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ABSTRACT

Dynamic changes in synaptic strength are thought to provide a cellular basis for
information storage in the nervous system. Long-term potentiation (LTP) has many features that
make it an attractive model of memory formation. It is a long-lasting, activity-dependent form of
synaptic plasticity that is expressed by all principal neurons in the hippocampus - a brain structure
implicated in certain forms of long-term memory. Studies of the properties of LTP have shown that
this form of plasticity contributes to several models of learning and memory.

The aim of the PhD study was to evaluate the hippocampal synaptic functioning in three
neurodegenerative conditions that are associated with age-dependent memory impairment,
menopause, Alzheimer’s disease (AD) and Parkinson’s disease (PD). As mice do not go through a
rapid decline in estrogen levels as humans, we modeled menopause in young female mice by
ovariectomy. The main pathological feature of AD, the accumulation of amyloid  peptide into
plaques, was modeled with transgenic mice expressing APP and PS1 mutations linked with familial
forms of AD. Finally, we used, both in vivo and in vitro, a transgenic mouse expressing human
A30P

Our results revealed several kinds of alternations in synaptic transmission and plasticity in
our animal models, ranging from altered presynaptic mobilization of the neurotransmitter to
postsynaptic changes in the number of receptors. We showed that estrogen treatment interacted with
pharmacological blockade of NMDA receptors in a way that points to changes in the number of
functional NMDA receptors. We also demonstrated that mice carrying mutated human APPswe and
PS1 genes had normal induction and maintenance of hippocampal LTP. However, the enhanced
fEPSP in the dentate gyrus (DG) declined much faster in these mutant mice than in control
littermates, which is compatible with their overnight forgetting of learned spatial information in
behavioral studies. Our findings in α-synuclein overexpressing mice lend additional support to the
idea that α-synuclein plays an important role in presynaptic mobilization of reserve pool glutamate
vesicles. We also revealed that age is an important factor in altering synaptic plasticity in vivo of
mice carrying mutated α-synuclein and described how model-specific pathological changes of
synaptic plasticity interact with general age-related alternations.

Overall, this project revealed that pathological manipulations play an important role in
alternations of synaptic strength and plasticity. However, the link between altered synaptic / cellular
mechanisms and behavioral manifestations of memory is not straightforward. Behavioral outcome
depends on a multitude of neural circuits, while LTP is measured in a limited number of synapses
during a single experiment. Also the high-frequency synchronous stimulation of a pathway used for
induction of LTP may not fully mimic interplay between neurons during learning. Thus, this PhD
project makes a step towards a better understanding of the mechanisms by which molecular
alterations lead to impaired memory in neurodegenerative conditions.

National Library of Medicine Classification: QU 450, QU 55.7, QU 60, QY 58, WL 102, WL
102.7-102.8, WL 314, WL 359, WM 173.7, WP 522, WT 155
Medical Subject Headings: alpha-Synuclein; Alzheimer Disease; Amyloid beta-Protein Precursor;
Animals, Transgenic; Disease Models, Animal; Estrogens; Hippocampus; Long-Term Potentiation;
Membrane Proteins; Memory; Memory Disorders; Neuronal Plasticity; Parkinson Disease;
Receptors, N-Methyl-D-Aspartate; Synaptic Transmission





The scientist does not study nature because it is useful to do so.

He studies it because he takes pleasure in it,

and he takes pleasure in it because it is beautiful.

Henri Poincare
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1. INTRODUCTION

 Questions about the exact location of the memory engram in the brain have tickled the

human imagination for ages. Now we know that there are different neural systems serving different

kinds of learning and memory and the hippocampus together with other medial temporal lobe

structures is crucial for forming declarative memories and procedural learning. However the

question about how the memories are built remains to be not fully understood. Nowadays we

formulate it in the following terms: What is the biological function of long-term potentiation (LTP)

in a behaving animal? Is this a physiological phenomenon with the same mechanisms that are

responsible for certain forms of learning and memory? Is it reasonable to suggest that LTP is a

model for learning and/or memory?

 LTP is one of the most widely studied forms of synaptic plasticity, characterized by a long-

lasting increase of synaptic strength caused by the pre- and postsynaptic activity (Malenka and

Bear, 2004). The great interest is due to LTP properties, making it a useful candidate for cellular

processes supporting learning behavior (Andersen, 2003). There are many different types of LTP in

the mammalian CNS, varying in their induction paradigm (HFS, TBS), duration of the potentiation

(E-LTP, L-LTP) and triggering events at the receptor level (NMDA-R-dependent, NMDA-R-

independent). The specific type of LTP exhibited between neurons depends on a number of factors,

such as the anatomical location where LTP is observed, the age of the organism when LTP is

observed, the differences in signaling pathways expressed by a cell. For instance, LTP in the

Schaffer collateral pathway is very different from LTP at the mossy fiber pathway. The molecular

mechanisms of LTP in the immature hippocampus differ from those mechanisms that underlie LTP

in adults. Some types of hippocampal LTP depend on the NMDA-Rs, while others depend on the

metabotropic glutamate receptors or the L-type Ca2+ channels.

 LTP is experimental phenomena (Malenka and Bear, 2004), which can be used to

demonstrate the possible long-lasting modifications of individual synapses. It is still difficult to

prove that the same molecular mechanisms underlying certain forms of LTP occur in vivo when

items and events encountered are encoded into the neural networks. It is even more difficult to

prove that these LTP-like modifications play an essential functional role in memory formation.

Nevertheless, it is plausible that at least the capacity to form long-lasting activity-dependent

synaptic modifications in the brain share some of the same mechanisms by which experience

modifies behavior.

 The aim of this PhD study was to evaluate hippocampal synaptic functions in three

neurodegenerative conditions that are associated with age-dependent memory impairment:
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menopause, AD and PD. LTP, basal synaptic transmission, recruitment of cells to fire action

potentials and neurotransmitter release were tested in the aforementioned disease models and a

number of age groups. Four different studies were conducted on three hippocampal excitatory

synaptic pathways: Schaffer collateral pathway  CA1 (Study I & II), perforant pathway - dentate

gyrus (Study II & IV), and mossy fiber  CA3 pathway (Study III). Overall, this project revealed

that pathological manipulations play an important role in alternations of synaptic strength and

efficacy. However, the link between altered synaptic / cellular mechanisms and behavioral

manifestations of memory is not straightforward. Nevertheless, we believe that data we provide

extend our knowledge on mechanisms by which molecular changes lead to impaired memory under

distinct neurodegenerative conditions. Moreover, understanding the plasticity mechanisms that are

responsible for age-related cognitive impairment will help to finding of therapeutic agents that can

modify hippocampal neurobiology and slow age-related cognitive decline.
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2. LITERATURE REVIEW

2.1. Anatomy of Hippocampal Formation

 The hippocampal formation is perhaps the most extensively studied structure in the brain.

It consists of four subregions: (1) the dentate gyrus (DG); (2) hippocampus proper (HIPP), which is

subdivided into three fields (CA1, CA2, and CA3); (3) subicular complex (SUB), which includes 3

fields (subiculum, presubiculum, and parasubiculum); and (4) entorhinal cortex (EC) (Fig. 1)

(Amaral and Witter, 1994). Most of the knowledge of the organization and functions of the

hippocampal formation has been derived from studies in the young adult rat. However, there are

differences between the mouse and rat hippocampus (Van Groen and Wyss, 1988) and between

animals of different ages (Lopes da Silva et al., 1990).

2.1.1. Principle Cells and Layers

 The hippocampus proper (HIPP) and DG consist of three-layered (molecular, pyramidal,

and polymorphic) cortex. Stratum oriens of CA1 is a relatively cell-free layer located over alveus.

Pyramidal cells are the principle cells of the hippocampal CA1, CA3 areas, and their bodies form

the layer stratum pyramidale. CA1 pyramidal cells have basal dendrites extending into stratum

oriens and apical dendrites into hippocampal fissure. In the area CA3, an additional layer between

stratum pyramidale and stratum radiatum is called stratum lucidum, which is formed by the mossy

fibers (MF), the DG granule cells axons. The outermost layer of the HIPP is stratum lacunosum-

moleculare, which is located just under the fissure. Granular cells are the principle cells of DG

forming the compact "U" shape layer stratum granulosum. The granule cells axons and glia cells

form the polymorphic layer (hilus). Dendrites of DG granule cells, as well as diverse other cells,

occupy the molecular layer (stratum moleculare).

2.1.2. Connectivity

 The connections within the hippocampus generally follow a laminar pattern and form well-

characterized closed loops that originate and end in EC. Principle cells of the hippocampus and DG

form a glutamatergic circuit known as the trisynaptic loop. There are three main excitatory

pathways in the mammalian hippocampus: perforant path (PP), mossy fibers (MF) and Schaffer

collaterals (SC). Thus, there are defined routes for information flow making the hippocampus a very

popular target for the study of synaptic transmission and plasticity.
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Perforant Path

 The perforant path (PP; Fig. 1, (1)) is the major input to the hippocampus. The majority of

PP axons arise from layers II and III of EC, with a minor contribution from the deeper layers IV and

V. Axons from layers II/IV project to the granule cells of the DG and pyramidal cells of the CA3

region. Axons from layers III/V project to pyramidal cells of CA1 and SUB. The PP can be divided

into lateral (LPP) and medial (MPP) pathways, depending on whether the fibers arise from the

lateral (LEC) or medial (MEC) EC.

Mossy Fiber Path

 The mossy fibers (MF; Fig. 1, (2)) are 1-μm diameter axons of the DG granule cells. There

are about 1 million axons in the rat brain, and 15 million in the human brain. They extend from DG

to CA3 pyramidal cells and interneurons. MF synapse forms large aggregations of termini with

multiple transmitter release sites and post-synaptic densities on CA3 neurons. Multiple granule cells

can innervate a single CA3 pyramidal cell. In rodents, the main MF axons leave the hilus and travel

through CA3 in an approximately 100 μm in thickness stratum lucidum.

Schaffer Collateral/Associational-Commissural Path

 Schaffer Collaterals (SCs; Fig. 1, (3)) are derived from CA3 axons that project to the CA1

region. The axons either originate from CA3 neurons in the same hippocampus (ipsilateral),

forming the Schaffer collateral path (SC); or - from the opposite hemisphere, forming the

associational-commissural path (A/C).

Output to Subiculum and Entorhinal Cortex

 The pathway from CA1 to SUB and EC forms the principal output from the hippocampus.

The connection CA1 - SUB - EC follows a strict anatomical layout, i. e. the distal CA1/proximal

SUB projects to the lateral EC while the proximal CA1/distal SUB project to the medial EC.

Further connections extend to the perirhinal and postrhinal cortices. The perirhinal cortex projects

to the lateral EC and receives returning projections. The postrhinal cortex projects to and receives

inputs from the medial EC.
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sl

sm

sg

slm

sr
sp

so

EC

EC

CA1

CA3

subiculum

hilus

Fig. 1. Major excitatory connections in the rodent hippocampus: the tri-synaptic circuit. The

entorhinal cortex (EC) projects through the perforant path (1) on the distal two thirds of granule cell

dendrites in stratum moleculare (sm), and on the distal-most part of the apical dendrites of

pyramidal cells in stratum lacunosum-moleculare (slm). Mossy fibers (2) from granule cells

innervate the pyramidal cells of CA3 in stratum lucidum (sl). The axons of CA3 pyramidal cells

(Schaffer collaterals; (3)) then innervate CA1 pyramidal cells, which in turn impinge back upon the

subiculum and EC. Abbreviations: EC, entorhinal cortex, sg, stratum granulosum; slm, stratum

lacunosum-moleculare; sm, stratum moleculare; so, stratum oriens; sp, stratum pyramidale; sr,

stratum radiatum. (Figure courtesy provided by Dr. Andrew Doherty, MRC Center for Synaptic

Plasticity, School of Medical Sciences, Department of Anatomy, University of Bristol;

http://www.bris.ac.uk/Depts/Synaptic/info/pathway/hippocampal.htm ).
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2.2. Physiology of Hippocampal Formation. Synaptic Plasticity Mechanisms & Relations to

Memory

 Storage of memories in the brain almost certainly involves some forms of synaptic

modification that is why LTP might be the experimental analogue of memory formation in the brain

(Rosenzweig and Barnes, 2003).

 Long-term potentiation (LTP) used to describe the synapse-specific enhancement of

postsynaptic responses following the electrical stimulation of presynaptic fibers (Bliss and Lomo,

1973). Extracellularly, postsynaptic responses are recorded as field excitatory postsynaptic

potentials (fEPSPs), which describe electric field associated with current flow through the plasma

membranes of postsynaptic neurons in response to neurotransmitter release from presynaptic

terminals. Increase of fEPSP arises from increasing glutamate concentrations in the presynaptic

terminals or from increasing the responsiveness to glutamate by the postsynaptic cell. It is generally

accepted that fEPSP is a collective response of a population of neurons in the dendritic regions of

area CA1. The typical waveform (Fig. 2) consists of a fiber volley, which is an indication of the

presynaptic action potential arriving at the recording site and is an indirect measure of the number

of axons activated. The second part of the waveform is the fEPSP itself, which is a manifestation of

synaptic activation (depolarization) in CA1 pyramidal neurons. For determination of fEPSPs, the

parameter typically measured is the initial slope of the fEPSP waveform. The absolute peak

amplitude of fEPSPs can also be measured, but the initial slope is the preferred index. Field EPSPs

are downward-deflecting for stratum radiatum recordings and upward-deflecting for stratum

pyramidale recordings. If the cells fire action potentials, the recorded signal has an additional

component going in the opposite direction as compared to fEPSP, the population spike (PS),

reflecting the sum of action potentials fired by the cells in vicinity to the recording electrode.

Increased fEPSP slopes for a given presynaptic fiber volley may reflect either a change in

presynaptic glutamate release or postsynaptic receptors.

 Field EPSPs are depolarizing postsynaptic potentials, shifting the membrane potential

temporarily toward the cell s threshold for producing action potentials. Field EPSPs are relatively

long lasting, at least when compared with action potentials. It typically takes 5 to 10 ms before their

depolarizing effects are completely disappeared. The size of the fEPSP, produced by a given

amount of neurotransmitter, increases with the extent of the change in membrane potential of the

postsynaptic cell. Finally, all fEPSPs show a synaptic delay of approximately 1 ms, the time
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elapsing between the arrival of an action potential at the presynaptic terminal and appearance of

postsynaptic response, which is the time taken to release vesicles with neurotransmitter and for the

molecules of neurotransmitter to diffuse across the synaptic cleft and bind postsynaptic receptors.

During low-frequency transmission, under standard experimental conditions, the fEPSP is mediated

predominantly through AMPA receptors (see paragraph 2.2.1). But during a brief period of

synchronized high-frequency synaptic transmission, there is also a significant transient activation of

the postsynaptically located NMDA-Rs (see paragraph 2.2.1) (Bashir et al., 1991).

 The basal synaptic transmission is usually measured using the fEPSP input/output (I/O)

curve, which quantifies the synaptic input to the cells. It determines whether there is a change in

presynaptic glutamate release or in postsynaptic receptors. In addition, population spike (PS) I/O

relations quantify the size of the population of discharged cells at different stimulus strengths.

Baseline

Stimulation artefact

Fiber volley
(amplitude)

Population spike
(amplitude)

fEPSP
(amplitude)

fEPSP
(slope)

Fig. 2. The typical waveform of the extracellular field response consists of a fiber volley , the

fEPSP itself  and population spike. For measuring fEPSPs, the parameter typically used is the

initial fEPSP slope  or/and absolute peak amplitude of fEPSPs. For measurement of population

spike, the amplitude is calculated using a linear interpolation of fEPSP shape.

2.2.1. Glutamate. General Aspects. Receptors and Signal Transduction

 Glutamate (Glu) is the major excitatory neurotransmitter in the mammalian brain.

Glutamatergic neurons are particularly prominent in the cerebral cortex from where they project to a
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variety of subcortical structures. Various intrinsic glutamatergic pathways have been described also

in the hippocampus. Glutamate is involved in fast synaptic transmission, eliciting a postsynaptic

depolarization. Besides the fast excitatory effect, which occurs in the millisecond range, glutamate

can produce long-lasting activity-dependent changes of neuronal excitability, as is the case in LTP.
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Fig. 3. A schematic diagram illustrating activation mechanisms of NMDA and AMPA receptors at

different membrane potentials. (A) During normal synaptic transmission, glutamate is released from

the presynaptic terminal and binds to both AMPA (right) and NMDA (left) receptors. The degree of

membrane depolarization is not large enough to uncouple the Mg2+ block on the NMDA-R, while

Na+ and K+ are able to flow through the AMPA-R. (B) When the postsynaptic membrane is

depolarized more strongly after HFS, depolarization uncouples Mg2+ from the NMDA receptor

(left). This allows Na+, K+ and Ca2+ to flow through the receptor. The resulting Ca2+ rise in the

dendritic spine triggers a cascade of events leading to LTP induction.

