levels of Adiponectin,

Cytokines, and Adhesion Molecules in Subjects With
Metabolic Syndrome

Urpu Salmenniemi, MD; Eija Ruotsalainen, MD; Jussi Pihlajamäki, MD; Ilkka Vauhkonen, MD;
Sakari Kainulainen, MD; Kari Punnonen, MD; Esko Vanninen, MD; Markku Laakso, MD

Background—Detailed metabolic defects in glucose and energy metabolism and abnormalities in a variety of
cardiovascular risk factors are largely unknown in subjects with the metabolic syndrome.

Methods and Results—We characterized the metabolic syndrome in 119 nondiabetic offspring of diabetic probands.
Cardiovascular risk factors, including cytokines and adhesion molecules, were measured. Insulin sensitivity was
assessed by the euglycemic hyperinsulinemic clamp and indirect calorimetry; intra-abdominal fat and subcutaneous fat
were assessed by CT; and maximal oxygen consumption was measured with a bicycle ergometer test. By applying factor
analysis, we identified a single factor, the metabolic syndrome factor, from the following variables: 2-hour glucose,
fasting insulin, body mass index, waist, HDL cholesterol, triglycerides, and mean blood pressure. Subjects with the
highest factor score were defined as having the metabolic syndrome. During hyperinsulinemia, the highest factor score
was associated with decreased rates of glucose oxidation and nonoxidative glucose disposal, high rates of lipid
oxidation, low energy expenditure, and impaired suppression of free fatty acids during hyperinsulinemia. Furthermore,
the metabolic syndrome was associated with a high amount of visceral fat, hypoadiponectinemia, a low maximum
oxygen uptake, and high levels of C-reactive protein, proinflammatory cytokines, and adhesion molecules.

Conclusions—The metabolic syndrome is characterized by an excess of intra-abdominal fat, hypoadiponectinemia, insulin
resistance in skeletal muscle and adipose tissue, multiple defects in glucose and energy metabolism, and elevated levels
of cytokines and adhesion molecules. (Circulation. 2004;110:3842-3848.)

Key Words: adiponectin � cell adhesion molecules � cytokines � insulin resistance � metabolic syndrome X

The Metabolic Syndrome (MetS), a clustering of cardio-
vascular risk factors, is a powerful predictor of cardio-

vascular disease.1,2 When Reaven3 introduced this concept
(“syndrome X”), he included in this constellation a clustering
of abnormal glucose tolerance, dyslipidemia (low HDL cho-
lesterol, high total triglycerides), and elevated blood pressure
(BP). According to his interpretation, the underlying cause of
the syndrome was insulin resistance. Recently, several other
candidates for this syndrome—obesity, central obesity, mi-
croalbuminuria, high levels of proinflammatory cytokines,
prothrombotic and fibrinolytic factors, and oxidative stress—
have been proposed.1,2

The importance of risk factor clustering with hyperinsulin-
emia as a predictor of type 2 diabetes4 and cardiovascular
disease5,6 has been shown in many prospective studies.
However, the pathophysiology of the MetS has remained

unknown, although insulin resistance2,3 and visceral obesity7

have been proposed as underlying causes for this syndrome.
For clinical purposes, the MetS has been defined on the

basis of different cutoff points of cardiovascular risk factors,8

a method that does not take into account the fact that
cardiovascular risk factors are continuous variables. Further-
more, the components of the MetS are highly intercorrelated,
and conventional statistical methods cannot be used to inves-
tigate this syndrome. Recently, factor analysis, allowing the
analysis of interrelated continuous variables, has been applied
in studies of the MetS.4–6,9–17

In the present study, we characterized the MetS in the
offspring of diabetic probands by applying factor analysis.
Detailed metabolic and other measurements allowed us to
quantify for the first time defects in glucose and energy
metabolism and abnormalities in a variety of cardiovascular
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risk factors in subjects with the MetS. We also analyzed
whether simple clinical and laboratory measurements (waist,
insulin) are accurate enough to be used as surrogate markers
for “gold standard” measurements (visceral fat evaluated by
CT, insulin sensitivity evaluated by the euglycemic hyperin-
sulinemic clamp) to define the MetS for clinical practice.

Methods
Subjects
The subjects were healthy nondiabetic offspring of patients with type
2 diabetes. The diabetic patients (probands) were randomly selected
from type 2 diabetic subjects living in the region of the Kuopio
(Finland) University Hospital. Spouses of the probands had to have
a normal glucose tolerance in an oral glucose tolerance test. A total
of 119 offspring (1 to 3 from each family) were studied. The Ethics
Committee of the University of Kuopio approved the study protocol.
All study subjects gave informed consent.

Study Design
On the first day, BP was measured in subjects a sitting position after
a 5-minute rest with a mercury sphygmomanometer. The average of
3 measurements was used to calculate systolic and diastolic BPs, as
well as the mean BP [(2 � diastolic BP � systolic BP) / 3]. Height
and weight were measured to the nearest 0.5 cm and 0.1 kg,
respectively. Body mass index (BMI) was calculated as weight (kg)
divided by height (m) squared. Waist (at the midpoint between the
lateral iliac crest and lowest rib) and hip circumference (at the level
of the trochanter major) were measured to the nearest 0.5 cm. Fasting
blood samples were drawn after 12 hours of fasting, followed by an
oral glucose tolerance test (75 g glucose). Subjects with nondiabetic
glucose tolerance18 were included in further studies. On the second
day, after a 12-hour fast, an intravenous glucose tolerance test
(IVGTT) and the hyperinsulinemic euglycemic clamp, including
indirect calorimetry, were performed. A CT scan was performed to
evaluate the amount of abdominal fat, and an exercise test was done
to determine maximum oxygen uptake.

Metabolic Studies
An IVGTT was performed to determine the first-phase insulin
secretion capacity after an overnight fast. After baseline blood
collection, a bolus of glucose (300 mg/kg in a 50% solution) was
given within 30 seconds into the antecubital vein. Samples for the
measurement of blood glucose and plasma insulin (arterialized
venous blood) were drawn at �5, 0, 2, 4, 6, 8, 10, 20, 30, 40, 50, and
60 minutes.

After an IVGTT, the degree of insulin sensitivity was evaluated
with the euglycemic hyperinsulinemic clamp technique (insulin
infusion rate of 40 mU · min�1 · m�2 body surface area) as previously
described.19 Blood glucose was clamped at 5.0 mmol/L for the next
120 minutes by infusion of 20% glucose at various rates according to
blood glucose measurements performed at 5-minute intervals. The
mean amount of glucose infused during the last hour was used to
calculate the rates of whole-body glucose uptake (WBGU).

Indirect calorimetry was performed with a computerized flow-
through canopy gas analyzer system (DELTATRAC, TM Datex) as
previously described.19 The mean value of the data during the last 20
minutes of the clamp was used to calculate glucose and lipid
oxidation.20 The rates of nonoxidative glucose disposal during the
clamp were estimated by subtracting the rates of glucose oxidation
from the glucose infusion rate.

Body Composition, Fat Distribution, and
Cardiopulmonary Exercise Test
Body composition was determined by bioelectrical impedance (RJL
Systems) in subjects in the supine position after a 12-hour fast.
Abdominal fat distribution was evaluated by CT (Siemens Volume
Zoom) at the level of fourth lumbal vertebra. Subcutaneous and
intra-abdominal fat (IAF) areas were calculated as previously de-

scribed.21 The cardiopulmonary test was performed with a bicycle
ergometer (Siemens Elema 380) until exhaustion. Respiratory gas
exchange was analyzed continuously during the test with a
computer-based system (Sensor Medics 2900, Metabolic Measument
Cart/System). The average values of oxygen uptake measured during
the last 20 seconds of the exercise were used to calculate maximum
oxygen uptake.

Laboratory Determinations
Blood and plasma glucose were measured by the glucose oxidase
method (Glucose & Lactate Analyzer 2300 Stat Plus, Yellow Springs
Instrument Co, Inc), and plasma insulin and C-peptide were deter-
mined by radioimmunoassay (Phadeseph Insulin RIA 100, Pharma-
cia Diagnostics AB; 125J RIA Kit, Incstar Co, respectively). Cho-
lesterol and triglyceride levels from whole serum and from
lipoprotein fractions were assayed by automated enzymatic methods
(Roche Diagnostics).8 Serum free-fatty acids (FFAs) were deter-
mined by an enzymatic method from Wako Chemicals GmbH.
Serum adiponectin was measured with an enzyme immunoassay
(Human Adiponectin ELISA Kit, B-Bridge International Inc).
Plasma concentrations of tumor necrosis factor-� (TNF-�) and
cytokines (interleukin [IL]-1�, IL-1 receptor antagonist [IL-1RA],
IL-6, IL-10) and serum levels of soluble adhesion molecules (inter-
cellular adhesion molecule [ICAM-1], vascular cell adhesion mole-
cule [VCAM-1], E-selectin, and P-selectin) were measured with
high-sensitivity assay kits from R&D Systems. IL-8 was measured
with a kit from Biosource International. C-reactive protein (CRP)
was measured with an Immulite analyzer and a DPC high-sensitivity
CRP assay. Nonprotein urinary nitrogen was measured by automated
Kjeldahl method.22

Statistical Analysis
All data analyses were performed with SPSS 11.0 for Windows
programs. The results for continuous variables are given as
mean�SD and for cytokine levels and insulin response in an IVGTT
as mean�SEM in the figures. The differences between the 3 groups
were assessed by ANOVA for continuous variables and by the �2 test
for noncontinuous variables. ANCOVA was used to adjust for family
relationship (all comparisons) and other confounding factors. Vari-
ables with skewed distribution were logarithmically transformed for
statistical analyses. Factor analysis was used to reduce a large set of
intercorrelating variables into a smaller set of latent underlying
factors as previously described.4,5,9 We used the principal compo-
nents method for extraction of the initial components. Factors with
eigenvalues �1 were retained, and varimax rotation was applied.
Variable loadings �0.40 were considered significant in the interpre-
tation of factors. The factor score from the analysis was categorized
into the factor tertiles. The incremental insulin area under the insulin
curve in an IVGTT was calculated by the trapezoidal method.

Results
Table 1 presents anthropometric and metabolic characteristics
of the study population. Of the 119 participants, slightly more
than half were women (102 study subjects had a normal
glucose tolerance, 15 had impaired glucose tolerance, and 2
had impaired fasting glucose).

Cardiovascular risk factors (120-minute glucose, fasting
insulin, BMI, waist, HDL cholesterol, total triglycerides,
mean BP, rates of WBGU, IAF) correlated significantly, and
the highest correlations were among the parameters measur-
ing obesity (waist and BMI, r�0.523, P�0.001), whereas
mean BP correlated only weakly with other components of
the MetS (�0.40). Pearson correlation coefficient between
fasting plasma insulin and the rates of WBGU during the
clamp was �0.572 (P�0.01) and between waist and IAF area
was 0.700 (P�0.01).
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Table 2 presents the results of factor analyses. Model 1,
including, among other cardiovascular risk factors, simple
clinical measures of insulin resistance (fasting insulin) and
abdominal fat (waist), resulted in one factor, the MetS factor,
that explained 46.2% of the total variance. Waist (0.830) and
fasting insulin (0.760) had the highest loadings. Substituting
waist by IAF area assessed by CT and fasting insulin by the
rates of WBGU during the clamp also resulted in one factor
solution having the highest loading for IAF (0.802) (Model
2). Percentage of variance explained was quite similar to that
in model 1 (43.3%). However, when IAF was replaced by
subcutaneous fat, a 2-factor solution was obtained. When
BMI was not included in the analysis, the results remained
essentially unchanged. When both systolic and diastolic BPs
instead of mean BP were included in the model, factor
analysis yielded a 2-factor solution, with only systolic and

diastolic BPs having significant loadings (�0.4) on the
second factor. We also performed factor analysis including
fasting glucose, 120-minute insulin, systolic BP, and diastolic
BP, in addition to variables in model 1, in the analysis. This
model resulted in 4 separate factors (factor 1, glucose/insulin
factor; factor 2, obesity/insulin factor; factor 3, lipid factor;
factor 4, BP factor) (see Data Supplement Table I for details).
When adiponectin, CRP, ICAM, and maximal oxygen uptake
also were included in the model, the 4-factor solution was
obtained (adiponectin loaded with fasting glucose and insulin
and lipids; CRP and ICAM with obesity, and maximal
oxygen uptake with glucose and insulin) (see Data Supple-
ment Table II for details).

Subjects were divided into the tertiles of factor scores
based on model 1 (Table 2); the highest factor score tertile
represented subjects having the MetS. Glucose oxidation
(P�0.001, adjusted for gender) and nonoxidative glucose
disposal during the clamp (P�0.001 adjusted for gender;
Figure 1A) decreased and compensatory hyperinsulinemia in
an IVGTT (P�0.003) increased with increasing factor score.
The amount of IAF and subcutaneous fat also increased with
increasing MetS factor score (Figure 1C and 1D). In contrast,
adiponectin level decreased significantly (P�0.001, adjusted
for gender and IAF; Figure 1B). Energy expenditure during
the clamp decreased linearly among the MetS factor score
tertiles (P�0.031 adjusted for gender; Figure 2), as well as
maximum oxygen uptake (P�0.001 adjusted for gender). In
contrast, the rates of lipid oxidation increased (P�0.001
adjusted for gender), which was also seen as a decrease in
respiratory quotient (P�0.001 adjusted for gender). FFA
levels during the clamp increased over the MetS factor score
tertiles (P�0.003, adjusted for gender).

