
JANNE MARTIKAINEN

JOKA
KUOPIO 2008

KUOPION YLIOPISTON JULKAISUJA E. YHTEISKUNTATIETEET 152
KUOPIO UNIVERSITY PUBLICATIONS E. SOCIAL SCIENCES 152

 Doctoral dissertation

To be presented by permission of the Faculty of Social Sciences

of the University of Kuopio for public examination in Auditorium ML1,

Medistudia building, University of Kuopio,

on Saturday 16th February 2008, at 12 noon

Department of Health Policy and Management
Faculty of Social Sciences

University of Kuopio

 

Application of Decision-Analytic Modelling
in Health Economic Evaluations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEF Electronic Publications

https://core.ac.uk/display/15167261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ISBN 978-951-27-0811-6
ISBN 978-951-27-1062-1 (PDF)
ISSN 1235-0494

Kopijyvä
Kuopio 2008
Finland

Distributor :  Kuopio University Library
   P.O. Box 1627
   FI-70211 KUOPIO
   FINLAND
   Tel. +358 17 163 430
   Fax +358 17 163 410
   http://www.uku.fi/kirjasto/julkaisutoiminta/julkmyyn.html

Series Editors:  Jari Kylmä, Ph.D.
   Department of Nursing Science

   Markku Oksanen, D.Soc.Sc. Philosophy
   Department of Social Policy and Social Psychology

Author’s address: Department of Social Pharmacy     
   University of Kuopio     
   P.O. Box 1627     
   FI-70211 KUOPIO     
   FINLAND
   Tel. +358 17 162 600
   Fax +358 17 163 464
   

Supervisors:  Professor Hannu Valtonen     
   Department of Health Policy and Management     
   University of Kuopio      

   Professor Olli-Pekka Ryynänen     
   School of Public Health and Clinical Nutrition     
   University of Kuopio

   Docent Miika Linna, D.Sc. (Tech.)    
   Centre for Health Economics - CHESS     
   STAKES  

Reviewers:  Professor Alan Lyles    
   Division of Government and Public Administration     
   University of Baltimore, USA         

   Doctor Elisabeth Fenwick, Ph.D.     
   Public Health and Health Policy     
   University of Glasgow, UK

Opponent:  Professor Pekka Rissanen     
   Tampere School of Public Health     
   University of Tampere



 

 
Martikainen, Janne. Application of decision-analytic modelling in health economic evaluations. Kuopio 
University Publications E. Social Sciences 152. 2008.  147 p. 
ISBN 978-951-27-0811-6 
ISBN 978-951-27-1062-1 (PDF) 
ISSN 1235-0494 
 

ABSTRACT  
 
Background: Western Societies are facing increasing challenges in funding their health care systems. 
Therefore, health care decision-makers have started increasingly to demand evidence that a health 
technology is cost-effective before it is financed or recommended to be adopted for wide use.  In medi-
cine, scientific evidence produced by randomised controlled trials (RCTs) is typically ranked highly in 
the hierarchy of evidence. Unfortunately, RCTs are restricted in their ability to produce evidence in the 
form that is needed for health care decisions. The applications of decision-analytic models have been 
suggested to offer a potential vehicle to produce valid evidence, which is relevant to the health care 
decision-makers.   
 
Aim of the study: To develop the applications of decision-analytic models and to explore the applica-
bility of a set of Bayesian methods for evidence synthesis and decision-analytic modelling in health eco-
nomic evaluations.  
 
Material and methods: The study is based on four separate case studies, where the decision-analytic 
models were developed and evidence synthesis methods were applied to aid in real world decision-
making processes. Probabilistic modelling techniques were applied in all four case studies. Further-
more, a set of Bayesian methods was applied to synthesise the available evidence and to handle un-
certainties in the decision-analytic models.    
 
Results: The conducted case studies showed that the decision-analytic models can be applied, when 
there is a need to assess all relevant evidence, to link intermediate outcomes to final outcomes, to 
make results applicable to the decision-making context due to a gap between clinical trial evidence and 
the requirements for a decision, or to estimate cost-effectiveness for specific subgroups. The case stud-
ies also showed that the identification, selection, and critical appraisal of evidence are the most time 
consuming parts of the model development process. Evidence synthesis proved to be challenging due 
to the timing of cost-effectiveness evaluations, since they tend to focus on a time period at or around 
the implementation of health technology, when experience and evidence about its clinical and economic 
consequences may still be relatively limited. Furthermore, the case studies proved that the probabilistic 
modelling approach does offer an efficient way to reflect decision uncertainty but data used in the prob-
abilistic models requires very often some preparation, which in turn, increases the number of the addi-
tional sources of methodological and process uncertainties.   
 
Conclusions and suggestions for further research: The study proved that the applications of deci-
sion-analytic models offer a clear and coherent mathematical structure to combine all relevant evidence 
and to assess in advance the consequences, such as expected costs and health outcomes, of different 
decisions. However, further developments to standardise the modelling processes and to reflect the 
quality of evidence used in the decision-analytic models are needed. In addition, further developments 
to improve the handling of model uncertainty and to increase transparency are to be welcomed.    
 
National Library of Medicine Classification: W 74 
 
Medical Subject Headings: Decision Making; Economics; Models, Economic; Cost and Cost Analysis; 
Bayes Theorem 
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TIIVISTELMÄ 
 
Tutkimuksen tausta: Länsimaiset terveydenhuoltojärjestelmät ovat viime vuosina kohdanneet enene-
vässä määrin haasteita palvelujärjestelmiensä rahoittamisessa. Tämän vuoksi tarve kustannus-
vaikuttavuustutkimusten käyttöön terveydenhuollossa tehtävien rahoitus- ja käyttöönottopäätösten tu-
kena on lisääntynyt huomattavasti. Lääketieteessä on perinteisesti arvostettu tutkimusnäyttöä, joka on 
tuotettu satunnaistetussa ja kontrolloidussa tutkimusasetelmassa. Kyseenomaiset tutkimusasetelmat 
eivät kuitenkaan tuota kaikkea tarvittavaa tutkimusnäyttöä, jota tarvitaan tehtäessä terveydenhuollon 
taloudellisia päätöksiä. Viimeaikaisessa tutkimuskirjallisuudessa on esitetty päätösanalyyttisten mallien 
laaja-alaisempaa käyttöönottoa validin ja päätöksentekoa tukevan tutkimusnäytön tuottamiseksi.    
 
Tutkimuksen tarkoitus: Suunnitella päätösanalyyttisten mallien käytännönsovelluksia terveysteknolo-
gioiden kustannusvaikuttavuuden arviointia varten ja tutkia bayesilaisten menetelmien hyödynnettävyyt-
tä tutkimusnäytön synteesissä sekä päätösanalyyttisessä mallinnuksessa.  
 
Aineisto ja menetelmät: Tutkimus perustuu neljään itsenäiseen case-tutkimukseen, joissa päätösana-
lyyttisia malleja ja näytönsynteesimenetelmiä käytettiin kustannus-vaikuttavuusinformaation tuottami-
sessa. Tutkimuksen kaikissa case-tutkimuksissa sovellettiin bayesilaista todennäköisyysjakaumien 
käyttöön perustuvaa lähestymistapaa.   
 
Tulokset: Päätösanalyyttisia malleja voidaan käyttää syntetisoimaan olemassa olevaa tutkimusnäyttöä, 
yhdistämään surrogaattitason muutokset todellisiin lopputilamuutoksiin, muuntamaan kliinisen tutki-
muksen tulokset taloudellista päätöksentekoa tukevaan muotoon ja arvioimaan terveysteknologian kus-
tannusvaikuttavuutta potilasalaryhmissä. Case-tutkimuksissa tutkimusnäytön identifiointi, valinta ja arvi-
ointi muodostivat mallinnuksen yksittäisistä työvaiheista eniten aikaa vievän osuuden. Lisähaasteen 
mallien suunnitteluun ja tutkimusnäytön synteesiin aiheutti kustannusvaikuttavuusarviointien ajoittumi-
nen terveysteknologioiden käyttöönottovaiheeseen, jolloin käyttökokemusta ja tutkimusnäyttöä terveys-
teknologioiden hyödyistä ja kustannuksista on saatavissa vielä rajallisesti. Lisäksi case-tutkimukset 
osoittivat, että bayesilainen lähestymistapa tarjoaa päätösanalyyttiseen mallinnukseen tehokkaan tavan 
havainnollistaa päätösepävarmuutta, joka johtuu tutkimusnäytön epätarkkuudesta. Bayesilaisen lä-
hestymistavan soveltaminen vaatii kuitenkin perinteiseen mallinnukseen nähden enemmän välivaiheita, 
jotka voivat tuoda mukanaan uusia metodologiaan ja mallinnusprosessiin liittyviä epävarmuustekijöitä.       
 
Johtopäätökset ja jatkotutkimusehdotukset: Tutkimus osoitti, että päätösanalyyttisten mallit tarjoa-
vat selkeän ja johdonmukaisen matemaattisen rakenteen, jonka avulla voidaan yhdistää käytettävissä 
oleva tutkimusnäyttö ja arvioida erilaisten terveysteknologioiden kustannusvaikuttavuutta ennen niiden 
laajamittaista käyttöönottoa. Kehitystyötä tarvitaan kuitenkin vielä mallinnusprosessien standardoinnis-
sa, tutkimusnäytön laadun sisällyttämisessä malleihin sekä menetelmissä, joilla voidaan parantaa mal-
liepävarmuuden käsittelyä ja mallien ”läpinäkyvyyttä” päätöksentekijöille.     
 
Yleinen suomalainen asiasanasto: uus; kustannukset; terveystalous-
tiede; ayesilainen menetelmä 

päätöksenteko; mallit; vaikuttav
b





 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Essentially, all models are wrong … some are useful.” 

- George Box (1987) 
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TERMINOLOGY 
 
Bayes' Theorem 
Bayes' Theorem is a result that allows the use of new information to update the conditional probability 
of an event. 
 
Comprehensive decision modelling 
The synthesis of all available sources of evidence into a single coherent model that can be used to 
evaluate cost-effectiveness of alternative treatments.  
 
Decision-analytic model 
A mathematical model that reflects the course of a disease in the presence of a treatment and provides 
estimates of (long-term) costs and effects of the compared intervention.  
 
Evidence 
Evidence is an observation or organised body of information, offered to support or justify inferences or 
beliefs in the demonstration of some proposition or matter at issue.  
 
Health economic evaluation 
Economic evaluation can be thought of as a method of assessing the most efficient use of available 
resources in health care, defined in terms of costs and health outcomes. 
 
Health technology 
Health technology covers a wide range of methods of intervening to promote health, including the pre-
vention, diagnosing or treatment of disease, the rehabilitation or long-term care of patients, as well as 
drugs, devices, clinical procedures and healthcare settings. 
 
Meta-analysis 
Meta-analysis is a systematic review or overview which uses quantitative methods to summarise the 
results. 
 
Probability 
Frequentist definition - probability is the proportion of times an event will occur in an infinitely long se-
ries of repeated identical situations.  
 
Bayesian definition - probability measures the degree of belief about any unknown but potentially ob-
servable quantity, whether or not it is one of a number of repeatable experiments.  
 
Systematic Review 
Systematic Review is a literature review focused on a single question which tries to identify, appraise, 
select and synthesise all high quality research information relevant to that question. 
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1 INTRODUCTION 

1.1 General background 

 

Western Societies are facing increasing challenges in funding their health care systems. Due to these 

increased pressures, many countries have made explicit use of economic evaluation to make decisions 

about which new health technologies should be funded from collective resources (Hjelmgren et al. 

2001). Scientific evidence from cost-effectiveness analyses allows decision-makers to improve effi-

ciency by spending the limited health care budget on those health technologies that generate the great-

est health outcomes per euros spent (Drummond et al. 2005b).  

 

General requirements for cost-effectiveness analysis to inform the allocation decisions in health care 

have been defined as follows (Scuplher et al. 2005, Drummond et al. 2005b): 

- Defining the decision question. The need for a clear statement of the decision question. A study 

setting should be consistent with the stated decision problem.  

- The appropriate time horizon. From a normative perspective, the time horizon of an analysis 

should be sufficient to indicate when cost and effect differences between health technologies 

are stable. For example, for any health technologies that may have a plausible effect on mortal-

ity, a lifetime horizon is required.   

- Evidence synthesis. The study setting should provide an analytic framework within which all 

evidence relevant to the study question can be brought to bear.  

- Evaluation. The analysis needs to identify the optimal decision according to the defined deci-

sion rules for cost-effectiveness analysis.  

- Uncertainty. The analysis needs to quantify the uncertainty associated with the decision. In ad-

dition, the study setting should facilitate an assessment of the various types of uncertainty relat-

ing to the analysis.  

- Additional evidence. The results of analysis should provide a basis for prioritising future re-

search, which can generate further evidence to re-assess the study question in the future.          

 

In the field of health care, scientific evidence produced by randomised controlled trials (RCTs) is typi-

cally ranked highly in the hierarchy of evidence (Sackett et al. 1996). The features of RCTs such as 

strict inclusion criteria, randomisation, and blinding ensure that the evidence is endowed with high in-

ternal validity. However, RCTs pose several threats to “real world” relevance, such as inadequate fol-

low-up times and the use of placebo as a comparator treatment that should be taken into account in 

cost-effectiveness evidence generation, since the decision-makers need evidence with high internal 

and external validity (Fayers & Hand 1997, Drummond 1998, Baltussen et al. 1999, Revicki & Frank 

1999, Backhouse et al. 2002, Claxton et al. 2001). 
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Due to the limitations of RCTs, the RCT-based analyses are recognised as having limitations in their 

ability to produce both internally and externally valid evidence. Buxton (1997) has determined this 

trade-off problem between internally and externally valid evidence as follows: “…we seek both scientific 

rigour and policy relevance. There is no point in having a very precise answer to the wrong question 

which is what we frequently get with randomised controlled trials…timely approximation is probably bet-

ter than the ultimate answer…” The applications of decision-analytic models has been suggested to 

offer a potential solution to make these “timely approximations” in situations where all information 

needed in cost-effectiveness analysis is not available entirely from a single source but evidence has to 

be gathered and synthesised from multiple sources (Buxton et al. 1997, Drummond et al. 2005b). 

 

1.2 Purpose of the study 

 

This study focuses on the development of the applications of the decision-analytic models and the ap-

plicability of a set of Bayesian methods used in evidence synthesis and decision-analytic modelling in 

cost-effectiveness evaluations when the goal is to determine the most efficient use of available health 

care resources under conditions of uncertainty.  