 Glutamate receptors are widely expressed outside the CNS. NMDA-, AMPA-, kainate and

mGlu-Rs have been identified in the heart, spleen, testis, ovary, kidney, bone, bone marrow,

pancreas, intestine, oesophagus, hepatocytes, lung and keratinocytes. Moreover, these receptors



25

have been sequenced and cloned, and their sequences shown to be identical to those of neuronal

glutamate receptors (for excellent rev. see (Nedergaard et al., 2002)). Some studies have

documented the presence of iGlu and mGlu receptor (Fig. 3) subtypes also in astrocytes. They

include the NMDA-R subunits NR1, NR2A and NR2B, the AMPA receptor subunits Glu-R1 4, the

kainate receptor subunits Glu-R 7, and the mGlu-Rs (mGluR2, mGluR3 and mGluR5). However,

the existence of functional NMDA-Rs in astrocytes is debated, and most reports have failed to

identify NMDA-R-mediated responses. AMPA receptor-mediated Ca2+ influx in astrocytic

processes is required for maintaining the close structural association between neurons and

astrocytes (for rev. see (Nedergaard et al., 2002)).

Glutamate receptors (see Table 1), which could occur as homomeric or heteromeric

structures are classified according either to the binding of the most common agonists or to their

functional properties reflecting the pharmacology of the receptors. Based on their general functional

properties, two groups can be distinguished: the group of ionotropic receptors (iGlu-Rs) and the

group of metabotropic receptors (mGlu-Rs). Ionotropic Glu receptors directly gate on ion channels

for sodium (Na+) and calcium (Ca2+) and subsequently elicit fast excitatory responses, measurable

in the form of EPSP. Metabotropic Glu receptors indirectly gate on channels through second

messengers like inositol triphosphate or cyclic AMP (cAMP), are coupled to G proteins and

produce a delayed synaptic response. The iGlu receptors can be divided into two major subtypes: N-

metyl-D-aspartate (NMDA), which are activated by amino acid analog NMDA and blocked by the

drug 2-amino-5-phosphonovaleric acid (AP-V), and non-NMDA receptors, which can be activated

by the drugs -amino-3-hydroxy-5-metyl-4-isoxazolepropionate (AMPA), Kainate/Quisqualate,

and blocked by CNQX (Kandel and Siegelbaum, 2000). Both iGlu receptors and mGlu receptors are

differentially distributed on pre- and postsynaptic sites to contribute to neuronal communication and

signal processing, functions that determine learning and memory formation.

NMDA Receptors

NMDA receptors are found in high densities in cerebral cortex, hippocampus, basal

ganglia, hypothalamus and olfactory bulb. The NMDA-Rs have received much attention because of

their potential involvement in synaptic plasticity and neuronal development (McBain and Mayer,

1994; McDonald and Johnston, 1990), as well as in neurodegenerative disorders (Bradford, 1995;

Choi, 1992; Whetsell, 1996).

 NMDA receptor is heteromultimeric complex consists of four pore-forming subunits

(Table 1) with different specific binding sites. Within the hippocampus, for example, the
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composition of the NMDA-Rs subunits may differ. There are reports that NMDA-R composition of

C/A synapses on CA3 pyramidal cell spines includes NR1, NR2A, and NR2B subunits, whereas

mossy fiber synapses contain NR1 and NR2A subunits (for more, see (Nusser, 2000)). In addition,

it has been reported that NMDA-Rs are present on every synapse in SC terminals and dendritic

spines of CA1 pyramidal cells (Takumi et al., 1999), while only 75-85 % of these synapses contain

AMPA-Rs.

 NMDA ion channel is permeable to Ca2+, Na+ and K+. The NMDA-Rs play an important

role in the excitatory amino acid induced transmission and in synaptogenesis. Under resting

membrane potential, the NMDA-Rs are blocked by Mg2+. NMDA-R requires both its preferred

ligand glutamate and a large membrane depolarization in order to open functionally. In addition,

presence of glycine is also required for NMDA receptor opening (Parsons et al., 1998). On

depolarization, the Mg2+ block is released and the channel opens, thereby allowing the exchange of

ions through the channel pore. The entry of extracellular Ca2+ through the channel activates a

variety of processes which alter the properties of the neuron and results in LTP (Bliss and

Collingridge, 1993; Malenka and Nicoll, 1999). Excess of intracellular Ca2+ is also toxic to neurons;

and hyperactivation of the NMDA-R is thought to play an important role in several

neurodegenerative disorders (see below).

NMDA-Rs play an important role in the summation of synaptic responses and the

generation of synaptic plasticity (for rev. see (Ozawa et al., 1998)) in several ways. First, the Ca2+

signal mediated by NMDA-Rs may be enhanced at potentiated synapses, and therefore change the

stimulus patterns required to induce long-term depression (LTD) or additional LTP. Second,

NMDA receptor activation could change the mode of spike generation in DG granule cells. It has

been demonstrated that a transient exposure to Mg2+-free aCSF can cause an increase in the NMDA

component and as a consequence shift the cell from a single-spiking to a burst-discharging mode of

firing (Lynch et al., 2000). Third, changes in the NMDA/non-NMDA ratio may influence neuronal

network properties.
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Table 1. Glutamate receptor subtypes and their general properties

Receptor type,

subtype and

subunit

(Collingridge et al., 2004)

Functional

characteristics

Permeability to

Na+, K+, Ca2+

Permeability

to Na+, K+

Permeability

to Na+, K+,

Ca2+

Activation of phospholipase C;

inhibition of adenylate cyclase

Selective agonist Glutamate

NMDA

Aspartate

Glutamate

AMPA

Quisquilate

Kainate

Domoate

Glutamate

Kainate

Quisquilate

Domoate

Glutamate

Quisquilate

L-AP-IV

ACPD

L-serine-O-phosphate

ibotenic acid

Competitive

antagonists

D-AP-V

D-AP-VII

CGP39653

CPP

CNQX

NBQX

DNQX

CNQX

NBQX

GAMS

glutamyl-

glycine

NS-102

Phenylglycine analogs (3HPG,

4CPG)

Inhibitors

(Non-

Competitive)

MK-801

Ketamine

Memantine

Dextrophan

7-CK (glycin

site)

JST LY382884
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AMPA Receptors

High densities of AMPA receptors have been identified in the neocortex, hippocampus,

lateral septum, basolateral nucleus and lateral nucleus of amygdala, caudate-putamen, nucleus

accumbens, olfactory bulb, and in the molecular layers of cerebellum.  AMPA-R also consists of a

complex (Table 1) of four transmembrane proteins with different specific binding sites. AMPA-Rs

are permeable for monovalent cations, such as Na+ and K+. Na+ entry through AMPA-Rs is the

initial stage of the excitatory synaptic transmission due to the fast membrane depolarization.

 The AMPA-Rs are widely distributed in the central nervous system and their pattern is

different from that of the NMDA-Rs. The AMPA- and NMDA-Rs display different topologic

distributions in the postsynaptic membrane. Electron microscopy of immunogold-labeled synapses

has shown that NMDA-Rs tend to cluster near the center of the synapse, while AMPA-Rs are

distributed more at the periphery of the synapse (for rev. see (Nusser, 2000)). Also, they are

transported to synapses at different times during development, i.e., NMDA-Rs are present on the

membrane earlier that AMPA-Rs; and, once installed at the synapse, NMDA-Rs are more firmly

attached then AMPA-Rs (for more see (Nusser, 2000)).

 As it was already mentioned, only 75-85 % of SC synapses contain AMPA-Rs in juvenile

rats. The number of AMPA receptors is positively correlated with the synaptic area, and thus the

ratio of AMPA- to NMDA-Rs is linearly related to synaptic diameter (Nusser, 2000). In addition,

the mean number of AMPA receptors at mossy synapses has been reported to be more than four-

fold compared to C/A synapses. These results suggest that the number and the variability of

synaptic AMPA receptors on a given cell depend on the identity of the presynaptic input (Nusser,

2000).

Kainate Receptors

 Kainate receptors have been found in the neocortex, piriform cortex and hippocampal

formation, as well as in caudate-putamen, reticular nucleus of thalamus and in other brain areas.

The distribution pattern of kainate receptors depends on the configuration of the subtype.

Each kainate receptor consists of a tetrameric combination of up to four of the five kainate

receptor subunits (Table 1). Kainate receptors are restricted to certain sites of the neuron, and

depending on their subunit composition are targeted to different sites within a neuron (Mellor,

2006). Within hippocampal CA3 pyramidal neurons, kainate receptors are targeted to the axons and

presynaptic terminals, where they regulate neurotransmitter release onto CA1 pyramidal neurons
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and interneurons, and to the postsynaptic membrane of the mossy fiber synapse, where they mediate

slow EPSPs and regulate the slow after-hyperpolarization (for more see Mellor, 2006). It is possible

that these receptors are mainly involved in modulating the release of excitatory amino acids and

additional neurotransmitters or neuromodulators. However, they are absent at A/C or PP

postsynaptic sites.

 Like AMPA-Rs, kainate receptors are activated by the same agonists (Table 1) and coexist

in the same neurons (Rodriguez-Moreno and Sihra, 2007). And like the NMDA-Rs, the kainate

receptors are associated with an ion channel which is permeable for the monovalent cations Na+ and

K+, and also for Ca2+. There is evidence that kainate receptors are involved in LTP at the mossy

fibers (see below in paragraph 2.2.2.).

Metabotropic Glutamate Receptors

The mGlu-Rs are widely expressed throughout the central nervous system, but the different

subtypes (Table 1) are differentially distributed: they can be localized pre- and/or postsynaptically

at the periphery or at a preterminal zone, which predetermines their functions. Metabotropic Glu

receptors are localized in all behaviorally relevant brain structures, such as the hippocampus,

striatum, amygdala, cerebellum, and cortex.

Metabotropic Glu-Rs regulate the phosphorylation of various kinases, ion channels (for

rev. see Ozawa et al., 1998) and receptors, and activate several transcription factors. They

contribute to delayed postsynaptic responses and to synaptic plasticity. In some cases, mGlu-Rs

stimulation may be sufficient to induce LTP in the hippocampal CA1 (Bortolotto and Collingridge,

1993). On the postsynaptic site at the MF synapse, activation of mGlu-Rs increases cytosolic Ca2+

in the CA3 pyramidal cells (Yeckel et al., 1999) and may be necessary for the induction of at least

one form of LTP observed at this synapse (Ito and Sugiyama, 1991; Yeckel et al., 1999). However,

it should be noted that mGlu-R subtypes have different roles in signal transduction.

Role of Glutamate in Neurological and Neurodegenerative Diseases

 In addition to its transmitter function, glutamate is an amino acid and a key molecule in the

cell metabolism. On the other hand, high extracellular concentrations of glutamate are toxic to most

cells and account for cell loss in conditions such as ischemia, epileptic seizures, schizophrenia,

hypoglycemia, AD (Greenamyre et al., 1988; Parsons et al., 1998) and PD (Starr, 1995),

amyotrophic lateral sclerosis, anxiety, neuropathic pain and posttraumatic stress disorder.
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Furthermore, disruption of glutamatergic neurotransmission may partially account for learning and

memory deficits associated with some of these conditions. NMDA-R antagonists have been used to

attempt to slow down excitotoxic neurodegeneration in AD. Memantine, an NMDA-R channel

blocker, has shown safety and efficacy in slowing the decline in moderate to advanced AD (Danysz

and Parsons, 1998; Seow and Gauthier, 2007). The effect of memantine has been attributed to

mimicking the voltage-dependent Mg2+ blockade of the NMDA-R, which is makes the opening of

NMDA-Rs less sensitive to background noise by excessive glutamate release (Parsons et al., 2007).

 The excitotoxic effect is related to the massive entry of Ca2+ into the cell as a consequence

of the sustained activation of glutamate receptors, what leads to multiple cytotoxic neuronal

damages. It is generally believed that the most important mechanism mediating the toxic influx of

Ca2+ into neurons is the NMDA-Rs.

2.2.2. Modifications of Synaptic Plasticity: Short-Term Modifications. Long-Term Modifications

 There are two main types of stimulation patterns to induce short-term plasticity in

hippocampal synapses: paired-pulse paradigms (paired-pulse facilitation vs. inhibition) and stimulus

train paradigms (post-tetanic potentiation vs. inhibition and frequency facilitation).

Short-Term Modifications of Synaptic Plasticity

Paired-pulse facilitation (PPF) is a form of short-term synaptic plasticity, which describes

the ability of synapses to increase neurotransmitter release on very closely spaced stimuli. When

two single stimulus pulses are applied with inter-pulse intervals (IPIs) ranging from 20 to 300 ms,

the second fEPSP produced is larger than the first one. Facilitation can be attributed to the transient

increase in the concentration of presynaptic intraterminal Ca2+ (Zucker and Regehr, 2002) produced

by an invading action potential. The concentration declines to basal values over a few hundred

milliseconds, but the Ca2+ influx at the time of 2nd stimulus adds to the residual Ca2+ from the 1st,

resulting in an enhanced Ca2+ concentration and increased probability of release (Wu and Saggau,

1994). It reflects the fact that at many synapses an individual action potential has a greater chance

of evoking release of neurotransmitter when it arrives within a few milliseconds of a preceding

action potential. Thus a doublet of action potentials at a short interval has an increased probability

to activate the post-synaptic cell. Paired-pulse ratio (PPR; measured as ratio of 2nd response vs. 1st

one) is considered a measure of presynaptic release mechanisms (Zucker and Regehr, 2002) and

reflects the increase in the probability of neurotransmitter release. The higher the probability of
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release, the smaller is the observed PPR (McNaughton, 1982). It represents a means for analysis of

the excitation-inhibition balance in neuronal networks (Marder and Buonomano, 2003). Among

hippocampal subregions, PPF is very robust at the MF-CA3 synapses. At room temperature, it is

about two times larger in amplitude but has a similar time-course as associational/commissural

(A/C) synapses (Salin et al., 1996).

 If the synaptic transmission is decreased on the 2nd pulse, this phenomenon is called

paired-pulse depression (PPD). PPD is elicited with inter-stimulus intervals (ISIs) of 200-2000 ms,

and may reflect activation of GABAB receptors (Rausche et al., 1989).

 A typical example of the second form of short-term plasticity is post-tetanic potentiation

(PTP), a large enhancement of synaptic efficacy observed after brief periods of high-frequency

synaptic activity. The concentration of mitochondrial (Tang and Zucker, 1997) Ca2+ in internal

presynaptic boutons rises during PTP, suggesting that PTP is a presynaptic process (Tang and

Zucker, 1997; Wu and Saggau, 1994). For example, in experiments where LTP is induced with one

or two 1-s 100-Hz tetani, a large and transient increase in synaptic efficacy is produced immediately

after high frequency stimulation (HFS). PTP decay in SC synapses is less than 1 min, while in MF

synapses it decays within 3 min (Zalutsky and Nicoll, 1990). At MF synapses, both in vitro

(Langdon et al., 1995) and in anaesthetized rats (Derrick and Martinez, 1994), PTP can reach

several hundred percent by long tetani.

 One special form of short-term synaptic plasticity is frequency-dependent facilitation (FF),

which manifests at the hippocampal mossy fibers (MF) synapses and is one of the criteria to

identify the MF responses (Wang et al., 2002; Yeckel and Berger, 1998). FF results from Ca2+

channel activation and the growing effects of intracellular Ca2+ on release (Zucker, 1989). It is

mediated, at least in part, by the long-lasting activation of kainate receptors (Schmitz et al., 2001)

by synaptically released glutamate (Lerma, 2006). There are indications that FF shows the

recruitment of the neurotransmitter storage pool when the readily releasable pool is depleted after

the stimulation. While MF synapses show FF at ISIs longer than 40 ms, in A/C synapses it can be

seen with ISIs less than 10 ms (Salin et al., 1996). Moreover, the maximal FF for A/C synapses is

only 125 % of control, whereas at the MF synapses it can reach up to 600 % (Salin et al., 1996).

Long-Term Modifications of Synaptic Plasticity

 LTP is a sustained enhancement of synaptic response to a rapid, brief sequence of

excitatory pulses, lasting from hours to several days or even months after the stimulation (Bliss and

Lomo, 1973). Within the hippocampal formation, morphological changes, such as modifications in
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existing synapses (Desmond and Levy, 1983), addition of newly formed synapses (Chang and

Greenough, 1984; Chang et al., 1991) and synaptogenesis (for review see (Wheal et al., 1998)) have

been reported after LTP, which support the idea that LTP is relevant for learning and memory

formation.