The associations between fasting cytokine levels and the
MetS factor score tertiles are shown in Figure 3. A statisti-
cally significant increase in high-sensitivity CRP level
(P�0.001, adjusted for gender and IAF) was found with
increasing MetS factor score. In addition, cytokines increased
(all probability values adjusted for gender and IAF) with
increasing MetS factor score (IL-1�, P�0.015; IL-1RA,
P�0.002; IL-6, P�0.042; IL-8, P�0.014). There were no
significant differences in TNF-� and IL-10 levels after the
adjustment for gender and IAF. P-selectin (P�0.056) and
ICAM-1 (P�0.006) increased with increasing MetS score,
whereas no change was observed in E-selectin and VCAM-1
(Figure 4).

We also compared all gender-adjusted parameters mea-
sured in those with and without MetS according to the
National Cholesterol Education Program Expert Panel on
Detection, Evaluation, and Treatment of High Blood Choles-
terol in Adults (Adult Treatment Panel III) (NCEP ATPIII)
criteria.8 Compared with subjects without the MetS, those
with the MetS according to this definition had higher amount
of IAF (P�0.001), lower rates of WBGU (P�0.001) and
oxidative (P�0.002) and nonoxidative (P�0.001) glucose
disposal, lower energy expenditure (P�0.040), and higher
FFA levels (P�0.001) and lipid oxidation (P�0.006) during
hyperinsulinemia, as well as lower adiponectin levels
(P�0.002) and maximum oxygen uptake (P�0.001).

TABLE 1. Characteristics of the Study Subjects

Men/women, n 55/64

NGT/IFG/IGT, n 102/2/15

Age, y 35.5�6.0 (25–50)

BMI, kg/m2 26.1�4.7 (17.6–44.2)

Waist, cm 88�12 (60–134)

Body fat, % 30�8 (14–51)

Systolic BP, mm Hg 126�11 (108–160)

Diastolic BP, mm Hg 84�9 (60–106)

Oral glucose tolerance test

Fasting plasma glucose, mmol/L 5.1�0.4 (4.1–6.4)

120-min Plasma glucose, mmol/L 6.2�1.4 (3.5–10.4)

Fasting insulin, pmol/L 46.2�22.5 (18.0–175.8)

120-min Insulin, pmol/L 245.6�195.2 (24.0–1345.2)

Total cholesterol, mmol/L 4.90�0.87 (3.0–7.04)

LDL cholesterol, mmol/L 3.19�0.78 (1.40–5.34)

HDL cholesterol, mmol/L 1.27�0.28 (0.67–2.17)

Total triglycerides, mmol/L 1.13�0.60 (0.34–3.91)

Current smoker, % 33

NGT indicates normal glucose tolerance; IFG, impaired fasting glucose; and
IGT, impaired glucose tolerance. Data are mean�SD (range). n�119.

TABLE 2. Results of Factor Analyses Using Different
Measurements of Insulin Sensitivity (Fasting Insulin or Rates of
WBGU) and Visceral Obesity (Waist Circumference or IAF in CT)

Model 1,
Factor 1

Model 2,
Factor 1

120-min Plasma blood 0.532 0.574

Fasting insulin (log) 0.760

BMI 0.781 0.666

Waist 0.830

HDL cholesterol �0.637 �0.654

Total triglycerides (log) 0.646 0.719

Mean BP 0.502 0.460

WBGU �0.678

IAF in CT (log) 0.802

Variance explained, % 46.2 43.3
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Discussion
Our study demonstrated that subjects with the MetS have
multiple defects in glucose and energy metabolism, an excess
of IAF, and hypoadiponectinemia. Furthermore, high levels
of cytokines and adhesion molecules were associated with the
MetS, indicating that low-grade inflammation and endothelial
dysfunction are essential findings in subjects with the MetS.

Factor analysis is a particularly useful statistical method in
studies of highly intercorrelating variables, as is the case with
the putative components of the MetS. Our study showed that
one factor, the MetS factor, explained almost half of the total
variance among the variables included in statistical analysis.
Furthermore, we demonstrated for the first time that fasting
insulin and waist circumference gave results similar to insulin

sensitivity measured directly by the hyperinsulinemic eugly-
cemic clamp and IAF assessed by CT. These results indicate
that fasting insulin level and waist can reliably be used to
define the MetS for clinical practice.

Results of factor analysis, yielding only one factor for the
MetS, differ somewhat from previous studies. Most studies
have yielded 2 to 4 factors.6,9,10,12,13–15,17 However, the find-
ing of an obesity-hyperinsulinemia factor is rather consistent
throughout different studies,3–6,9–11,13,15 and in most cases,
this factor has also included dyslipidemia (HDL cholesterol
and triglycerides).3–6,9–11,14,17 A separate BP factor having
high loadings for systolic and diastolic BPs has been a rather
consistent finding.4,6,9,11–15 However, almost all these analy-
ses have included both systolic and diastolic BPs. When we

Figure 1. Rates of WBGU (�, glucose
oxidation; �, nonoxidative glucose dis-
posal) (A), adiponectin concentration (B),
IAF mass (C), and subcutaneous fat
mass (D) according to factor score
tertiles (I�lowest, II�middle, III�highest
tertile) derived from factor analysis. Prob-
ability values are unadjusted.

Figure 2. Energy expenditure during hy-
perinsulinemic clamp (A), FFA levels dur-
ing hyperinsulinemic clamp (B), lipid oxi-
dation during hyperinsulinemic clamp (C),
and maximal oxygen uptake during exer-
cise (D) according to factor score
tertiles (I�lowest, II�middle, III�highest)
derived from factor analysis. Probability
values are unadjusted.
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repeated statistical analyses similarly, we also ended up with
2 separate factors. Furthermore, when we included 0- and
120-minute glucose and 120-minute insulin levels in the
model, we obtained 4 separate factors often reported in
previous studies.

Presenting the results of factor analysis as factor scores
gave us an opportunity to obtain important information on
metabolic abnormalities associated with the MetS defined as
the highest tertile of the factor score. According to the NCEP
ATPIII criteria8 the prevalence of the MetS in our study was
10.9% in men and 9.2% in women. All 13 men and 9 of 11
women who had the MetS according to the NCET ATPIII
criteria belonged in the highest MetS factor score tertile,

indicating that the NCEP ATPIII criteria are quite specific for
the MetS but that their sensitivity is likely to be rather low.

Our novel findings were that during hyperinsulinemia the
MetS was associated with reduced rates of glucose oxidation
and nonoxidative disposal, high rates of lipid oxidation, low
energy expenditure, and impaired suppression of FFAs.
Furthermore, the MetS was associated with a low adiponectin
level, a high amount of IAF and subcutaneous fat, low
maximum oxygen uptake, and high levels of CRP, proinflam-
matory cytokines, and adhesion molecules.

The tight link between insulin resistance and visceral fat in
the MetS seems to be the basis of this syndrome, although we
cannot conclude which is the primary abnormality. In addi-

Figure 3. Fasting CRP (A) and cytokine levels (B–F) according to factor score tertiles (I�lowest, II�middle, III�highest) derived from
factor analysis. Probability values are unadjusted.
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tion to skeletal muscle, we observed insulin resistance in
adipose tissue, because hyperinsulinemia was not able to
suppress FFAs among subjects with MetS. Consequently,
lipid oxidation was significantly elevated, which could, at
least in part, be responsible for low rates of glucose oxidation
during hyperinsulinemia. Impaired suppression of FFAs dur-
ing hyperinsulinemia in subjects with the MetS contributes to
elevated production of VLDL particles in the liver and thus
hypertriglyceridemia.23 However, causes of hypertriglyceri-
demia in the MetS are likely to be multifactorial, and other
factors, in addition to the FFA flux into the liver, probably
contribute to the dyslipidemia observed in these subjects.

Lower energy expenditure during the hyperinsulinemic
clamp in subjects with the MetS is a novel finding. This
finding may indicate that subjects with this syndrome have a
lower increase in meal-induced thermogenesis and thus a
tendency to gain weight. In addition, low energy expenditure
during hyperinsulinemia could indicate central insulin
resistance.

Adipose tissue secretes a variety of molecules and adipocy-
tokines, including TNF-�, IL-6, and adiponectin. Adiponec-
tin is produced abundantly in adipocytes, and in subjects with
an excess of IAF, adiponectin levels are low.24 High adi-
ponectin level correlates with high insulin sensitivity.25 We
found that the MetS was associated with a high amount of
IAF, a low adiponectin level, and elevated levels of cytokines
and adhesion molecules. Adiponectin inhibits the expression

of ICAM-1, VCAM-1, and E-selectin26 and has several
antiatherogenic27,28 and antiinflammatory properties. Thus,
hypoadiponectinemia can be responsible for endothelial dam-
age and a low-grade systemic chronic inflammatory state.

Previous studies have shown that CRP, IL-6, and TNF-�
predict type 2 diabetes29 and coronary heart disease.30 In our
study, the most marked elevations were found in IL-1RA and
IL-1�, whereas TNF-� did not differ between the factor score
tertiles. Therefore, conventionally determined cytokines,
TNF-� and IL-6, may not be the best markers for the MetS.
P-selectin and ICAM-1 were also associated with the MetS,
whereas E-selectin and VCAM-1 were not. The association of
adhesion molecules with the MetS is logical because they
have a close interaction with proinflammatory cytokines.
Adhesion molecule expression is induced by proinflamma-
tory cytokines such as IL-1�, TNF-�, and CRP produced by
the liver in response to IL-6.31

In conclusion, our findings add new information for the
understanding of metabolic abnormalities in the MetS. Our
results show for the first time that insulin resistance in people
with the MetS is seen not only in skeletal muscle but also in
adipose tissue, leading to multiple defects in glucose and
energy metabolism, hypoadiponectinemia, and elevated lev-
els of proinflammatory cytokines and adhesion molecules.
These results give further evidence that the MetS is an
important risk factor for cardiovascular disease, but follow-up
studies are needed to confirm this hypothesis.

Figure 4. Fasting adhesion molecule levels (A–D) according to factor score tertiles (I�lowest, II�middle, III�highest) derived from factor
analysis. Probability values are unadjusted.
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Changes in Inflammatory Cytokines Are
Related to Impaired Glucose Tolerance in
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1

KARI PUNNONEN, MD
2

SAKARI KAINULAINEN, MD
3

MARKKU LAAKSO, MD
1

OBJECTIVE — We sought to determine whether levels of inflammatory markers and differ-
ent cytokines are abnormal in nondiabetic offspring of type 2 diabetic subjects.

RESEARCHDESIGNANDMETHODS — Cytokine levels were measured in 19 healthy
control subjects and 129 offspring of patients with type 2 diabetes (109 with normal glucose
tolerance [NGT] and 20 with impaired glucose tolerance [IGT]). Insulin sensitivity was deter-
mined with the hyperinsulinemic-euglycemic clamp, insulin secretion with the intravenous
glucose tolerance test, and abdominal fat distribution with computed tomography.

RESULTS — Levels of C-reactive protein and inflammatory cytokines were elevated in non-
diabetic offspring of type 2 diabetic subjects. Interleukin (IL)-1� was increased in the NGT group
and decreased in the IGT group. In contrast, levels of IL-1 receptor antagonist (IL-1Ra) were
increased in both groups. IL-1� and -Ra levels correlated inversely (P � 0.05) with rates of
whole-body glucose uptake and IL-1� positively with visceral fat mass (P � 0.05) in normogly-
cemic offspring.

CONCLUSIONS — Nondiabetic offspring of type 2 diabetic subjects have changes in the
levels of inflammatory cytokines. The level of IL-1Ra seems to be the most sensitive marker of
cytokine response in the pre-diabetic state.

Diabetes Care 29:2714–2720, 2006

Impaired glucose tolerance (IGT) pre-
cedes type 2 diabetes and is attribut-
able to either insulin resistance or

decreased insulin secretion, or both.
Proinflammatory cytokines deleteriously
influence insulin sensitivity and �-cell
function (1). Tumor necrosis factor
(TNF)-� blocks insulin action by induc-
ing serine phosphorylation of insulin
receptor substrate 1 (2). Furthermore,
long-term cytokinemia impairs insulin
secretion in the �-cells (3). Thus, accu-
mulating evidence supports the hypothe-

sis that type 2 diabetes is a disease of the
innate immune system (3,4).