 

1.3 Structure of the study 

 

This study is organised as follows: chapter 2 defines briefly the theoretical and methodological founda-

tion of the study. Chapter 3 introduces the theoretical and methodological foundations of the study. 

Chapter 4 reviews applied methods and techniques used in this study. Chapter 5 outlines the specific 

aims of this study. Chapter 6 presents empirical case studies applying a set of Bayesian methods to 

synthesise the available evidence and to model decision problems under conditions of uncertainty in 

order to provide relevant information to health care decision-makers. Lessons learnt from the case stud-

ies are discussed and proposals for further studies are given in chapter 7. The conclusions are drawn in 

chapter 8.  
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2 THEORETICAL AND METHODOLOGICAL FOUNDATION OF THE STUDY 
 

This study applies a multidisciplinary approach which combines economic theory, decision theory, and 

the principles of evidence-based medicine (EBM). The emphasis is placed on the applications of deci-

sion theory that are used to reach the objectives derived from welfare theory. Figure 1 depicts sche-

matically the theoretical foundation and the scope of the study.  
 

Extra-
welfarism Economic 

evaluation

EBM

The scope of the study

Decision-
analytic 

modelling

Bayesian
statistics

 
Figure 1. Theoretical foundation and the scope of the study; EBM = Evidence-Based Medicine 
 

The rationales for the use of economic evaluation methods to produce normative recommendations 

about the reallocation of limited resources are traditionally based on welfare economics. In welfare eco-

nomics, the objective of the economic evaluation is conventionally preferred to be the maximisation of 

overall utility for the society i.e. the reallocation of resources is done based on their relative desirability 

after normative assessment. (Weinstein & Manning 1997, Garber & Phelps 1997) However, the current 

study takes a somewhat more pragmatic perspective, which is formally known as extra-welfarism or al-

ternatively as the decision-maker approach. The objective of this particular approach is that it should be 

a pragmatic aid to decision-making, not a complete prescription for social choice (i.e. the results of eco-

nomic evaluations are intended to inform decision-makers rather than to define what decisions should be 

made). The general focus of extra-welfarism is the maximisation of the level of health (e.g. in the terms 

of QALYs) given a health care budget, or minimise cost for a given health outcome. (Brouwer & Koop-

manschap 2000)  

 

Figure 2 depicts the process of evidence synthesis and decision-analytic modelling applied for eco-

nomic evaluation. An essential element of the process is to identify all relevant evidence in order to re-

duce bias and uncertainty in the assessment of cost-effectiveness. This element is consistent with the 

principles of evidence-based medicine (EBM), where systematically and comprehensibly synthesised 

clinical evidence is used to aid clinicians decide on appropriate treatment for their patients under spe-

cific clinical conditions and/or circumstances (Sackett et al. 1996). When one conducts an economic 

evaluation, however, it is not simply clinical evidence that is required. In addition, evidence relating to 

other factors e.g. costs and health-related quality of life is required. The additional evidence could be 
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collected e.g. from cohort studies, discharge registries or cross-sectional surveys. A list of potential 

sources of evidence for each data component of interest is given in section 4.4.1.  
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Figure 2. Schematic presentation of the process of evidence synthesis and decision-analytic modelling for eco-
nomic evaluation 
 

The applications of decision-analytic models may improve decision-making under uncertainty by a clear 

structuring of the decision problem and an explicit analysis of the expected consequences of different 
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decisions. The decision-analytic modelling has its theoretical foundations in statistical decision theory 

and it applies the axioms of expected utility theory (see e.g. Raiffa 1970 and Howard 1968 for further 

discussions).  

 

The concept of expected value has a central role in economic evaluation, since the choice of a pre-

ferred decision is done on the basis of expected values (i.e. decision rules applied in economic evalua-

tion are based on the comparison of differences between competitive health technologies in terms of 

their expected mean costs and effects). The use of expected values is based on the idea that, when the 

risks of investment are spread over the entire population, then the share of risks that falling on any one 

individual is so small that it does not have any influence on the decision (Arrow & Lind 1970).    

 

Fundamentally, uncertainty around the mean values of estimates arises, because they are the functions 

of model parameters that are not known with absolute certainty i.e. there is uncertainty about true mean 

values of model parameters (cf. standard error of the mean). It should be noticed that this uncertainty 

differs from the uncertainty due to variability in individual outcomes (cf. standard deviation) and hetero-

geneity (i.e. differences in expected consequences that can, in part, be explained).  

 

In the context of Bayesian statistics, the concept of probability is generalised to represent the degree of 

belief about the true values of model parameters given available evidence. This view of probability is 

essential in the decision-analytic modelling, since it allows the volume and precision of the evidence 

available for each of the model parameters to be reflected in prior probability distributions assigned to 

these parameters (cf. Figure 2). (Claxton 1999)  

 

After synthesising the available evidence and assigning the prior distributions for uncertain model pa-

rameters, simulation methods are used to incorporate parameter uncertainty through the developed 

decision-analytic model so that repeated simulations provide a joint distribution for the incremental 

costs (∆C) and effects (∆E) (cf. figure 2). Figure 3 illustrates a hypothetical example about a situation, 

where a new treatment is more costly (∆C>0) and more effective (∆E>0) compared to the current prac-

tice. The scatter-plot depicts the joint distribution of ∆E and ∆C i.e. p(∆E, ∆C) based on hypothetical 

data. Distributions for any functions of ∆C and ∆E, such as ICER and INB (chapter 4.2), can be derived 

from p(∆E, ∆C).  

 

 



 26

-1 000 

1 000 

3 000 

5 000 

7 000 

9 000 

11 000 

13 000 

- 0.20 0.40 0.60 0.80 1.00 1.20 1.40

p(∆C)

p(∆E)

p(∆E, ∆C)

 
Figure 3. Marginal distributions of ∆C and ∆E. The scatter-plot depicts the joint distribution of ∆E and ∆C 
 

There are two commonly applied simulation algorithms to model uncertainty in cost-effectiveness 

analysis -- the two-stage approach, which applies the Monte Carlo simulation algorithm (chapters 6.1 

and 6.2 will provide examples about the applications of this approach) and the comprehensive decision 

modelling approach, which applies the Markov Chain Monte Carlo simulation algorithm (chapters 6.2 

and 6.4 will provide examples about the applications of this approach). The two-stage approach distin-

guishes the processes of evidence synthesis and decision-analytic modelling from one another (cf. Fig-

ure 2), whereas the comprehensive decision modelling approach unifies the processes of evidence syn-

thesis (i.e. statistical data analysis, such as meta-analyses, meta-regressions, etc.) and decision-

analytic modelling into a single coherent model that can be used to simulate the expected costs and 

effects of alternative health technologies without any intermediate summary steps. (Spiegelhalter et al. 

2000) 
 
Figure 4 depicts schematically how these two approaches differ from another. When the two-stage ap-

proach is applied, the values of model parameters are usually based on subjective judgements, pub-

lished studies, data analysis or some short of combination of these three. The volume and quality of this 

gathered evidence are illustrated in the model by specified prior probability distributions. The parame-

ters for these specified prior probability distributions are estimated from data, derived from published 

studies, or defined by using some specified assumptions. Computation routines for the two-stage ap-

proach are presented in detail in chapter 4.5.1. The comprehensive decision modelling approach differs 

mainly from the two-stage approach in that, rather than incorporating uncertainty forward from specified 

prior probability distributions on parameters, it incorporates uncertainty in available patient- or study-

level data back to parameters (i.e. initial prior distributions are updated by the Bayes theorem to poste-
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rior probability distributions), and then propagates posterior uncertainty forward to model outputs. In 

other words, the comprehensive decision-analytic modelling approach provides a framework to esti-

mate simultaneously the conditional posterior parameters that are based on specified prior evidence, 

expert judgements, and available trial- and patient-level data.  
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Figure 4. Two-stage (on the left-hand side) vs. comprehensive approach (on the right-hand side) to model uncer-
tainty in decision-analytic models (adopted and modified from Spiegelhalter et al. 2004, 311).  
 

In the comprehensive decision modelling approach, inferences about the parameters of interest are 

made by integrating out the unknown parameters over the joint posterior distribution of all model pa-

rameters. High-dimensional integrals, however, can not usually be solved in a closed form due to ana-

lytical problems and therefore MCMC sampling techniques (section 4.5.2) are needed to solve these 

problems (Gilks et al. 1996). Computation routines for the two-stage approach are presented in detail in 

chapter 4.5.2. 

 

Relatively few empirical studies applying the comprehensive decision modelling approach in cost-

effectiveness analysis have been published to date but the increasing number of application studies 

can be expected to appear in the near future. Published empirical applications applying the compre-

hensive decision modelling approach include e.g. the study by Cooper et al. (2003), where a compre-

hensive decision model was developed to evaluate the cost-effectiveness of a particular medication in 

the treatment of breast cancer. In addition, the studies by Iglesias & Claxton (2006) and Vergel et al. 
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(2007) provide more recent empirical examples about the comprehensive decision analyses that were 

applied to evaluate the cost-effectiveness of particular interventions in the UK setting.   

 

The use of the comprehensive decision modelling approach allows also the iterative approach to cost-

effectiveness analysis, since whenever new evidence that may affect a decision becomes available a 

decision-analytic model can be updated by using the current posterior evidence as a prior evidence for 

new evidence1 (cf. Figure 12) (Fenwick et al. 2006). The iterative approach to cost-effectiveness analy-

sis takes into account the dynamic nature of the operational environment in health care, where the cost-

effectiveness of health technologies may change over time e.g. due to generic competition, learning 

effects, patient case mix, etc. Therefore, it is important to update evidence periodically to assess 

whether the cost-effectiveness of the health technology has changed sufficiently to necessitate modify-

ing the original decision. (Banta & Thacker 1990, Sculpher et al. 1997, Fenwick et al. 2000, Laking et al. 

2002, Sculpher et al. 2006, Fenwick et al. 2006). Figure 5 depicts the stages in the iterative approach to 

the cost-effectiveness analysis of health technologies. 
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Figure 5. Iterative approach to the economic evaluation of health technologies 

 

                                                 
1 This is possible due to the sequential use of Bayes theorem (see Spiegelhalter et al. 2004, 79) 
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In the iterative framework, the results from a decision-analytic model serve as inputs for policy-makers 

when deciding for example whether certain health technologies should be financed from the public 

funds. Actually, this decision has two separate but related aspects, namely the optimal public financing 

decision given existing evidence and acquiring more evidence to provide information for the decision on 

public financing. Therefore, two questions need to be answered: I) Which health technology is cost-

effective (based on expected mean values) given the existing evidence? II) Is the acquisition of addi-

tional evidence to reduce the expected cost of decision uncertainty cost-effective? (Fenwick et al. 2006) 

Therefore, the current study concentrates on a set of methods that can be used to answer these two 

questions. For example, an answer to the first question can be given by applying methods, such as 

cost-effectiveness acceptability curves, which convert parameter uncertainty into decision uncertainty. 

Recent developments have made it possible to evaluate the value of additional evidence in monetary 

terms. These value of information (VOI) methods can be used to determine an upper bound to the 

value of additional evidence or to indicate what kind of additional evidence would be most valuable in 

reducing uncertainty surrounding the decision (Claxton  1999).  
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3 CONCEPT OF UNCERTAINTY IN EVIDENCE SYNTHESIS AND DECISION-ANALYTIC MODEL-
LING 
 

The credibility of decision-analytic models rests on their validity. The overall validity of models depends 

on how the selection of model structures, the identification and incorporation of evidence into the mod-

els, and the testing of the models’ consistency are conducted. Consistency relates to many factors e.g. 

questions about the mathematical logic of models and how consistent the results produced by the mod-

els are with other available evidence. (Philips et al. 2006) 

 

One systematic approach to identify, handle and document uncertainty is to categorise the different 

types of uncertainty according to general model development phases introduced by Howard (1968). 

Figure 6 depicts the model development phases and the different types of uncertainty related to each 

development phase.  
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Structuring 
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-Model 
structure 
uncertainty

Modelling process uncertainty

The validity of decision-analytic model
 

Figure 6. Sources of uncertainty classified according to model development phases. Summarised from Briggs 
2000, Spiegelhalter & Best 2003 and Briggs et al. 2006 
 

One potential source of uncertainty that relates to the model consistency is modelling process uncer-

tainty, which arises e.g. due to errors relating to data incorporation or programming syntax. Internal 

consistency can be ensured by conducting logical checks and programming the model in an alternative 

software package. In some cases, modelling process uncertainty can be only handled by commission-

ing the same decision-analytic model from different teams of analysts (cf. health technology appraisal 

processes commissioned by NICE in UK). (Philips et al. 2006) 

 

In the decision framing phase, methodological uncertainty may arise due to disagreement among re-

searchers about the most appropriate analytical methods. Uncertainty may relate to e.g. the most pre-

ferred way to incorporate time preference or productivity losses/savings into the economic evaluation. 

(Briggs 2000, Briggs et al. 2006) 
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In the model structuring phase, uncertainty at a structural level (i.e. the appropriate qualitative structure 

of the model is uncertain) may arise e.g. due to lack of knowledge concerning to relationships between 

parameters (Briggs 2000, Spiegelhalter & Best 2003, and Briggs et al. 2006). According to a recent lit-

erature review, the most commonly faced sources of structural uncertainty are related to: I) inclusion or 

exclusion of potentially relevant comparators, II) inclusion or exclusion of potentially relevant events, III) 

statistical models to estimate specific parameters and IV) lack of evidence (Bojke et al. 2006). Usually 

structural uncertainty is handled by developing alternative model structures with different assumptions 

and thereafter computing results for each alternative specification. The decision about whether one 

model structure is superior compared to some other structure is commonly left to decision-makers. 

However, it has been demonstrated that the assessment of credibility of the alternative model struc-

tures may be challenging. (Drummond et al. 2005a). 

 

The probabilistic analysis phase includes multiple types of uncertainty. The explanation of variability 

(i.e. the difference in outcomes that occur between patients by chance) is not the main object in deci-

sion-analytic modelling, since we are usually not interested about random variability in outcomes al-

though uncertainty about individual outcomes may affect decision making through consideration of eq-

uity (Groot Koerkamp et al. 2007). While variability is defined as change in outcomes between homo-

geneous patients, heterogeneity relates to differences between patients that can, in part, be explained. 

Strictly speaking, heterogeneity is not a source of uncertainty as it relates to differences that can be 

explained e.g. using patient characteristics, such as age and sex (cf. Russell & Sisk 2000, where the 

effect of age on cost-effectiveness has been explored). However, even if the mean parameter values 

per subgroups are estimated, it should be noted that variability within subgroups will remain. Further-

more, the latent variables cause a potential source of uncertainty, because they obviously cannot be 

used to explain a proportion of overall variability between patients.     