 The level of the increase in intracellular Ca2+ is critical parameter in determining the

direction of changes in synaptic strength. It has been suggested that low elevation of Ca2+ activates

protein phosphatases to yield LTD, whereas higher concentration activates protein kinases to yield

LTP (Lisman, 1989).

The intensity of a stimulus is a combination of the frequency and number of stimulus

pulses and the amount of current generated during each stimulus pulse. Higher-frequency

stimulation (within the range of frequencies to which the postsynaptic cell can respond) elicits a

larger postsynaptic depolarization by increasing temporal summation of postsynaptic potentials.

Long-duration stimulation increases the total time when postsynaptic membrane is depolarized,

which allows a larger Ca2+ influx. Stronger current elicits a larger postsynaptic depolarization by

increasing the number of input axons activated simultaneously. All three variables often differ from

one experiment to another.

 LTP can be induced by several stimulation patterns, which largely determine the properties

of resulting LTP. The most common one is a train of 100 Hz for 1 s, called high-frequency

stimulation (HFS) protocol. Another widely used protocol is theta-burst stimulation (TBS), in

which a common feature is an interval of 200 ms between brief stimulus trains (Rose and

Dunwiddie, 1986). It is known that 200 ms is close to the periodicity of the theta rhythm (4-8 Hz)

recorded in rats during behavioral activity (Buzsaki, 2002). It is assumed that a prime burst

activates GABA interneurons through feedforward connections. Importantly, GABA release

activates GABAB autoreceptors, which produce a transient reduction in GABA release that is

maximal at around 100 to 200 ms. Thus the second train consequently enhances the voltage-

dependent NMDA receptor-mediated current. A study comparing the TBS and HFS (Hernandez et

al., 2005) concluded that the magnitude of LTP is highly dependent on the number of stimuli in a

train rather than the pattern of the stimulation itself. Significant differences have been also reported

between TBS and HFS in the early phase of LTP, with a high number of pulses (200 and 300)

producing greater LTP using TBS (Hernandez et al., 2005). Apparently these two protocols engage

different biochemical pathways to produce differences in LTP magnitude and time course kinetics,

especially when using stronger induction parameters (Patterson et al., 2001).

 In contrast to LTP, long-term depression (LTD) can be achieved using low-frequency

stimulation (typically 900 pulses at 1 Hz). There are two distinct types of LTD in CA1: NMDA-R
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dependent LTD requires small prolonged rise in postsynaptic Ca2+, while mGlu receptor-dependent

LTD is based on both pre- and postsynaptic mechanisms.

 The specific type of LTP exhibited between neurons depends on a number of factors, such

as the anatomical location where LTP is observed, the age of the organism, and differences in

signaling pathways expressed by a cell. For instance, LTP in the SC path is very different from the

LTP at the MF path, which is independent of NMDA-R activation and is usually induced by

different stimulation protocols. Furthermore, the molecular mechanisms of LTP in the immature

hippocampus differ from those mechanisms that underlie LTP in adults (for details see 2.3).

Further, some types of hippocampal LTP depend on the NMDA-Rs, while others depend on the

mGlu-Rs and voltage-dependent Ca2+ channels.

LTP in Schaffer Collateral and Perforant Pathways

 NMDA-dependent LTP classically exhibits four main properties: (1) rapid induction (by

one or more brief tetani to a presynaptic cell), (2) cooperativity (induction either by a strong tetanus

to a single pathway or by a weaker stimulation to many), (3) associativity (when a weak stimulation

of a single pathway is insufficient for the induction of LTP, a simultaneous strong stimulation of

another pathway will induce LTP at both pathways), and (4) input-specificity (once induced at one

synapse, LTP does not arbitrarily propagate to an adjacent synapse).

 The biochemical model of LTP (Baudry, 1991) consists of four phases: (1) the induction

phase, which leads to the activation of postsynaptic NMDA-Rs and influx of Ca2+ in the

postsynaptic cell; (2) the development phase, which consists of the stimulation of a complex

biochemical cascade involving proteases, lipases, and kinases; (3) the expression phase, which is

associated with presynaptic membrane modification, changes in configuration of the AMPA-Rs,

and changes in the shape of dendritic spines and increase of neurotransmitter release; and (4) the

maintenance or anchoring phase, which represents the stabilization of the new configuration and

involves cell-adhesion molecules and integrin proteins.

 At the synapses of two major hippocampal pathways, PP-DG and SC-CA1, the induction

of LTP obeys the Hebbian rule. In other words, it requires a temporal conjunction of presynaptic

(release of Glu to activate NMDA-R channel; (Bliss and Lynch, 1988) and postsynaptic

(depolarization of NMDA-Rs to free the channel from block by extracellular magnesium (Mg2+);

(Collingridge and Lester, 1989) activity for subsequent changes in synaptic strength. NMDA-Rs

allow Ca2+ influx to postsynapse and increase its concentration in postsynaptic spines, and that rise
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of Ca2+ is necessary for LTP. This association of activity in several afferent axons simultaneously

may form a biological basis for memory formation (Henze et al., 2000).

 The expression of LTP is often divided into two phases (Squire, 1992): an early, protein

synthesis-independent phase (E-LTP, lasts 2 - 5 h), and a late, protein synthesis-dependent phase

(L-LTP, lasts at least 8 h up to days / months). The very first stage of LTP - initial LTP (I-LTP, lasts

about 30 minutes), generally referred to as short-term potentiation, is independent of protein kinase

activity for its induction. It is a form of NMDA-R dependent synaptic plasticity that is induced by

tetanic stimulation, and is a prelude for E-LTP and L-LTP (Roberson et al., 1996). E-LTP depends

on the activity of several protein kinases, including CaMKII, PKC, PKA, MAPK, and tyrosine

kinases, which provide a feed-forward mechanism to increase receptor numbers, receptor

trafficking, levels of scaffolding and cytoskeleton proteins that promote surface expression, lateral

diffusion and stabilization of AMPA-Rs at potentiated synapses. PKC and CaMKII may also play a

role as molecular information storages; autonomously active forms of these kinases subserve the

maintenance of E-LTP. In contrast, PKA and MAPK appear to be involved in triggering the

induction of E- and L-LTP by increasing of presynaptic Ca2+ level, mediating of Ca2+ storage, or

rising intracellular Ca2+ level. L-LTP requires gene transcription and protein synthesis, which leads

to prolonged structural changes in the synapse enhancing its strength (Poser and Storm, 2001).

 Earlier studies have suggested that in the CA1 region, voltage-dependent Ca2+ channels

(VDCC) may also be involved in the LTP induction (Grover and Teyler, 1990; Regehr et al., 1989;

Regehr and Tank, 1990; Westenbroek et al., 1990), particularly in response to multiple trains of

HFS. Furthermore, potassium (K+) channels are important in the modulation cellular excitability by

controlling the repolarization of the membrane after a single or a burst of action potentials. A

blockade of repolarizing K+ channels leads to simultaneous activation of both pre- and postsynapse

by increasing the transmitter release. In addition, it increases the amplitude and the duration of the

postsynaptic depolarization, facilitates Ca2+ entry.

LTP at the Mossy Fibers

 Another major hippocampal synapse, the MF-CA3 synapse, expresses LTP which is

independent of activation of NMDA-Rs or postsynaptic Ca2+ channels (Zalutsky and Nicoll, 1990),

but rather depends on presynaptic kainate (Bortolotto et al., 1999; Harris and Cotman, 1986), mGlu-

Rs (Conquet et al., 1994), and voltage-dependent calcium channels (Jaffe and Johnston, 1990;

Zalutsky and Nicoll, 1990). In many studies, the induction of MF LTP has been shown to be non-

associative, non-cooperative, and non-Hebbian (Zalutsky and Nicoll, 1992). However, this form of



35

LTP may prove to be important in modulating the induction of Hebbian LTP at other synapses

(such as DG-A/C synapses; (Derrick and Martinez, 1994; Kobayashi and Poo, 2004).

 Studies on MF LTP are complicated by the difficulty of obtaining a pure MF activation by

extracellular electrical stimulation.  Electrical stimulation of the DG or stratum lucidum can lead to

activation (and contamination of the responses) of three different synaptic inputs to CA3 pyramidal

cells (Claiborne et al., 1993). First, strong stimulation of the DG, hilus, or stratum lucidum leads to

firing of CA3 pyramidal cells via MF pathway. Second, synaptic responses evoked by DG, hilus or

stratum lucidum stimulation stems from antidromic activation of associational collaterals of CA3

pyramidal cells projecting to the dentate hilus (Li et al., 1994; Scharfman, 1994). Propagation of

action potentials via these CA3 axon collaterals may then evoke a monosynaptic non-MF synaptic

response in CA3 pyramidal cells (Henze et al., 2000). This possible contamination of DG-evoked

MF responses has been suggested and been functionally demonstrated several times before

(Claiborne et al., 1993). Third, bulk stimulation of the DG or hilus often results in activation of the

hilar collaterals of MF axons. When an action potential then travels antidromically to the main MF

axon, it is conducted orthodromically into CA3 in a so-called anti-orthodromic sequence (Claiborne

et al., 1993; Henze et al., 2000; Nicoll and Schmitz, 2005). Several special measures have been

suggested that should allow one to separate these inputs and record a pure  MF response in are

CA3.

 Depending on the specific pattern of high-frequency stimulation (HFS), LTP at the MF

synapse can be both, non-Hebbian or Hebbian (Urban and Barrionuevo, 1996). Specifically, long-

lasting tetanus (L-HFS, three 1-s, 100-Hz trains presented at 0.1 Hz) induces LTP at the MF

depending on the level of postsynaptic hyperpolarization (Katsuki et al., 1991; Langdon et al.,

1995), and requires postsynaptic increase of Ca2+ (Yeckel et al., 1999) through VDCC (Jaffe and

Johnston, 1990; Kapur et al., 1998; Yeckel et al., 1999). Specifically, the activation of mGlu-Rs

during L-HFS is sufficient to cause release of Ca2+ from intracellular stores. In contrast, a brief

tetanus (B-HFS, eight 0.1-s, 100-Hz trains presented at 0.2 Hz) induces LTP at the MF depending

on depolarization of the postsynaptic CA3 cell and the activity of the presynapse. The difference

between Hebbian and non-Hebbian induction protocols arises from differences in the source of Ca2+

elevation in the postsynaptic cell. Both L-HFS and B-HFS induced LTP at the MF depends on

cAMP-dependent signaling cascades. It has been reported that L-HFS induced MF LTP is caused

by presynaptic Ca2+ influx which triggers a cAMP cascade leading to long-term changes in

neurotransmitter release (Huang et al., 1994; Weisskopf et al., 1994). In contrast, the B-HFS

induced MF LTP depends on postsynaptic cAMP cascade activated by increase of postsynaptic

Ca2+ (Kapur et al., 1998; Yeckel et al., 1999). This leads to the generation of a retrograde messenger
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arachidonic acid which, in turn, activates a presynaptic PKC and cAMP cascade (Collingridge and

Lester, 1989; Son et al., 1996; Son et al., 1997). In addition, the maintenance of E-LTP at the MF

depends on the integrity of communication between DG granule cell somata and the MF buttons

(Calixto et al., 2003; Lonart, 2002). E-LTP involves an enhancement of transmitter release which

may be under control of a synaptic active zone protein, RIM1 (Lonart and Sudhof, 1998; Villacres

et al., 1998).

 There are controversial opinions as to whether LTP at the MF depends on protein synthesis

in the postsynapse. Some previous studies have reported that the E-LTP in the MF (Huang et al.,

1994; Huang and Kandel, 1996) and the in the SC (Frey et al., 1993; Huang et al., 1996) is

independent of protein synthesis. In contrast, other studies indicate that the E-LTP in area CA1

(Scharf et al., 2002), in DG (Otani and Abraham, 1989; Otani et al., 1989), and at the MF synapse

(Barea-Rodriguez et al., 2000) is protein synthesis and RNA synthesis dependent (Calixto et al.,

2003), because the blockade of protein (by protein synthesis inhibitors emetine or cycloheximide)

or of RNA synthesis selectively inhibits the early maintenance phase of MF LTP without affecting

the induction process (Calixto et al., 2003).

Relevance of LTP to Spatial Learning and Memory

 It is well established that the integrity hippocampal formation is crucial for certain forms of

memory (Jarrard, 1993; Squire, 1992). Animal studies reveal that hippocampal lesions (surgical or

pharmacological) result in learning difficulties or impaired spatial memory (Morris et al., 1986;

Pastalkova et al., 2006). Collective data from human and animal studies provide correlative

evidence that episodic-like learning and memory involves hippocampal activity (Neves et al.,

2008). However, despite accumulating knowledge from intensive research over the past 30 years

the precise neural mechanisms of such hippocampal involvement are still unclear. Synaptic

plasticity in the hippocampus remains a major experimental system for those studies. It is widely

believed that learning induces long-lasting changes in the synaptic connections of central

glutamatergic synapses (Dragoi et al., 2003; Gruart et al., 2006; Whitlock et al., 2006). These

alterations include strengthening and weakening of synapses, changes in postsynaptic transduction

processes, changes in the distribution of receptor proteins, and changes in the morphology of

synapses. A common prediction is that memory can be encoded by these changes. Even today, LTP

is still the most attractive electrophysiological cellular correlate of memory formation. However, a

causal link between these two is still far from being proven (Neves et al., 2008).
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 The probable link between synaptic plasticity and memory has been formulated as the

synaptic plasticity and memory hypothesis: Activity-dependent synaptic plasticity is induced at

appropriate synapses during memory formation, and is both necessary and sufficient for the

information storage underlying the type of memory mediated by the brain area in which that

plasticity is observed (Martin et al., 2000). The necessity and sufficiency of synaptic plasticity for

memory is also discussed in a recent review by Neves and colleagues (Neves et al., 2008). There are

number of experimental strategies that have been used to assess the hypothesis (Martin et al., 2000).

First, the behavioral parameters of learning should correlate with some properties of synaptic

plasticity (Morris et al., 1986; Pastalkova et al., 2006; Shimizu et al., 2000). However, despite

compelling evidence it is difficult to exclude the possibility that effects on processes unrelated to

the maintenance of LTP cause the learning impairment (Neves et al., 2008). Second, learning

should be associated with the induction of measurable changes in synaptic efficiency at synapses

(Whitlock et al., 2006). Third, saturation of synaptic plasticity in a network should destroy the

pattern of trace strengths corresponding to established memories and occlude new memory

encoding. Despite positive findings, scepticism remains about the additional changes in

hippocampal and extrahippocampal circuitry that disrupt learning rather than LTP saturation per se

(Martin et al., 2000; Moser and Moser, 1999). Fourth, blockade or enhancement of synaptic

plasticity, achieved by pharmacological, genetic or other manipulations, should have commensurate

effects on learning or memory. For example, the NMDA-R antagonist AP-V blocks hippocampal

LTP in vivo and impairs spatial learning. In addition, APV impairs spatial memory and

hippocampal LTP in vivo at similar concentrations which also block the induction of LTP in vitro

(Davis et al., 1992). Other hippocampal-dependent tasks are also impaired by NMDA antagonists

(for rev. see Shapiro and O'Connor, 1992). However, NMDA antagonists do not block memory

consolidation, i. e. do not affect performance once learning has occurred (Bannerman et al., 1995;

Watanabe et al., 1992) or if LTP has been established (Collingridge et al., 1983). Fifth, erasure of

synaptic plasticity should, at least shortly after learning, induce forgetting. However, protocols for

inducing depotentiation (as in case of saturation) remain elusive (Martin et al., 2000). In conclusion,

despite the abundance of supporting data, definitive evidence that LTP is necessary and sufficient

for hippocampal-dependent learning is still lacking (Martin et al., 2000; Neves et al., 2008).