C-reactive protein (CRP) and proin-
flammatory cytokine levels are elevated in
both IGT and overt type 2 diabetes, and
they predict the conversion to type 2 dia-
betes (3–8). However, Krakoff et al. (9)
failed to show that CRP and interleukin
(IL)-6 levels predict diabetes in Pima In-
dians. Although TNF-� causes insulin re-
sistance at the cellular level, circulating
TNF-� levels are neither associated with
type 2 diabetes nor with the future risk of

diabetes (4,10). The elevation of both
IL-6 and -1� increases the risk of type 2
diabetes more strongly than elevated lev-
els of IL-6 alone (4).

Inflammation in autoimmune dis-
eases is characterized by a balance
between pro- and anti-inflammatory cy-
tokines. The members of the IL-1 cyto-
kine superfamily, IL-1� and -1�, are
strong inducers of inflammation (11–13).
IL-1 receptor antagonist (IL-1Ra) acts in
an antagonistic manner and serves as a
natural compensatory mechanism for the
IL-1–induced disease process (11,14). In
healthy individuals, IL-1Ra is detectable
in plasma, in contrast to usually undetect-
able levels of IL-1� (12). White adipose
tissue is an important source of IL-1Ra
(15). IL-1Ra levels are increased in hu-
man obesity (16) and may contribute to
the development of insulin resistance
(17).

In various disease states, the levels of
IL-1� are increased. IL-1� has been
shown to mediate impaired �-cell func-
tion and apoptosis in both type 1 and type
2 diabetes (18–20). The apoptotic path-
way has been suggested to link both forms
of diabetes. However, recent studies have
shown that high glucose in vitro and in
the diabetic milieu does not induce IL-1�
production or nuclear factor-�B activa-
tion in human islets, which argues against
the notion that the IL-1�–nuclear factor-
�B–Fas pathway is a common mediator of
�-cell death in type 2 diabetes (21,22).

IL-18, a member of the IL-1 cytokine
superfamily, is an important regulator of
innate and acquired immune response.
Elevated levels of IL-18 have been ob-
served in type 2 diabetic subjects (23,24).
Low levels of IL-10, a cytokine with
strong anti-inflammatory properties,
have been associated with the metabolic
syndrome and type 2 diabetes (25).

The offspring of patients with type 2
diabetes are at increased risk of develop-
ing diabetes, but only three previous
studies have measured the levels of one
proinflammatory cytokine, TNF-�, in off-
spring of type 2 diabetic patients (26–
28). Therefore, we investigated whether
levels of CRP and different cytokines are
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already abnormal in nondiabetic off-
spring of type 2 diabetic subjects.

RESEARCH DESIGN AND
METHODS — The subjects were
healthy nondiabetic offspring of patients
with type 2 diabetes. Type 2 diabetic pro-
bands were randomly selected among pa-
tients living in the region of the Kuopio
University Hospital. Spouses of the pro-
bands had to have normal glucose toler-
ance (NGT), as determined by an oral
glucose tolerance test. One to three off-
spring from each family were included in
this study. The exclusion criteria for the
offspring were as follows: 1) diabetes or
any other disease that could potentially
disturb carbohydrate metabolism, 2) dia-
betes in both parents, 3) pregnancy, 4)
any ongoing infection, and 5) age �25 or
�50 years. A total of 129 offspring (61
men and 68 women) from 78 families (43
families with one child, 29 families with
two children, and 6 families with three
children) were studied. The control
group included 19 healthy volunteers (8
men and 11 women) with NGT and with-
out a family history of diabetes. The in-
clusion criteria were identical to the
selection of offspring described above.
The study protocol was approved by the
ethics committee of the University of Kuo-
pio and the Kuopio University Hospital.

Subjects were admitted to the meta-
bolic ward of the Department of Medicine
of the Kuopio University Hospital on
three different occasions, 1–2 months
apart. The order of the tests was the same

for each subject. On day 1, a standardized
interview was conducted to collect infor-
mation on medical history, smoking, al-
cohol consumption, and physical activity.
Weight and height were measured to the
nearest 0.5 cm and 0.1 kg, respectively.
Other clinical parameters were measured
as previously described in detail (29).
Fasting blood samples were drawn after a
12-h fast followed by an oral glucose tol-
erance test (75 g glucose). Glucose toler-
ance status was evaluated according to
World Health Organization criteria (30).

On day 2, an intravenous glucose tol-
erance test was performed to evaluate
first-phase insulin secretion capacity after
an overnight fast. Immediately after an in-
travenous glucose tolerance test, the eu-
glycemic-hyperinsulinemic clamp was
started to determine the degree of insulin
sensitivity, as previously described (29).
After a priming dose of insulin, plasma
insulin was maintained at 5.0 mmol/l by a
continuous insulin infusion (insulin infu-
sion rate of 40 mU/min per m2 body sur-
face area) and blood glucose kept
constant for the next 120 min by infusing
20% glucose at varying rates according to
blood glucose measurements performed
at 5-min intervals. The amount of glucose
infused was used to calculate the rates of
whole-body glucose uptake (WBGU).
Body composition was determined by
bioelectrical impedance (RJL Systems,
Detroit, MI) in the supine position after a
12-h fast.

On day 3, abdominal fat distribution
was evaluated by computed tomography

(Siemens Volume Zoom; Siemens, Erlan-
gen, Germany) at the level of fourth lum-
bal vertebra according to the method of
Sjöström et al. (31). Subcutaneous and
intraabdominal fat areas were calculated
as previously described (32).

Plasma glucose was measured by the
glucose oxidase method (Glucose & Lac-
tate Analyzer 2300 Stat Plus; Yellow
Springs Instrument, Yellow Springs, OH)
and plasma insulin and C-peptide by ra-
dioimmunoassay (Phadeseph Insulin RIA
100; Pharmacia Diagnostics, Uppsala,
Sweden, and 125J RIA kit; Incstar, Still-
water, MN, respectively). Cholesterol and
triglyceride levels from whole serum and
lipoprotein fractions were assayed by au-
tomated enzymatic methods (Roche Di-
agnostics, Mannheim, Germany).

For the determination of cytokines,
blood was collected into EDTA tubes on
ice and immediately centrifuged and the
plasma stored at �70°C (maximum stor-
age time 3 years). Plasma concentrations
of TNF-�, IL-1�, IL-1Ra, IL-6, IL-10, and
IL-18 were measured using assay kits
from R&D Systems (Minneapolis, MN).
IL-8 was measured using a kit from Bio-
source International (Camarillo, CA).
CRP was measured using an Immulite an-
alyzer and a DPC High Sensitivity CRP
assay (Diagnostic Products, Los Angeles,
CA).

Genotyping was performed by direct
sequencing (ABI prism genetic analyza-
tor) (IL-1Ra gene: G114C), restriction
length polymorphism (IL-6 gene:
C-174G; IL-10 gene: A-592C; TNF-

Table 1—Characteristics of the study population

Offspring of patients with type 2 diabetes

Control NGT IGT P

n 19 109 20
Sex (M/F) 8/11 53/56 8/12 0.715
Age (years) 34.5 � 4.5 35.0 � 6.1 38.6 � 6.6* 0.042
Waist-to-hip ratio 0.84 � 0.1 0.87 � 0.8 0.88 � 0.1 0.161
BMI (kg/m2) 24.6 � 2.6 25.8 � 4.3 28.0 � 6.2* 0.075
Fat percent 29 � 9 29 � 8 32 � 9 0.275
Systolic blood pressure (mmHg) 124 � 10 126 � 11 133 � 18* 0.020
Diastolic blood pressure (mmHg) 82 � 10 83 � 9 90 � 14* 0.004
Fasting glucose (mmol/l) 5.1 � 0.6 5.2 � 0.4 5.2 � 0.5 0.746
120-min glucose (mmol/l) 5.6 � 1.1 5.8 � 1.0 8.7 � 0.8† �0.001
Fasting insulin (pmol/l) 47.9 � 23.0 44.6 � 19.1 57.9 � 34.4 0.087
120-min insulin (pmol/l) 194.0 � 107.2 219.2 � 159.4 400.1 � 261.7† �0.001
Total cholesterol (mmol/l) 4.73 � 0.96 4.89 � 0.91 4.94 � 0.64 0.731
LDL cholesterol (mmol/l) 2.80 � 0.7 3.19 � 0.81* 3.16 � 0.60 0.116
HDL cholesterol (mmol/l) 1.37 � 0.33 1.27 � 0.28 1.26 � 0.32 0.343
Total triglycerides (mmol/l) 1.24 � 0.84 1.12 � 0.62 1.25 � 0.53 0.461

Data are means � SD. NGT/IGT vs. control subjects: *P � 0.05; †P � 0.001.
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receptor 2 gene: M196R), or by TaqMan
assays (CRP gene: G942C, G1059C;
IL-1� gene: T511C, C3954T; IL-10 gene:
A1082G; TNF-� gene: G-308A). Details
of the genotyping procedures can be ob-
tained from the authors by request.

Statistical analysis
All calculations were performed with
SPSS 11.0 for Windows. The results for
continuous variables are shown as
means � SD, if not stated otherwise. The
differences between the three groups
were assessed by ANOVA for continuous
variables and the �2 test for noncontinu-
ous variables. Variables with skewed dis-
tribution (triglycerides and BMI), insulin,
CRP, TNF-�, IL-6, IL-1Ra, IL-8, and
IL-10 were logarithmically transformed
for statistical analyses. The incremental

insulin areas under the curve were calcu-
lated by the trapezoidal method. Linear
mixed-model analysis was applied to test
the differences between the groups to ad-
just for confounding factors. Pedigree
membership was included in the model as
a random factor and sex as a fixed factor.
A P value �0.05 was considered statisti-
cally significant.

RESULTS — Table 1 reports anthro-
pometric and metabolic characteristics of
the study subjects. The groups were com-
parable with respect to sex, but subjects
with IGT were older (P � 0.05), had
higher BMI (P � 0.05), and had higher
levels of systolic (P � 0.05) and diastolic
(P � 0.05) blood pressure than the con-
trol subjects. There were no significant
differences between the groups in waist-

to-hip ratio and fat percent. LDL choles-
terol was higher in the NGT group (P �
0.05) than in the control group, whereas
total cholesterol, HDL cholesterol, and
triglycerides did not differ among groups.
Plasma glucose and insulin levels at 120
min were significantly elevated in the IGT
group (P � 0.001 vs. control group).

Figure 1 presents the results of meta-
bolic studies. A significant decrease was
found in the rates of WBGU in the IGT
group, and a similar, but not statistically
significant, trend was observed in the
NGT group compared with the control
group. No compensatory increase in first-
phase insulin secretion was observed in
the IGT group. The areas of both visceral
and subcutaneous fat were significantly
higher in the IGT group compared with
the control group. The differences per-

Figure 1— Rates of WBGU (A), first-phase insulin secretion (B), visceral fat (C), and subcutaneous fat (D) in offspring of type 2 diabetic patients.
�, control group; o, NGT group; f, IGT group. P value after the adjustment for age, sex, BMI, and family relationship (mixed linear model). Data
are means � SE. *P � 0.05, **P � 0.01 for IGT vs. control group.
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sisted after adjustment for age, sex, BMI,
and familiarity. The ratio of subcutaneous
to visceral fat did not differ among groups
(data not shown).

Levels of fasting cytokines are shown
in Fig. 2. CRP level was significantly
higher in the IGT group than in the con-
trol group. Levels of TNF-� did not differ
significantly among the three groups, but
after adjustment for age, sex, BMI, and
familiality, a statistically significant differ-
ence was observed among the three
groups. There were no significant differ-
ences in fasting levels of IL-6, IL-8, IL-10,
or IL-18 (data not shown) among the

three groups. Compared with the control
group, levels of IL-1� were significantly
higher in the NGT group, whereas there
was a significant decrease in IL-1� levels
in the IGT group. Levels of IL-1Ra in-
creased linearly in the NGT and IGT
groups compared with the control group.

The correlations of fasting cytokines
with metabolic parameters are shown in
Table 2. In the NGT group, IL-6 (P �
0.05), CRP (P � 0.01), IL-1� (P � 0.05),
and IL-1Ra levels (P � 0.05) correlated
inversely with WBGU. Inverse correla-
tions were also significant among IL-6, IL-
1Ra, and WBGU in the IGT group (P �

0.05 and P � 0.01, respectively). Signifi-
cant correlations between IL-6 level and
the amount of visceral and subcutaneous
fat were found in both NGT and IGT
groups (visceral fat: P � 0.01 and P �
0.05, respectively; subcutaneous fat: P �
0.01 in both groups). CRP (P � 0.05) and
IL-1Ra (P � 0.05) correlated significantly
with first-phase insulin secretion in the
NGT group. The correlation was even
stronger between IL-1Ra and first-phase
insulin secretion in the IGT group (P �
0.01), whereas correlation with CRP was
not statistically significant in the IGT
group. In the NGT group, IL-6 (P �

Figure 2—Fasting cytokines in offspring of type 2 diabetic patients. �, control group; o, NGT group; f, IGT group. The individual data for IL-1�
and IL-1Ra is shown in scattergrams (� in all respective groups). P value after the adjustment for sex, BMI, and familiality (mixed linear model).
Means � SE. *P � 0.05, **P � 0.01, ***P � 0.001 for NGT or IGT vs. control group.