 

Parameter uncertainty relates to the volume and precision with which an input parameter used in a de-

cision-analytic model is estimated. Uncertainty arises because the input parameters have definite val-

ues but they cannot be known with certainty. Sometimes parameter uncertainty has also been termed 

as second-order uncertainty to distinguish it from first-order uncertainty, which again is a synonym for 

variability (Stinnett & Paltiel 1997). Parameter uncertainty has a central role in evidence synthesis and 

decision-analytic modelling, since a decision-analytic model produces the expected costs and health 

outcomes of a health technology via the complex functions of uncertain input parameters (cf. Figure 2) 

(Doubilet et al. 1985, Briggs 2000, Fenwick et al. 2000, Claxton et al. 2001, Briggs et al. 2002, Spiegel-

halter & Best 2003). 

  

The use of simulation methods converts parameter uncertainty into decision uncertainty. Proper quanti-

fication of decision uncertainty provides the starting point for assessing the value of additional evidence. 
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Additional evidence may be valuable because it reduces the expected costs of making an incorrect de-

cision. (Claxton 1999)  
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4 REVIEW OF APPLIED METHODS 

4.1 Markov-models in decision-analytic modelling 

 
The decision-analytic models embrace a variety of mathematical techniques but the two main forms 

used in the economic evaluation of health care technologies are decision trees and state transition 

models (Karnon 2003, Brennan et al. 2006). The decision trees are visual representations of selected 

treatment options and the consequences that may follow from each option. Each treatment option is 

followed by branches representing the possible events with their respective probabilities (Pauker & 

Kassier 1987, Detsky et al. 1997). However, the decision trees are relatively restricted in their abilities 

to describe the consequences of different decision in situations where they occur over time. In these 

particular cases, the state transition models (i.e. the Markov models) are suited to illustrate the long-

term outcomes associated with different decisions. In recent years, the Markov models have become 

increasingly used vehicles in economic evaluations, since they allow researchers to construct flexible 

applications to reflect disease progression using constant, time-dependent, and discrete processes. 

(Sonnenberg & Beck 1993, Briggs & Sculpher 1998, Bala et al. 2006) 

 

In the decision-analytic modelling, the Markov models are frequently applied to describe the course of 

diseases in the presence of particular treatments under conditions of uncertainty. Different conse-

quences are modelled as transitions from one previously specified health state to another. These transi-

tions between health states can be graphically represented using state transition diagram shown in Fig-

ure 7. Transitions between specified health states will occur until all members of a hypothetical cohort 

have entered an absorbing state, such as death, or the time horizon covered by the model is reached.  

Asymptomatic Progressive

Dead
 

 
Figure 7. Markov model illustrated as a state transition diagram. Circles correspond to health states and arrows 
correspond to possible transitions from one health state to another. 
 

The state transition models are divided into Markov chain and Markov process models depending on 

how the transition probabilities between specified health states are handled during the modelling. 

Markov chain models have constant probabilities of transitions between states whereas transition prob-

abilities in Markov process models may be allowed to vary according to another model variable (e.g. 

time or different prognostic factors).  
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The fundamental assumption (i.e. the Markovian assumption) of Markov models is that the probability of 

moving out of a health state is not dependent on the health states that a patient may have experienced 

previously (i.e. the Markov models do not have any memory). The use of time-dependent transition 

probabilities and/or so called tunnel states is a way to work around the Markovian assumption. Another 

fundamental assumption is that the health states are mutually exclusive (i.e. an individual can be in one 

and only one health state at any given point in time). (Sonnenberg & Beck 1993) 

 

The state transitions between the health states illustrated in the Figure 7 are given in a corresponding 

matrix form as follows: 
St=0 = [1, 0, 0] 
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From… Asymptomatic Progressive Death 

Asymptomatic P11t P12t 1-(P11t+P12t) 

Progressive 0 P22t 1-P22t 

Death 0 0 1 
 

 

where St=0 is the vector of initial state probabilities at the time t=0. In this particular case, St=0 defines 

that 100% of the hypothetical cohort of interest assumed to be asymptomatic at the time t=0. Pt is the 

transition probability matrix for a cycle t≥1. (Spiegelhalter et al. 2003). More specifically, p11t is a prob-

ability to stay in the asymptomatic state at the time t≥1, whereas p12t is a probability to move from the 

asymptomatic state to the progressive state at the time t≥1,  A residual 1-( p11t + p12t) is a probability to 

move from the asymptomatic state to the death state. P22t and its residual 1- P22t are probabilities to 

stay in the progressive state and to move from the progressive state to the death state, respectively. 

The death state is handled as an absorbing state and therefore its transition probability is always one.   

 

The initial state probabilities are often handled as the number of patients in the model. This analytical 

approach is called Markov cohort modelling. When the cohort modelling approach is applied, the initial 

state vector St=0 is usually defined e.g. [1000, 0, 0], which indicates that the size of the hypothetical co-

hort of interest is assumed to be 1000 and all individuals are assumed to be asymptomatic at the be-

ginning of the Markov chain (Sonnenberg & Beck 1993). The results of the Markov cohort modelling 

have been found to be robust regardless of the number of individuals assumed in the hypothetical co-

hort (Cooper et al. 2003).  
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Figure 8 illustrates the first two cycles of hypothetical cohort simulations, where hypothetical health 

technologies T1 and T0 are compared using the model structure depicted in Figure 7. T0 is the current 

treatment for a particular condition, whereas T1 is a possible new treatment for that same condition. The 

initial state vector St=0 is set to be [1000, 0, 0]. The proportions of individuals in different health states at 

time t+1 are obtained by multiplying the initial state vector St=0 by the transition probability matrix Pt 
⇒ St-1 x Pt = St+1. Markov estimation entails successive multiplication of St-1 and Pt until all individuals 

into the cohort have entered an absorbing state or the time horizon covered by the model has been 

reached. (Spiegelhalter et al. 2003) As mentioned above, in the Markov chain analysis all probabilities 

in Pt are assumed to be constant, whereas in the Markov process analysis the values of Pt are allowed 

to vary according to other model variables.  
 

1000 0 0t+0

Asymptomatic Progressive Death

t+1

1000 patients undergoing T1 or T0

t+2

1

p11t p12t 1-(p11t +p12t)

p11t p12t 1-(p11t +p12t)

p22t

1-p22t

P11t  x 1000 P12t  x 1000 1-(p11t +p12t)        
x 1000

 
Figure 8. Illustration of the first two cycles of cohort simulations for hypothetical health technologies T1 or T0 
 

In order to perform the cost-effectiveness analysis, one needs to examine how the results of Markov 

cohort analysis are altered by the introduction of the new treatment T1. To estimate the incremental 

cost-effectiveness of the treatment T1 as compared to T0, the average costs and health outcomes for 

the hypothetical cohorts over the modelled time horizon should be estimated for both treatment groups. 

If the time horizon of interest is over a year, discounting is usually applied to generate the present value 

of the future costs and health outcomes (Cairns 2001).  

 

The expected costs and health outcomes for the hypothetical cohorts of individuals receiving the treat-

ment T1 and T0 are given by equations: 
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where T is the total length of time horizon, r is the discount rate, S is the number of health states in the 
specified model (cf. figure 8), t,sπ is the number of individuals in health state s at time t, Cs and Es are 

the mean cost and effect of health state s. (Bala & Mauskopf 2006). If the size of the hypothetical cohort 

is >1, then the expected costs and health outcomes can be obtained by dividing the cumulative costs 

and health outcomes by the size of the cohort (Cooper et al. 2003).        
 

4.2 Decision rules and the statistical analysis of uncertainty in incremental cost-effectiveness 
analysis 
 

4.2.1 Decision rules in cost-effectiveness analysis 

 

Assume that the objective of decision-making is to decide whether or not to replace T0 by T1. T1 would 

obviously be chosen if it demonstrated improved expected health outcomes at reduced expected costs 

and would obviously not be chosen if expected costs increased but expected health effects decreased. 

The more difficult decisions arise when T1 improves health effects at increased cost or has reduced 

health effects but at reduced cost (O’Brien et al. 1994). These four situations are summarized in Table 

1.  
 
Table 1. Possible decisions based on incremental (mean) costs and health effects (O’Brien et al. 1994) 
 

Incremental costs 
 (∆C) 

Incremental health effects 
(∆E) 

Decision 

CT1-CT0<0 ET1-ET0>0 

Dominance. T1 can be accepted 
as it is both cheaper and more 
effective 
 

CT1-CT0>0 ET1-ET0<0 

Dominance. T1 is rejected as it is 
both more expensive and less 
effective than existing therapy. 
 

CT1-CT0>0 ET1-ET0>0 

Trade-off. Magnitude of the addi-
tional cost of T1 should be con-
sidered relative to its additional 
health outcomes.  
 

CT1-CT0<0 ET1-ET0<0 

Trade-off. Magnitude of the cost-
saving of T1 should be consid-
ered relative to its reduced 
health outcomes. 
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Those four states of world mentioned in table 1 are equivalent to the four quadrants of the cost-

effectiveness plane (see Figure 9), which has been advocated as a way of providing a graphical inter-

pretation of cost-effectiveness results (Anderson et al. 1986, Black 1990). The cost-effectiveness plane 

is a two-dimensional space with the x-axis being the mean difference in expected health outcome (∆E) 

and the y-axis being the mean difference in expected cost (∆C). To aid reference, the points of the 

compass are sometimes applied to label the four quadrants on the cost-effectiveness plane. 
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T1 more 
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T1 less 
effective 

 λWTP 

λWTA 

NE 

(∆E, ∆C)
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∆C/∆E

T0 
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Figure 9. Cost-effectiveness plane 

 

Decision problems associated with trade-offs represented in Table 1 and Figure 9 (the North-West and 

South-West quadrants) lead to a conventional incremental cost-effectiveness analysis, where the in-

cremental cost-effectiveness ratio (ICER=∆C/∆E) is compared to a `threshold´ (Eichler et al. 2004) or 

`ceiling´ (Fenwick et al. 2006) value (usually denoted by λ) of cost-effectiveness that is considered to 

represent some maximum acceptable limit on what health care decision makers are prepared to pay for 

a unit of health outcome (∆C/∆E<λ)2. In figure 9, the slope of the dotted line extending from the origin 

(T0) through a ∆C/∆E estimate represents the ICER of T1 relative to T0. The steeper the slope of the line 

∆C/ ∆E, the greater is the additional cost at which additional units of health output are gained by T1 

relative to T0, and the less attractive T1 becomes (O’Brien et al. 1994). The ICER can be interpreted as 

the additional investment of resources needed for each additional unit of health improvement expected 

to result from investing in T1 rather than T0.  

 

                                                 
2 Conventionally, the constant returns of scale and perfect divisibility of compared treatments for homogenous population are 
assumed when incremental cost-effectiveness analysis is applied. Elbasha and Messonnier (2004) and Lord et al. (2006) have 
discussed the consequences if these fundamental assumptions are violated.   
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In Figure 9, the threshold value line λWTP on the NE quadrant of the cost-effectiveness plane is assumed 

to reflect the shadow price per unit of health output in the absence of a market (Weinstein & Zeck-

hauser 1973, Johannesson & Weinstein 1993, Karlsson & Johannesson 1996)3 and the threshold value 

line λWTA on the SW quadrant of the cost-effectiveness plane is assumed to reflect the minimum amount 

that decision-makers would be willing to accept in exchange for foregoing an incremental gain in health. 

When the calculated ICER is below the level that decision-makers deem acceptable for producing the 

health outcome, then T1 can be considered as being cost-effective and hence be recommended to be 

approved. 

 

4.2.2 The incremental cost-effectiveness approach 

 

Prior to the early 1990’s, the deterministic analysis (i.e. cost and health outcome estimates were con-

sidered as point estimates) of the ICER estimate was the usual approach taken to deal with these prob-

lems. Uncertainty about the expected costs and health effects and their differences (i.e. ∆C and ∆E) 

was handled through conventional sensitivity analysis methods. In conventional sensitivity analyses, the 

magnitudes of the model parameters were varied within (arbitrarily) selected ranges and the effects on 

the results were observed. For example, in one-way sensitivity analysis, the magnitude of a single pa-

rameter was varied between its lower and upper bounds. In threshold analysis, the parameters were 

varied up to the point at which the expected optimal decision would change. Respectively, the analysis 

of extremes allowed researchers to create optimistic and pessimistic scenarios based on the most op-

timistic or pessimistic model parameter estimates. (Briggs et al. 1994) The use of conventional sensitiv-

ity analysis methods for handling uncertainty in economic evaluations has been reviewed elsewhere 

(Briggs et al. 1994, Briggs & Sculpher 1995, Agro et al. 1997).  

 

In 1994, O’Brien et al. (1994) pointed out that ideally data should be wholly stochastic sampled from a 

random sample of the patient population, where both costs and effects are determined from the same 

patients under study. This finding launched the rapid development of statistical methods to characterise 

the uncertainty around ICERs. In addition, these developments have also influenced methodologies 

applied in the decision-analytic modelling, raising the question about how to formally depict uncertainty 

around p(∆E, ∆C).  

 

O’Brien and colleagues in 1994 showed that in the situation where T1 is more effective and more costly 

(i.e. the NE quadrant of the cost-effectiveness plane) than T0, it is possible to characterize uncertainty 

using 95% confidence intervals for the numerators and denominators of cost-effectiveness ratio sepa-

rately, but not for the ratio itself. One of main problems related to characterizing uncertainty is that the 

ICER as a ratio statistic has a discontinuous distribution, which poses problems for defining the stan-

                                                 
3 Strictly speaking, from the decision-maker’s perspective, λ can be viewed as the shadow price of a fixed health care budget (i.e. 
the highest ICER that decision makers could afford given a fixed health care budget). Whereas from a welfarist perspective, λ is 
an estimate of societal willingness to pay for an additional unit of health outcome.   
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dard error for the ratio. This problem is also known as “the close-to-zero problem” (i.e. the neighbour-

hood of zero in the denominator makes a formula for the variance of the ICER intractable).  

 

O’Brien and colleagues (1994) introduced for the first time also the close-to-zero problem associated 

with confidence interval for ICER in a clear manner and it greatly influenced the development of statisti-

cal methods for handling uncertainty in cost-effectiveness analysis at the end of 1990’s. Table 2 sum-

marises the developments in defining confidence intervals for ICER, when simulated cost-effectiveness 

data is available. (Polsky et al. 1997, Tambour & Zethraeus 1998, Briggs et al. 1999, Heitjan et al. 