38

2.2.3. Hippocampal Plasticity and Normal Aging

Morphological Age-Related Changes

 Previous studies have reported that the medial temporal lobe, which includes the

hippocampus, a critical area for memory formation, is especially sensitive to the effects of aging. In

general, the total number of DG granule cells and pyramidal neurons in CA3 and CA1 remains

stable in aged mice (Calhoun et al., 1998), rats (Rapp and Gallagher, 1996; Rasmussen et al., 1996),

monkeys (Peters et al., 1996), and humans (West, 1993). Animal studies have confirmed also that

there is no regression of dendrites with age (for excellent review see Burke and Barnes, 2006). In

particular, in rats there is no significant change in dendritic length in hippocampal granule cells and

branching extent in CA1 between young (3 months), middle-aged (12 20 months) and aged (27 30

months) rats. In addition, there is no significant reduction in spine density in DG or CA1 in aged

rats when compared with young. Similar to the investigations on dendritic branching during aging,

the data on spine density suggest that age-associated alterations are also region-specific (for review

see (Burke and Barnes, 2006)). In contract, studies of synaptic density suggest that hippocampal

connectivity is more susceptible to aging (Geinisman et al., 1995). However, synapse loss is highly

specific, affecting only the cortical inputs to the hippocampus, in particular perforant path inputs

from layer II of the EC to DG granule cells and CA3 pyramidal cells. Furthermore, loss of perforant

path input correlates with spatial memory impairment of aged rats (Smith et al., 2000). In contrast,

layer III EC inputs to CA1 pyramidal cells and synapses onto CA3 cells from their own recurrent

collaterals are not reduced in number during aging (Smith et al., 2000). Also, the total number of

SC CA1 synapses remains the same across different age groups (Geinisman et al., 2004).

 The morphological changes are accompanied by changes in neurotransmission.

Neurochemical studies have shown age-related changes in cholinergic, catecholaminergic and other

neurotransmitters systems, including the glutamatergic system. The latter include loss of high

affinity glutamate transporters in glutamatergic terminals and decreased density of glutamatergic

receptors (for excellent rev. see Segovia et al., 2001). In particular, decreased NMDA-R density has

been described in most of the cortical areas, striatum and hippocampus in rats and mice. Changes in

the number of AMPA-Rs are more controversial: a reduced number of cortical AMPA-Rs have

been reported in the mouse but not in the rat (for rev. see Segovia et al., 2001). In the hippocampus,

different age-dependent changes may also be region-specific. For example, decreased AMPA

receptor density has been described in area CA1 (for rev. see Segovia et al., 2001). In some studies,

the decrease of NMDA and AMPA receptors in the hippocampus also significantly correlates with
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age-related declines in learning (Magnusson, 1998). Regarding the kainate receptor, there have been

reports of both, decreases or no changes in the density of kainate binding with age in the cerebral

cortex and hippocampus of the rat. In contrast, the number of mGlu-Rs seems to be constant during

aging (Simonyi et al., 2005). In addition, there are reports on increased density of L-type Ca2+

channels in the aged hippocampus that might lead to disruptions in Ca2+ homeostasis, contributing

to the plasticity deficits that occur during aging (Toescu et al., 2004).

Electrophysiological Findings of Age-Related Changes

 Most physical properties of hippocampal neurons do not change with age, including resting

membrane potential, input resistance, amplitude of the action potential, membrane time constant,

and fEPSP rise time and half-width (for rev. see (Rosenzweig and Barnes, 2003)). There is evidence

though that aged hippocampal CA1 pyramidal cells are less excitable, i.e, they are further from

action potential threshold than are young neurons (in vitro; Moyer et al., 1992). However, when

pyramidal neurons are recorded in vivo in behaving rats, there is no difference in the firing rates of

CA1 pyramidal neurons between young and aged animals (Tanila et al., 1997; Wilson et al., 2005),

and the firing rates of CA3 pyramidal neurons are actually slightly higher in aged than in young rats

(Wilson et al., 2005).

Loss of functional synapses in CA1 correlates with reduced amplitude of the fEPSP

recorded in the same area in aged rats compared with young ones (Deupree et al., 1993). However,

there is neither a decrease in the fEPSP amplitude in SC (Barnes, 2001) nor a reduction in the

number of functional synapses in the SC fibers in aged animals. In accordance with the

morphological finding of loss of perforant path synapses in aged DG, there is evidence for reduced

amplitude of fEPSP (Barnes, 1979) and presynaptic fiber potential (Barnes, 2001) in response to

perforant path stimulation.

 The effects of changed neuronal morphology, biophysical properties, synaptic connections

and plasticity can be assessed by measuring age-associated alterations in LTP. In general, aged rats

have some deficits in LTP induction and maintenance which are complex and depend on the

pathway under investigation and experimental protocol (for rev. see (Burke and Barnes, 2006))). In

particular, when chronically implanted animals have been used to examine the effects of aging on

LTP, recordings in DG have revealed  that aged (10-16 months) rats reach the maximal potentiation

of  fEPSPs more gradually but to eventually to the same extent as young ones. However, the

potentiation is lost more rapidly in the aged animals (Barnes, 1979). Changes in the molecular

mechanisms of LTP are unlike to change radically during normal aging: LTP induction, for
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example, still requires the activation of NMDA-Rs (Barnes et al., 1996). However, age-related

alterations in LTP could contribute to a decline in cognitive function. In aged rats LTP decays faster

in PP-granular cell (Barnes, 1979) and in PP-CA3 synapses (Dieguez and Barea-Rodriguez, 2004),

and this faster decay correlates with the rate of forgetting. At CA1 synapses, there is an age-related

reduction in the magnitude of LTP, which may derive from lower depolarization during induction,

lower activation of NMDA-Rs (Deupree et al., 1991; Moore et al., 1993) and age-related alterations

in Ca2+ signaling.

 Similarly to the PP-DG synapses, potentiation in the SC-CA1 fEPSP is weaker in aged

(15-25 months) rats compared to young (2-3 months) ones for the same stimulus intensity (Barnes

et al., 1992; Deupree et al., 1993). However, the presynaptic fiber volley and the ratio of the fEPSP

amplitude to fiber volley amplitude do not differ between the age groups. Although the

development of maximal LTP in CA1 is delayed in aged rats (older than 1 year) compared to young

ones (3-4 months), the extent of potentiation level remains the same in both age groups (Landfield,

1988). In one in vitro study on aged (26-27 months) rats, CA1 LTP was elicited by HFS of

associational fibers (Chang et al., 1991), and the slices were examined morphologically 30 min after

LTP induction. Control slices taken from the same animal were stimulated at a low frequency that

does not evoke LTP. The general pattern of LTP-induced structural synaptic changes and the

enhancement of the PS amplitude in CA1 pyramidal cells were similar in young adult (3-4 months

old) and aged animal.

 Although age-related reduction of fEPSP has been reported in both DG and in CA1, aged

animals can show intact LTP induction in PP granule cell synapses, in CA CA1 SC synapses and

in PP CA3 pyramidal cell synapses when robust HFS is used (for rev see Burke and Barnes, 2006).

However, when supra-threshold stimulation parameters are used, aged rats have a deficit in the

maintenance of LTP in both DG and CA3. When peri-threshold stimulation parameters are used,

LTP induction deficits can be observed in both DG and CA1. When weak presynaptic stimulation is

combined with direct depolarization of the granule cell in DG, a larger current injection is required

to elicit LTP in PP granule cell synapse of aged rats than in young ones. This indicates that aged

DG granule cells have an increased threshold for LTP induction (for rev see Burke and Barnes,

2006).

 In summary, plasticity changes during the normal aging process result from region-specific

changes in dendritic morphology, cellular connectivity, Ca2+ dysregulation and other factors, that

may alter the network dynamics that supports cognition.
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2.2.4. Synaptic Plasticity in Age-Related Neurodegenerative Conditions. Alzheimer’s Disease.

Parkinson’s Disease

The hippocampus is among the most vulnerable brain structures for age-related

degeneration. Below is a brief summary of observed functional and morphological changes in the

hippocampus associated with most common neurodegenerative conditions.

Alzheimer’s Disease

 Alzheimer s disease (AD) is a major cause of disability and mortality in developed

countries, where the percentage of elderly individuals in the population grows all the time. Memory

loss, the most prominent symptom of Alzheimer disease (AD), is linked with changes in synaptic

plasticity. The etiology of AD is still not fully understood. Deposition of neurotoxic -amyloid (A )

protein aggregates (Selkoe, 2001) or plaques and the formation of neurofibrillary tangles are typical

neuropathological hallmarks of the disease.

 The most widely accepted theory about AD pathophysiology is "amyloid cascade

hypothesis", which is based on the findings that all known mutations linked with familial, early-

onset AD, including amyloid precursor protein (APP) and  presenilin 1 or 2 (PS1, PS2) mutations,

lead to increased production and aggregation of A  (Selkoe, 1997). However, the mechanism by

which A  accumulation leads to memory impairment is still unknown, although accumulating

evidence indicates that abnormal signaling via p38 MAPK and JNK underlies A  induced deficits

in synaptic plasticity and memory (Rowan et al., 2004). Transgenic (TG) mice have provided a

powerful model to study the molecular and synaptic pathology of AD and its relationship to

memory loss. TG mice carrying APP mutation alone or combined with PS1 mutation show an age-

dependent increase in A  levels (Kawarabayashi et al., 2001) and in many cases also age-dependent

memory impairment (Chen et al., 2000; Koistinaho et al., 2001; Puolivali et al., 2002; Westerman et

al., 2002).

 Two strategies are used to assess mechanisms underlying cognitive decline in mouse

models of AD. Clinically, AD is characterized by an early loss of declarative memory. So it is not

surprising that all APP TG models have been screened in the water maze task (hippocampal-

dependent measurement of spatial learning and memory). Deficits in hidden-platform-MWM

performance in animals may be related to memory loss in human AD patients. The majority of these

studies have reported impaired memory in this navigation task (Duyckaerts et al., 2008).

Impairment in spatial learning tasks is consistent with the fact that amyloid pathology is most
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severe in the hippocampus in all these mouse lines (Arendash et al., 2001; Borchelt et al., 1997;

Dodart et al., 2000; Hsiao et al., 1996). However, some reports have failed to demonstrate

significant learning and retention deficits in the water maze task (Arendash et al., 2001; Holcomb et

al., 1999). The reasons for such discrepancies are still unclear.

 Memories are thought to be kept in the brain as a change in the strength of synapses.

Therefore, the electrophysiological studies in AD animal models have focused on the measurement

of synaptic strength among hippocampal cells. Both basal synaptic transmission and LTP have been

studied, however, the results have been controversial. While some studies reported a reduction of

LTP in TG mice with A  accumulation (Chapman et al., 1999; Moechars et al., 1999; Nalbantoglu

et al., 1997; Trinchese et al., 2004), others were not able to report similar findings (Fitzjohn et al.,

2001; Hsia et al., 1999; Jolas et al., 2002; Larson et al., 1999). A possible explanation for these

conflicting results could be that handling, trafficking, and signaling properties of APP are likely

different between full-length APP and its natural cleavage products, which would impair different

aspects of synaptic function. Also different background strains are likely to contribute to these

observed differences among APPswe mice.

Estrogen in Neuronal Plasticity, Learning and Memory

 Estrogen plays a critical role in the development, maintenance, and physiology of male and

female reproductive tissues, as well as of nonreproductive systems, including the cardiovascular,

skeletal, and CNS (Gruber et al., 2002). Epidemiological studies indicate that estrogen deprivation

due to menopause is a risk factor in both the initiation and progression of AD, and that estrogen

replacement therapy (ERT) may be protective. However, the recent Women's Health Initiative

Memory Study found that hormone therapy (HT) increased rather than decreased the risk of

dementia in women after the age of 64 (Shumaker et al., 2003). Many observational studies,

however, report numerous beneficial actions in brain (Behl et al., 2000; Petanceska et al., 2000;

Wise, 2002; Woolley and McEwen, 1994). In order to resolve these contradictory observations few

explanations have been suggested (Rosario et al., 2006). Composition of HT and delivery of

hormone components are the most problematic factors. However, skepticism remains as evidence

on hormone therapy is insufficient to guide practice decisions (Henderson, 2007).

 The classic mechanism of estrogen action is through one of two estrogen receptors (ERs).

Estrogen receptor alpha (ER ) and beta (ER ) are members of the steroid nuclear receptor family

that modulate gene transcription in an estrogen-dependent manner. ER mRNA and protein have

been detected both peripherally and in the CNS in both genders (Kuiper et al., 1998; Mitra et al.,
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2003). Distribution of ER receptors was studied in a great detail in the mouse brain (Mitra et al.,

2003). ER  is primarily localized to cell nuclei within multiple regions of the brain, including the

olfactory bulb, cerebral cortex, septum, preoptic area, bed nucleus of the stria terminalis, amygdala,

paraventricular hypothalamic nucleus, thalamus, ventral tegmental area, substantia nigra, dorsal

raphe, locus coeruleus, and cerebellum. ER  extranuclear localization has been observed in the

olfactory bulb, CA3 stratum lucidum, and CA1 stratum radiatum of the hippocampus and

cerebellum. Although nuclear ER  is generally expressed in a similar manner throughout the brain,

it is the predominant subtype in the hippocampus, preoptic area, and most of the hypothalamus,

whereas it is sparse or absent in the cerebral cortex and cerebellum (Mitra et al., 2003).

 Estrogen has been shown to acutely modify the intrinsic excitability of neurons in diverse

brain regions, including the hypothalamus/preoptic area, amygdala, striatum, cerebellum, and

hippocampus (for rev. see Woolley, 2007). When estradiol is applied either in vivo or in vitro it

induces rapid alterations in neuronal firing rates and/or modulation of K+ currents that control the

resting membrane potential and limit action potentials (Woolley, 2007). It has been suggested that

one of the proximal effects of estradiol is to suppress Ca2+ influx through L-type Ca2+ channels

(Kumar and Foster, 2002). Besides its effects on membrane excitability, 17 -estradiol also

modulates synaptic physiology in the hippocampus. This was first suggested almost three decades

ago (Teyler et al., 1980). Subsequent studies confirmed 17 -estradiol effect on neuronal excitability

both in vitro (Bi et al., 2000; Foy et al., 1999) and in vivo (Cordoba Montoya and Carrer, 1997;

Wong and Moss, 1992). Namely, it increases amplitude of PS and fEPSP in all major subfields of

the hippocampus (CA1, CA3 and DG; Woolley, 2007). Interestingly, only a subset of hippocampal

cells is responsive to estradiol and the proportion of responsive cells increases when animals are

pretreated with estradiol for several days (Rudick and Woolley, 2003; Woolley, 2007). In addition

to its effects on baseline synaptic responses, estradiol can acutely increase the capacity for synaptic

plasticity in CA1 (Barraclough et al., 1999; Cordoba Montoya and Carrer, 1997; Good et al., 1999).

Also, other forms of hippocampal neuronal plasticity are positively affected by estrogen: filopodial

outgrowth (Brinton, 1994), dendritic spines maturation (Harris, 1999), increase of synaptic density

(Gould et al., 1990; Woolley and McEwen, 1992; Woolley and McEwen, 1993). Together, these

data illustrate that estradiol activation of intracellular signaling pathways in hippocampal neurons

can enhance neuronal excitability, glutamatergic synaptic transmission and synaptic plasticity.

 It is now well established that 17 -estradiol effect on excitatory synaptic responses in

CA1 is mediated by non-NMDA-Rs (Rudick and Woolley, 2003; Wong and Moss, 1992).

Furthermore, it was suggested that estradiol increases non-NMDA-R-dependent postsynaptic
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responses through cAMP/PKA-mediated phosphorylation in the postsynaptic cell (Gu and Moss,

1998). However, another group reported a similar effect of 17 -estradiol on both non-NMDAR-

and NMDAR-mediated EPSPs in vitro (Foy et al., 1999). Therefore, it is likely that estradiol

potentiates both types of glutamate receptor-mediated synaptic responses through PKA-dependent

mechanism Woolley, 2007), because both non-NMDA- and NMDA-Rs can be positively

modulated by PKA-dependent phosphorylation (Greengard et al., 1991). Similar to basal synaptic

transmission, LTP enhancement by 17 -estradiol application is NMDA- and/or AMPA-R-

dependent (Foy et al., 1999). Nevertheless, accumulating evidence suggests that estrogen-induced

synaptic strengthening in the hippocampus is dependent on NMDA-R activation (Bi et al., 2000;

Pozzo-Miller et al., 1999; Rudick and Woolley, 2001; Woolley et al., 1997).

  Reports on estrogen-induced electrophysiological and morphological changes in the rat

hippocampus have been accompanied by several reports on improved learning in hippocampal-

dependent tasks after estrogen treatment (Daniel et al., 1997; Fader et al., 1998; Gibbs, 1999; Luine

et al., 1998). However, there are studies showing that short-term estrogen treatment has no effect on

spatial memory in OVX rats (Chesler and Juraska, 2000; Luine et al., 1998) or that estrogen might

impair spatial learning and memory in OVX and gonadally intact female rats (Daniel et al., 1999).

On the other hand, a number of studies report improved performance in the same tasks after longer

(10 days or more) estrogen treatment (Daniel et al., 1997; Gibbs, 1999; Luine et al., 1998). While

benefit of prolonged estrogen treatment is far from proven, positive short-term effects on memory

were reported recently (Woolley, 2007). Series of studies showed that intrahippocampally injected

estradiol immediately following training in the water maze improved memory for the platform

location tested 24 h later, while it was ineffective when injected after 2 h (Packard et al., 1996;

Packard and Teather, 1997). In similar studies, estrogen given systemically 30 min before training

or immediately post-training, but not 2 h later, improved memory in rats (Luine et al., 2003; Rhodes

and Frye, 2006).