Ruotsalainen and Associates

DIABETES CARE, VOLUME 29, NUMBER 12, DECEMBER 2006 2717



0.05), IL-1� (P � 0.01), and IL-1Ra levels
(P � 0.05) correlated significantly with
CRP. In the IGT group, CRP correlated
significantly with IL-6 (P � 0.05) and IL-
1Ra (P � 0.05) but not with IL-1� levels.

Common polymorphisms that have
been previously associated with insulin
resistance, insulin resistance–related
quantitative traits, or risk of diabetes in
the CRP (G942C and G1059C), TNF-�
(G-308A), TNF-receptor 2 (M-196R),
IL-1� (T511C and C3954T), IL-1Ra
(G114C), IL-6 (C-174G), or IL-10 (A-
592C) genes were not associated with
corresponding cytokine levels (data not
shown).

CONCLUSIONS — The offspring of
type 2 diabetic subjects are at increased
risk of diabetes. Our study showed that
CRP and proinflammatory cytokine levels
are elevated in nondiabetic offspring
compared with the control group, sup-
porting the concept that low-grade in-
flammation is one of the earliest findings
in the pathogenesis of type 2 diabetes.
The novel finding of our study was that
the level of IL-1Ra is the most sensitive

marker of cytokine response in the pre-
diabetic state.

Low-grade inflammation is linked to
the onset of type 2 diabetes (33). To our
knowledge, there are only three previ-
ously published studies that have investi-
gated the role of inflammatory cytokines
in nondiabetic offspring of patients with
type 2 diabetes. However, these studies
have measured only levels of TNF-� but
not those of other proinflammatory cyto-
kines. Kellerer et al. (27) showed that cir-
culating TNF-� level did not contribute to
obesity-induced insulin resistance. Malt-
ezos et al. (28) observed significantly ele-
vated concentrations of TNF-� in healthy
nondiabetic offspring of type 2 diabetic
subjects. Costa et al. (26) showed that the
TNF-� pathway could predispose to the
development of type 2 diabetes in the
first-degree relatives of type 2 diabetic pa-
tients. In our study, we did not find in-
creased levels of TNF-� or IL-6 in the
offspring of type 2 diabetic individuals.
However, we found that glucose-
intolerant offspring of type 2 diabetic pa-
tients had elevated CRP levels, which is in
line with previous studies (3–8,25).

In our study, the level of IL-1� was
increased in the NGT group, whereas it
was decreased in the IGT group. To de-
termine the biological activity of IL-1�,
we calculated the ratio of IL-1Ra to IL-1�.
Eizirik et al. (34) have shown that a 10- to
100-fold excess of IL-1Ra over IL-1� suf-
fices to block the effects of IL-1� on pan-
creatic islets. We found �100-fold excess
of the ratio of IL-1Ra to IL-1�, indicating
a decreased biological activity of IL-1� in
the NGT group (999) and, more mark-
edly, in the IGT group (2,538). The excess
of IL-1Ra should block the biological ac-
tivity of IL-1� by human islets. In line
with recently published studies, we sug-
gest that it is unlikely that IL-1� would
mediate �-cell failure during progression
to type 2 diabetes.

Decreased concentrations of IL-1Ra
have been reported in type 2 diabetes
(14), whereas IL-1Ra overproduction has
been observed in men with the insulin
resistance syndrome (35). The level of
IL-Ra has been shown to be markedly and
reversibly elevated in human obesity and
predicted by lean body mass and insulin
levels (16). In our study, IL-1Ra levels

Table 2—Spearman correlations of fasting cytokines, visceral fat, subcutaneous fat, rates of WBGU, and first-phase insulin secretion in
offspring with NGT and IGT

IL-6 CRP IL-1� IL-1Ra TNF-� IL-8
Visceral

fat
Subcutaneous

fat WBGU

First-phase
insulin

secretion

NGT
IL-6 1.000 0.236* 0.088 0.278† 0.196* 0.166 0.310† 0.310† �0.241* 0.024
CRP 1.000 0.264† 0.233* 0.188 0.121 0.189 0.254† �0.339† 0.223*
IL-1� 1.000 0.164 0.116 0.230* 0.290† 0.173 �0.239* 0.172
IL-1Ra 1.000 0.214* 0.347† 0.172 0.277† �0.205* 0.212*
TNF-� 1.000 0.160 0.121 0.034 �0.082 0.076
IL-8 1.000 0.140 0.109 �0.154 �0.137
Visceral fat 1.000 0.326† �0.452† 0.234*
Subcutaneous fat 1.000 �0.275† 0.274†
WBGU 1.000 �0.312†
First-phase insulin

secretion
1.000

IGT
IL-6 1.000 0.557* �0.204 0.437 �0.214 �0.381 0.524* 0.609† �0.463* 0.357
CRP 1.000 �0.122 0.525* �0.421 0.015 0.261 0.381 �0.334 0.179
IL-1� 1.000 0.389 0.325 0.289 0.161 0.155 �0.137 0.234
IL-1Ra 1.000 �0.293 0.081 0.549* 0.547* �0.645 0.672†
TNF-� 1.000 0.180 �0.112 �0.181 0.042 �0.432
IL-8 1.000 0.105 0.097 0.023 �0.197
Visceral fat 1.000 0.570* �0.668† 0.437
Subcutaneous fat 1.000 �0.782† 0.608†
WBGU 1.000 �0.640†
First-phase insulin

secretion
1.000

*P � 0.05; †P � 0.01.
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were elevated in normoglycemic offspring
and even more so in offspring with IGT
compared with those in the control
group. IL-1Ra had an inverse correlation
with WBGU in the NGT and IGT groups.
IGT offspring had a significantly higher
amount of visceral and subcutaneous fat
than control subjects, which, together
with increased IL-1Ra levels, supports the
finding that adipose tissue is an important
source of IL-1Ra (15). It is possible that
the elevation of IL-1Ra and the negative
correlation between IL-1Ra and WBGU
reflects insulin resistance in the NGT and
IGT groups. Although IL-1Ra is consid-
ered a protective cytokine, increased lev-
els of IL-1Ra might rather expose than
protect the offspring at high risk of diabe-
tes from insulin resistance.

Promoter polymorphisms of the
TNF-� and IL-6 genes have been shown
to predict the conversion from IGT to
type 2 diabetes (36), and variants in the
TNF-� gene regulate insulin sensitivity
(26). Therefore, we analyzed the effects of
common polymorphisms of CRP and cy-
tokine genes (TNF-�, TNF-receptor 2,
IL-�, IL-1Ra, IL-6, and IL-10) on fasting
levels of CRP and cytokines, but no asso-
ciations were found.

Our study has some limitations. First,
the control group and the IGT group are
small, limiting the statistical power of our
study. Second, subjects in the control
group were significantly younger and
thinner than those in the IGT group,
which could explain some of the differ-
ences between the groups, although ad-
justment for age and BMI was done in
statistical analyses of the data.

In summary, our results add new in-
sights to the understanding of inflamma-
tory mechanisms in the pathogenesis of
type 2 diabetes. Our study is the first to
show that the offspring of type 2 diabetic
patients have changes in levels of CRP,
IL-1�, and IL-1Ra. It remains to be
proven whether this cytokine imbalance
is one of the fundamental defects in the
pre-diabetic state and in type 2 diabetes.
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Abstract

The offspring of type 2 diabetic patients are at elevated risk for type 2 diabetes and cardiovascular disease. The aim of our study was to
characterize the role of various biomarkers of endothelial activation in a cohort of offspring of type 2 diabetic subjects and to assess the
association of adhesion molecules with inflammatory markers and metabolic parameters.

Cytokine and adhesion molecule levels were measured in 19 healthy subjects and in 129 offspring of patients with type 2 diabetes (109 with
normal glucose tolerance and 20 with impaired glucose tolerance). Insulin sensitivity was determined with the hyperinsulinemic-euglycemic
clamp, insulin secretion with the intravenous glucose tolerance test, and abdominal fat distribution with computed tomography.

The levels of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, E-Selectin and vascular adhesion protein-1 were not
increased in offspring of type 2 diabetic subjects, but they correlated with inflammatory markers (C-reactive protein, tumor necrosis-alpha,
interleukin-6, interleukin-1beta, interleukin-1 receptor antagonist, interleukin-8, interleukin-10 and interleukin-18). In conclusion, the levels
of adhesion molecules were not elevated in the prediabetic state. Inflammatory markers and adhesion molecules were correlated suggesting
that low-grade inflammation may precede the elevation of levels of adhesion molecules.
© 2007 Published by Elsevier Ireland Ltd.
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1. Introduction

The offspring of type 2 diabetic patients are at elevated
risk for type 2 diabetes and cardiovascular disease (CVD)
[1]. Insulin resistance and clustering of CVD risk factors
with it are predictors of the development of type 2 dia-
betes and CVD [2]. Similarly, low-grade inflammation and
endothelial dysfunction precede the development of type 2

∗ Corresponding author. Tel.: +358 17 172151; fax: +358 17 173993.
E-mail address: markku.laakso@kuh.fi (M. Laakso).

diabetes [3,4] and CVD [5,6]. A unifying factor in the patho-
genesis of these diseases is inflammation in the vascular
endothelium, which might contribute to the disease process
[3].

As a sign of endothelial damage, soluble cellular adhesion
molecules are released from the endothelial cells. Increased
levels of cellular adhesion molecules have been detected in
several studies in patients with insulin resistance [7,8], type 2
diabetes [9], and CVD [10]. Among the adhesion molecules,
E-Selectin is only found in the endothelium, whereas inter-
cellular adhesion molecule-1 (ICAM-1) and vascular cell

0021-9150/$ – see front matter © 2007 Published by Elsevier Ireland Ltd.
doi:10.1016/j.atherosclerosis.2007.04.021
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adhesion molecule-1 (VCAM-1) represent a wider tissue
distribution [11]. High soluble E-Selectin level is a strong
independent predictor of type 2 diabetes [3,4], but the role of
other soluble adhesion molecules remains controversial.

Vascular adhesion protein-1 (VAP-1) is located at the
endothelial membrane [12]. It may contribute to the patho-
genesis of atherosclerosis by guiding inflammatory cells into
atherosclerotic lesions [13]. VAP-1 is also found in a soluble
form in serum. Elevated levels of soluble VAP-1 have been
measured in patients with type 1 diabetes, and the clearance of
VAP-1 is regulated by insulin [12,14]. Moreover, in patients
with type 1 diabetes, increased levels of soluble VAP-1 have
been observed in patients with poor metabolic control. By
normalizing blood glucose with exogenous insulin, a rapid
decrease in soluble VAP-1 concentrations has been observed
[12].

Previous studies that have investigated the levels of adhe-
sion molecules have demonstrated that the offspring of type
2 diabetic patients have features of endothelial dysfunction,
estimated either by non-invasive methods or by measur-
ing blood levels of adhesion molecules, or both [15–19].
Adhesion molecules are regulated by inflammatory cytokines
such as tumor necrosis factor-� (TNF-�), interleukin-6 (IL-
6) and interleukin-1� (IL-1�) [20]. Thus, the evaluation of
endothelial dysfunction requires the measurement of multi-
ple biomarkers of endothelial activation [3]. The association
of inflammatory cytokines with adhesion molecules has not
been previously studied in first-degree relatives of type 2
diabetic subjects. Therefore, the aim of our study was to
characterize various biomarkers of endothelial activation in a
cohort of offspring of type 2 diabetic subjects and to assess the
association of adhesion molecules with inflammatory mark-
ers and metabolic parameters.

2. Methods

2.1. Subjects

The subjects were 129 healthy non-diabetic offspring of
patients with type 2 diabetes (men/women 61/68, age 35 ± 6
years, body mass index (BMI) 26.1 ± 4.6 kg/m2). The con-
trol group consisted of 19 healthy normoglycemic subjects
with no family history of type 2 diabetes (men/women 8/11,
age 34 ± 4 years, BMI 24.6 ± 2.6 kg/m2). Probands were ran-
domly selected among type 2 diabetic subjects living in the
region of the Kuopio University Hospital. The spouses of
patients with type 2 diabetes had to have normal glucose toler-
ance in an oral glucose tolerance test (OGTT). The exclusion
criteria for the selection of the offspring were: (1) diabetes
mellitus or any other disease that could potentially disturb
carbohydrate metabolism; (2) diabetes mellitus in both par-
ents; (3) pregnancy; (4) age less than 25 or more than 50
years. The Ethics Committee of the University of Kuopio
approved the study protocol. All study subjects gave informed
consent.