1999) 
 
Table 2. Summary of different developments to estimate confidence intervals for cost-effectiveness ratios, when 
simulated cost-effectiveness data is available 

Author(s) Name of 
method Approach Limitations Graphical presentation on the cost-

effectiveness plane 
 
O’Brien et al. 
(1994) 
 

 
The Box 
method 

 
* Approximate the sepa-
rate confidence intervals 
for the ∆C and the ∆E. 

 
* Yields to an interval 
that is much wider than 
the true 95% confidence 
interval. 
 

 

In
cr

em
en

ta
l c

os
ts

Incremental effects  
 
O’Brien et al. 
(1994) 
 

 
The Tay-
lor series 
expansion 

 
*Approximate the vari-
ance of the ∆C/ ∆E ratio 
using sample estimates 
of the means and vari-
ances.  

 
* Assumption of a nor-
mal distribution may be 
justified only in the case 
of large samples. Does 
not give clear answer to 
the close-to-zero prob-
lem. 
 

 

 
Van Hout et al. 
(1994) 
 

 
The con-
fidence 
ellipse 

 
* Assume the elliptical 
shape for p(∆E, ∆C) 
* Formula for the ellipse 
is derived assuming that 
the ∆C and ∆E follow a 
joint normal distribution.  
* Allow the covariance 
between the numerator 
∆C and the denominator 
∆E. 
 

 
* Gives only an ap-
proximation of the 95% 
confidence interval for 
the ratio, when estima-
tion is done based on 
the slope of tangents to 
the 95% probability 
ellipse.  

 

In
cr

em
en

ta
l c

os
ts

Incremental effects

95%

 
 
Chaudhary & 
Stearns (1996) 
 
Willan & 
O´Brien (1996) 
 

 
Fieller’s 
theorem 

 
* Parametric method 
based on the assump-
tion that the ∆C and the 
∆E follow a joint normal 
distribution 
* Takes into account the 
potential skewness in 
the sampling distribution 
of the ∆C/ ∆E estimator, 
and therefore may not 
be symmetrically posi-
tioned around the ∆C/ 
∆E point estimate 
 

 
* Assumption of joint 
normality may not apply 
(e.g. costs are often 
positively skewed), par-
ticularly when sample 
sizes are small. 
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Stinnett and Mullahy (1998), however, pointed out that problems arise when parts of the simulated rep-

licate pairs lie in the dominance quadrants (i.e. in the SE and SW quadrants). The corresponding situa-

tion where both cost and effect differences are insignificant is illustrated in Figure 104.  
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Figure 10. Joint distribution of simulated ∆C and ∆E replicate pairs that lie in more than one quadrant on the cost-
effectiveness plane (A) and the corresponding empirical sampling distribution of the ICER presented as a histo-
gram (note that the histogram is truncated into the range from -20 000 to 20 000 (B) in order to present the distribu-
tion more clearly).  
 

 

                                                 
4 Figures are based on a hypothetical data generated by a Monte Carlo simulation.  
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When the parts of the joint distribution lie in the dominance quadrants, the estimation and interpretation 

of negative ratios can be ambiguous. Two negative ratios with equal values obtained from these quad-

rants have totally opposite meanings. For example, in Figure 10 replicates a (-250 EUR/0.05 QALY) 

and b (250 EUR/-0.05 QALY) have the same ICER estimate (-5000 EUR/QALY) but they have totally 

contrasting interpretations. Thus, the negative ICER estimate has no meaningful interpretation unless it 

is presented in the context of the quadrant in the cost-effectiveness plane to which it corresponds (see 

histogram in figure 10).  

 

A more general problem is that the replicates in the negative quadrants have no meaningful ordering. In 

the NE and SW quadrants, low ICER estimates are preferred to high ICER estimates. However, no 

such simple decision rule exists in the negative quadrants. Furthermore, the problem of ICER ordering 

also applies to positive ratios in different quadrants. The decision rule in the NE quadrant is to adopt T1 

if the ICER estimate is below the λWTP. Whereas the decision rule in the SW quadrant is to adopt T1 if 

the ICER estimate is above λWTA. (O’Brien et al. 2002) 

 

Stinnett and Paltiel (1997) highlighted the important fundamental problem of taking patient-level aver-

age ratios when estimating ICERs -- the mean of ratios is not equal to the ratio of the means:  

 

[4]    
( )
( )01

01

0

0

1

1

TT

TT

T

T

T

T

EE
CC

E
C

E
C

−
−

≠−  

The consequence of this finding is that the incremental ratio cannot be constructed from the difference 

between the average cost-effectiveness ratios in each arm of a decision-analytic model (i.e. mean ra-

tios from the empirical distributions of ICERs are meaningless, by contrast the ratio of means must be 

used, in simulation analyses).  

 

4.2.3 The net benefit approach 

 

In response to the problems encountered with the ICER approach, an alternative named as a net bene-

fit statistic approach was introduced by Claxton and Posnett (1996), Tambour et al. (1998) and Claxton 

(1999) on the monetary scale and Stinnett and Mullahy (1998) on the effect scale. The equivalence and 

optimality of ratio-based and net benefit-based approaches to health care resource allocation have 

been described by Laska et al. (1999) and Craig and Black (2001).  

 
The incremental net benefit statistic on the health scale ( )NHB(λ∆ ) is derived by rearranging the 

standard cost-effectiveness decision rule as follows: 

 
[5]    λλ /)NHB( CE ∆−∆=∆  
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With this approach, the net effect is given in effectiveness units and not in monetary units as the net 

cost of program T1 is divided by the value of one effectiveness unit (λ). 

 

If the net gain in health output is instead multiplied by the value of the effectiveness unit, the net benefit 

is given in monetary terms. The incremental net monetary benefit of T1 compared to T0 as: 

 
[6]    0)NMB( >∆−∆=∆ CEλλ  

Incremental net benefits can be seen as a linear combination of two asymptotically normal variables. 

Figure 11 shows incremental net benefit statistics both on the cost and effect scales as a function of λ, 

since usually the value of λ is unknown by the analyst when the analysis is performed. For the incre-

mental net benefits on the cost scale, the slope of the line is the difference in effects. The point where 

the line meets the vertical axis represents the difference in costs, and where it crosses the horizontal 
axis is the ICER (i.e. 0)NMB( =∆ λ ).  
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Figure 11. Net benefits on the cost (above) and effect (below) scales with the 95% confidence intervals for the data 
presented in figure 10 (the design of figure is adapted from Briggs 2001, 198).  



 

 

43

In contrast to the ratio sampling distribution, the sampling distributions of )NHB(λ∆  or )NMB(λ∆  

are continuous, and therefore the derivation of confidence intervals is also somewhat more straightfor-

ward when the net benefit approach is adopted. For net benefits, a (1-α)% confidence interval can be 

determined in the standard fashion as follows: 

[7]     z)NB( 2
NB/2 σλ α±  

, where NB(λ) is the estimated net benefit measure with variance 2
NBσ , and zα/2 is the critical value from 

the standard normal distribution. The variance for net-benefit measure can be defined as follows:  

[8]    ( ) ( ) ( ) ( )CE,cov2Cvar1Evar)NHB(var 2 ∆∆−∆+∆=∆
λλ

λ  

in terms of the net health benefits, or: 
[9]    ( ) ( ) ( ) ( )CE,cov2CvarEvar)NMB(var 2 ∆∆−∆+∆=∆ λλλ  

for the net health monetary benefit measure. 

 

The decision rules in the net benefit framework are defined as follows: 

[10]    
⎩
⎨
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<∆
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0

1

T prefer then 0,  )NB( if
T prefer then 0,)NB( if

λ
λ

 

Thus, if the defined confidence intervals of incremental net benefits exclude 0 in the selected value of λ, 

then the decision makers should prefer T1 over T0. The use of 95% confidence intervals has been illus-

trated in Figure 11 (Briggs 2001)  

 

As mentioned above the use of average ICER estimates are theoretically misleading (Stinnett & Paltiel 

1997). Net benefit statistics on the other hand have the useful property: 
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4.3 Bayesian methods for cost-effectiveness analysis 

 

4.3.1 Basic concepts of Bayesian approach 

 

There are good textbooks introducing the formalities used in Bayesian statistics (see e.g. Gelman et al. 

1995, Parmigiani 2002, Spiegelhalter et al. 2004). However, a brief overview of the nature and princi-

ples underlying Bayesian methods is given before their use in the cost-effectiveness analysis context is 

considered.  

 

The key element of Bayesian inference is the concept of subjective probability, where statements in-

volving the use of probability are taken to represent a degree of belief about the event of interest5. The 

subjective interpretation of probability removes the need to associate probability with observable 

events, which allows one to make quantitative judgements about the likelihood of an assertion being 

correct in circumstances where there is no reasonable long-run frequency interpretation (i.e. decision-

makers can approximate the probability that a decision that they are making is optimal). (Gelman et al. 

1995) 

 

The Bayesian approach makes a much wider use of probability distributions than traditional statistical 

methods. In the Bayesian statistics, all unknown parameters of interest (θ) are treated as random vari-

ables (rather than unknown constants) with probability distributions p(), which are used to describe the 

state of our knowledge about unknown parameters θ and the plausibility of different observed values of 

θ. (Gelman et al. 1995)  

 

The full Bayesian setup requires one to define a specific parametric form for the unknown prior parame-

ters (Gelman et al. 1995).  In particular the shapes of probability distributions have a central role in 

Bayesian statistics because they are intended to represent the nature of parameters and the plausibility 

of different mean values (Briggs et al. 2006). For example, the sampling distributions of treatment costs 

are usually highly skewed to the right due to fact that only a few patients have high total costs and, in 

these cases, a gamma or a log-normal distribution can be fitted for mean cost data (cf. Hallinen et al. 

2006, Nixon & Thompson 2004).     

 

Bayesian inference about unknown parameters of interest is derived using Bayes theorem to condition 

on the values of observed quantities. One of the key advantages of Bayesian approach is that the 

Bayes’ theorem allows one to explicitly incorporate prior evidence into the inference about some quan-

tity of interest. This prior evidence is expressed in a mathematical form as a prior probability distribution 

                                                 
5 Traditionally, when a random event is repeated a large number of times independently and under identical conditions, the prob-
ability of an event is approached by estimating its relative frequency of occurrence. 
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(i.e. the prior distribution is a quantification of the current state of understanding about the unknown 

quantity of interest). Prior information is then synthesized with the information in the collected data (also 

called likelihood) to produce the posterior distribution, which expresses one’s belief about the value of 

the unknown parameter of interest after seeing the data. (Gelman et al. 1995) 

 

The mathematical mechanism for evidence synthesis in Bayesian statistical inference can be defined 

as follows: 

[12]   ( ) ( ) ( )
( )n

n
n y,...,yp

py,...,yp
y,...,yp

1

1
1

θθ
=θ   

p(θ) is the prior distribution of the unknown quantity of interest, which describes our state of knowledge 

about θ before seeing any additional data. P(y1,…,ynIθ) is the likelihood function (i.e. collected data 

conditional to prior evidence). P(y1,…,yn) is the marginal distribution of the data and it can be derived 

from p(y1,…,ynIθ) and p(θ) by integrating the numerator over the support of θ. P(θIy1,…,yn) is the poste-

rior distribution, which describes our state of knowledge about θ after observing additional data y1,…,yn. 

(Gelman et al. 1995)   

 

Figure 12 illustrates how the Bayes theorem can be used to combine two information sources in the 

hypothetical case of ∆NB(λ). It can be seen in Figure 12, that the posterior distribution is a compromise 

between the prior distribution and the given data (the likelihood distribution). For large samples, how-

ever, the impact of the choice of prior probability will diminish and the location of the posterior distribu-

tion is controlled by the given data (i.e. the posterior distribution will move towards the expected mean 

value of given data when the sample size increases). The increasing number of observed cases de-

creases the variance around the posterior mean and therefore, it is more precise than the prior mean 

alone. However, it should be noticed that in particular situations (e.g. when prior and likelihood evi-

dence are markedly diverging from each other), the posterior variance can be similar to or even larger 

than the prior variance. According to the Bayesian philosophy, any inference a researcher desires to 

make is derived from the posterior distribution. (Gelman et al. 1995)   
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Prior distribution p(θ) 

Likelihood distribution
P(y1,…,ynIθ)

Posterior distribution
P(θIy1,…,yn)

NB(λ)

Favours a new health technologyFavours a current health technology

0
 

Figure 12. Prior distribution and evidence from the new data are synthesized to produce the posterior distribution 
 

 

4.3.2 Cost-effectiveness acceptability curves 

 

The net benefit approach to the cost-effectiveness analysis (as described in section 4.2.3) offers a po-

tential solution to the problems related to the ICER approach. As considered above, T1 can be imple-
mented if 0>λ∆ )(BN  and its confidence interval excludes 0. In the Bayesian framework, it is also 

possible to estimate the posterior probability that the incremental net benefit will be positive 
)0)(N( >∆ λBp  (i.e. probability that T1 is cost-effective, given the available evidence, for a range of λ 

values).  

 

The probability of cost-effectiveness can be presented in the form of a cost-effectiveness acceptability 

curve (CEAC) as introduced originally by Van Hout et al. (1994). Van Hout et al. (1994) presented the 

use of CEACs in the context of frequentist statistics but a number of authors, however, have pointed out 

that the probabilistic interpretation of CEACs is only possible in the Bayesian framework (O’Hagan et al. 

2000, Fenwick et al. 2001).  

 

In practice, the probability of cost-effectiveness is estimated based on the posterior distribution of the 

incremental net benefits and the CEAC is constructed by plotting the relative proportion of the incre-

mental net benefits that are positive (i.e. ∆NB(λ)>0) for a range of λ values. Further details of the meth-

ods for deriving CEACs for decisions involving two or more treatments are provided elsewhere (Fen-

wick et al. 2001, Fenwick et al. 2004, Fenwick et al. 2006). 
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The application of the Bayesian principles in evidence updating in the net benefit and CEACs context 

has been illustrated by Briggs 2001. If the prior distribution of the incremental net benefits is assumed 

to be vague (i.e. the prior distribution is uniform and prior ignorance is assumed) the results of a Bayes-

ian analysis are similar to the results of a traditional analysis, since both analyses are based on the like-

lihood for the data. The interpretation of results, however, is much more flexible and coherent from the 

Bayesian point of view.   