Parkinson’s  Disease

 Parkinson's disease (PD) is another devastating age-related neurodegenerative disorder

which is accompanied by cognitive and movement impairment. Its etiology remains unknown, even

though human genetic studies as well as TG animal models suggest that multiple events, both

genetic and environmental, interactions trigger its initiation and progression. Data from human post-

mortem studies indicate that alternations in the glutamatergic system may contribute to PD

development. Glutamate excitotoxicity, which changes the permeability of cells to Ca2+ by acting
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through NMDA-Rs, might play an important role in the development of PD. Massive activation of

glutamate receptors can result in excessive nitric oxide (NO) formation (Jenner, 2003),

mitochondrial dysfunction (Schinder et al., 1996), and neuronal death (Mody and MacDonald,

1995). Mitochondrial dysfunction also can be the reason of the ubiquitin-proteasome system (UPS)

deficit, another feature of PD. Furthermore, aggregation of -amyloid and -synuclein ( -syn)

(Ding et al., 2006; Widmer et al., 2006) are clear signs of proteolysis in neurons because of

impaired proteasome and mitochondria function (Dawson and Dawson, 2003; Song et al., 2004;

Wood-Kaczmar et al., 2006). It leads to neuroinflammation, DNA and RNA brakeage, and

disturbance of other signaling processes, such as dopamine misfolding and degeneration,

aggregation of misfolded protein parkin, which triggers the oxidative stress response and promotes

neuronal death (Imai et al., 2002; Takahashi and Imai, 2003). It has also been suggested that PD

might be triggered by disorganization of neuronal cytoskeleton structures (intrafilaments, synaptic

vesicles and their ultrastructures; (Iseki et al., 1998)), which results in formation of Lewy bodies

(LBs) in living neurons in certain neuronal populations (Gibb and Lees, 1988; Spillantini et al.,

1997).

Dementia with Lewy Bodies

 Another common form of dementia in older people is dementia with Lewy bodies (DLB).

Clinically DLB is characterized by the presence of progressive cognitive decline resulting in

significant social and occupational functional impairment, visual hallucinations and parkinsonism

(McKeith et al., 1996). However, relatively preserved memory functions are also frequently

reported in DLB (for rev. see (Mukaetova-Ladinska and McKeith, 2006)). Neuropathologically,

DLB is characterized by the presence of intraneuronal inclusions, Lewy bodies (LBs), found in the

brain stem and in various cortical areas, and Lewy neurites (LNs), predominantly present in the

CA2/3 hippocampal region (Klucken et al., 2003; Mukaetova-Ladinska and McKeith, 2006). In this

context it is worth noticing that CA2/3 regions receive afferents mainly from brain stem (locus

coeruleus, raphe complex), septal cholinergic nuclei and diagonal band of Broca, layer III of EC

and amygdala. -Syn is a principal component of the intraneuronal LB aggregates/filaments, glial

inclusions and LNs (Mukaetova-Ladinska and McKeith, 2006). Hippocampal pathology is

important in LBD as well as in PD and AD, because memory disturbance, a leading symptom of

these neurodegenerative disorders, is closely related to the degeneration of PP (Hyman et al., 1986;

Klucken et al., 2003).
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 In addition, cytoplasmic LBs also occur in sporadic and familial forms of AD, Down

syndrome, and in elderly with no cognitive impairment. One to two thirds of patients with a definite

diagnosis of AD has LBs in their allo- and/or neocortical areas, defining the so-called Lewy body

variant of AD (Mukaetova-Ladinska and McKeith, 2006).

-Synuclein: General Aspects

 Both human and rodent synuclein family consists of four ( -, -, -synucleins and

synoretin) small 15-20 kDa proteins with a relatively similar amino acid sequence but encoded by

different genes (Goedert, 2001). This 140 amino acid protein is abundant in presynaptic terminals in

close association with different membranes, including synaptic vesicles (Gitler and Shorter, 2007;

Lotharius and Brundin, 2002), which implies its role in synaptic transmission (Liu et al., 2004; Liu

et al., 2007) as well as regulation of synaptic vesicle cycle. However, normal function of -syn is

still unknown. The mouse -syn gene was mapped to the chromosome 6 (Touchman et al., 2001).

The intron/exon structure of both mouse and human -syn genes is highly conserved (Touchman et

al., 2001).

 It has been reported that -syn can inhibit protein kinase C (PKC) activity (Ostrerova et

al., 1999) and down-regulate extracellular signal-regulated kinase (ERK) activity (Hashimoto et al.,

2003). Since ERK plays a central role in various neuronal functions such as synapse formation and

neuronal growth, survival (Subramaniam et al., 2003), synaptic plasticity, and LTP (Impey et al.,

1999), modulation of ERK might be an important mechanism for normal -syn functions.

Additionally, there are the reports on the important role of -syn in neurotransmitter release through

NO and cGMP-dependent protein kinase (cGK) activation (Arancio et al., 2001). In addition,

CaMKII substrates play a vital role in the process of synaptic strengthening within the terminal and

acts as a functional switch for many presynaptic proteins (one of them is -syn) involved in the

neurotransmitter release process (for review see Liu et al., 2007).

The Role -Synuclein in Hippocampal Synaptic  Plasticity

-Syn became a focus of intensive research when three point mutations (Ala53Thr,

Ala30Pro and E46K) in its gene became associated with rare forms of familial PD (for rev. see Liu

et al., 2007). Additionally, a triplication of the -syn gene has been shown to cause severe PD (for a

review see Dauer and Przedborski, 2003).
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 When -syn is expressed at physiological levels, it functions as a negative regulator of

vesicle fusion and neurotransmitter release at the synapse. However, its accumulation beyond a

certain threshold might lead to dysregulation of this function at the synapse or perhaps promiscuous

inhibition of additional trafficking steps (Gitler and Shorter, 2007). Overexpression of -syn might

decrease the number of dopamine vesicles docked at the plasma membrane and available to release

their contents, or might inhibit "priming", a reaction that transfers morphologically docked vesicles

to a fusion competent state (Gitler and Shorter, 2007).

-Syn accumulation in disease may temporarily inhibit synapses from releasing

neurotransmitter in response to repetitive action potentials within a certain frequency range and

could, therefore, alter the normal pattern of synaptic activity (Steidl et al., 2003). Also, synaptic

release mechanisms downstream of Ca2+ influx may be affected by the overexpression of -syn.

Mice with inactivated -syn gene develop normally and show no gross morphological or behavioral

changes (Abeliovich et al., 2000; Cabin et al., 2002; Chen et al., 2002). Nevertheless, recordings in

striatal (Abeliovich et al., 2000) and hippocampal (Cabin et al., 2002) slices have revealed slightly

abnormal kinetics of neurotransmitter release in -syn knockout mice. These mice did not show any

altered LTP in CA1 by using tetanic stimulation (Abeliovich et al., 2000). These findings were

conflicting in that replenishment of readily releasable pools of dopamine was enhanced in striatal

recordings (Abeliovich et al., 2000), whereas it was attenuated in hippocampal recordings (Cabin et

al., 2002). However, we showed that -syn knockout and A30P mutation similarly affect release of

the neurotransmitter at the glutamatergic synapses, manifested as reduced PPF and altered LTP in

MF synapses (Gureviciene et al., 2007) and PPD (Steidl et al., 2003). It supports the idea that the

function of -syn is not restricted to dopaminergic synapses only.
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3. AIMS

 The aim of this PhD study was to evaluate the hippocampal synaptic functioning in

different age-related pathological conditions mimicked by experimental mouse models. To this end,

we have recorded electrophysiological parameters in these mice both in vitro and in vivo.

 The specific aims were as following:

Study I

To test whether the effect of estrogen treatment on hippocampal synaptic plasticity in OVX mice is

NMDA-R mediated.

Study II

To search for a correlation between hippocampal synaptic plasticity and age-related spatial memory

impairment in A/P mice.

Study III

First, to investigate the functional implications of -syn accumulation in MFs in tg mice expressing

mutated A30P -syn, and second, to assess whether -syn changes the dynamics of synaptic

glutamate release as was shown for dopaminergic neurons.

Study IV

To extend findings of Study III to the input side of DG granule cells and investigate the interaction

between -syn and aging, which was not possible with MF recordings.
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4. MATERIAL AND METHODS

4.1. Animals

The strain, gender and age of the mice used in the experiments are summarized in Table 2.

The mice were individually housed in a controlled environment (temperature 21°C, humidity 50-60

%, lights: 7:00 19:00). Food and water was available ad libitum. The studies were conducted

according to guidelines set by the Council of Europe (Directive 86/609) and Finnish guidelines, and

approved by the State Provincial Office of Eastern Finland.

 In Study II we used mice carrying both human APP695swe mutation (K595N and

M596L) and PS1 A246E mutation (A/P) or their nontransgenic littermates (NT). The mice were of

hybrid origin (C57BL/6J x C3H) but were back-crossed to C57BL/6J for 10 generations. In Study

III we used KO (a subpopulation of C57BL/6J originating from Harlan Olac® (Bicester, UK),

which carries a spontaneous chromosomal deletion of the -syn locus; WT1 mice, another

subpopulation of C57BL/6J originating from Charles River Wiga® (Sulzfeld, Germany) with no

reported deletion of the -syn locus. This line was used as the wild-type control for the -syn

knockout mice. Our TG1 is a transgenic mouse line carrying human -syn with A30P mutation,

which was overexpressed under prion-protein promoter; and TG2 mice are expressing human wild-

type -syn under -syn promoter, and WT2 are negative littermates of TG2. In Study IV we used

mouse line carrying human -syn with A30P mutation, which was overexpressed under prion-

protein promoter, TG, and their negative littermates, NT.
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Table 2.  The strain, gender and age of the mice

 Age, months Total number Sex & Genetic background
Study I OVX 5 110 female C57BL/6J
    OVX+ERT 12 90

rota-rod & open field 13 20*
 OVX  10
 OVX+ERT                     10
 OVX+ERT+CPP 3.0 mg/kg      10

MWM 13 90
 OVX  12
 OVX+CPP           2.0 mg/kg   12
                              0.5mg/kg  12
                              5.0 mg/kg  11
 OVX+ ERT                      11
 OVX+ERT+CPP  2.0 mg/kg   12
                               0.5 mg/kg  12
                               5.0 mg/kg  8

in vitro LTP 14 44
 OVX  8
 OVX+CPP            5 μM  4
                              10 μM  4
 OVX+ERT  14
 OVX+ERT+CPP  5 μM  9
                              10 μM  5

132
Study II in vitro LTP 4 12 male A/P

 7 male NT
in vivo LTP 17 18 12 male A/P
  11 male NT

42
Study III in vitro LTP 5 13 male KO

 16 male WT1
 15 male TG1
 16 male WT2
 13 male TG2

73
Study IV MWM & activity test 9 9 male TG

 7 9 male NT
 25 10 male TG
 22 8 male NT
in vivo LTP 10 7 male TG

10 10 male NT
24 8 male TG
25 5 male NT

56**
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Notes.

* In the rota-rod and open field tests (Study I), the mice were tested in a counterbalanced order, i.

e., on the first test day, half of the mice got CPP while other half got saline; on the second test day,

the treatment groups were exchanged.

** In Study IV 10 animals which were included in behavioral testing, were later used in

electrophysiological in vivo studies.

4.2. Surgical Procedures

4.2.1. OVX and ERT

 The procedures were conducted under general anesthesia (pentobarbital + chloral hydrate

(50/50; 40 mg/kg, i.p.). For OVX, an incision was made in the back and the ovaries were removed

and the muscles and skin were stitched. The sham animals were given only the incision on the skin

under anesthesia, but the ovaries were not touched.

 The estrogen treatment was conducted using mini-pellets (0.18 mg of 17 -estradiol;

Innovative Research of America®, Sarasota, FL, USA), releasing estradiol for 90 days. The pellets

were implanted s.c. in the upper neck. The non-treated control animals were given only an incision

in the skin under anesthesia. After the experiments mice were sacrificed by cervical dislocation and

the uterine weights were measured.

4.2.2. Electrode Implantation

 Under general anesthesia (bentobarbiturate-chloralhydrate (50/50, 70 mg/kg, i.p.; Study

II) or urethane (1.2 g/kg, i.p.; Study IV) the animal was placed on a stereotaxic frame (David Kopf,

Tujunga, CA, USA), a recording electrode (a pair of tungsten wires, 50 μm in diameter, tip

separation 1 mm; Study II) was implanted into the left hemisphere at A: -2.0 (from bregma), M:

+1.4 (from midline). The longer electrode was aimed at the dentate hilus and the shorter (reference

electrode) at the cortex. The depth coordinate was adjusted during the operation based on perforant

path (PP) stimulation and monitoring of the fEPSP. The stimulating electrodes (a pair of stainless

steel wires, 100 μm in diameter, tip separation 500 μm; Study II) were implanted into the left

hemisphere at A: -3.8 (from bregma), M: -3.0 (from midline), D: -1.5 (from the dura mater surface).

The electrode tips were aimed to straddle the angular bundle. The implant was fixed to the skull
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with acrylic cement and three anchor screws. The mice received 0.15 mg/kg of buprenorphine

postoperatively and were allowed to recover for 2 weeks before the experiment.

 In Study IV fEPSPs from the dentate gyrus (upper blade of granular cell layer or

polymorphic layer of hilus) were evoked by a bipolar stimulation electrode (a pair of silver wires,

100 μm in diameter) inserted into the right hemisphere at AP -3.8 (from bregma), ML -3.0 (from

midline), DV -1.7 (from dura mater surface). It was aimed to straddle the angular bundle.

 During surgery (Study II and IV) and in vivo recordings (Study IV) body temperature of

the animal was kept stable (34o C ± 0.5) using custom made heating pad and monitored throughout

the experiment using the YSI Precision 4000A rectal thermometer (YSI Yellow Springs

Instruments Co., Inc. Yellow Springs, Ohio, USA). The animal was given a saline injection (1 ml,

s.c.) every 2 h after the onset of anesthesia.

4.2.3. Slice Preparation for in vitro Recordings

 Under halothane anesthesia, the mouse was decapitated and the hippocampus was

dissected for LTP experiments. Acute hippocampal slices (450 μm) were prepared from the rostral

hippocampus using a McIlwain tissue chopper (The Mickle Laboratory Engineering, Gomshall,

UK; Study I & II), or the brain was dissected using Vibratome 1000 from "Pelco101" (Redding,

CA, USA; Study III). Slices were moved into the chamber and were maintained at the interface

between an oxygen-rich atmosphere and artificial cerebrospinal fluid (aCSF), which was perfused at

a rate of 0.8 ml/min. The aCSF contained (in mM): NaCl 124, KCl 3:0, KH2PO4 1.25, CaCl2 3.4,

MgSO4 2.5, NaHCO3 26, D-glucose 10, and L-ascorbate 2. Calcium precipitation was prevented by

equilibrating the slice with 95% O2 and 5% CO2 and keeping it at 35 ± 1o C. The slices were let

incubate for at least 1 h before placing the electrode and starting the stimulation.

4.3. Histology

 After the in vivo recordings (Study II and IV), the mice were deeply anesthetized, and an

anodal current of 30 μA was passed through the electrodes for 3 s. Brains were fixed with 4 %

paraformaldehyde, cut in coronal sections (35 μm) using a freezing, sliding microtome. In all

studies, one series of sections was stained for cresyl violet to confirm the location of the electrodes.

In Study II, one series was stained for A  with human specific WO-2 antibody (Dr. T.

Hartmann, Heidelberg, Germany, Mouse antihuman A 16; (Ida et al., 1996)), and one for A

with G 2-10 (Dr. T. Hartmann, Heidelberg, Mouse anti-A 40; (Ida et al., 1996)) following a 30-min
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of pretreatment with a Nacitrate solution at 85o C, and the fourth series was processed for amyloid

-sheets with thioflavine S histochemistry using a standard protocol (Guntern et al., 1992).

 In Studies III-IV, for immunohistochemistry, a separate groups of 12-month-old

transgenic mice expressing human mutated A30P -syn and 7-month-old mice expressing human

wild-type -syn, -syn knockout (C57BL/6J-Harlan) and C57BL/6J wild-type mice were

anaesthetized and transcardially perfused with 50 ml of buffered saline, followed by 100 ml of a 4

% phosphate buffered (pH 7.4) paraformaldehyde solution to which 0.5 % picric acid was added.