2.2. Study design

On the first day, the subjects were interviewed about their
medical history, smoking, alcohol consumption, and exercise
habits. After a 5-min rest, blood pressure was measured in
a sitting position with a mercury sphygmomanometer. The
average of three measurements was used to calculate systolic
and diastolic blood pressure. Height and weight were mea-
sured to the nearest 0.5 cm and 0.1 kg, respectively. BMI was
calculated as weight in kilograms divided by height in meters
squared. Waist (at the midpoint between the lateral iliac crest
and the lowest rib) and hip circumference (at the level of the
trochanter major) were measured to the nearest 0.5 cm. Fast-
ing blood samples were drawn after 12 h of fasting, followed
by an OGTT (75 g of glucose). On the second day, after a
12-h fast, an intravenous glucose tolerance test (IVGTT) and
the hyperinsulinemic euglycemic clamp, including indirect
calorimetry, were performed. On day 3, a CT scan was per-
formed to evaluate the amount and distribution of abdominal
fat.

2.3. Metabolic studies

An IVGTT was performed to determine the first-phase
insulin secretion capacity after an overnight fast. After base-
line blood collection, a bolus of glucose (300 mg/kg in a 50%
solution) was given within 30 s into the antecubital vein. Sam-
ples for the measurement of blood glucose and plasma insulin
(arterialized venous blood) were drawn at −5, 0, 2, 4, 6, 8
and 10 min.

Immediately after an IVGTT, the euglycemic hyperinsu-
linemic clamp (insulin infusion rate of 40 mU/min/m2 body
surface area) was started to determine the degree of insulin
sensitivity as previously described [21]. Blood glucose was
clamped at 5.0 mmol/l for the next 120 min by infusion of
20% glucose at various rates according to blood glucose mea-
surements performed at 5-min intervals. The mean amount
of glucose infused during the last hour was used to cal-
culate the rates of whole-body glucose uptake (WBGU).
Indirect calorimetry was performed with a computerized
flow-through canopy gas analyzer system (DELTATRAC,
TM Datex) as previously described [21,22]. The mean value
of the data during the last 20 min of the clamp was used to
calculate glucose and lipid oxidation [23]. The rates of non-
oxidative glucose disposal during the clamp were estimated
by subtracting the rates of glucose oxidation from the glucose
infusion rate.

2.4. Body composition and fat distribution

Body composition was determined by bioelectrical
impedance (RJL Systems, Detroit, MI) in the supine position
after a 12-h fast. Abdominal fat distribution was evaluated by
computed tomography (Volume Zoom, Siemens, Erlanger,
Germany) at the level of fourth lumbar vertebra. Subcuta-
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neous and visceral fat areas were calculated as previously
described [22].

2.5. Laboratory determinations

Blood and plasma glucose levels were measured by
the glucose oxidase method (Glucose & Lactate Analyzer
2300 Stat PLUS, Yellow Springs Instruments Co, Inc.)
and plasma insulin and C-peptide were determined by
radioimmunoassay (Phadeseph Insulin RIA 100, Pharma-
cia Biotech, Uppsala, Sweden). Plasma concentrations of
cytokines (TNF-�, IL-1�, interleukin-1 receptor antagonist
(IL-1Ra), IL-6, interleukin-8 (IL-8), interleukin-10 (IL-10)
and interleukin-18 (IL-18)) were measured by solid phase
ELISA (Quantikine, R&D Systems; and IL-8 Ultrasensitive
ELISA, BioSource International). C-reactive protein (CRP)
was determined by an Immulite 2000 High Sensitivity CRP
assay (Diagnostic Products Corp). Levels of soluble adhesion
molecules (ICAM-1, VCAM-1 and E-Selectin) were mea-
sured with high-sensitivity assay kits from R&D Systems.
Soluble VAP-1 was measured using an in-house sandwich
ELISA, as described [24].

2.6. Statistical analysis

All data analyses were performed with the SPSS 13.0
for Windows programs. The results for continuous variables
are given as mean ± S.D., if not stated otherwise. Variables
with skewed distribution were logarithmically transformed
for statistical analyses. The differences between the three
groups were assessed by one-way ANOVA for continuous
variables and by χ2 test for non-continuous variables. Lin-
ear mixed model was applied to test the differences between
the groups to adjust for confounding factors. Pedigree mem-
bership was included into the model as a random factor and
BMI, smoking and medication for hypertension as a fixed
factor. Correlations were calculated by Spearman correlation
analysis.

3. Results

Among 129 offspring included in the study, 109 sub-
jects had normal glucose tolerance (NGT) and 20 impaired
glucose tolerance (IGT) as assessed by an OGTT. The
groups were comparable with respect to gender, but subjects
with IGT were older (control: 34.0 ± 4.5; NGT: 35.0 ± 6.1;
IGT: 38.6 ± 6.6 years, p < 0.05), and had higher BMI (con-
trol: 24.6 ± 2.6; NGT: 25.8 ± 4.3; IGT: 28.0 ± 6.2 kg/m2,
p < 0.05) than control subjects. Plasma glucose (control:
5.6 ± 1.1; NGT: 5.8 ± 1.0; IGT: 8.7 ± 0.8 mmol/l, p < 0.001)
and insulin levels at 120 min (control: 194.0 ± 107.2; NGT:
219.2 ± 159.4; IGT: 400.1 ± 261.7 pmol/l, p < 0.001) were
significantly elevated in the IGT group compared to those
in the control group.

Table 1
Spearman correlations between the levels of fasting adhesion molecules

VCAM ICAM E-Selectin VAP-1

Control
sVCAM-1 1 0.268 −0.023 0.141
sICAM-1 1 −0.112 −0.273
sE-Selectin 1 −0.211
sVAP-1 1

NGT
sVCAM-1 1 0.130 0.056 0.053
sICAM-1 1 0.168 0.132
sE-Selectin 1 0.029
sVAP-1 1

IGT
sVCAM-1 1 0.030 0.341 −0.120
sICAM-1 1 −0.046 0.064
sE-Selectin 1 0.214
sVAP-1 1

Fig. 1 presents the levels of fasting adhesion molecules
by glucose tolerance status. The fasting levels of VCAM-1,
ICAM-1, E-Selectin and VAP-1 did not differ signifi-
cantly among the three groups. The subjects with IGT
tended to have higher E-Selectin levels than control subjects
(63.4 ± 6.8 ng/ml versus 46.6 ± 5.1 ng/ml, p = 0.052).

Table 1 gives correlations among fasting adhesion
molecules. No statistically significant correlations among
fasting adhesion molecule levels were found in any of the
three groups. Significant correlations of VCAM-1 with TNF-
� (0.482, p < 0.05) and the rates of whole body glucose uptake
(WBGU) were found in control subjects (0.732, p < 0.01).
Inverse correlation was observed between VCAM-1 level and
fasting glucose (−0.549, p < 0.05), 120 min glucose (−0.528,
p < 0.05) and visceral fat (−0.639, p < 0.01). ICAM-1 corre-
lated significantly with IL-1Ra (0.526, p < 0.05), BMI (0.633,
p < 0.01) and subcutaneous fat (0.695, p < 0.01). The only
significant correlation of E-Selectin was observed between
the first-phase insulin secretion (−0.586, p < 0.01). VAP-1
correlated inversely with levels of 120 min plasma glucose
(−0.461, p < 0.05).

Table 2 shows correlations of fasting cytokines, clinical
and metabolic parameters with adhesion molecules in nor-
moglycemic offspring of type 2 diabetic patients. VCAM-1
correlated significantly with TNF-� (0.214, p < 0.05) and IL-
1� (0.224, p < 0.05), whereas ICAM correlated with CRP
(0.271, p < 0.01) and IL-6 (0.292, p < 0.01). E-Selectin cor-
related significantly with IL-8 (0.282, p < 0.01) and IL-18
(0.268, p < 0.01), and VAP-1 with IL-18 (0.222, p < 0.05).
Among the metabolic parameters, VCAM-1 correlated with
120 min plasma glucose (0.218, p < 0.05), fasting plasma
insulin (0.229, p < 0.05) and 120 min plasma insulin (0.227,
p < 0.05). ICAM-1 correlated significantly with BMI (0.278,
p < 0.01), fat percent (0.237, p < 0.05), visceral fat (0.243,
p < 0.05) and subcutaneous fat (0.212, p < 0.05), and with
fasting plasma insulin (0.220, p < 0.05). A significant corre-
lation between E-Selectin and fasting plasma glucose (0.307,
p < 0.01), and visceral fat (0.281, p < 0.01) was observed.
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Fig. 1. The levels of fasting adhesion molecules by glucose tolerance status. p-Value after adjustment for sex, BMI, smoking, antihypertensive medication and
family relationship (mixed linear model). Data are mean ± S.E.M.

Table 2
Spearman correlations among fasting cytokines, clinical and metabolic parameters with adhesion molecules in normoglycemic offspring of type 2 diabetic
patients

s-VCAM-1 s-ICAM-1 sE-Selectin s-VAP-1

CRP 0.121 0.271** −0.037 −0.163
TNF-� 0.214* 0.016 −0.018 0.043
IL-6 0.054 0.292** −0.035 −0.073
IL-1� 0.224* 0.023 0.128 −0.062
IL-1Ra 0.049 0.048 0.095 0.028
IL-8 −0.022 −0.026 0.282** −0.071
IL-10 0.180 0.093 0.173 0.088
IL-18 −0.046 0.130 0.268** 0.222*

RRs −0.007 −0.031 0.005 0.078
RRd 0.044 −0.038 0.024 −0.063
BMI 0.022 0.278** 0.047 0.039
Fasting plasma glucose 0.074 0.095 0.307** 0.045
120 min plasma glucose 0.218* 0.101 0.096 −0.007
Fasting plasma insulin 0.229* 0.220* 0.129 0.081
120 min plasma insulin 0.227* 0.168 −0.023 0.062
LDL cholesterol −0.193* 0.076 0.221* 0.021
HDL cholesterol −0.103 −0.186 −0.130 −0.139
Total triglycerides −0.095 0.192* 0.158 −0.004
Visceral fat −0.013 0.243* 0.281** 0.106
Subcutaneous fat 0.114 0.212* −0.013 0.012
First-phase insulin secretion 0.053 0.190 −0.036 0.077
Whole body glucose uptake 40 mU/L clamp/LBM −0.134 0.176 −0.191* 0.128

* p < 0.05.
** p < 0.01.
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E-Selectin correlated inversely with the rates of WBGU
(−0.191, p < 0.05). VAP-1 did not have any significant cor-
relations with metabolic or inflammatory factors in the NGT
group.

Table 3 shows that among offspring with IGT, ICAM-1
correlated with IL-6 (0.605, p < 0.01), and E-Selectin with
IL-1� (0.565, p < 0.01). ICAM-1 correlated also signifi-
cantly with BMI (0.565, p < 0.01), subcutaneous fat (0.570,
p < 0.05), fasting insulin (0.652, p < 0.01), and 120 min
insulin (0.620, p < 0.01), and inversely with the rates of whole
body glucose uptake (−0.569, p < 0.01). VCAM-1 and VAP-
1 did not correlate significantly with cytokines or metabolic
parameters in the IGT group.

4. Discussion

In our study the levels of adhesion molecules were not
increased in offspring of type 2 diabetic subjects with vary-
ing glucose tolerance compared to those of control subjects,
but they correlated with inflammatory markers. Because low-
grade inflammation is an early finding in the offspring of type
2 diabetic subjects [22] it might be the primary abnormality
preceding the increase of endothelial biomarkers in individ-
uals at high risk of type 2 diabetes. The levels of VAP-1 were
not increased in offspring of type 2 diabetic subjects, and
they were not systematically associated with metabolic or
inflammatory factors.

Endothelial dysfunction has been shown to precede the
development of type 2 diabetes [15–18]. In agreement with
this notion endothelial dysfunction has been consistently
reported in offspring of type 2 diabetic subjects. In contrast,
the results with respect to adhesion molecule levels have
been conflicting. In two relative small studies on offspring
of type 2 diabetic patients (number of subjects 19 and 14,
respectively), the levels of ICAM-1 were elevated or had a
trend towards higher levels of ICAM-1 [16,17]. VCAM-1 was
increased in the offspring of type 2 diabetic patients (n = 39)
in a study by Caballero et al. [15], whereas ICAM-1 was
increased in subjects with IGT or type 2 diabetes. The levels
of E-Selectin were increased in type 2 diabetic patients, but
not in the offspring of type 2 diabetic subjects (n = 60) [19].
We measured the levels of endothelial biomarkers in a large
cohort of non-diabetic offspring of type 2 diabetic subjects
(n = 129) and found no increase in adhesion molecule levels.
The reasons for these opposite findings are unclear, but they
could be related to different protocols and small sample sizes
of previous studies. Because we did not measure endothe-
lial function using non-invasive methods, it is impossible to
conclude whether or not the levels of adhesion molecules are
reflecting endothelial activation in our study.