 

Figure 13 illustrates a posterior CEAC plotted under the assumption of a vague prior for the data pre-

sented in figure 10. Figure 13 shows that in this hypothetical example correspondence between the 

ICER estimate and the 50% point occurs because the distribution of ∆NB(λ) is asymptotically normally 

distributed. However, it might also possible that the 50% point on the CEAC will not correspond to the 

point estimate of the ICER due to a skewed distribution of ∆NB(λ).  
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000 25000 30000 35000 40000

Value of ceiling ratio (€/QALY)

P
ro

ba
bi

lit
y 

co
st

-e
ffe

ct
iv

e

p[∆NB(λ)=50%]

ICER =∆C/∆E

0
10
20
30
40
50
60
70
80
90

λ=7500

 
Figure 13. Posterior cost-effectiveness acceptability curve (CEAC) for the data presented in figure 10. The nested 
figure depicts the shape of the empirical distribution of ∆NB, when λ=7500 EUR/QALY.  
 

The cost-effectiveness acceptability curve provides an indication of the uncertainty of T1 being cost-

effective in relation to T0. However, it is important to point out that just because T1 has a posterior prob-

ability of more than 50% of being cost-effective, the T1 need not be the preferred choice. Depending on 

the shape of the posterior distribution (i.e. as mentioned above, the distribution of the ∆NB(λ) might not 

be symmetrically distributed), the point estimate for the ∆NB(λ) of T1 may be positive for a value of λ, 

while the posterior probability of the treatment being cost-effective is less than 50% (Fenwick et al. 

2001). The cost effectiveness acceptability frontier (CEAF) has been proposed to demonstrate this 
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phenomenon (Fenwick et al. 2000, Fenwick et al. 2001). In a recent study, Barton et al. (2007) have 

discussed discrepancies and their causes between CEAC and CEAF in detail.  

 

4.4 Bayesian methods for evidence synthesis 

 

4.4.1 Identifying evidence for decision-analytic models 

 

When a decision-analytic model is developed, the evidence requirements consist of information on 

probabilities, effect sizes, adverse events, adherence, resource items, unit costs, and utility values. The 

probabilities represent transitions between the decision-analytic model’s health states conditional to 

treatment responses. When only baseline transition probabilities (i.e. the natural course of a disease) 

are available the treatment effects, such as relative risks (RR), are used to illustrate the effects on dis-

eases. The occurrence of adverse events may be one of the main cost drivers from an economic view-

point and they may also have negative effect on patients’ quality of life. Resource use and health state 

utility values are related to particular health states and conditions in a decision-analytic model. (Fayers 

& Hand 1997, Drummond 1998, Baltussen et al. 1999, Revicki & Frank 1999, Backhouse 2002, Claxton 

et al. 2002).     

 

Since the overall validity of decision-analytic models depends on the quality of evidence put into the 

models, it is critical to identify and assess the sources and quality of model inputs to make the models 

more credible. Developed assessment methods, such as a hierarchy of data sources introduced by 

Cooper et al. (2005), offer applicable approach to identify and assess the quality of evidence according 

to their sources (Table 3). As shown in Table 3, data sources are ranked on an increasing scale from 1 

to 6, where the most appropriate source is assigned a rank of 1. The potential biases of different data 

sources are discussed in detail elsewhere (e.g. see Nuijten 1998, Evans & Crawford 2000, Jordan & 

Lau 2003, Weinstein et al. 2003).  
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Table 3. Hierarchy of data sources for decision-analytic models (adapted and modified from Cooper et al. 2005) 
 

Rank Model input 
  

Clinical effect size, adverse events, and complications 
1+ Meta-analysis of RCTs with direct comparison between comparator therapies, measuring final outcomes 
1 Single RCT with direct comparison between comparator therapies, measuring final outcomes 

2+ Meta-analysis of RCTs with direct comparison between comparator therapies, measuring surrogate outcomes 
Meta-analysis of placebo-controlled RCTs with similar trial populations, measuring the final outcomes for each 
individual therapy 

2 Single RCT with direct comparison between comparator therapies, measuring the surrogate outcomes 
Single placebo-controlled RCTs with similar trial populations, measuring the final outcomes for each individual 
therapy 

3+ Meta-analysis of placebo-controlled RCTs with similar trial populations, measuring the surrogate outcomes 
3 Single placebo-controlled RCTs with similar trial populations, measuring the surrogate outcomes for each 

individual therapy 
4 Case control or cohort studies 
5 Non-analytic studies (e.g. case reports, case series) 
6 Expert opinion 
  

Resource use 
1 Prospective data collection or analysis of reliable administrative data for specific study 
2 Recently published results of prospective data collection or recent analysis of reliable administrative data: 

same jurisdiction 
3 Data without source specifications from previous economic evaluations: same jurisdiction 
4 Recently published results of prospective data collection or recent analysis of reliable administrative data: 

different jurisdiction 
5 Data source not known: different jurisdiction 
6 Expert opinion 
  

Unit costs 
1 Cost calculations based on reliable databases or data sources conducted for specific study: same jurisdiction 
2 Recently published cost calculations based on reliable databases or data course: same jurisdiction 
3 Data source not known: same jurisdiction 
4 Using charge (price) rather than cost when societal perspective was adopted 
5 Recently published cost calculations based on reliable databases or data sources: different jurisdiction 
6 Data source not known: different jurisdiction 

  
Utilities 

1 Direct utility assessment for the specific study from a sample either: 
(a) of the general population, or 
(b) with knowledge of the disease(s) of interest, or 
(c) of patients with the disease(s) of interest 
Indirect utility assessment from specific study from patient sample with disease(s) of interest, using a tool 
validated for the patient population 

2 Indirect utility assessment from a patient sample with disease(s) of interest, using a tool not validated for the 
patient population 

3 Direct utility assessment from a previous study from a sample either: 
(a) of the general population, or 
(b) with knowledge of the disease(s) of interest, or 
(c) of patients with the disease(s) of interest 
Indirect utility assessment from previous study from patient sample with disease(s) of interest, using a tool 
validated for the patient population 

4 Data source not known: method of elicitation unknown 

5 Patient preference values obtained from a visual analogue scale 

6 Delphi panels, expert opinion 

  

 

Based on the hierarchy of data sources, it is clear that the meta-analysis of RCTs is the most recom-

mended method to summarize available clinical evidence. However, before a meta-analysis can be 

conducted, a systematic literature review is needed to identify all relevant studies. Major steps for pre-

paring and performing the systematic literature review can be outlined briefly as follows (Higgins & 

Green 2006): 
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1. Formulating a problem 

The review objects are clarified on the basis of the decision problem defined in the beginning of the 

evaluation process and a research protocol is written.  

2. Locating and selecting studies 

Comprehensive and documented search using a range of bibliographical databases and separate 

scientific journals is implemented. Methods to design and conduct a systematic literature review are 

documented in detail elsewhere (Higgins & Green 2006). 

3. Critical appraisal of studies and collecting data 

Selected articles are read to assess their validity and the relevant information is then extracted from 

those selected articles.  

4. Estimating the effect size and its precision 

The selected study results are pooled quantitatively using meta-analysis methods to obtain an 

overall effect size (Sutton et al. 2004). The exploration of issues that may affect the pooled results, 

such as the variability of effect sizes between studies (Thompson & Higgins 2002) and the imputa-

tion of missing values (Furukawa et al. 2006) have central roles in this part of the meta-analysis. 

Sections 4.4.3 and 4.4.4 introduce briefly the methods to estimate a pooled effect size using meta-

analysis and explore the variability of effect sizes between studies in the Bayesian context.   

 

4.4.2 Incorporating the quality of evidence into meta-analyses 

 

Since evidence from the high quality data sources is assumed to be more valid than evidence from 

other sources, the use of quality scores to weigh evidence based on the features of particular data 

source has been proposed (Spiegelhalter & Best 2003). Explicit quality assessment scales, however, 

are mainly available for RCTs and less for other data sources. Therefore, the quality assessments are 

usually done for evidence that relates to clinical effect sizes. (Moher et al. 1995, Moher et al. 1996)  

 

The quality scales that provide a summary numeric score of quality can be formally applied to weigh 

evidence used in the decision-analytic models. The scores can be used to summarise the quality of 

evidence e.g. in terms of pertinence, validity, and precision after the critical appraisal of the selected 

data sources (Tan et al. 2003). The case study described in chapter 6.2 will provide an example about 

the incorporation of the quality of clinical evidence into a decision-analytic model.   

 

4.4.3 Synthesising evidence using meta-analysis 

 

Meta-analysis is methodology for quantitatively synthesizing the results from the systematic literature 

review to obtain an estimate of the summary effect size across trials and is well suited to improving the 

quality of data used in the decision-analytic models. In meta-analysis, the effect sizes are measured in 

terms of quantitative units, which can be classified as belonging to one of three data types: binary (e.g. 
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yes/no), continuous (e.g. change in LDL-C), or ordinal scale (e.g. a disease severity scale). (Sutton et 

al. 2001).  

 

Two models that are most commonly used in the meta-analysis of study results are the fixed-effects 

and random-effects models. The fixed-effects approach is based on the assumptions that each ob-

served study results is estimating a common unknown overall pooled effect, whereas the random-

effects approach assumes that each single observed study results is estimating its own unknown un-

derlying effect, which in turn is estimating a common population mean. (Sutton & Abrams 2001) The 

difference between fixed- and random-effects approaches is illustrated graphically in Figure 14.   
 

 

 

 
Figure 14. Fixed- (on the left-hand side) versus random-effects (on the right-hand side) approaches to meta-
analysis (adapted from Normand 1999). Fixed effects estimates assume that there is a singly underlying 
population treatment effect, which will be reflected most accurately by larger studies with more statisti-
cal power (i.e. studies with infinitely large sample size would yield an identical result), whereas random 
effects estimates take into account the heterogeneity among studies (i.e. individual studies are as-
sumed to estimate different underlying treatment effects, which in turn are estimating a common popu-
lation mean).  
 

When meta-analysis is used to combine effect sizes, an inverse variance-weighted method is usually 

applied. In the fixed-effect model, each study (i) result (yi) is weighted according to the inverse of its 
variance (1/vi) before the weighted average estimate ( ESθ̂ ) is estimated, since different studies esti-

mate the true effect size with varying degrees of precision. The weighted average is estimated as fol-

lows: 
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In using the random-effects approach, the weighted average estimate ( θ̂ ) is estimated as above but 
the weights are given by )v/(w ii

21 τ+= , where 2τ is an estimate of the between-study variance (i.e. 

the value of 2τ is assumed to be zero, when the fixed effect approach is applied). (Schmid 2001) 

 

The fixed-effects approach has been criticized as being unrealistic because medical studies are rarely 

or never identical replications of one another. Therefore, the random-effects approach has been sug-

gested to reflect potential within- and between-trial (i.e. often termed heterogeneity in the meta-analysis 

literature) variation in the observed effect sizes due to differences in the trial designs, methods and pa-

tient characteristics. (Thompson 1993)  

 

4.4.4 Hierarchical model structures in meta-analysis 

 

The Bayesian approach offers a natural framework for the random-effects modelling. The random-

effects meta-analysis model can be specified using a following hierarchical structure, which assumes 

normality N(-,-): 
 

),(~ iii vNy θ  

),(~ 2τµθ Ni  

at level 1 (within-study variation) 
 
at level 2 (between-study variation) 

     
 
 
            [14] [ ]−−,~µ  

[ ]−−,~2τ  

Prior distribution for the average effect size of 
interest 
Prior distribution for the between-study vari-
ance 

  

where [-,-] indicates a prior distribution to be specified (Schmid 2001, Sutton & Abrams 2001). To be 
fully Bayesian, prior distributions for the population parameters µ and 2τ  are needed; whereas, the val-

ues of vi are assumed to be known in advance (i.e. the values are derived from each study i).  

 

When normality is assumed, the prior distribution of the average effect size of interest is usually speci-
fied as )000001.0,0(~ Normµ and the prior distribution of between-study variance is assumed to follow an 

inverse gamma distribution (i.e. )001.0,001.0(~/1 2 gammaτ ). The inverse gamma distribution is the 

most frequently applied distribution for variance, since it produces a distribution, which is approximately 

uniform but has a spike of probability mass close to zero (i.e. the prior expectation before seeing the 

data is that there is no variation between studies). (Lambert et al. 2005) The further issues related to 

the specification of proper prior distributions have been discussed elsewhere (Smith et al. 1995, Sutton 
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& Abrams 2001, Lambert et al. 2005). After the specification of prior distributions, the aim is to discover 
the joint posterior distribution of the θi, µ and 2τ  given the data.  

 

When the hierarchical specification for the random-effects models is used, a phenomenon, called 

shrinkage, emerges as an accessory product of this particular approach. This phenomenon implies that 

a better effect estimate for a single study (i) is gained by borrowing strength from other studies. This 

means that the posterior mean of the individual effect size (yi) is based on the data from all other stud-

ies included in the meta-analysis. In practice, the posterior mean is a synthesis or “compromise” be-

tween the single observed effect size and the average treatment effect size. When there is little be-

tween-study variation in effect sizes, the posterior mean narrows down towards the average treatment 

effect size. Instead, when the variation is large the posterior mean stays closer to the single observed 

study effect. Ultimately, this leads to narrower credible intervals of any particular effect (cf. Figure 15). 

(Schmid 2001)     

Pooled effect without shrinkage

Pooled effect with shrinkage

 
Figure 15. Shrinkage plot for hypothetical meta-analysis. Dotted lines depict the effect of shrinkage phenomenon.    
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4.4.5 Applying hierarchical linear models to explain heterogeneity in meta-analysis 

 

The random-effects approach takes into account the variation in the underlying effect size between 

studies, but it does not provide a method of exploring or explaining the reasons why study results vary. 

In the case of meta-analysis, both the patient and the study characteristics can cause variation in the 

pooled results. Studies being pooled may differ with respect to many factors e.g. patient inclusion crite-

ria, study design, the length of follow-up, treatment regimens or doses, etc.  Therefore, it may be valu-

able to investigate subsets of patients and studies within the studies being pooled. In practice, the 

stratification of the studies can be undertaken according to study or patient characteristics. (Sutton et al. 

2004)  

 

Another way to explore variation, especially when the number of studies being combined is relatively 

large, is meta-regression, which can be seen as an extension of subgroup analyses.  The meta-

regression is the application of regression analysis, where study-level covariates (i.e. potential ‘effect 

size modifiers’) are used to explain the variability of treatment effects between studies (Thompson & 

Higgins 2002). These study-level summary results describe only between-study variation and therefore 

the meta-regression can only be used to detect study characteristics that differ across studies (Schmid 

et al. 2004).  