The brains were removed from the skull and stored in the fixative for 4 h, thereafter they were

transferred to a 30 % sucrose solution. Three series of coronal sections (35 m) were cut. One series

of sections was immunohistochemically stained for human -syn using the mouse anti-human -

syn antibody (clone 4B12, Signet, Dedham, MA, USA), another series was stained for species non-

specific -syn antibody (Syn-1) (Transduction Laboratories, Lexington, KY, USA). The sections

were pre-treated for 30 min with hot (85° C) citrate buffer. The series of sections were transferred

to a solution containing the primary antibody (mouse antihuman -syn at 1:4000) in TBS with

addition of 0.5 % Triton X-100 (TBS-T). Following incubation in this solution for 18 h on a shaker

table at room temperature (20° C) in the dark, the sections were rinsed three times in TBS-T and

transferred to the solution containing the secondary antibody (goat anti-mouse*biotin, Sigma-

Aldrich, St. Louis, MO, USA). After 2 h, the sections were rinsed three times with TBS-T and

transferred to a solution containing mouse ExtrAvidin® (Sigma-Aldrich). Following rinsing, the

sections were incubated for approximately 3 min with Ni-enhanced DAB.

 All stained sections were mounted on slides and coverslipped.

4.4. Behavioral Tests

4.4.1. Rota-rod (Study I)

 Motor coordination and balance of A30P vs. WT mice was tested in accelerating rota-rod

test (Stoelting, IL, USA; Jones and Roberts, 1968). The mice were allowed to walk on accelerating

rotating beam, and time that mice could stay on the beam was recorded. The mice were tested on 2

days, 48 h apart.
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4.4.2. Activity Test (Study I & IV)

 Locomotor and exploratory activity of the mice was tested in an automated activity

monitor employing infrared beam detection (TruScan®, Coulbourn Instruments, Allentown, PA,

USA). The system consisted of four 26 x 26 x 39 cm transparent plastic cages with two photobeam

sensor rings enabling separate monitoring of horizontal (XY-movement over time) and vertical

activity (rearing). All observation cages were connected to a computer for recording and data

analysis. The mice were gently placed at the center of the arenas and the recording was started at

once. The mice were tested in two 10-min sessions, 48 h apart.

4.4.3. Morris Water Maze (Study I & IV)

 Morris water maze was used to assess spatial memory. Performance in the test is highly

sensitive to dysfunction of the hippocampus (Morris et al., 1982).

Before the actual water maze testing took place, the mice were given 2 days of pre-training

in a 1m x 14cm alley with high walls leading to a black rubber-coated platform (14 x 14 cm),

located 1 cm below the water surface. This gave them experience in climbing onto the platform

from the water. The mice were allowed to swim until they found the platform or for a maximum of

20 s, after which they were placed on the platform for 10 s. This was repeated four times in a row

on both pre-training days.

 The actual water maze test employed a black plastic circular pool (diameter 120 cm) and

the same platform as in pre-training. The testing took place in a room rich with visual cues on the

walls. The starting locations, labeled as North, South, East, and West were located arbitrarily on the

pool rim. The timing of the latency to find the submerged platform was started and ended by the

experimenter. A computer connected to an image analyzer (HVS Image, Hampton, UK) monitored

the swim pattern. Mice were placed in the water with their nose pointing towards the wall at one of

the starting points in a random manner. If the mouse failed to find the platform in the maximum

time (50 s), it was placed on the platform by the experimenter. Mice were allowed to stay on the

platform for 10 s. A recovery period of 30 s was allowed between the training trials. The

temperature of the water was kept constant throughout the experiment (20 ± 1o C).

 The training schedule consisted of 5 consecutive days of testing. Four platform trials of 50

s were run per day. The platform location was kept constant (the South-West quadrant) during

training. After the fourth trial on the 5th day, the platform was removed, and the mice were allowed
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to swim for 40 s without the platform. The spatial probe trial was run for all mice that were trained

during initial acquisition phase. During the platform training trials, path length, latency to find the

platform, percentage of trials when mice found the platform and swimming speed were recorded.

Furthermore, the pool surface was divided into three annuli of equal surface area, and the time spent

in each annulus was counted separately. The data from platform finding were normalized using

arcsin correction before the statistical analyses. In the spatial probe trial, the time that the mouse

spent in the vicinity (within a radius of 12 cm from the former platform center) of previous platform

position was measured.

4.5. Electrophysiological Tests (Study I-IV)

4.5.1. In vitro Recordings

 Preparation of slices for in vitro recordings is explained in chapter 4.2.3. For

electrophysiological recordings a slice was used 4-5 h after cutting. Responses were evoked by

stimulation of the SC projection in stratum radiatum of the CA1 field (Study I and II) or by

stimulation of the mossy fiber pathway in the dentate hilus (Study III) through a pair of twisted

nichrome bipolar electrodes and recorded using a glass microelectrode filled with 2M NaCl. In

Study I and II, the recording electrode was positioned in the CA1b subfield between two

stimulating electrodes placed in CA1a and CA1c subfields; this allowed us to activate separate

inputs in the targeted pyramidal cells (Study I and II). The stimulation intensity (20 70 μA) was

adjusted so as to obtain approximately 50 % of the maximum slope of the population spike free

fEPSPs. The inputs were stimulated (0.1 ms pulse duration) every 30 s. In Study III the recording

electrode was placed in stratum lucidum of the hippocampal CA3 field. For baseline recording the

stimulation intensity (80  140 A) was adjusted so as to obtain 40 % of the maximum slope as the

response, and inputs were stimulated (0.1 ms pulse duration) every 30 s. The slope of the fEPSPs

was measured between 30 % and 70 % of maximum. A pair of stimuli with inter-stimulus interval

(ISI) of 75 ms was delivered to simultaneously record paired-pulse facilitation (PPF) in Study II. In

Study III input/output (I/O) curves were constructed by taking the slopes of fEPSPs obtained at

different stimulation intensities. The slope of the I/O curve was calculated in MS Excel® using

Method of Least Squares for all points between minimum and maximum.

 In addition, in Study III paired stimuli with ISIs of 20, 40, and 80 ms were delivered to

record PPF twice during the recording - on baseline and 40 min after HFS. PPF was expressed as a

ratio of the slope of the second fEPSP to that of the first. Frequency facilitation (FF) was also tested
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in Study III before and 45 min after HFS. FF was induced by 1 Hz stimulation for 30 s. FF was

expressed as a ratio of last fEPSP to the first out of 30 responses. After establishing 30 min of stable

baseline, LTP was elicited by delivering eight trains of theta burst stimulation (TBS; 100 Hz trains

of 4 pulses, duration 0.2 ms, separated by 200 ms, repeated twice at 30-s interval) to one of inputs

in Study I and II. Stimulation with eight bursts was used to produce a sub-maximal LTP to see

clear effect. For induction of LTP, the stimulation intensity was increased by setting the pulse

duration to 0.2 ms (Arai and Lynch, 1992). In Study III HFS (100 pulses at 100 Hz, repeated four

times at 10-s interval) was delivered to empty the readily releasable pool of glutamate and to assess

mobilization of the storage pool. If the baseline did not stabilize in 30 min, the slice was discarded.

In Study I, 70 min after TBS, CPP (RBI, USA), a competitive NMDA-Rs antagonist at 5

or 10 μM was infused into perfusion line with a syringe pump. During drug infusion (25 min), TBS

(as previously described) was administered to the 2nd, unstimulated input. Monosynaptic responses

(sweep time 50 ms) for both inputs were recorded for 70 min (wash-out of the drug). As in Study

III, MK-801, a non-competitive NMDA-Rs antagonist (Tocris Bioscience, Bristol, UK) at 20 M

was added to aCSF to avoid contamination with CA3 commissural NMDA-dependent responses

(Weisskopf and Nicoll, 1995). In addition to the inclusion criteria for the mossy fiber (MF)

recording (see Result section), for the second set of animals (TG2 and WT2) the MF origin of

fEPSPs was verified at the end of each experiment by application of the mGlu-R II agonist DCG-IV

(Ascent Scientific Ltd., Weston-Super-Mare, UK) at 1 M (Kamiya et al., 1996; Yoshino et al.,

1996). The experiments were discarded if the inhibition produced by DCG-IV was  20 % of pre-

DCG-IV level.

Field EPSPs were amplified (x 1000), filtered (0.1 Hz  1 kHz), and digitized (10 - 20

kHz), acquired using Clampex 8.0 software and analyzed using Clampfit 8.0 software (both Axon

Instruments, Foster City, CA, USA). We measured the fEPSP amplitude and slope. Both parameters

can be used interchangeably in a situation where fEPSP is population spike-free (the sweep to

sweep correlation between slope and amplitude for individual slices in this material was 0.99).

4.5.2. In vivo Recordings

 The implantation of the electrodes for chronic recordings (Study II) is explained in chapter

4.2.3. Single monopolar pulses (duration 50 μs) were delivered at 30-s intervals and an I/O curve

was established as a ratio between the fEPSP amplitude vs. stimulus intensity at eight different

current intensities (50, 100, 150, 200, 250, 300, 350, and 400 μA). Based on this curve, the baseline

intensity was selected that yielded a fEPSP that was 40 % of its maximum amplitude. The signal
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was amplified (x 100 900), filtered (0.1 Hz 3 kHz), digitized at 2 kHz, and stored on the computer

using Experimenter s WorkBench® (DataWave Technologies, CO, USA) software. HFS to induce

LTP consisted of six trains of 6 pulses (50 μs) at 400 Hz, 100 ms between each train, repeated six

times at a 20-s interval. During the HFS, the stimulation intensity was raised to produce a fEPSP

amplitude that was 80% of its maximum. The animals were habituated for 10 min to the recording

chamber (plastic cage). On Day 1, an I/O curve was generated to ascertain the test and tetanus

intensities. Following the I/O curve, a 20-min baseline period was recorded. HFS was delivered and

fEPSP were recorded for a further 60-min period at the test intensity. On the ensuing two days, a

30-min period was recorded at the test intensity. The LTP induction was analyzed as percentage of

increase in the fEPSP or PS amplitude as compared with the baseline amplitude. Furthermore, the

fEPSP enhancement was analyzed only in those mice in which the PS did not mask the fEPSP

maximum, while the PS enhancement was analyzed only in those mice that demonstrated a clear PS

during the baseline recordings with the selected stimulus current.

 The implantation of the electrodes for chronic recordings (Study IV) is explained in

chapter 4.2.3. For baseline recording the stimulation intensity (about 90 A) was adjusted to obtain

40 % of the maximum slope of the response and inputs were stimulated (0.1 ms pulse duration)

every 30 s. The slope of the fEPSPs was measured between 30 % and 70 % of maximum. I/O

curves were constructed by taking the amplitude of fEPSPs obtained at different stimulation

intensities (20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280 μA). The slope of the

I/O curve was calculated by custom made routines in Visual Basic under MS Excel® (version 2002)

using Method of Least Squares for points between 10 and 90 % of maximum of absolute value.  In

addition, paired stimuli with ISIs of 25, 50, 75, 100, 600 and 900 ms were delivered to record paired

pulses on baseline. It was expressed as a ratio (PPR) of the slope of the 2nd fEPSP to that of the 1st.

HFS to induce LTP consisted of 6 trains of 6 pulses (50 μs) at 400 Hz, 100 ms between each train,

repeated 6 times at 20 s interval. During the tetanus the stimulation intensity was raised to produce a

fEPSP height that was 80 % of its maximum. After 120 min of follow-up after HFS, the second I/O

curve was established at the same 14 different current intensities as it was described earlier. The

signal was amplified (x 500), filtered (0.5 - 3 kHz), digitized (at 20 kHz) using Clampex® software

(Axon Instruments, Foster City, CA, USA), and stored in the computer.
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4.6. Statistical Analyses

 All statistical analyses were carried out using SPSS for Windows software (versions 9.0 -

14, SPSS Inc., USA).

 The uterus and body weights were analyzed using t-test. The effects of CPP and estrogen

and their interaction on water maze performance (platform finding percentage, swimming speed,

and probe trial success), rota-rod and open field performance were evaluated by General Linear

Model for repeated measures (GLM-RM) followed by contrast analyses, and by t-test.

 Amyloid burden (surface area covered with amyloid deposits) was analyzed using t-test.

In electrophysiological studies input/output (I/O) curves were constructed by taking the slopes of

fEPSPs obtained at different stimulation intensities. The mean slope of fEPSP was also plotted

against FV amplitudes (if recorded) to establish I/O relationships. The slope of the I/O curve was

calculated in MS Excel® using the Method of Least Squares for all points between minimum and

maximum. The basal synaptic transmission was determined from I/O curves was evaluated by using

GLM-RM followed by t-test or Dunnett s test post-hoc.

 The electrophysiological parameters (enhancement and / or decay of fEPSP slope or

amplitude, PS amplitude, paired-pulse ratio) were evaluated by GLM-RM followed by t-test or

Dunnett s test post-hoc, or by univariate analysis of variance (ANOVA).
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5. RESULTS

5.1. Behavioral Tests

5.1.1. Effects of Estrogen and CPP on Spatial Navigation and Motor Activity (Publication I)

Morris Water Maze

 The swimming speed was dramatically affected by the treatment, such that both estrogen

and CPP decreased swimming speed (Publication I, Fig. 2C and D). When we analyzed the

averaged number of successful platform findings over 5 training days, we found a significant

overall CPP effect, but no estrogen effect (Publication I, Fig. 1A and B). In the probe trial, used to

assess search bias when the platform was no longer present in the pool, CPP impaired but estrogen

treatment improved the performance (Publication I, Fig. 3).

Motor Tests

 CPP decreased the time spent on the rotating rod. However, the performance did not differ

between OVX and OVX+ERT mice. In the automated activity monitoring, OVX+ERT mice spent

more time in the center of the arena than OVX mice. There were no differences in ambulatory

distance, stereotypic movement time or number of rearings between OVX and OVX+ERT mice.

CPP decreased stereotypic movement time and number of rearings, but had no effect on ambulatory

distance or time spent in the center of the arena. No interaction has been found (Publication I,

Table 1).

 Overall, the protecting effect of estrogen against NMDA-receptor blockade was associated

with milder cognitive impairment in a hippocampal-dependent test. On the other hand, estrogen did

not alleviate motor side effect induced by an NMDA-receptor antagonist.
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5.1.2. Age-Dependent Effect of Mutated -Synuclein on Motor Activity (Publication IV)

Activity Test

 We found a significant difference between A30P (TG) and wild-type (WT) mice in

ambulatory distance (horizontal gross movement; Publication IV, Fig. 2), such that old TG mice

moved almost 50 % less than old WT mice or young mice of either genotype. In contrast, the

number of rearings did not differ between the genotypes.

Morris Water Maze

 The escape latencies during 4 days of task acquisition did not differ between the

genotypes, but got progressively shorter indicative of task acquisition. Old mice swam considerably

slower than young ones during all testing days (Publication IV, Fig. 3B). However, swimming

distance did not differ between groups, and only decreased across successive days. When spatial

memory in terms of search bias was assessed in a probe trial (last trial on Day 4) without the

platform, we observed that old animals were as good as young ones in locating the platform. There

was no difference between the group in time spent in platform quadrant or time in the near vicinity

of the former platform location. Furthermore, when memory retention was assessed in a second

probe trial on Day 5, no group difference was found in the search bias towards the platform

quadrant. However, search strategies were significantly different between age groups. In particular,

young mice spend more time in the zone closest to pool wall than the old mice.

 To sum up, we did not observe impaired spatial learning and memory as a consequence of

aging and expression of A30P mutated -synuclein. The only significant difference in behavioral

tests was decreased locomotion in aged mice, especially, in aged transgenics.

5.2. Electrophysiological Tests

5.2.1. Effect of Estrogen on Synaptic Plasticity in the Hippocampus (Publication I)

 In the absence of CPP, the fEPSP slope right after the tetanus tended to be higher in the

OVX+ERT mice compared to OVX mice. But no group differences were found in the fEPSP slope

at 15, 30, and 60 min after the tetanus (Publication I, Fig. 1).
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 CPP at the concentration of 5.0 μM completely blocked LTP in OVX mice, while

OVX+ERT mice still expressed robust LTP. OVX+ERT mice had a significant elevation of the

fEPSP slope compared to baseline at 15 min, 30 min, 45 min, but no longer at 60 min after the

tetanus. On the other hand, the OVX group showed no elevation of fEPSP slope at any time point.

Furthermore, the OVX+ERT group differed from the OVX group at 15, 30, and marginally at 45

min after the tetanus, but no longer at 60 min. No significant difference was found between the

groups in the fEPSP right after the tetanus (Publication I, Fig. 1).