We found a significant correlation between ICAM-1 and
BMI in all three study groups. This finding agrees with pre-
vious reports in healthy men [25], in obese individuals [26]
and in type 2 diabetic patients [27]. We also demonstrated
a significant correlation of ICAM-1 with subcutaneous fat,

which together with an association of ICAM-1 with BMI
supports the notion that overall adiposity could contribute to
high levels of ICAM-1 [27]. This agrees with the findings on
transgenic obese mice. These mice produced 10-fold higher
soluble ICAM-1 than did wild type mice, and were more sus-
ceptible to weight gain and fat accumulation [28]. Adipose
tissue may be a possible source of ICAM-1 [29]. Interest-
ingly, in our study, ICAM-1 was associated with visceral fat
in the NGT group, but not in the IGT group. The probands
of the IGT group had higher BMI and larger amount of vis-
ceral and subcutaneous fat than probands in the NGT group.
The mechanisms how adhesion molecules and adiposity are
linked remain to be determined. Adipose tissue is a source of
pro-inflammatory cytokines [30] and adhesion molecules are
released in response to cytokines. Therefore, endothelial dys-
function may be a consequence of adiposity-induced chronic
inflammation.

In young first-degree relatives of type 2 diabetic individ-
uals, an association of non-invasively measured endothelial
dysfunction and clamp-derived insulin resistance has been
demonstrated [18]. Moreover, a significant association
between the degree of insulin resistance and increased levels
of E-Selectin, ICAM-1 and VCAM-1 has been observed in
healthy, non-diabetic subjects suggesting that an increase in
circulating adhesion molecules is secondary to insulin resis-
tance [8]. In type 2 diabetic subjects, E-Selectin has been
associated with insulin resistance, but results with respect
to ICAM-1 and VCAM-1 have been conflicting [29]. In the
present study, E-Selectin correlated inversely with the rates
of WBGU in normoglycemic offspring, and ICAM-1 in off-
spring of type 2 diabetic patients having IGT. ICAM-1 was
also associated with fasting and 120 min plasma insulin levels
in the IGT group. None of the adhesion molecules was asso-
ciated with the first-phase insulin secretion in offspring with
NGT or IGT. Our results not only confirm previous findings
that adhesion molecules and insulin resistance are linked, but
also extend these data to individuals at high risk of diabetes
and CVD.

A strong association between markers of endothelial dys-
function and inflammatory activity has been demonstrated
[22]. This is not surprising given the fact that endothelial dys-
function is induced by inflammatory cytokines. Moreover,
endothelial dysfunction itself may increase inflammatory
activity, thus generating a vicious circle. Also in our study
inflammatory markers were associated with elevated levels
of adhesion molecules in the offspring of type 2 diabetic
subjects. Low-grade inflammation is an early finding in the
offspring of type 2 diabetic subjects, and in the present
study we showed that inflammatory markers and adhesion
molecules are related. Therefore, we suggest that low-grade
inflammation may be the primary abnormality preceding the
elevation of levels of adhesion molecules in the prediabetic
state.

This study is the first to report the levels of VAP-1
in the offspring of type 2 diabetic subjects. VAP-1 is an
ectoenzyme with adhesive and enzymatic properties. Ele-
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Table 3
Spearman correlations among fasting cytokines, clinical and metabolic parameters with adhesion molecules in offspring of type 2 diabetic patients having
impaired glucose tolerance

s-VCAM-1 s-ICAM-1 sE-Selectin s-VAP-1

CRP −0.083 0.351 0.024 −0.138
TNF-� 0.101 −0.127 0.438 0.245
IL-6 −0.199 0.605** −0.329 0.042
IL-1� 0.214 0.153 0.565** 0.187
IL-1Ra 0.087 0.343 0.086 −0.077
IL-8 0.033 −0.152 0.288 −0.295
IL-10 −0.031 −0.297 0.316 −0.182
IL-18 0.229 −0.087 0.405 0.071
RRs 0.073 −0.135 0.471* −0.239
RRd −0.160 −0.063 0.305 −0.172
Fat percent −0.062 0.416 0.044 0.110
BMI −0.068 0.565** 0.141 0.018
Fasting plasma glucose 0.194 −0.036 0.348 0.010
120 min plasma glucose 0.022 0.202 −0.216 −0.249
Fasting plasma insulin 0.080 0.652** 0.194 −0.028
120 min plasma insulin −0.096 0.620** 0.092 −0.106
LDL cholesterol −0.138 0.019 −0.152 0.117
HDL cholesterol 0.263 −0.508* 0.154 0.010
Total triglycerides −0.052 0.133 −0.022 −0.365
Visceral fat −0.125 0.419 0.010 −0.018
Subcutaneous fat −0.151 0.570* 0.041 −0.144
First-phase insulin secretion −0.325 0.246 −0.133 −0.180
Whole body glucose uptake 40 mU/L clamp/LBM 0.296 −0.569** −0.177 0.121

* p < 0.05.
** p < 0.01.

vated levels of VAP-1 have been observed in alcoholic
liver cirrhosis, infectious hepatitis, primary biliary cirrho-
sis, liver adenocarcinoma, and in type 1 diabetes and VAP-1
seems to be a more specific marker of certain types of
inflammation than are other endothelial adhesion molecules
[13]. Moreover, transgenic mice overexpressing human VAP-
1 on endothelium have increased BMI and subcutaneous
abdominal fat pad weights that are independent of food
consumption. The increased SSAO (semicarbazide-sensitive
amine oxidase) activity also leads to diabetes-like complica-
tions, including advanced glycation end product formation,
elevated blood pressure, altered atherosclerosis progression,
and nephropathy [14]. In the present study, the levels of
VAP-1 were not elevated in the offspring of type 2 diabetic
subjects. Furthermore, the only significant correlation was
observed between IL-18 and VAP-1 in normoglycemic off-
spring of type 2 diabetic subjects. These findings together
with the published information regarding diabetic individ-
uals suggest that elevated serum concentrations of VAP-1
can only be detected when inflammation process is more
advanced than in offspring of type 2 diabetic subjects.
Thus, on the basis of our results, VAP-1 levels do not
reflect endothelial dysfunction in offspring of type 2 diabetic
subjects.

In conclusion, our findings indicate that the levels of adhe-
sion molecules are not increased in the offspring of type
2 diabetic subjects. Thus, they are not the best markers of
endothelial dysfunction in the prediabetic state. Inflammatory
markers and adhesion molecules were correlated suggesting

that low-grade inflammation may precede the elevation levels
of adhesion molecules.
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Abstract 

Objective  To investigate the changes in the levels of cytokines and adhesion molecules 

in response  to acute hyperinsulinemia in the offspring of type 2 diabetic subjects. 

 

Methods  Forty healthy offspring of type 2 diabetic subjects  and 19 healthy controls were 

included in the study. Twenty offspring had normal glucose tolerance (NGT) and twenty 

offspring impaired glucose tolerance (IGT). Insulin sensitivity was determined by the 

hyperinsulinemic euglycemic clamp and insulin secretion with the intravenous glucose 

tolerance test.  The levels of cytokines and adhesion molecules were measured before 

and at the end of the clamp. 

 

Results  Acute hyperinsulinemia induced by the euglycemic hyperinsulinemic clamp 

reduced the levels of TNF-α, IL-8, IL-10 and IL-18 in healthy controls but not in the 

offspring of type 2 diabetic subjects having  NGT or IGT. In response to insulin, levels of 

hs-CRP decreased and levels of IL-6 increased significantly in all study groups. The levels 

of adhesion molecules (ICAM-1, VCAM-1, E-Selectin) remained unchanged in response to 

hyperinsulinemia. 

 

Conclusions  The suppression of cytokine levels (particularly proinflammatory cytokines) 

during acute hyperinsulinemia differs between offspring of type 2 diabetic patients and 

healthy controls. This emphasizes the crucial role of low-grade inflammation in insulin 

resistance in subjects with high risk of developing diabetes.   

 

Key words:  Offspring of type 2 diabetic patients, type 2 diabetes, cytokines, 

hyperinsulinemia 
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Introduction 

 

Insulin resistance or hyperinsulinemia predicts the development of type 2 diabetes 1 and 

cardiovascular disease 2, independently of other risk factors. We have previously shown 

that offspring of type 2 diabetic patients are insulin resistant and characterized by 

increased levels of markers of low-grade inflammation 3. In contrast, the levels of vascular 

cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-

Selectin were not increased in the offspring of type 2 diabetic subjects 4.   

 

Previous studies suggest that markers of low-grade inflammation are associated with 

insulin resistance 3,5. However, these studies are based on samples drawn in the fasting 

state. To our knowledge, there is only one previous study reporting the effects of acute 

hyperinsulinemia on the levels of interleukin 8 (IL-8) 6, whereas the information on other 

cytokines remains unclear, although previous studies have addressed the changes in 

expression of genes regulating cytokines 7.  Furthermore, it is not clear whether 

hyperinsulinemia modulates the levels of adhesion molecules during acute 

hyperinsulinemia in the offspring of subjects with type 2 diabetes. Therefore, we performed 

detailed metabolic studies in healthy nondiabetic offspring of type 2 diabetic subjects and 

measured the levels of proinflammatory cytokines and adhesion molecules in the fasting 

state and during acute hyperinsulinemia induced by the hyperinsulinemic euglycemic 

clamp. 
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Methods 

 

Forty healthy nondiabetic offspring of patients with type 2 diabetes (men/women 19/20, age 

36.6 ± 6.6 years, body mass index [BMI] 28.1 ± 6.1 kg/m²) were included in the study. The 

control group consisted of 19 healthy normoglycemic subjects with no family history of type 2 

diabetes (men / women 8/11, age 34 ± 4.5 years, BMI 24.6 ± 2.6 kg/m²). Probands (men or 

women) were randomly selected from type 2 diabetic subjects living in the region of the Kuopio 

University Hospital. The spouses of the patients with type 2 diabetes had NGT in an OGTT . 

The exclusion criteria for the selection of the offspring were: 1) diabetes mellitus or any other 

disease or drug treatment that could potentially disturb carbohydrate metabolism; 2) diabetes 

mellitus in both parents; 3) pregnancy; 4) age less than 25 or more than 50 years. The Ethics 

Committee of the University of Kuopio approved the study protocol. All study subjects gave 

informed consent. 

 

Blood pressure was measured in the sitting position with a mercury sphygmomanometer 

after a 5 min rest. The average of 3 measurements was used to calculate systolic and 

diastolic blood pressure. Height and weight were measured to the nearest 0.5 cm and 0.1 

kg, respectively. BMI was calculated as weight in kilograms divided by height in meters 

squared. Waist (at the midpoint between the lateral iliac crest and the lowest rib) and hip 

(at the level of the trochanter major) circumferences were measured to the nearest 0.5 cm. 

Initial blood samples were drawn after 12 hours of fasting, and an oral glucose tolerance 

test (OGTT) using 75 g of glucose was performed. On the second day, after a 12-hour 

fast, an intravenous glucose tolerance test (IVGTT) and the hyperinsulinemic euglycemic 

clamp were performed.   
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An IVGTT was performed to determine the first-phase insulin release after an overnight 

fast. After baseline blood collection, a bolus of glucose (300 mg/kg in a 50 % solution) was 

infused over 30 seconds into the antecubital vein. Samples for the measurement of blood 

glucose and plasma insulin (arterialized venous blood) were drawn at –5, 0, 2, 4, 6, 8 and 

10 min.  Immediately after the IVGTT, the euglycemic hyperinsulinemic clamp (insulin 

infusion rate of 240 pmol/ min / m² body surface area) was started to determine the degree 

of insulin sensitivity, as previously described 8. Blood glucose was clamped at 5.0 mmol/l 

for the next 120 minutes using an infusion of 20% glucose, with rate adjusted according to 

blood glucose measurements performed at 5-minute intervals. The mean amount of 

glucose infused during the final hour was used to calculate the rate of whole-body glucose 

uptake (WBGU). Blood samples for cytokine measurements were drawn before the clamp 

and at the end of the clamp. 

 

Blood and plasma glucose levels were measured by the glucose oxidase method (Glucose 

& Lactate Analyzer 2300 Stat PLUS, Yellow Springs Instruments Co, Inc), and the levels of 

plasma insulin by radioimmunoassay (Phadeseph Insulin RIA 100, Pharmacia Biotech, 

Uppsala, Sweden). Plasma concentrations of cytokines (tumor necrosis factor-α [TNF-α], 

IL-1β, IL-1 receptor antagonist [IL-1Ra], IL-6, IL-8, IL-10 and IL-18) were measured by 

solid phase ELISA (Quantikine, R&D Systems) and IL-8 by Ultrasensitive ELISA 

(BioSource International), as previously described 3. The levels of C-reactive protein (hs-

CRP) were determined by an Immulite 2000 High Sensitivity CRP assay (Diagnostic 

Products Corp).  The levels of soluble adhesion molecules (s-ICAM-1, s-VCAM-1 and sE-

Selectin) were measured by high-sensitivity assay kits from R&D Systems. 
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All data analyses were performed with the SPSS 14.0 for Windows programs. The results 

for continuous variables are given as means ± SD, if not stated otherwise. Variables with 

skewed distributions (hs-CRP, TNF-α, IL-1Ra, IL-6, IL-8 and IL-10) were logarithmically 

transformed for statistical analyses. The differences between the three groups were 

assessed by one-way ANOVA for continuous variables and by the χ² test for 

noncontinuous variables. A linear mixed model was applied to test the differences between 

the groups to adjust for confounding factors. Pedigree membership was included into the 

model as a random factor, and BMI and smoking as cofactors. Correlations were 

calculated by Spearman correlation analysis. 