 

The meta-regression can be arranged by representing the study means θi as functions of regression 
covariates Xi, when θi vary across studies as ii Xββ +0 . In meta-regression, more precise studies (i.e. 

studies with a larger sample size) have a greater influence in the analysis, because studies are 

weighted by the precision of their respective effect estimate (wi). In addition, it is not reasonable to as-

sume that all of the variation is explained by the study-level covariates, and therefore that wi should be 

equal to the inverse sum of the within study variation and the residual between-trial variation 
(i.e. )v/(w ii

21 τ+= ). The advantages and disadvantages of the meta-regression approach in meta-

analysis have been discussed in detail elsewhere. (Thompson & Higgins 2002)  

 
Formally, the meta-regression ),(~ 2

0 τββ ++ iiii vXNy  can be evaluated using an extended hier-

archical structure, where the aim is to discover the joint posterior distribution of the θi, 0β , iβ  given the 

data: 
),(~ iii vNy θ  

),(~ 2τµθ ii N  

at level 1 (within-study variation) 
 
at level 2 (between-study variation) 

 
 
 
            [15] 

)(0 XX iii −+= ββµ  

[ ]−−,~iβ  

[ ]−−,~2τ  

A linear predictor for the average effect of interest 
 
Prior distributions for the trial-level covariates  
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where [-,-] indicates again a prior distribution to be specified. If non-informative prior distributions are 

used, inference depends almost entirely on the data (Schmid 2001).  The common effect parameter is 
replaced by a linear predictor )(0 XX ii −+ ββ , where β0 is the intercept term of the regression slope, 

βi are the regression coefficients associated with trial-level covariates, and Xi is the trial-level covariate 
value from the ith trial. The trial-level covariates are centred around their own mean values )( XX i −  

to speed up convergence during the simulation process. The parameter 2τ now represents the residual 

heterogeneity variance not explained by the trial-level covariates. The case study of chapter 6.3 will 

provide an example of the applications of meta-analysis and meta-regression in practice.  

 

4.5 Incorporation of uncertainties into decision-analytic models 

 

4.5.1 Computation routines for the two-stage approach 

 

In the two-stage analysis, all model parameters are varied simultaneously, taking the parameter uncer-

tainty of all model parameters into account at the same time. The two-stage analysis is commonly con-

ducted using the Monte Carlo simulation, which is the most widely used method in situations, where 

closed form solutions are very complicated or impossible. The Monte Carlo simulation is based on the 

idea that fundamentally any probability distribution may be expressed in a cumulative form (i.e. a cumu-

lative distribution function). A cumulative curve y(x) = F(x) is typically scaled from 0 to 1 on the vertical 

axis, with vertical axis values (y) representing the cumulative probability up to the corresponding hori-

zontal axis value (x) (Figure 16). New random number from selected probability distribution can be ob-

tained by drawing a random number (y) between 0 and 1 and then inverting x = F-1(y). Repeating this 

process a large number of times generates a random sample from the selected probability distribution 

(Briggs et al. 2002). 

 
Figure 16.  Generating random draws from a parametric distribution using Monte Carlo sampling (adapted from 
Briggs et al. 2002).  
 

1

0

y(x) = F(x) 

y 

x = F-1(y) 

x 

Monte 
Carlo 

sampling 



 

 

56

The selection of prior distributions assigned to model parameters is suggested to be based on the na-

ture of the available data and the logical bounds of the parameter (e.g., transition probabilities are 

bounded on the interval [0, 1]). Due to the logical bounds, an assumption of normality for the model pa-

rameters is no longer valid in all cases, and transformations (Doubilet et al. 1985) or other types of dis-

tributions provided by Bayesian statistical theory are therefore needed (Briggs et al. 2006, Thompson & 

Nixon 2005). The parameterisation of the prior distributions can be done by applying the methods of 

moments (Briggs et al. 2006).  

 

After the prior distributions for all relevant parameters are fitted, probabilistic sensitivity analysis can be 

employed applying a cohort analysis approach (Sonnenberg & Beck 1993), which is arranged to simu-

late the values of interest, such as expected costs and effects for both treatment alternatives T1 and T0 

as follows: 

1. Values of θk are drawn from their prior distributions p(θk) describing the uncertainty surrounding 

the value of each θk. k is the number of probabilistic prior distributions in the specified model 

(cf. figure 2).  

2. Values of θk are held constant, while hypothetical cohorts of patients are run through the model 

according to the initial state vector and the specified transition matrix (see chapter 4.1).    

3. Steps 1-2 are repeated a large number of times to generate empirical distributions for the over-

all expected costs and effects.  

 

Consequently, the decision-analytic model is evaluated by averaging parameters of interest over a 

large number of iterations, which allows one to account for uncertainty in the model parameters. The 

simulation results can be interpreted and illustrated using the methods reviewed in chapter 4.2 and sec-

tion 4.3.2. 

 

4.5.2 Computation routines for the comprehensive decision modelling (MCMC) approach 

 

Bayesian Markov Chain Monte Carlo (MCMC) methods have been applied earlier in situations where 

no closed form solutions are available. In addition, MCMC simulation methods offer a natural framework 

to build comprehensive decision-analytic models. The computation routines needed in Bayesian MCMC 

simulations are available e.g. in the software package WinBUGS, developed by the MRC Biostatistics 

Unit, University of Cambridge, UK.  

 

WinBUGS applies one particular MCMC simulation method known as Gibbs sampling, which is a spe-

cial case of the Metropolis-Hastings algorithm (Gilks et al. 1996). Gibbs sampling is a method for sam-

pling from distributions over at least two dimensions and it is applicable in situations, where the joint 

distribution of model parameters is not known explicitly, but the conditional distribution of each parame-

ter is known.  
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The concept of Gibbs sampling is illustrated graphically in Figure 17, where sampling is done from the 
joint posterior distribution of θ1 and θ2 (a). Starting from an initial point ),( 0

2
0

1 θθ , a sample 1
1θ is made 

from the conditional distribution )( 0
21 θθp (b). The subsequent sample is drawn from the conditional dis-

tribution )( 1
12 θθp  (c), which after the initial point moves to the new state ),( 1

2
1
1 θθ . This movement com-

pletes the iteration cycle (d).  
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Figure 17. Simplified graphical example of Gibbs sampling procedure (adapted and modified from Mackay 2005, 
370) 

 

After model specification, Gibbs sampling can be conducted by applying the following procedure: 

- Set initial values θ0 = (θ1
0, θ2

0,..., θk
0), where k is the number of probabilistic distributions 

in the specified model (cf. figure 2). The value of θk can be any reasonable value from 

the parameter space. 

- Repeat for j = 1,2,…,m, where m is the total number of samples. A complete nested 

loop (j) drawn from the k distributions is given by:  

θ1
j ~ p(θ1 | θ2

j-1, θ3
j-1, ... , θk

j-1) 

  θ2
j ~ p(θ2 | θ1

j, θ3
j-1, ... , θk

j-1) 

  θ3
j ~ p(θ3 | θ1

j, θ2
j, ... , θk

j-1) 
  M  

  θk-1
j ~ p(θk-1| θ1

j, θ2
j, θ3

j, ... , θk
j-1)   

θk
j ~ p(θk | θ1

j, θ2
j, θ3

j, ... , θk-1
j) 
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Repeating samples a sufficient number of times ensures that the Gibbs sampler is truly sampling from 

the true conditional posterior distributions (i.e. convergence is reached) and that all areas of the joint 

posterior distribution are explored. If the Gibbs sampler is allowed to run for a sufficiently long period 

after convergence, it produces a complete sample from the conditional posterior distribution of θk.  

 

Convergence can be checked formally e.g. in WinBUGS using the Gelman-Rubin diagnostic tool, which 

works by running several chains simultaneously, but starting from different initial values (θk
0). (Spiegel-

halter et al. 2003) The simulations before convergence (i.e. burn-in samples) are discarded and final 

inferences are based on a sample of simulations after convergence. After achieving convergence, it is 

possible to return the expectations of interest, such as the posterior means of expected costs and ef-

fects, from particular conditional posterior distributions.   

 

4.6 Estimating the value of additional evidence 

 

Additional evidence is valuable because it reduces the expected costs of uncertainty around a decision. 

The expected costs of uncertainty can be determined jointly by the probability that a decision based on 

the existing information will be wrong (i.e. a wrong option is selected) and the consequences of that 

wrong decision. In health economic evaluation, the consequences associated with uncertainty are 

measured in the terms of NB(λ) foregone when the decision made upon the basis of existing evidence 

is incorrect. Expressing NB(λ) in monetary terms provides an explicit monetary valuation of the costs of 

uncertainty that can be compared with the cost of collecting additional evidence to determine the value 

of additional research. (Claxton 1999, Claxton et al. 2001)  

 

Expected value of perfect information (EVPI) is a decision theoretic framework that provides useful in-

formation for decision-makers regarding uncertainty around the decision (Claxton 1999). Briefly, EVPI is 

a measure of the maximum value that can be placed on additional information and it is simply the dif-

ference between the expected value of the decision made with perfect information and the decision 

made on the basis of the available evidence.  

 

Formally, when the decision given the available evidence is made, the decision-makers are faced with 

the fact that the value of NB(λ) will be uncertain and a decision must be made before it is known what 

particular values the uncertain model parameters (θk) in a decision-analytic model will take (cf. Figure 

2). Therefore, the optimal decision given the existing information is to choose a treatment (Ti) that gen-

erates the maximum net benefit in monetary terms (i.e. maxTiEθkNB[Ti, θk]). With perfect information, it 

would be possible that decision-makers could select a treatment that maximises the net benefit for a 

particular value of θk. However, the true values of θk are unknown, so the expected value of perfect in-
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formation is found by averaging the maximum net benefit over the joint distribution of θk (i.e. 

EθmaxTiNB(Ti, θk)). (Claxton 1999, Claxton et al. 2001) 

 

When the simulation approach is employed, the calculation of EVPI is rather straightforward. As noted 

above, the appropriate decision given existing information is to choose the treatment with the highest 

average net benefit (maxTiEθkNB[Ti, θk]). If we would have access to perfect information, we would 

choose the treatment with the highest net benefit at each iteration of the model (i.e. each iteration is 

assumed to represent the actualisation of a particular state of world). Determining the optimal strategy 

at each iteration and calculating the average net benefit from these choices gives the maximum net 

benefit with perfect information (EθmaxTiNB(Ti, θk)). The expected value of perfect information for an 

individual patient is therefore the average net benefit with perfect information minus the average net 

benefit of the treatment chosen given the available evidence (Claxton 1999, Claxton et al. 2001):   

 

[16]  EVPI = EθmaxTiNB(Ti, θk) - maxTiEθNB(Ti, θk) 

 

Since health care allocation decisions are always related to number of patients who could benefit from 

a new technology, it is worthwhile to calculate the EVPI for population based on some assessment of 

the effective life-time of that particular health technology, the expected number of patients over this pe-

riod (It) and a discount rate (r).  

[17]  Population EVPI ∑
= +

=
t

t
t

t

r
I

EVPI
1 )1(

*  

If the population EVPI is low, obtaining more information is not very meaningful for the decision-makers 

as the uncertainty around the optimal decision given the existing information is small. On the other 

hand, when the population EVPI is high, it is potentially meaningful to require more evidence as this will 

add to what we know about the decision problem. Hence, when the population EVPI is high, substantial 

uncertainty surrounds the decision on financing of the treatments from the public funds. (Claxton 1999, 

Claxton et al. 2001) It should remember that the values of population EVPI analyses are only really im-

portant when compared to cost of additional research.  
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5 AIMS OF THE STUDY  
 

The general aim of this study was to develop the applications of decision-analytic models and to ex-

plore the applicability of a set of Bayesian methods for evidence synthesis and decision-analytic model-

ling in health economic evaluations. Specifically, this was done by: 

1. Developing the applications of Markov models to reflect the courses of diseases and their ex-

pected costs and health outcomes in the presence of particular treatments under conditions of 

uncertainty.  

2. Using a set of Bayesian methods to synthesize available evidence whilst reflecting on their im-

precision, heterogeneity and quality. 

3. Using optional approaches to incorporate parameter uncertainty into decision-analytic models. 

4. Using different approaches to represent and interpret the cost-effectiveness results. 

5. Using the value of information methods to estimate the expected costs of decision uncertainty if 

wrong decisions are made and to assess the value of additional evidence that would reduce 

decision uncertainty. 

 

The first study question relates to challenges in developing a well-specified probabilistic decision-

analytic model under conditions of methodological and structural uncertainty. The second question re-

lates to challenges to synthesise evidence for model parameters, when uncertainty arises due to vari-

ability, heterogeneity, and the imprecision of estimates. The third study question relates to alternative 

approaches to capture parameter uncertainty in a decision-analytic model in such a way that decision 

uncertainty can be reflected and illustrated to decision-makers. The fourth study question relates to the 

additional possibilities to represent and interpret the probabilistic cost-effectiveness results. Finally, the 

fifth study question relates to challenges in defining the value of additional evidence that would reduce 

the uncertainty around the specific decision.  
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6 CASE STUDIES 

6.1 Modelling the cost-effectiveness of a family-based program in mild Alzheimer’s disease em-
ploying the two-stage approach6 

 
6.1.1 Introduction 

 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by gradual loss and 

progressive deterioration of memory and other cognitive functions, and decline in functional capacity. 

The reported prevalence in Western countries varies between 0.5–3.0% in individuals aged 65–74 

years, between 4.1-18.7% in the age group 75–84, and between 13.1–47.2% in persons aged over 85 

years (Sulkava et al. 1985, Evans et al. 1989, Bachman et al. 1992, Skoog et al. 1993, Ott et al. 1995, 

Polvikoski et al. 2001). There are approximately 80 000 patients with moderate or severe dementia in 

Finland. The number of patients is expected to increase to 128 000 by the year 2030.  AD imposes a 

heavy economic burden on the social and health care system. The economical impact of the disease is 

due to the fact that patients with AD utilize health services at higher rates than age-matched controls. 

There are few systematic studies on the costs of illness due to dementia in Finland, but the estimates 

have varied from 0.8 to 1.3 billion EUR per year.  One recent study from Sweden suggests that the 

costs of dementia were 3.4 billion US dollars in the year 1996 with annual average costs of 23 600 US 

dollars per patient (Wimo et al. 1997). The total cost of caring for persons with severe AD has been es-

timated to be 2.25 times higher than for patients with mild or moderate disease (Hu et al. 1986). The 

largest increase in dementia costs occurs when the patient has to be institutionalized. However, inter-

national comparisons are difficult because of different methods of financing and organizing care. The 

decisions to connect an individual to institutional care vary significantly from country to country. In 

Finland, 40 to 50% of all demented patients are in long-term institutional care.   