 In contrast, 10 μM CPP blocked the induction of LTP in both OVX and OVX+ERT

groups. Neither group had elevated fEPSP slope compared to baseline at any time point. No group

difference was found between OVX and OVX+ERT mice in the EPSP slope at any time between 0

to 60 min after the tetanus (Publication I, Fig. 1).

 In agreement with behavior findings, LTP induction hippocampal slices taken from

estrogen-treated OVX mice was more resistant to the effect of a the lower dose of CPP than slices

from non-treated OVX mice. However, the higher CPP dose overran the effect of estrogen. Our

results are consistent with the idea that estrogen increases the number of NMDA-receptors on the

cell membrane, thereby rendering the neurons more resistant to the action of the competitive

channel blocker CPP (Publication I, Fig. 4).

5.2.2. Effect of Amyloid  Peptide on Synaptic Plasticity (Publication II)

Recordings in Schaffer Collateral – CA1 Path in vitro

 The baseline fEPSP slope tended to be smaller in APP/PS1 transgenics (A/P) mice than in

nontransgenic (NT) mice, but the age x genotype interaction was not significant. Input-output (I/O)

curve was determined by plotting the stimulus intensities needed to elicit maximum fEPSP slope

and 50 % of the maximum. The resulting slopes did not differ between A/P and NT mice, and no

genotype x age interaction was found (Publication 2, Table 1). Paired-pulse facilitation did not

differ between the genotypes, and no genotype x age interaction was found (Publication 2, Table

2). The theta burst stimulation (TBS) paradigm used resulted in about 50 % increases in the fEPSP

slope at 15 min after TBS. We compared the extent of LTP and its short-term decay between the

genotypes and ages at four times points (15, 30, 45, and 60 min after TBS), and neither a genotype

effect nor a genotype x age interaction was found in this comparison (Publication 2, Fig. 2).
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 Despite robust amyloid pathology, aged A/P mice had normal basal synaptic transmission,

LTP induction and maintenance when measured in vitro in CA1.

Recording of Perforant Path - Dentate Gyrus Synapses in vivo

 The groups did not differ in their basal synaptic transmission as assessed by I/O curves.

Although fEPSP at low stimulus currents and population spikes (PS) at all stimulus currents were

somewhat smaller in A/ P mice than in the NT controls, neither fEPSP nor PS amplitude displayed

a significant current x genotype interaction. The latency to fEPSP maximum was slightly but not

significantly longer in A/P mice than in NT mice. A clear LTP induction was observed in both

genotypes. The LTP decay over 3 days was faster in A/P mice compared with NT mice

(Publication II, Fig. 5A and B), as a significant day x genotype interaction was found for the

fEPSP amplitude. By contrast, the LTP decay for the PS was similar in both groups.

 To further evaluate whether the more rapid decay of fEPSP over 24 h in A/P mice was due

to impaired long-term maintenance of LTP or just a continuation of initially steeper decay curve, we

also analyzed the LTP decay during the first 60 min after its induction. The slope of the decay curve

did not differ between the genotypes.

 Aged A/P mice with robust amyloid pathology had normal basal synaptic transmission,

LTP induction and maintenance when measured in DG in vivo 60 min after the tetanic stimulation.

However, the enhanced fEPSP in the DG declined much faster in the A/P mice than in their

nontransgenic controls over 24 h.

5.2.3. Role of -Synuclein on Glutamate Release in vitro (Publication III)

 Our results indicate that overexpression of mutated or wild-type human -syn, or lack of

-syn does not increase excitability of MF-CA3 pyramidal cell synapses (Publication III, Fig. 2).

As for paired-pulse facilitation (PPF), paired-pulse ratio (PPR) before HFS tended to be

smaller in mice deficient in -syn and in mice overexpressing wild-type or mutated human -syn

compared to their wild-type controls, but the effect approached significance only for mice

overexpressing human wild-type -syn. Although the HFS did not induce any overall change in the

PPR, it enhanced the group differences (Publication III, Fig. 3A and B). When the PPR was

measured again after HFS, -syn deficient mice and both transgenic groups had significantly

smaller PPR than their controls.
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 HFS induced somewhat weaker post-tetanic potentiation in -syn deficient mice than in

their wild-type control and in mice overexpressing wild-type human -syn, but the group difference

was not significant. Similarly, post-tetanic potentiation did not differ between mice overexpressing

wild-type human -syn and their wild-type controls. However, only both transgenic groups

displayed enhancement at 25 min (Publication III, Fig. 4A and B).

Frequency facilitation was found in wild-type mice and A30P transgenic mice, but was

totally absent in -syn deficient mice before and after HFS.

 In summary, basal synaptic transmission was normal but FF and PPF after HFS was

impaired in -syn deficient mice. Similarly, transgenic animals overexpressing wild-type or

mutated human -syn showed normal basal synaptic transmission and attenuated PPF. However,

they had normal FF and enhanced LTP.

5.2.4. Combined Effect of -Synuclein and Aging on Synaptic Plasticity (Manuscript IV)

 In terms of fEPSP, the basal synaptic transmission in PP  DG synapses before HFS was

significantly higher in A30P TG animals (Manuscript IV, Fig. 4 A and B), while young animals

tended to have higher excitability compared to old ones. However, after HFS young animals had

significantly stronger synaptic transmission than the old ones, while the genotype effect was

nonsignificant. To assess the overall genotype effect before and after HFS, we included both age

groups in the same GLM-RT model. In this analysis, TG animals did not differ in basal synaptic

transmission when compared to NT. However, the effect of age became significant. Thus it appears

that in general young animals had increased basal synaptic transmission and that transgenic -syn

further enhanced basal synaptic transmission before HFS.

 As for PS, none of analyzed parameters (PS maximal amplitude, minimal current to elicit

PS and I/O curve tangential line) was significantly different between the groups before HFS.

However, after HFS, PS decreased significantly in all groups.

 The PPR for fEPSP slope on baseline was significantly smaller in old animals compared to

young ones. In addition, young animals had a modest facilitation with maximum at 25 and 50 ms,

while in old animals no such peak was observed and PPR dropped bellow 1 for ISIs longer than 50

ms. Similarly to PPR of fEPSP slope, PPRs of PS tended to be higher in young animals, but at a

different ISI.
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 Activity-dependent plasticity was tested with a HFS protocol. In our recordings, the only

consistent finding was the expression of LTD in old TG group 75-120 min after HFS (Manuscript

IV, Fig. 6B). Both fEPSP slope and amplitude in all other groups did not differ significantly from

baseline starting from 45 min after HFS. In addition, only young animals displayed a short-term

(first 15 min) increase of fEPSP amplitude, which later decayed to baseline, however.

 In summary, we found decreased basal synaptic transmission and PPF in the perforant path

- dentate gyrus granule cell synapses of old mice independent of their genotype. In addition, -syn

accumulation in old A30P mice led to LTD expression after a stimulation protocol that normally

induces LTP. These findings suggest that -syn exacerbates the aging process and leads to impaired

synaptic plasticity.
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6. DISCUSSION

6.1. The Effect of Estrogen on Synaptic Plasticity in Hippocampus

 Our results indicate that the potency of the competitive NMDA-antagonist CPP to block

LTP induction is dependent on the estrogen status of the animal: slices taken from estrogen-treated

OVX mice were more resistant to the effect of CPP than slices from non-treated OVX mice. Also,

our results suggest that estrogen treatment might increase the number of functional NMDA-

receptors in hippocampus in OVX mice, and in that way antagonize a blockade of hippocampal

NMDA-receptors by CPP. The protecting effect of estrogen against NMDA-receptor blockade was

also associated with milder behavioral impairment in a hippocampal-dependent cognitive test.

However, estrogen treatment did not reduce the effects of CPP to decrease locomotor activity and

impair balance and motor-coordination in OVX mice.

 Previous in vivo studies have shown positive estrogen effect on LTP. In vivo recordings

during anesthesia have revealed an augmented LTP in female rats during the proestrus (Good et al.,

1999; Warren et al., 1995). LTP enhancement has also been found after a single injection of

estradiol in awake rats (Cordoba Montoya and Carrer, 1997; Smith and McMahon, 2005). The

effect of chronic estrogen treatment (14 days) on LTP in vitro (Barraclough et al., 1999) is

consistent with our study in mice, i.e. no any effect in the CA1 area was found.

 Estrogen has been reported to increase the number of dendritic spines and synaptic density

of CA1 pyramidal neurons in OVX rats (Gould et al., 1990; Woolley and McEwen, 1993),

sensitivity of CA1 pyramidal cells to NMDA-R mediated synaptic input (Woolley et al., 1997), and

enhanced NMDA-dependent Ca2+ signals (Pozzo-Miller et al., 1999), suggesting that the new

spines and synapses induced by estrogen are enriched in NMDA-receptors. Thus, an increase in the

number of NMDA-Rs would be one of possible explanation for different dose-response curves to

CPP application in the present study. A 20 30 % increase in the receptor number would not

necessary result in significant enhancement of LTP. Also, if the competitive antagonist is present in

excess, such a small increase in the number of binding sites should not affect the outcome.

However, if the concentration of the antagonist is large enough to block all binding sites in the

OVX slices, but leaves 20 30 % of NMDA-Rs free in the OVX+ERT slices, only OVX+ERT slices

should express LTP, as indeed was the case with CPP at 5 μM.

A study that was published two years later than ours supports our hypothesis by confirming

that after estrogen treatment the number of NMDA-Rs increases through insertion into newly

formed or pre-existing synapses, which increases NMDA-Rs-mediated neurotransmission (Smith
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and McMahon, 2005). Importantly, this study pointed out that hippocampal synaptic plasticity is

enhanced only when the spine density is increased simultaneously with an increase in NMDA-R

transmission relative to AMPA-R transmission. With ongoing estrogen treatment, also AMPA-R

transmission gradually increases, while increased spine density and NMDA-R transmission are

maintained. Eventually, the balance between NMDA-R and AMPA-R transmission is re-

established, and the magnitude of attained LTP is similar to that in the baseline condition. This

finding indicates that the hormone-induced increase in functional synapse density alone is not

sufficient to support heightened plasticity (Smith and McMahon, 2005). A further complexity in

this scenario is that only about 30 % of the synapses containing estrogen receptors co-express

NMDA-R (Adams et al., 2004). Future studies also need to examine the relationships between

estrogen receptors and NMDA receptor subunits.

 In our study, we found that estrogen treatment initiated 2 weeks before water maze testing

did not improve the initial acquisition of mice being OVX for 7 months. The effect cannot be a

general slowing of locomotion or impaired coordination because estrogen did not affect movement

parameters in the open field or rota-rod tests. Slowing of swimming speed may partially explain

why estrogen did not improve initial task acquisition. It may also account for the reported impairing

effect of repeated estrogen injections on water maze performance in OVX mice (Fugger et al.,

1998), because that study reported the impairment as longer escape latency but did not measure the

swimming speed. Consistent with frequently reported spatial learning impairment with NMDA-

antagonists (Morris et al., 1986; Whishaw and Auer, 1989), CPP treatment dose-dependently

impaired spatial navigation of mice as indicated by decreased platform finding percentage during

acquisition and poorer probe trial success. Consistent with previous reports (Millan and Seguin,

1994; Parada-Turska and Turski, 1990), CPP also dose-dependently reduced locomotor activity and

impaired motor coordination of mice. Therefore, impaired water maze acquisition cannot be

ascribed to impaired hippocampal function alone. However, the main finding of the water maze test

was that the estrogen treatment alleviated the CPP-induced deficit in a dose-dependent manner. This

was most clearly seen as an improved performance during the probe trial, which is considered the

best measure for hippocampal-dependent spatial navigation in this task (Lipp and Wolfer, 1998;

Morris et al., 1982). Importantly, the performance of CPP-treated OVX+ERT mice on the probe

trial was superior to that of OVX mice despite their slower swimming speed that should impair the

acquisition. A specific effect of ERT on hippocampal-dependent navigation was further indicated

by similar effects of CPP in OVX+ERT and OVX mice on the non-cognitive functions in the open

field and rota-rod tests.
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 Based on literature CPP almost completely blocks LTP induction in a freely moving rat at

the systemic dose of 5 mg/kg (Morimoto et al., 1991), and a dose of 10 mg/kg completely blocks

LTP induction in a freely moving mouse (Davis et al., 1997). Such a large dose could not be studied

in the water maze because of the motor side effects. Assuming that 10 mg/kg of CPP leads to a

complete blockade of NMDA-receptors as did the 10 μM concentration in vitro, we sketched the

following dose-response curves for CPP in OVX and OVX+ERT mice. The relative difference in

NMDA-receptor occupancy between OVX and OVX+ERT mice with the CPP dose of 0.5 mg/kg

would be about 15 %, which is not large enough to affect their behavior differentially. However, the

dose 5 mg/kg should block all NMDA-R in the OVX mice while leaving about 20 % of the

receptors free in the OVX+ERT mice, thus revealing a significant group difference also at the

behavioral level. The dose-response curves indicate a 30 % rightward shift of the curve in the ERT

group, which in consistent with the about 30 % increase in the number of NMDA-receptors of

estrogen-treated OVX rats (Gould et al., 1990).

A later study confirmed that following estradiol treatment NMDA-Rs density was restored

in aged animals back to the control level in all hippocampal subregions, especially at a high dose

(El-Bakri et al., 2004), and thus ERT might help maintain cognitive functions as well in old animals

as in young ones (Adams et al., 2004). It is believed that the memory enhancing effect of estrogen

involves interaction of estrogen with different neurotransmitters system such as the cholinergic (El-

Bakri et al., 2004; Packard and Teather, 1997) and the monoaminergic systems (Luine et al., 1998).

Therefore, it is possible that estrogen affects the glutamatergic system indirectly through an

interaction with other neurotransmitter systems.

 Our study provided first indirect evidence that estrogen may affect the number or

properties of hippocampal NMDA-receptors in the mouse. Taken together with later studies it

shows that NMDA receptor functions in the hippocampus are strongly regulated by estradiol. These

findings provide insight into the interaction of estradiol and the glutamatergic system, which may

be relevant in the treatment of memory problems in postmenopausal women and in AD patients.

6.2. The Effect of Accumulation of Amyloid  Peptide on Synaptic Plasticity

 At the age of 17 18 months and with robust amyloid pathology, transgenic mice carrying

mutated human APPswe and PS1(A246E) genes (A/P mice) had normal induction and 60 min

maintenance of hippocampal LTP both when measured in vitro in CA1 and in vivo in DG.

However, the enhanced fEPSP in the DG declined much faster in the A/P mice than in their NT

controls over 24 h. This finding is fully compatible with the behavioral findings in these mice.
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Namely, in the water maze, the A/P mice show similar learning within a session as control mice, but

show markedly less improvement across days than the controls (Liu et al., 2002).

Different mouse strains have been shown to vary in evoked fEPSPs and population spikes

and their potentiation, but not in the presynaptically determined PPF (Bampton et al., 1999). The

frequent presence of two population spikes in A/P mice may indicate increased excitability of

dentate granule cells in these mice. However, the I/O plot for the PS did not differ among the

genotypes, speaking against any genotype difference in excitatory synaptic transmission. Also, no

genotype difference was observed in PPF. As the focus of this study was on LTP maintenance, we

did not systematically test paired-pulse inhibition with varying intervals, which may have revealed

genotypes differences in the dynamics of inhibitory neurotransmission. However, in a previous

study, we found that A/P mice display reduced habituation of auditory evoked responses to paired

click stimuli separated by 500 ms (Wang et al., 2002). Reduced inhibition of dentate granule cells in

A/P mice may explain why the decay of population spike enhancement was similar in A/P mice and

their controls despite much faster decay of fEPSP enhancement in A/P mice. Interestingly, however,

a similar dissociation between fEPSP and PS enhancement in the DG has also been reported

elsewhere (Chapman et al., 1999), but they never observed multiple PSs in the APPswe mice. The

observation that the dentate fEPSP enhancement is more vulnerable to A  accumulation than the PS

enhancement is consistent with the current understanding of the underlying pathology. Namely, a

study (Lazarov et al., 2002) showing that A  accumulation in the dentate molecular layer is

dependent on axonal transport of APP from the entorhinal cortex through the perforant path

indicates that A  peptides are released and subsequently deposited close to the nerve terminals.

Therefore, A  should have a stronger influence on the fEPSP generated in the dendritic tree of

dentate granule cells than on the PS initiated in the soma and proximal axon further away from the

terminal zone.