 

Results 

 

Clinical and biochemical characteristics of the offspring of type 2 diabetic patients and 

control subjects are given in Table 1. Twenty subjects had normal glucose tolerance 

(NGT) and 20 impaired glucose tolerance (IGT), as assessed by an OGTT. The groups 

were comparable with respect to gender, but differed significantly with respect to age 

(Control 34.5 ± 4.5, NGT 34.6 ± 6.1, IGT 38.6 ± 6.6 years, P< 0.05), and tended to differ 

with respect to BMI ( 24.6 ± 2.6, 28.2 ± 6.1, 28.0 ± 6.2 kg/m², P=0.064). In addition, the 

offspring in the NGT and IGT groups were markedly insulin resistant, with significantly 

higher plasma insulin levels at 120 min in the OGTT. The NGT and IGT groups also had 

higher systolic blood pressure levels than did the control group (Control 124 ± 10, NGT 
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133 ± 13, IGT 133 ± 18 mmHg, P< 0.05).  No difference in the first-phase insulin release 

between the study groups was found. 

 

Spearman correlations among the cytokine levels in the fasting state and during 

hyperinsulinemia are shown in Table 2. The NGT and IGT groups were pooled together in 

statistical analysis. Fasting cytokine levels correlated positively with the levels of cytokines 

during hyperinsulinemia. Furthermore, hs-CRP levels showed a positive correlation with 

the levels of IL-6 and IL-1Ra, both in the fasting state and during hyperinsulinemia. 

Similarly, a positive correlation was found between the levels of IL-1Ra and IL-18, both in 

the fasting state (r= 0.330, P< 0.05) and during hyperinsulinemia (r = 0.760, P<0.01).   

TNF-α levels were associated with IL-1Ra (r= 0.321, P<0.05) and IL-8 (r=0.351, P<0.05) 

levels only during hyperinsulinemia. 

 

Correlations between the adhesion molecule levels of the NGT and IGT groups are shown 

in Table 3. Fasting sICAM-1 (r=0.778, P< 0.01), sVCAM-1 (r= 0.558, P< 0.01) and sE-

Selectin (r= 0.703, P<0.01) levels showed positive correlations with the respective 

adhesion molecule levels during hyperinsulinemia. Fasting s ICAM-1 levels were also 

positively correlated with sVCAM-1 levels during hyperinsulinemia. 

 

The changes in cytokine levels between the fasting state and hyperinsulinemia are shown 

in Figure 1.  Levels of hs-CRP decreased significantly during hyperinsulinemia compared 

to the levels in the fasting state in all study groups (P<0.001). In contrast, levels of IL-6 

increased significantly during hyperinsulinemia (P<0.001) in all groups, and the increase 

was similar in the NGT and IGT groups to that in the control group (P=0.294).  Fasting and 

hyperinsulinemic levels of IL-1ß or IL-1Ra did not differ in any of the groups. TNF-α and IL-
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8 levels decreased significantly (P<0.05) in the control group during hyperinsulinemia, but 

remained unchanged in the offspring with NGT or IGT.  Hyperinsulinemia also decreased 

significantly the levels of IL-10 and IL-18 in the control group (P<0.05 and P<0.001, 

respectively), but not in the NGT and IGT groups. To investigate the effect of obesity on 

our results we performed further statistical analyses between non-obese and obese (cut-

off point of BMI of 27.0 kg/ m²) subjects in all study groups.  As shown in Supplemental 

Table 1 changes in cytokine levels did not systematically differ between non-obese and 

obese subjects in any glucose tolerance category giving further evidence that obesity can 

not explain our findings.   Insulin did not have significant effects on the levels of any of the 

adhesion molecules in any group (Figure 2). 

 

 

Discussion 

 

We showed for the first time that acute hyperinsulinemia induced by the euglycemic 

hyperinsulinemic clamp lowers significantly the levels of TNF-α, IL-8, IL-10 and IL-18 in 

healthy control subjects. However, in both normoglycemic and glucose intolerant offspring 

of type 2 diabetic subjects hyperinsulinemia was unable to suppress cytokine levels. 

Therefore, we suggest that the offspring of type 2 diabetic patients are insulin resistant not 

only with regard to glucose metabolism, but also with regard to the inhibition of cytokine 

responses during hyperinsulinemia.  

 

Previous studies have shown that hs-CRP is elevated in insulin resistant states 9. In 

agreement with these studies, we showed that fasting levels of hs-CRP were elevated in 

insulin resistant offspring of type 2 diabetic patients and correlated strongly with hs-CRP 
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levels during hyperinsulinemia. CRP was believed to be synthesized only in the liver in 

response to IL-6 10. However, recent studies have shown that also adipose tissue (both 

adipocytes and stromal cells) can produce CRP 11.  We observed a similar statistically 

significant decrease in hs-CRP levels in response to hyperinsulinemia in all groups. 

Therefore, we suggest that in the offspring of type 2 diabetic subjects insulin resistance is 

not characterized by an impaired hs-CRP response to insulin. 

 

Adipose tissue is a major source of TNF-α, IL-8, IL-10 and IL-18 12-14. IL-8 and IL-18 are 

proinflammatory cytokines that are associated with insulin resistance and type 2 diabetes 

12,15, whereas IL-10 is an anti-inflammatory cytokine produced by macrophages and 

lymphocytes.  IL-10 level was decreased during hyperinsulinemia in control subjects, but 

not in the offspring of type 2 diabetic patients.  High TNF-α level stimulates IL-10 

production14  Therefore, reduction in TNF-α level leads to a reduction in IL-10 level 

observed in control subjects, whereas in offspring of type 2 diabetic patients no statistically 

significant reduction in IL-10 level was observed due to impaired suppression of TNF-α 

response during hyperinsulinemia.  The effect of TNF-α on IL-10 levels is likely to explain 

the high correlation between these cytokines both in the fasting state and during 

hyperinsulinemia.  We found that in normal subjects hyperinsulinemia reduced the levels 

of IL-8 and IL-18, whereas in the offspring of type 2 diabetic subjects this reduction was 

not found. Therefore, our results suggest that insulin resistance in adipose tissue 

manifests itself as impaired suppression of the cytokine responses to hyperinsulinemia.  

Previously Straczkowski et al 6 reported that acute hyperinsulinemia increased the levels  

of IL-8 similarly in subjects with NGT and IGT.  We do not have an obvious explanation for 

these conflicting findings.  
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IL-6  is a pleiotropic cytokine that is produced  and released by macrophages, adipocytes 

and skeletal muscle cells 16. Only 30 % of total circulating IL-6 originates from adipose 

tissue in healthy subjects 17. Thus, it differs from other cytokines investigated in our study 

although also contradictory finding have been published  5. IL-6 stimulates the production 

of acute-phase proteins in the liver. Circulating IL-6 levels are elevated in type 2 diabetes 

18  and in the presence of insulin resistance 19, although the role of IL-6 in the development 

of insulin resistance has remained controversial 20. We observed a statistically significant 

increase in IL-6 levels during hyperinsulinemia in all groups which may indicate that high 

insulin level induces the production of IL-6 independently of the degree of insulin 

resistance. 

 

In our study the levels of adhesion molecules were not significantly altered by acute 

hyperinsulinemia in any of the groups. sVCAM-1 level during hyperinsulinemia decreased 

in controls, but the change was not statistically significant. Previous reports regarding the 

effect of hyperinsulinemia on adhesion molecule levels are contradictory. In two studies 

insulin increased the levels of sE-Selectin in IGT subjects and in type 2 diabetic subjects, 

whereas the levels of sICAM-1 and sVCAM-1 remained unchanged 21,22. High insulin has 

been shown to increase the expression of  ICAM-1 potentially leading to vascular injury 23. 

On the other hand, insulin activates endothelial nitric oxide synthesis 24, which inhibits the 

expression of adhesion molecules 25. Our findings are in line with previous studies that the 

levels of sICAM-1, sVCAM-1 and sE-Selectin remained unaffected during 

hyperinsulinemia, and extend the data to healthy individuals who are genetically 

predisposed to develop type 2 diabetes. 
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In conclusion, we demonstrate for the first time that the offspring of type 2 diabetic 

subjects are not only insulin resistant with regard to glucose metabolism but also with 

regard to the suppression of cytokine responses. This emphasizes the crucial role of low-

grade inflammation in insulin resistance in subjects with high risk of developing diabetes.  

However, the role of impaired insulin secretion can not be entirely excluded given the fact 

that the offspring of type 2 diabetic subjects was not able to compensate their first-phase 

insulin release in our study.  The disturbed cytokine response was especially linked with 

fat-derived cytokines highlighting the crucial role of adipose tissue in this process. 
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Table 1 
 
Characteristics of the study groups 
 
                                                                      _________________________________ 

                                                                                       Offspring of patients with type 2 diabetes 
 
 Control 

n=19 
NGT 
n=20 

IGT 
n=20 

P 

Gender (M/F) 8/11 11/9 8/12 0.603 
Age (years) 34.5 ± 4.5 34.6 ± 6.1 38.6 ± 6.6* 0.048 
Body mass index (kg/m2) 24.6 ± 2.6 28.2 ± 6.1 28.0 ± 6.2 0.064 
Waist to Hip ratio 0.84 ± 0.1 0.90 ± 0.10 0.88 ± 0.08 0.062 
Systolic blood pressure (mmHg) 124 ± 10 133 ± 13 133 ± 18 0.060 
Diastolic blood pressure (mmHg) 82 ± 10 87 ± 9 90 ± 14 0.070 
Fasting plasma glucose (mmol/L) 5.1 ± 0.6 5.3 ± 0.4 5.2± 0.5 0.486 
120min plasma glucose (mmol/L) 5.6 ± 1.1 6.4 ± 0.7** 8.7 ± 0.8*** <0.001 
Fasting plasma  insulin  (pmol/L) 46.9 ± 23.0 52.4± 24.5 57.9 ± 34.4 0.474 
120 min plasma insulin (pmol/l) 106.98 ± 24.6 238.92 ± 53.4* 261.72 ± 58.5** 0.014 
WBGU (µmol/kg/min) 70.1 ± 27.9 50.1 ± 15.6* 45.9 ± 11.1** 0.001 
First-phase insulin release 
(pmol/lxmin) 

1897.0 ± 1207.4 2636.6 ± 2339.0 1830.5 ± 1273.2 0.338 

 
Data are mean ± SD. NGT/IGT vs controls *P < 0.05, **P < 0.01, ***P < 0.001 (P value was calculated if P value for 
ANOVA was < 0.05).  NGT = normal glucose tolerance, IGT = impaired glucose tolerance, WBGU =  rates of whole body 
glucose uptake 
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Table 2 

 
Spearman correlations between the levels of cytokines in the fasting state and during the hyperinsulinemic 
euglycemic clamp in offspring of type 2 diabetic subjects. Offspring with normal and impaired glucose 
tolerance were pooled in statistical analyses. 
 
 
Fasting state 
 
 hs-CRP TNF-α IL-6 IL-8 IL-1β IL-1Ra IL-10 IL-18 
hs-CRP 1 -0.055 0.473** 0.259 -0.039 0.500** -0.107 0.029 
TNF-α  1 -0.029 0.293 0.172 0.006 0.475** 0.109 
IL-6   1 -0.024 -0.035 0.288 -0.269 -0.076 
IL-8    1 0.034 0.183 0.222 0.280 
IL-1β     1 0.106 0.018 -0.093 
IL-1Ra      1 0.149 0.330* 
IL-10       1 0.285 
IL-18        1 
*p< 0.05, ** p <0.01 
 
During the clamp 
 
 hs-CRP TNF-α IL-6 IL-8 IL-1β IL-1Ra IL-10 IL-18 
hs-CRP 1 -0.063 0.232 0.138 0.003 0.416** -0.117 -0.012 
TNF-α  1 0.038 0.351* 0.321* 0.073 0.644*** 0.191 
IL-6   1 0.349* 0.083 0.280 0.014 0.053 
IL-8    1 0.338* 0.075 0.261 0.210 
IL-1β     1 0.290 0.281 0.225 
IL-1Ra      1 0.268 0.421** 
IL-10       1 0.328 
IL-18        1 
*p <0.05, ** p <0.01, *** p< 0.001 
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Table 3 
 
Spearman correlations between the levels of adhesion molecules in the fasting state and during the 
hyperinsulinemic euglycemic clamp in offspring of type 2 diabetic subjects. Offspring with normal and 
impaired glucose tolerance were pooled in statistical analyses. 
 