 

The clinical features of AD appear insidiously and develop according to a uniform pattern from the ear-

liest symptoms to severe dementia and death. Initial symptoms are episodic memory loss and an im-

paired ability to learn new facts, reflecting the pathology in the entorhinal cortex and hippocampus 

(Braak & Braak 1991). As the disease progresses, other cognitive symptoms, such as executive dys-

function, aphasia, agnosia and apraxia appear, resulting in decline of functional capacities. Patients 

with moderate or severe dementia have many psychiatric and behavioral symptoms, which greatly in-

crease caregiver burden and stress. Finally, the patient becomes bedridden and incontinent. Death oc-

curs on average 6–8 years after the appearance of the initial symptoms (Jost & Grossberg 1995).    

 

                                                 
6 This chapter has been published in: Martikainen J, Valtonen H & Pirttilä T. Potential Cost-effectiveness of a Family-Based Pro-
gram in Mild Alzheimer’s Disease Patients. Eur J Health Econom 2004;5:136-42. Reproduced with permission.  
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The introduction of new therapies for AD may result in significant economic, clinical and social ramifica-

tions. However, it is not clear how these treatment effects translate into quality of life of the patients and 

caregivers, and whether they can postpone the institutionalization of the patient. Extrapolating long-

term effects from short-term clinical trials is difficult, although some studies do suggest that treatment 

can postpone nursing home care (Knopman et al. 1996). Interventions supporting community care have 

shown promising results in postponing institutionalization (Brodaty et al. 1997, Eloniemi-Sulkava et al. 

2001, Mittelman et al. 1996).  

 

6.1.2 Objectives 

 

The objective of the present study was to examine ex ante by a simulation the long-term cost-

effectiveness of a cognitive-behavioural family intervention (CBFI) program in helping the informal 

caregivers (spouses or adult children) to postpone the need to transfer AD patient to a nursing home. 

The actual ongoing CBFI program trial is designed to be an additional service for AD patients and their 

informal caregivers, and its results can later be compared to the simulation results in order to evaluate 

the applicability of the simulation method. Thus, the two alternative forms of treatment are the current 

practice, or the current practice combined with the CBFI program. The current practice consists differ-

ent forms of community services (meals on wheels, cleaning services etc.) and periodical institutional 

care (1-2 weeks/period), while the informal caregivers are able to rest. The AD patients and their infor-

mal caregivers can obtain these services from the public or private sector, since also private sector ser-

vices are national insurance schemes. The service-mix to be offered to the AD patient and his/her in-

formal caregiver is decided based on e.g. their living conditions and current physical and mental health 

status. The overall goal is to make it possible that the AD patient can live at home as long it is reason-

able. In the CBFI program, the main emphasis is on supporting the patients’ and their caregivers’ capa-

bilities in coping with the disease. The CBFI program consists of short courses in rehabilitation centres 

with the comprehensive support of dementia family care coordinators. The courses include physical and 

recreational training for AD patients, and psychological as well as educational support and counselling 

for the caregivers.  

 

The CBFI program is planned to be funded by the Finnish Social Insurance Institution. Thus, the study 

has been designed to obtain information about the average outcomes across the group of patients re-

ceiving the support services mentioned above and thereby to inform policy decisions at the societal 

level. Therefore, we are not particularly concerned with the variability of cost-effectiveness due to pa-

tients´ and their caregivers´ characteristics (so called first-order uncertainty), but rather with the lack of 

complete knowledge regarding the true values of incremental costs and effectiveness between different 

support service-mixes (so called second-order uncertainty). In a stochastic decision analysis, the effect 

of first-order uncertainty can be minimized by increasing the sample size and the lack of complete 

knowledge with respect to true values of model parameters can be characterized by a second-order 
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Monte Carlo simulation. (Stinnett & Paltiel 1997) Therefore, in this particular case, the second-order 

Monte Carlo simulation with a Bayesian approach was applied to answer the question: given existing 

information, should the new rehabilitation program be implemented as a cost-effective option? 

 
6.1.3 Methods and data  

 

Model inputs. A basic Markov model was derived from the publication of by Neumann et al. (1999) and 

the second-order simulation followed the study principles of Claxton et al. (2001). Neumann et al. 

(1999) applied a deterministic Markov model to illustrate the cost-effectiveness of donepezil-treatment 

for mild and moderate AD patients. Claxton et al. (2001) utilized the same data and model as Neumann 

et al. (1999) but they used a probabilistic approach to illustrate parametric uncertainty more accurately. 

They both used the AD model, where disease stages were classified as mild, moderate and severe, 

based on the Clinical Dementia Rating Scale (CDR) classification (Morris 1993). Transition probabili-

ties, including stage-to-death transitions, were derived from Neumann et al. (1999) and Neumann et al. 

(2001) (Table 4). However, it should be noted that the probabilities from Neumann et al. (1999, 2001) 

articles do not sum up to 1 and therefore some modification was needed. Furthermore, the model was 

modified by excluding the transition from moderate state to mild, because that transition was assumed 

to be biologically implausible. A schematic presentation of the modified model is presented in Figure 18. 
 

Mild
Home/NH

Moderate
Home/NH

Severe
Home/NH

Death
 

 
Figure 18. Schematic structure of the modified AD model. (NH= Nursing home)  

 

The model included community (COM) and nursing home (NH) settings of care. Baseline transition 

probabilities between COM and NH were derived from Neumann et al. (1999, 2001) (Table 4). The 

transition probabilities between and inside the model stages are presented in Table 4.  

 

The effect of the CBFI program on the delay of NH admission was based on estimates from Mittelman 

et al. (1996) study, where a total of 206 subjects were recruited in the study over a 3.5-year period. The 

total follow-up time of the study subjects was 8 years. The median time before NH admission was 1203 
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(95%CI 944 to 1412) days in the treatment group and 874 (95%CI 684 to 1064) days in the control 

group after adjusting for informal caregivers´ sex. The relative risk from a Cox proportional hazard 

model of NH admission after adjusting for informal caregivers´ sex, patient age, and patient income was 

0.65 (95%CI 0.45 to 0.94) in the intervention group. This means that those AD patients receiving addi-

tional support program had an approximately 35% lower risk of NH admission than the AD patients 

without that support program. However, Mittelman et al. study did not examine changes in quality of life 

of the study subjects. Therefore, we wanted to include preference weights for different disease stages. 

Country-specific preference weights were unavailable, thus the weights were derived from Neumann et 

al. (1998) (Table 4). The effect of the CBFI program on the informal caregivers´ health-related quality of 

life (HRQOL) was constructed assuming that it depended on the AD patients´ disease progression. In 

other words, when the AD patient’s health state decreases it was assumed to simultaneously have an 

impact on the caregiver’s HRQOL, since the caregiver’s role has been associated with psychological 

and physical morbidity, even an increased risk of mortality (Dunkin et al. 1998, Schultz et al. 1999). 

However, the model assumed that the caregivers remained alive over the five year care-giving period.  

 

The organisation and consequently the utilization of the elderly care varies greatly in the Finnish mu-

nicipalities. This means in fact, that in spite of the uniform legislation there is no standard ‘present prac-

tice’ covering the whole country, but instead, a number of differing local practices. In our case, the 

community care resource utilization of the AD patients with the informal caregivers was estimated ac-

cording to those prevailing in two Finnish municipal health centres (Table 4). These municipal health 

centres were selected to represent the local organisation of elderly care services among AD patients in 

the eastern Finnish municipalities. The values of these utilized resources were mainly collected from 

the list of health service unit costs in Finland (Heikkinen et al. 2001).  

 

The cost of the CBFI program was derived from the information from the rehabilitation centre, where the 

CBFI program is intented to be implemented initially. Costs related to travelling to the rehabilitation cen-

tre were also considered since Finland is geographically large and travelling distances can be quite 

long (Table 4).  

 

According to the Finnish Social Insurance Institute, the reimbursed average costs of dementia medica-

tion were 1034€ per patient in the year 2000 in Finland (Table 4). The effects and use of the medication 

were assumed to be equal in both groups. All costs were counted in the monetary values for the year 

2001. At the baseline, both costs and effects were discounted by a 5% annual discount rate. 
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Table 4. Parameters in the modified AD model 
Annual transition 
probabilities 

Value Source 

Stage to stage   

          Mild to mild 0.615 **, *** 
          Mild to moderate 0.322 **, *** 
          Mild to severe 0.042 **, *** 
          Mild to dead 0.021 **, *** 
          Moderate to moderate 0.608 **, *** 
          Moderate to severe 0.339 **, *** 
          Moderate to dead  0.053 **, *** 
          Severe to severe 0.847 **, *** 
          Severe to dead 0.153 **, *** 
Community to nursing home   
          Mild 0.038 **, *** 
          Moderate 0.110 **, *** 
          Severe 0.259 **, *** 
   
Quality of life weights   
Patients   
    Mild   

        Community 0.68 ** 
        Nursing home 0.71 ** 
    Moderate   
        Community 0.54 ** 
        Nursing home 0.48 ** 
    Severe   
        Community 0.37 ** 
        Nursing home 0.31 ** 
Caregivers   
    Mild   
        Community 0.86 ** 
        Nursing home 0.86 ** 
    Moderate   
        Community 0.86 ** 
        Nursing home 0.88 ** 
    Severe   
        Community 0.86 ** 
        Nursing home 0.88 ** 
   
Other parameters   
The effect of the CBFI-
program  (RR) 

0.65 **** 

Annual discount rate – costs 
(%) 

0%-
5% 

 

Annual discount rate – 
benefits (%) 

0%-
5% 

 

   

Resource utilisation  Value Source
Visit to neurologist (visits per year)   
         Mild 2 † 
         Moderate 4 † 
         Severe 2 † 
Interval care (Days per year)   
         Mild 31 ‡ 
         Moderate 50 ‡ 
         Severe 85 ‡ 
Day care (Days per year)   
         Mild 43 ‡ 
         Moderate 5 ‡ 
         Severe 3,5 ‡ 
Home nursing (Visits per year)   
         Mild 28 ‡ 
         Moderate 18 ‡ 
         Severe 5,5 ‡ 
Home help service (Visits per year)   
         Mild 211 ‡ 
         Moderate 300 ‡ 
         Severe 37 ‡ 
Meals on wheels (# of meals)   
         Mild 47 ‡ 
         Moderate 38 ‡ 
         Severe 5 ‡ 
   
Unit costs (EUR)   
Neurologist assessment 180 ***** 
Nursing home day 122 ***** 
Interval care 122 ***** 
Day care 59 ***** 
Home nursing 36 ***** 
Home help service 35 ***** 
Meals on wheels 5 ***** 
   
Other costs (EUR)   
Travelling  61 ***** 
Medication due to AD 1034 * 

CBFI-program   
          1st year 1000  

          2nd year 1000  

Sources: 

† Expert panel 
‡ Two Finnish municipal health centres 
* The Finnish Social Insurance Institute´s database 

** Neumann et al. 1999 
*** Neumann et al. 2001 
**** Mittelman et al. 1996 
***** Heikkinen et al. 2001 

 

The existing information of the model parameters was originally characterized as point estimates. Thus, 

the model was deterministic and the only possible way to examine the effect of parametric variation on 

the model outputs was a basic sensitivity analysis (Briggs et al. 1994). However, we wanted to empha-
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size the uncertainty related to the true values of the parameters and its impact on the model outputs 

more accurately by assigning prior distributions to characterize the uncertainty surrounding the model 

parameters (Claxton et al. 2001). Thus, the prior distributions, which represent beliefs concerning the 

true values of the model parameters were based on existing information, i.e the Bayesian approach 

(Bland & Altman 1998). Fundamentally, the majority of the decision models are informal applications of 

Bayesian reasoning (Briggs 1999). 

 

All stage transition probabilities were characterized as beta distributions, because the beta distribution 

has applicable properties. Firstly, the beta(r,n) distribution is a continuous distribution, which obtain val-

ues between 0 and 1 and secondly, its parameters r and n can be thought of as counts of the event of 

interest and n as the total sample size of the specific patient cohort (Claxton et al. 2001, Briggs 2000). 

The parameters r and n were estimated by adjusting transition probabilities according to hypothetical 

cohort of 1,000 patients.  

 

Health care resource utilization estimates were characterized as being gamma distributed since the 
distribution of resource utilization data is often positively skewed and it is logically bound to be 0≥ . 

However, the mean resource estimates, which are located far from 0, were assumed to have a normal 

distribution. Unfortunately, reliable standard error information of the mean resource estimates was un-

available except for the travelling costs (Heikkinen et al. 2001). Therefore, artificial standard error esti-

mates were calculated by multiplying the mean resource utilization estimates by value of 0.5 (Briggs et 

al. 2002). This was assumed to introduce a quite large variance into the mean resource estimates 

(Briggs 2000). Unit costs, which were derived from the list of health service unit costs, were handled as 

fixed prices assuming that they reflect the true opportunity costs of these consumed resources.  

 

The health state utilities for the AD patients and their informal caregivers were characterized as being 
normally distributed. Since standard errors ( ES

)
) were not available, the uncertainty ranges for the 

health state utilities were set to be ± 0.1 and ES
)

 was calculated using the equation 18.  

[18]    
96.1*2

ˆ LBUBES −
=   

where UB is the upper and LB is the lower boundary for the health state utilities uncertainty ranges 

(Briggs 2000).  

 

Uncertainty related to the relative risk estimate was illustrated using a log normal distribution. The log 

scale gives a natural constraint to the relative risk estimate over the interval from 0 to infinity. The mean 

relative risk estimate was derived from the study of Mittelman et al. (0.65) but since the CBFI program 

was not totally identical with the program, which was applied in Mittelman et al. study (1996) we created 

more sceptical effect scenario assuming an uncertainty range from 0.45 to 1.2, which would indicate 
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also that there was an insignificant effect difference between the CBFI program and the current prac-

tice.     

 

After assigning the distributions to the parameters, the second-order Monte Carlo simulation was used 

to produce the empirical distributions for the mean costs and effects from the constructed probabilistic 

model. During the second order simulation, all of the model’s parameters were randomly sampled and 

held constant while the 1,000 individuals of the ith cohort were cycled through the model. The distribu-

tion of the patients in each sample represents the results of a single artificial trial (first-order uncer-

tainty). Then the mean costs and effects were calculated for this ith cohort. After every ith cohort, the 

model’s parameters were sampled and calculated again. This estimation process was repeated 1,000 

times (Briggs et al. 2002). After the final cohort, the average costs and effects were calculated based on 

these sampled mean estimates (second-order uncertainty).  