Earlier we suggested that mainly APP mutation is responsible for the majority of effects in

our A/P double mutant mice (Wang et al., 2002; Wang et al., 2003). A more recent report on triple

3xTg-AD mice expressing APP, PS1 and tau mutations (3xTg-AD mice) strongly supports this

hypothesis. In particular, 3xTg-AD mice manifest impaired synaptic functions measured as basal

synaptic transmission, LTP maintenance and PPF, already at the age of 6 months or older (Oddo et

al., 2003). In contrast, double mutants without APP mutation did not show significant synaptic

alterations in area CA1. Importantly, synaptic dysfunction, including LTP deficits, appeared before

plaque and tangle pathology, manifested in an age-related manner and correlated with the

accumulation of intracellular A at later time points (Oddo et al., 2003). In fact, a number of
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previous studies have reported that young APP transgenics undergo synaptic, electrophysiological

and behavioral changes even months before any amyloid plaque formation (Hsia et al., 1999;

Mucke et al., 2000). These findings indicate that some soluble form of A  is a more likely

candidate for the perturbed synaptic plasticity than amyloid plaques themselves. Recent evidence

point to a special importance of small soluble A  aggregates (oligomers and protofibrils) in this

respect (Clearly et al., 2005; Wang et al., 2004). Naturally secreted A  oligomers from transfected

human cell lines can interact with neurons in vivo, altering their normal physiology. In particular,

A  oligomers, in the absence of monomers and amyloid fibrils, markedly inhibited hippocampal

LTP in rats in vivo at concentrations found in human brain and cerebrospinal fluid (Walsh et al.,

2002). Whereas in the presence of A  monomers or dimers, oligomers do not express such an

effect, as high-frequency stimulation produced a robust LTP which was fully maintained for over

180 min. These observations strongly support the hypothesis that soluble A  oligomers are the

principal effectors of the synaptic dysfunction and synaptic loss that characterize AD (Walsh et al.,

2002; Clearly et al., 2005).

 A similar parallel between electrophysiological findings (Study II) and MWM

performance (Liu et al., 2002) was later observed in another AD mouse model, the 3xTg-AD mice

(Billings et al., 2005; Oddo et al., 2003). At a young age, these mice displayed equal performance in

hippocampal dependent memory tasks such as the spatial reference version of MWM when

compared to age-matched controls (Billings et al., 2005). However, their memory problems

appeared at the age of 6 months, at the same age when amyloid plaques were detected in the

hippocampus, cortex and some other regions. The initial cognitive impairments manifested as

retention, but not learning, deficit, as the 3xTg-AD mice effectively learn the task within a day but

fail to retain essential information from day to day, exactly as was the case with our APP/PS1 mice

(Liu et al., 2002). These findings parallel observations in patients with mild cognitive impairment or

early AD who show normal immediate recall of a word list but have impaired recall after another

intervening task (Grundman et al., 2004). The striking A -dependent behavioral and LTP

maintenance deficits suggest that A  interferences with intracellular signaling cascades supporting

memory consolidation.

6.3. The Effect of -Synuclein Deletion on Glutamate Release

 Mossy fibers (MFs) display the most robust overexpression of A30P mutated -syn in our

transgenic mice, and therefore our electrophysiological recordings focused on the MF-CA3
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synapses. Notably, the literature on MF slice recordings is based on results in juvenile animals,

whereas we wanted to study the effect of A30P mutation in the adult brain. The age difference

likely explains some atypical features of our recordings. First, paired-pulse facilitation (PPF) was

only about 1.5-fold in our mice while it is typically over 2 in the literature. Second, clear frequency

facilitation (FF) is another characteristic feature of MF conducted responses while it was only

marginal in our animals. Third, high-frequency stimulation at 100 Hz with the currently used

protocol is reported to induce robust LTP in wild-type rats and mice, whereas only transgenic mice

expressing human -syn showed typical LTP in our study. Another factor that may explain some of

the unconventional results is the fact that we used extracellular recordings, while the majority of

earlier reports are based on intracellular or patch-clamp recordings. Despite all precaution measures

taken to avoid contamination  of recorded responses by CA3-CA3 fEPSPs, it is difficult to fully

exclude them from consideration using extracellular recordings (Claiborne et al., 1993; Dityatev A,

personal communication).

 The I/O curve for fEPSP slope as a response to increased stimulation current or presynaptic

fiber volley did not differ between -syn KO mice and their wild-type controls. This is consistent

with a previous study on SC CA1 synapses in -syn KO mice, reporting no change in basal

synaptic transmission (Cabin et al., 2002). Also in line with the earlier study, our -syn KO mice

displayed attenuated responses after prolonged stimulation. Both 30 pulses at 1 Hz and repeated 100

Hz stimulation resulted in less facilitation in -syn KO than in control mice. Additionally, PPF was

impaired in -syn KO mice compared to wild-type mice after the repeated 100 Hz stimulation. All

these findings are compatible with the idea that lack of -syn results in a larger capacity or faster

refilling of the readily releasable transmitter pool, while reducing the capacity of the reserve pool

(Yavich et al., 2004).

Despite similar I/O curves and attenuated PPF after repeated 100 Hz stimulation, the A30P

transgenic mice differed from the -syn KO mice in two important aspects. First, their FF did not

differ significantly from the wild-type control mice, except for a modest decline in FF after the

repeated 100 Hz stimulation. Second, and more importantly, A30P mice and mice with transgenic

expression of the wild-type human -syn were the only groups showing true LTP. Their LTP was

typical of MF synapses with prolonged post-tetanic potentiation followed by a slowly emerging

LTP that reached its peak at 50 min after the end of high frequency stimulation (Derrick and

Martinez, 1994). The stimulation protocol used induces a pure presynaptic synaptic enhancement

according to previous literature (Kapur et al., 1998; Zalutsky and Nicoll, 1990). The presynaptic

nature of LTP in human -syn transgenic mice is further supported by the use of MK-801 during all



73

recordings to block NMDA-receptors and the observed attenuation of PPF. In fact, despite

ostensibly similar to PPF attenuation in -syn KO mice, the underlying mechanism of this

attenuation in A30P mice is likely different, and can be simply attributed to enhanced glutamate

release upon the first stimulation. It is worth noting that the A30P mice carry both the endogenous

mouse -syn and the transgenic mutant one, so that their total -syn levels are about 1.6-fold

compared to the wild-type (Yavich et al., 2005). Their enhanced LTP compared with wild-type

mouse could derive from increased amount of available -syn protein in MF terminals. In favor of

this notion, an LTP was also induced with the present HFS protocol in mice with transgenic

overexpression of human wild-type -syn protein, which also have about double levels of -syn

(Kallunki P., personal communication). If the role of -syn is to augment transfer of transmitter

vesicles from the reserve pool to the readily releasable pool (RRP), it makes sense that additional

amount of -syn would be beneficial after HFS which empties the RRP. One could have expected

similar enhanced facilitation in both TG groups in the FF paradigm. However, maybe because of

the low frequency used in this paradigm, additional -syn may not provide extra capacity to

replenish the RRP, even though lack of -syn did result in the absence of FF.

 In conclusion, our findings lend additional support to the idea that -syn plays an

important role in presynaptic mobilization of reserve pool neurotransmitter vesicles, not only for

dopamine but also for glutamate. On the other hand, the presence of A30P mutated (or wild-type)

human -syn does not appear to perturb the functions of endogenous mouse -syn in glutamate

mobilization in MF terminals, although it did so for striatal dopamine release (Yavich et al., 2004).

This difference may explain the link of -syn with PD in particular.

6.4. The Age Effect of -Synuclein Mutation on Glutamate Release

 The focus of the present study was the age-depended effect of mutated human -syn on

synaptic plasticity in the dentate gyrus (DG). An earlier study from our laboratory showed age-

depended (between 11 and 21 months of age) increase in total -syn protein levels in A30P mice,

while their life span, body size and physical condition did not differ from congenic control mice

(Yavich et al., 2005). The characterization of DG response in this model was of special interest

because -syn-positive dystrophic neurites have been described in this structure in patients with

diffuse Lewy body disease (LBD) (Iseki et al., 1998). In addition, perforant pathway is degenerated

in LBD patients. To our knowledge, this is the first in vivo electrophysiological investigation of
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perforant pathway-dentate granule cell (PP-DG) synapses in transgenic mice overexpressing A30P

-syn, in which age-depended effect of -syn accumulation also was assessed.

 Behavioral analysis of A30P mice revealed decreased locomotion in aged animals. This

data is consistent with previous study in the same mice and in parallel with -syn accumulation in

old but not in young TG mice (Yavich et al., 2005). However, when spatial learning and memory

was tested in Morris water maze, we did not observe any genotype or age effects. This may suggest

that -syn accumulation does not affect hippocampal dependent learning and memory at system

level.

 The basal synaptic transmission of PP-DG synapses was tested on two occasions, before

high frequency stimulation (HFS) and 120 min after it. Our data indicates reduced excitability in old

animals. In addition, the genotype had some additional effect, as TG animals tend to have higher

basal synaptic transmission compare to controls. The trend of increased basal synaptic transmission

in TG animals was also found in our previous study on the same mice in mossy fibers in vitro

(Study III). This is in line with reports of reduced fEPSP in DG of aged rats (Barnes and

McNaughton, 1980), probably due to a reduction in axon collaterals from the entorhinal cortex to

the granule cells (Burke and Barnes, 2006).

 When presynaptic release mechanism in PP-DG synapses was probed with measurement of

paired-pulse ratio (PPR), for fEPSP we observed typical facilitation at interstimulus intervals of less

than 200 ms and depression at longer intervals in young mice (McNaughton, 1982).  However, old

animals showed no sign of paired-pulse facilitation at shorter intervals and overall the facilitation

was significantly lower than in young animals. This is consistent with previous in vitro findings of

age-dependent decrease of fEPSP facilitation in lateral PP input to DG (Froc et al., 2003; Zheng et

al., 2005). However, this age-dependent decrease is unlikely of presynaptic origin as usually

considered (Zucker and Regehr, 2002), but may stem from compensatory mechanisms that

increases postsynaptic sensitivity in response to the reduced medial PP input (Barnes and

McNaughton, 1980; Burke and Barnes, 2006). One such mechanism may be alterations in

postsynaptic AMPA receptors, which has been reported to contribute to paired-pulse facilitation

(PPF) in CA1 synapses (Wang and Kelly, 1997).

 Results in our study show that PS PPR in young mice resembles triphasic pattern typical of

PP-DG synapses: early depression (10-40 ms), facilitation (70-100 ms), and late depression (150-

2000 ms) (Gilbert and Burdette, 1996). PPF and depression of the PS can give useful information

about feedforward and feedback inhibitory circuits in the hippocampus (Bliss et al., 2007). If the

first stimulus in a pair is able to evoke PS, GABAA-mediated feedback inhibition lasting 10-20 ms
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prevents the second stimulus from evoking a population spike. The spike facilitation at longer

intervals may be explained by suppression of feedforward inhibition mediated by presynaptic

GABAB autoreceptors (the peak effect at 100-200 ms). Thus, it can be suggested that decreased PPF

in old animals is due to stronger feedforward inhibition, which maybe a result of partial loss of

feedback interneurons. In this regard, it should be noted that hilar cells in DG represent a population

of feedback interneurons (Freund and Buzsaki, 1996) which are among the most vulnerable cell

types to aging process (Gavilan et al., 2007).

 High frequency stimulation (HFS) induced LTD in old TG mice, short term potentiation in

young NT mice, and neither potentiation nor depression in old NT and young TG mice. Deficits in

both LTP induction and maintenance in aging animals is not surprising as numerous studies have

shown this before (for review see (Burke and Barnes, 2006)). However, LTD is considerable more

difficult to obtain in the intact animals, especially in the DG (Errington et al., 1995). It is well

establish that postsynaptic intracellular Ca2+ is a central messenger in NMDA-R-dependent forms of

LTP and LTD. The current hypothesis states that a rapid rise in Ca2+ produces potentiation, whereas

a small, prolonged increase induces depression (Bi and Rubin, 2005; Bliss et al., 2007). In support

of this hypothesis, lowering of external Ca2+ transforms a protocol that normally induces LTP into

one that produces LTD (Mulkey and Malenka, 1992). Interestingly, a recent study revealed that -

syn is responsible for acceleration of Ca2+ release in cultured cells upon treatment with a wide range

of agonists (Narayanan et al., 2005). Therefore -syn accumulation in old animals may alter

postsynaptic Ca2+ signaling in a way which favors manifestations of activity-dependent depression.

Alternatively, -syn accumulation may alter another distinct form of LTD, mGlu-R-dependent, in

which signaling mechanisms are very different from those involved in NMDA-R-dependent LTD

(Bliss et al., 2007).

 At a first glance, the finding of intact spatial memory in old TG mice appears to be in

contrast with a consistent expression of LTD in the same animals. However, it should be recognized

that water maze is a systems level test assessing general cognitive function (or integrity of large

neural networks involving the hippocampus), while LTP/LTD is a measurement of a single synaptic

pathway. As PP-DG synapses are an integral part of the hippocampal circuitry, other synapses may

compensate for the observed alternations. Our previous study (Study III) may provide one example

of such compensation by showing that human -syn expressing mice were the only ones which

exhibited LTP in MF-CA3 synapses.

 A previous in vitro study on medial PP-DG granule cell synapses showed no changes in

basal synaptic transmission and enhanced PPD (Steidl et al., 2003) in mice carrying similar A30P
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mutation as our mice. In addition, no age and genotype interaction was found for measured

parameters. However, this study is difficult to compare with our study due to a number of

methodological differences. First, Steidl and colleagues (Steidl et al., 2003) employed a mouse with

much higher overexpression level of the transgene induced by the hamster prion protein (PrP)

promoter (15-fold) as compared to the mouse PrP promoter in our mice (1.5-fold). Second, one

study was conducted in vitro and the other one in vivo.

 In conclusion, our findings lend additional support to the contention of altered synaptic

plasticity in aged mice. We found decreased basal synaptic transmission and PPR in the PP-DG

granule cell synapses of old mice. In addition to normal aging processes, -syn accumulation may

impose additional stress on the tested synapses. Likely by altering postsynaptic Ca2+ signaling, -

syn accumulation in old TG animals leads to LTD expression after stimulation protocol that

normally induces LTP.
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6.5. GENERAL DISCUSSION

 The mouse models used in these studies may be instrumental for future investigation of the

pathogenesis of neurodegeneration in both AD and PD. We hope that investigations on how AD and

PD affect excitatory synaptic transmission and plasticity in the hippocampus will eventual reveal

the underlying cause for early memory deficits in AD and PD/Lewy Body Dementia.

 Despite all difficulties to record from hippocampal slices in vitro, they are the most

popular preparations to study short- and long-term synaptic plasticity in mammals. However, even

though physiological properties of synapses in slice preparations are close to in vivo condition, the

percentage of synaptically connected neurons in slices is very low. Therefore, combination of in

vitro and in vivo methods provides a more powerful way to test or at least to formulate plausible

hypotheses on the mechanisms of transmitter release and to link intracellular changes and memory

formation in normal aging and in disease.



78



79

7. CONCLUSION

1. The present study provided first indirect evidence that estrogen may affect the number or

properties of hippocampal NMDA-receptors in the mouse. The complexity of estrogen effect is

emphasized by number of factors (such as a dose and duration of estrogen treatment and a length of

deprivation), which may be relevant in determining its neural and cognitive efficacy. The observed

effects of estrogen on NMDA-R-mediated synaptic plasticity in mice will open up this field of

research to modern gene targeting techniques.

2. The present study provides some additional data on how AD pathology underlies functional

abnormalities involving the mechanisms of synaptic transmission. These deficits could involve

changes in one or more enzymes, second messengers, transcription factors etc., which could affect

plasticity of neurotransmitter receptors without modifying basic synaptic plasticity. Defining the

relationships among APP, PS1, A  and mechanisms contributing to the induction, expression or

maintenance of LTP will therefore be critical for our understanding of the pathogenesis of AD.

3. Our findings lend additional support to the idea that -syn plays an important role in presynaptic

mobilization of reserve pool neurotransmitter vesicles, not only for dopamine but also for

glutamate. On the other hand, the presence of A30P mutated (or wild-type) human -syn does not

appear to perturb the functions of endogenous mouse -syn in glutamate mobilization in MF

terminals, although it does so for striatal dopamine release. This difference may explain the link of

-syn with PD in particular.

4. Our findings lend additional support to the idea of altered synaptic plasticity in aged mice. In

addition to normal aging processes, -syn accumulation can disturb synaptic plasticity. For instance

by altering postsynaptic Ca2+ signaling, -syn accumulation in old TG animals leads to LTD

expression after a stimulation protocol that normally induces LTP.

All in all, a comparison of the behavioral and electrophysiological findings in these experiments

showed a close relationship between spatial memory function and the rates of synaptic transmission

and plasticity depending on age and the pathological status.
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