 
 

 
** p<0.01 
 
 
 
 
 
 
 
 
 
 
 
 

 sVCAM-1 
fasting 

sVCAM-1 
clamp 

sICAM-1 
fasting 

sICAM-1 
clamp 

sE-Selectin 
fasting 

sE-Selectin 
clamp 

sVCAM-1 fasting 1 0.558** 0.201 0.076 0.017 -0.154 

sVCAM-1 clamp  1 0.343** 0.189 -0.091 -0.132 

sICAM-1 fasting 
 

  1 0.778** 0.031 -0.020 

sICAM-1 clamp    1 0.141 0.098 

sE-Selectin fasting     1 0.703** 

sE-Selectin clamp      1 
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Supplemental Table 1. Cytokine levels (ng/ml) in the fasting state and during hyperinsulinemia. 
BMI cut-off point of 27 kg/m2 for Non-obese and Obese subjects.  Data are mean ± SD. 

      *P<0.05, compared to Control subjects within the same obesity status (non-obese or obese) 
a) P= 0.040, b) P= 0.028, c) P= 0.001, d) P=0.042 comparing non-obese vs. obese subjects 

within the same glucose tolerance group  
 
 

  
Control 
 

 
NGT 
 

 
IGT 
 

 
p 

Fasting hs-CRP:         Non-Obese  1.10 ±1.60 2.83 ± 3.54 2.75 ± 3.43 0.257 
                                   Obese 2.21 ± 2.82 2.00 ± 1.77 3.51 ± 3.15 

 
0.365 

Clamp hs-CRP:          Non-obese 1.01 ± 1.62 2.72 ± 3.46 2.44 ± 3.12 0.225 
                                   Obese 2.14 ± 2.87 1.85 ± 1.66 3.28 ± 2.97 

 
0.324 

Fasting TNF-α:           Non-obese 3.41 ± 2.04 4.41 ± 2.78 5.12 ± 6.80 0.702 
                                   Obese 2.38 ± 0.38 2.32 ± 0.26 a) 2.51 ± 0.51 

 
0.610 

Clamp TNF-α:            Non-obese 3.22 ± 1.90 4.57 ± 3.17 5.14 ± 7.07 0.559 
                                   Obese 2.21 ± 0.56 2.40 ± 0.28 2.40 ± 0.64 

 
0.755 

Fasting IL-1-ß:            Non-obese 0.34 ± 0.19 0.65 ± 0.22 0.22 ± 0.15 0.000 
                                   Obese 0.45 ± 0.87 0.67 ± 0.23 0.23 ± 0.09 

 
0.000 

Clamp IL-1-ß:             Non-obese 0.26 ± 0.16 0.67 ± 0.34 0.19 ± 0.12 0.000 
                                   Obese 0.45 ± 0.17 0.67 ± 0.28 0.28 ± 0.18 

 
0.004 

Fasting IL-1Ra:          Non-obese 187.53 ± 63.86 358.56 ± 112.00 370.47 ±  342.53 0.003 
                                  Obese 256.43 ± 92.43 345.01 ± 242.31 574.57 ± 380.02* 

 
0.087 

Clamp IL-1Ra:           Non-obese 182.47 ± 56.44 436.12 ± 251.47 350.38 ± 380.97 0.004 
                                  Obese 259.10 ± 132.62 349.63 ± 208.05 630.32 ± 415.77* b) 

 
0.047 

Fasting IL-6:              Non-obese 0.86 ± 0.86 1.31 ± 0.64 0.82 ± 0.39 0.058 
                                  Obese 1.53 ± 1.45 1.21 ± 0.82 1.68 ±  0.66**c) 

 
0.235 

Clamp IL-6 clamp:     Non-obese 2.57 ± 1.65 3.63 ± 2.85 4.11± 3.94 0.338 
                                  Obese 1.82 ± 0.99 3.24 ± 1.99 4.20 ± 2.17 

 
0.112 

Fasting IL-8:              Non-obese 0.65 ± 0.27 1.18 ± 1.29 1.06 ± 1.09 0.951 
                                  Obese 0.79 ± 0.40 0.76 ± 0.64 0.82 ± 0.54 

 
0.692 

Clamp IL-8:               Non-obese 0.53 ± 0.27 1,46 ±  1.40 0.93 ± 0.48 0.249 
                                  Obese 0.58 ± 0.33 0.60 ± 0.38 1.18 ± 1.46 

 
0.282 

Fasting IL-10:            Non-obese 1.04 ± 0.61 1.47 ± 1.57 1.51 ± 1.66 0.825 
                                  Obese 1.06 ± 0.55 0.98 ± 0.82 1.05 ± 0.86 

 
0.929 

Clamp IL-10:             Non-obese 0.97 ± 0.60 1.28 ± 1.23 1.39 ± 1.83 0.963 
                                  Obese 0.79 ± 0.41 1.02 ± 0.88 0.97 ± 0.76 

 
0.907 

Fasting IL-18:            Non-obese 259.76 ± 89.14 224.03 ± 94.29 243.20 ± 0.67 0.602 
                                  Obese  278.43 ± 122.85 213.05 ± 50.54 298.93 ± 109.46 

 
0.099 

Clamp IL -18:            Non-obese 234.63 ± 97.90 204.86 ± 75.32 201.66 ± 75.12 0.568 
                                  Obese 246.20 ± 112.24 194.55 ± 51.95 292.73 ± 106.75*d) 

 
0.051 
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Figure legends 
 
Figure 1. Changes in cytokine levels during the hyperinsulinemic euglycemic clamp. White 

bars = fasting levels of cytokines in control, NGT and IGT groups. Black bars = levels of 

cytokines during the hyperinsulinemic euglycemic clamp in the control, NGT and IGT groups. 

P-value after the adjustment for body mass index, smoking and family relationship (mixed 

model). Mean ± SEM. *P < 0.05, *** P < 0.001. 

 

 

Figure 2.  Changes in adhesion molecules during hyperinsulinemic euglycemic clamp. 
 
White bars = fasting levels of adhesion molecules in the control, NGT and IGT groups.  
 
Black bars = levels of adhesion molecules during the hyperinsulinemic euglycemic clamp  
 
in the control, NGT and IGT groups. Mean ± SEM. 
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Supplemental Table 1. Cytokine levels (pg/ml) as actual concentrations before stratification (shaded rows), in the fasting state and 
during hyperinsulinemia. BMI cut-off point of 27 kg/m2 for Non-obese and Obese subjects.  Data are mean ±  SD. 

  
Control 
n (before stratification) = 19 
n (non-obese) = 15 
n (obese) = 4 
 
 

 
NGT 
n (before stratification) = 20 
n (non-obese)= 9 
n (obese) = 11 
 

 
IGT 
n (before stratification)= 20 
n (non-obese)= 10 
n (obese) = 10 
 
 

 
P 

Fasting hs-CRP before stratification 1.29 ± 1.79  2.37 ± 2.67 (n=20) 3.12 ± 3.27* (n=20) 0.112 
Fasting hs-CRP:         Non-Obese  1.10 ±1.60  2.83 ± 3.54 (n=9) 2.75 ± 3.43 (n=10) 0.257 
                                   Obese  2.21 ± 2.82  2.00 ± 1.77 (n=11) 3.51 ± 3.15 (n=10) 

 
0.365 

Clamp hs-CRP before stratification 1.20 ± 1.82 2.24 ± 2.57 2.86 ± 3.0* 0.139 
Clamp hs-CRP:          Non-obese 1.01 ± 1.62 2.72 ± 3.46 2.44 ± 3.12 0.225 
                                   Obese 2.14 ± 2.87 1.85 ± 1.66 3.28 ± 2.97 

 
0.324 

Fasting TNF-α before stratification 3.24 ± 1.91 3.26 ± 2.11 3.82 ± 4.88 0.822 
Fasting TNF-α:           Non-obese 3.41 ± 2.04 4.41 ± 2.78 5.12 ± 6.80 0.702 
                                   Obese 2.38 ± 0.38 2.32 ± 0.26 a) 2.51 ± 0.51 

 
0.610 

Clamp TNF-α before stratification 3.06 ± 1.78 3.38 ± 2.35 3.76 ± 5.08 0.812 
Clamp TNF-α:            Non-obese 3.22 ± 1.90 4.57 ± 3.17 5.14 ± 7.07 0.559 
                                   Obese 2.21 ± 0.56 2.40 ± 0.28 2.40 ± 0.64 

 
0.755 

Fasting IL-1ß before stratification 0.35 ± 0.18 0.66 ± 0.22*** 0.23 ± 0.12* 0.000 
Fasting IL-1-ß:            Non-obese 0.34 ± 0.19 0.65 ± 0.22 0.22 ± 0.15 0.000 
                                   Obese 0.45 ± 0.87 0.67 ± 0.23 0.23 ± 0.09 

 
0.000 

Clamp IL-1ß before stratification 0.29 ± 0.18 0.67 ± 0.30*** 0.24 ± 0.16 0.000 
Clamp IL-1-ß:             Non-obese 0.26 ± 0.16 0.67 ± 0.34 0.19 ± 0.12 0.000 
                                   Obese 0.45 ± 0.17 0.67 ± 0.28 0.28 ± 0.18 

 
0.004 

Fasting IL-1 Ra before stratification 198.41 ± 70.81 351.06 ± 190.34** 472.52 ± 367.35** 0.004 
Fasting IL-1Ra:          Non-obese 187.53 ± 63.86 358.56 ± 112.00 370.47 ±  342.53 0.003 
                                  Obese 256.43 ± 92.43 345.01 ± 242.31 574.57 ± 380.02* 

 
0.087 

Clamp IL-1Ra  before stratification 194.57 ± 73.71 388.55 ± 226.62** 490.35 ± 413.83*** 0.006 
Clamp IL-1Ra:           Non-obese 182.47 ± 56.44 436.12 ± 251.47 350.38 ± 380.97 0.004 
                                  Obese 259.10 ± 132.62 349.63 ± 208.05 630.32 ± 415.77* b) 

 
0.047 

Fasting IL-6  before stratification 0.96 ± 0.63 1.25 ± 0.73 1.25 ± 0.69 0.320 
Fasting IL-6:              Non-obese 0.86 ± 0.86 1.31 ± 0.64 0.82 ± 0.39 0.058 
                                  Obese 1.53 ± 1.45 1.21 ± 0.82 1.68 ±  0.66**c) 

 
0.235 

Clamp IL-6  before stratification 2.45 ± 1.57 3.42 ± 2.35 4.16 ± 3.10 0.101 
Clamp IL-6 clamp:     Non-obese 2.57 ± 1.65 3.63 ± 2.85 4.11± 3.94 0.338 
                                  Obese 1.82 ± 0.99 3.24 ± 1.99 4.20 ± 2.17 

 
0.112 

Fasting IL-8  before stratification 0.67 ± 0.28 0.95 ± 0.98 0.94 ± 0.85** 0.447 
Fasting IL-8:              Non-obese 0.65 ± 0.27 1.18 ± 1.29 1.06 ± 1.09 0.951 
                                  Obese 0.79 ± 0.40 0.76 ± 0.64 0.82 ± 0.54 

 
0.692 

Clamp IL-8  before stratification 0.54 ± 0.27 0.98 ± 1.04 1.06 ± 1.07 0.152 
Clamp IL-8:               Non-obese 0.53 ± 0.27 1,46 ±  1.40 0.93 ± 0.48 0.249 
                                  Obese 0.58 ± 0.33 0.60 ± 0.38 1.18 ± 1.46 

 
0.282 

Fasting IL-10  before stratification 1.04 ± 0.59 1.20 ± 1.21 1.28 ± 1.31 0.787 
Fasting IL-10:            Non-obese 1.04 ± 0.61 1.47 ± 1.57 1.51 ± 1.66 0.825 
                                  Obese 1.06 ± 0.55 0.98 ± 0.82 1.05 ± 0.86 

 
0.929 

Clamp IL-10 before stratification 0.94 ± 0.57 1.14 ± 1.03 1.18 ± 1.38 0.750 
Clamp IL-10:             Non-obese 0.97 ± 0.60 1.28 ± 1.23 1.39 ± 1.83 0.963 
                                  Obese 0.79 ± 0.41 1.02 ± 0.88 0.97 ± 0.76 

 
0.907 

Fasting IL-18  before stratification 262.71 ± 91.36 217.99 ± 71.55 271.06 ± 92.96 0.120 
Fasting IL-18:            Non-obese 259.76 ± 89.14 224.03 ± 94.29 243.20 ± 0.67 0.602 
                                  Obese  278.43 ± 122.85 213.05 ± 50.54 298.93 ± 109.46 

 
0.099 

Clamp IL-18  before stratification 236.45 ± 96.96 199.19 ± 61.94* 247.20 ± 101.27 0.207 
Clamp IL -18:            Non-obese 234.63 ± 97.90 204.86 ± 75.32 201.66 ± 75.12 0.568 
                                  Obese 246.20 ± 112.24 194.55 ± 51.95 292.73 ± 106.75*d) 

 
0.051 
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      *P<0.05, **P<0.01, ***P<0.001, compared to Control subjects within the same obesity status (non-obese or obese) or 
Control vs NGT/IGT before stratification 

a) P= 0.040, b) P= 0.028, c) P= 0.001, d) P=0.042 comparing non-obese vs. obese subjects within the same 
glucose tolerance group  
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