 
Handling uncertainty. In the cost-utility analysis (CUA), the incremental cost-effectiveness ratio ( REIC ˆ ) 

comparing the current practice (CP) with the CBFI program is typically defined as:    

[19]   λ<
∆
∆

=
−
−

=
E
C

EE
CCREIC

CPCBFI

CPCBFIˆ         

where iC  and iE  represent sample means for the costs and effects. Lambda (λ) represents the deci-

sion makers’ maximum willingness to pay for a QALY gained. Simulation results are often presented as 

a scatter-plot of the mean differences in cost and QALYs gained between the comparators. This graph 

is also known as a cost-effectiveness plane, where the x and y-axis divide the graph into four separate 

quadrants. In our case, these quadrants represent the following scenarios for the CBFI program in 

comparison with the current practice: (I) the CBFI program preferred to the current practice if and only if 
EC ∆∆ /  < λ, (II) the CBFI program preferred to the current practice, (III) the CBFI program preferred to 

the current practice if and only if EC ∆∆ / > λ, and (IV) the current practice preferred to the CBFI pro-

gram (Glick et al. 2001).  

 
Recent methodological advantages have generated a new decision rule by rearranging the REIC ˆ -

formula as follows: 

[20]    
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The rearranged formula is the incremental net health benefit (∆NHB) decision rule introduced by 

Stinnett and Mullahy (1998). The equivalence and optimality of ratio-based and net benefit-based ap-
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proaches to health care resource allocation was described by Laska et al. (1998). The ∆NHB approach 

is a relatively new framework for handling uncertainty in CUA studies, but the ∆NHB approach permits 

one to avoid many of the problems encountered with CE-ratios when establishing confidence intervals 

for cost-effectiveness ratios (Glick et al. 2001). The advantage of ∆NHB is that the joint distribution of 

cost and effectiveness is asymptotically normally distributed. The disadvantage of ∆NHB has been pro-

posed to be the fact that the value of λ is unknown. To avoid this problem, the net-benefit statistics can 

be plotted as a function of λ (Stinnett & Mullahy 1998). From the Bayesian point of view, this function 

can be interpreted to reveal the probability that an intervention is cost-effective for given value of λ 

(∆NHB>0) (Claxton et al. 2001). Thus, when decision uncertainty is combined with varying societal will-

ingness to pay (λ) per gained QALY, the cost-effectiveness information can be presented as an accept-

ability curve. The acceptability curve is a graphical representation, which helps decision makers to de-

fine the uncertainty of decisions and to acquire more information if necessary (Van Hout et al. 1994).   

 

6.1.4 Results  

 

The Markov model with the second-order simulation generated the cost-effectiveness estimates for the 

current practice and the CBFI program. The mean estimates of costs and QALYs gained with 95% un-

certainty ranges are presented in Table 5. The 95% uncertainty ranges were obtained by selecting the 

2.5th and 97.5th percentile points of the ranked vector of 1,000 simulation replicates. The mean results 

of the economic analysis indicate that the CBFI program is potentially cost-saving and it is superior to 

(less costly and more effective) the current practice when the program is used as an additional support 

service for patients with mild AD patients and their informal caregivers (Table 5). However, based on 

the 95% uncertainty ranges, the differences between mean estimates are not statistically significant. 

Furthermore, it seems that the CBFI program lightly decreases the quality of life of informal caregivers. 

However, the difference between the quality of life is not statistically significant.  

 
Table 5. Mean estimates of costs and effects with 95% uncertainty ranges (in parenthesis)  

Estimate CBFI-program Current practice Difference 
Patient    
Mean costs (EUR) 43,933 46,925 -2992 
 (19,785 to 71,026) (19,073 to 75,740)  
Mean QALYs 1.88 1.87 0.01‡ 
 (1.71 to 2.06) (1.72 to 2.05)  
ICER  - - Cost-saving* 
    
Caregiver    
QALYs 3.13 3.14 -0.01‡ 
 (2.94 to 3.32) (2.95 to 3.32)  

 

‡ Results are approximate due to rounding – the model uses full accuracy 
* The CBFI program is more effective and less costly  
 

The results of 1,000 simulations from the AD model with 95% uncertainty ranges are presented in Fig-

ure 19. As shown in Figure 19, the 95% uncertainty ranges cover more than one quadrant of the cost-
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effectiveness plane effecting the significant uncertainty surrounding the REIC ˆ -estimate. From a deci-

sion-making point of view the use of frequentist interpretation rules do not provide information on the 

likelihood that the CBFI program is cost-effective. On the cost-effectiveness plane, the high concentra-

tion of points in quadrant II (71.3% of iterations) indicates that the CBFI program is potentially cost-

saving offering more QALYs with lower costs but the dispersion of points in quadrants I (3.8% of itera-

tions), III (19.6% of iterations), and IV (5.3% of iterations) indicates that there is also some uncertainty 

surrounding the mean estimates of costs and QALYs gained.  
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Figure 19. Scatter-plot of mean differences in cost and QALYs gained between the CBFI program and the current 
practice.   
 

The acceptability curve approach was used to emphasize the uncertainty related to different levels of 

willingess to pay per gained QALY. The value of λ was varied from 1 EUR to 100,000 EUR and the 

probability that ∆NHB would be positive was calculated at various values of λ to obtain the acceptability 

curve. The acceptability curve for the CBFI program as compared to the current practice is presented in 

Figure 20. As shown in Figure 20, the probability that the CBFI program is cost-effective for the AD pa-

tients is over 0.9 at all values of willingness to pay per gained QALY.  Therefore, based on the existing 

information there is a less than 10% chance that the CBFI program is not an optimal option for adoption 

into wide-scale use in Finland.  
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Figure 20. Acceptability curve of the CBFI program as compared to the current practice.  

 

6.1.5 Conclusions 

 

Based on the current information, the CBFI program is a potentially cost-saving option and it has the 

highest probability of being optimal, since the probability that the CBFI program will provide greater net 

benefits than the current practice is over 0.9 and the error probability is less than 0.1 at all of the values 

of willingess to pay per gained QALY. Furthermore, the caregiver’s HRQOL was insensitive to the AD 

patient’s disease stage and settings of care. However, there is some evidence that generic preference-

weighted instruments may not capture all of the differences in the burden suffered by the caregiver, 

though these can gathered by specific caregiver burden instruments (Bell et al. 2001). This indicates 

that more research is needed to assess better the HRQOL estimate in AD caregivers. In addition to 

those that mentioned above, the QALY-weights of AD patients are both a measurement and a concep-

tual problem (what do we mean by quality of life for a patient with severe dementia?). The patients´ abil-

ity to respond to questions themselves is limited in the moderate and severe stages of the disease, and 

the primary caregivers were asked to complete questionnaire as proxy respondents. Therefore, more 

information about the preferences of patients is also needed. 

 

There are also some other limitations, which should be taken into account in the evaluation of this 

study. Firstly, there were several problems with the data availability. The sources of uncertainty related 

to the majority of the model parameters have been well defined by Neumann et al. (1999). Secondly, 

the cost consequences of the CBFI program depend on the present organization of the care of the eld-

erly and this varies greatly in the Finnish municipalities. In fact, the ‘efficient current practice’ is not 
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known. This is one additional source of uncertainty. The more institutional-based the care is, the more 

likely the CBFI program is to be cost-efficient. Thirdly, indirect costs were not included in our model 

since the majority of informal caregivers are pensioners who take care of their spouses. Thus, produc-

tion losses were assumed to be relatively small compared to the direct costs. Furthermore, the informal 

caregivers are not paid for the help they provide apart from some small payments related to the care-

giving, which are provided by social security system.   

 

From the methodological point of view, the stochastic decision modelling with the Bayesian approach 

permits a better and more powerful characterization of uncertainty surrounding the model’s parameters 

than the deterministic modelling does. Furthermore, the ∆NHB approach with the acceptability curve 

enables avoidance of the problems of interpretation for confidence intervals when uncertainty covers 

more than one quadrant of the cost-effectiveness plane (Briggs 2000). Moreover, the stochastic model-

ing based on existing information is a useful tool to demonstrate the need for supplemental information. 

If one wishes to estimate the monetary value of additional information, it can be defined by using so-

phisticated quantitative methods such as the expected value of perfect information (EVPI) (Claxton et 

al. 2001).  

 

In the future, it will be important to collect more information about the cost-effectiveness (CE) of inter-

ventions for AD, including pharmacological and rehabilitation programs. In fact, it might be most rational 

to investigate the CE of treatments that are combinations of pharmacological and non-pharmacological 

therapies. For example, acetylcholinesterase inhibitors have been shown to significantly improve cogni-

tion and daily functioning of AD patients (Birks et al. 2001, Dooley & Lamb 2000, Olin & Scheider 2002). 

Moreover, recent studies suggest that these drugs may also decrease some behavioral symptoms 

(Feldman et al. 2001, Tariot et al. 2000).  
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6.2 Modelling the cost-effectiveness of temozolomide in the treatment of recurrent glioblastoma 
multiforme - incorporating the quality of clinical evidence into a decision-analytic model7 

 

6.2.1 Introduction 

 

Glioblastoma multiforme (GBM) is the most malignant glioma (grade IV) and tends to progress and re-

cur in brain tissue despite aggressive treatment (Newlands et al. 1997) The median survival time for 

GBM patients is only about 12 months. GBM is treated with combinations of surgery, radiation therapy 

and chemotherapy based on patient performance status. There is no accepted treatment for GBM and, 

usually, responses are poor regardless of the chosen therapy method. GBM is considered an incurable 

disease, which prompts the need for new endpoints to measure treatment efficacy such as improve-

ment of neurological symptoms and quality of life, in addition to overall survival benefit. 

 

Temozolomide (TMZ) is an oral alkylating agent with demonstrated efficacy as therapy for GBM and 

anaplastic astrocytoma (Newlands et al. 1997) TMZ resembles dacarbazine but has several additional 

benefits such as oral administration and enhanced ability to cross the blood-brain barrier. TMZ forms its 

active metabolite 5-(3-methyl-ltrazeno) imidazole-4-carboxamide spontaneously in physiological pH 

without requiring liver metabolism for activation. 

 

Phase II studies of patients with malignant gliomas have shown TMZ improves disease and symptom 

control but phase III studies showing marked survival benefit were not published at the time of writing 

this manuscript. The most promising studies have been done with the combination of TMZ and radiation 

therapy. (Stupp et al. 2002) 

 

Cost-effectiveness studies of various treatments for malignant gliomas are scarce. This probably relates 

to problems in conducting adequate clinical trials of diseases in which, only fairly small patient popula-

tions are available to trials at any one time. 

 

The objective of this study was to evaluate the cost-effectiveness of TMZ for the treatment of GBM from 

a societal perspective. The cost-effectiveness of TMZ was compared to that of PCV chemotherapy by 

calculating the following figures for both treatments: cost per life-month, cost per progression-free life-

month and cost per QALY.  Since there were no available data comparing the cost-effectiveness of 

TMZ, and PCV, a decision modelling approach was applied.  

 

                                                 
7 This chapter has been published in:  Martikainen J, Kivioja A, Hallinen T & Vihinen P. Economic Evaluation of Temozolomide in 
the Treatment of Recurrent Glioblastoma Multiforme. Pharmacoeconomics 2005;23(8):803-815. Reproduced  with permission. 
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The parameter values used in decision models are often gathered from a variety of sources and, by 

their very nature, contain some level of uncertainty. In our modelling process, this uncertainty related to 

parameter values was characterised by assigning probability distributions to all parameters for which 

there was uncertainty in their true values (i.e. a Bayesian approach was applied). (Briggs et al. 2002, 

Doubilet et al. 1985) Accordingly, the probability that TMZ is cost-effective as compared to the current 

practice (PCV-chemotherapy) at different levels of willingness-to-pay per gained effects was repre-

sented by calculating acceptability curves. Additionally, the value of new information for reducing uncer-

tainty related to the choice of treatment with TMZ or PCV was evaluated using the expected value of 

perfect information (EVPI) approach.  

 

6.2.2 Methods 

 

Model The disease process of malignant gliomas was characterized with a Markov model (Sonnenberg 

& Beck 1993, Briggs & Gray 1998) (Figure 21). The Markov model included three health states:  ‘pro-

gression-free’, ‘progression’ and ‘death’. It was assumed that all patients underwent primary treatments, 

such as surgery and radiotherapy, before first relapse and, therefore, patients who had not undergone 

primary treatment were not included in the model. The progression-free state in the model describes 

the time from the beginning of chemotherapy to the second relapse. The progression state describes 

the time from the second relapse to death. Death was modelled as an absorbing state. Transitions back 

to the progression-free state from the progression state were also not considered possible in the model. 

In our model, the length of a cycle was one month.  

Progression free Progression Death

progp̂1−

progp̂

deathp̂1−

deathp̂

 
Figure 21.  State transition diagram of high-grade gliomas 

 

6.2.3 Data sources and handling of uncertainty 

 

Clinical outcomes data. For the purposes of this study, a systematic review of published scientific arti-

cles found in PubMed was conducted in June 2003. The search term used was “(PCV OR temo-

zolomide) AND (GBM OR glioblastoma)” and this search resulted in 109 hits. Of these 109 papers, 23 

were considered relevant, based on their abstracts, and were evaluated thoroughly. Of these, only 

those studies that fulfilled all of the following criteria were selected for calculations of endpoints, overall 

survival (OS) and progression-free survival (PFS):  

 

 



 

 

84

1. Disease and disease stage had to be GBM at first relapse 

2. Results had to be presented as OS (or 6-month survival, OS-6) or PFS (or 6-month progres-

sion-free survival, PFS-6) 

3. Chemotherapy had to include either TMZ (≥ 100 mg/m2/d) or some part of PCV chemotherapy. 

 

In the case of GBM, six studies were considered adequate for inclusion in the measurement of efficacy 

(Table 6). We assessed the quality (in terms of pertinence and validity) of the studies included in the 

review by using a methodology suggested by Tan et al. (2003)  The members of the research team 

scored the papers for quality independently and, in unclear cases, a consensus decision was made. 

After the pertinence (cancer type, treatment, endpoint) and validity scores were given, they were multi-

plied to obtain a study weight.  The weights were used to adjust the study sizes to reflect the uncer-

tainty associated with the methodological restrictions or limited pertinence and validity of the studies. 

This adjusting was done simply by multiplying the study size with the study weight. The weights and 

adjusted study sizes of the studies are presented in Table 6 (the description of the criteria used for 

weighing the studies is available from the authors). 
 
Table 6.  Weights and adjusted study sizes of the included efficacy studies of temozolomide- and PCV-treatments 
for GBM. 
 

Study 
Cancer 

type Treatment Endpoint 
Pertinence 

score* 
Validity 
score Weight˚

Unadjusted 
study size 

Adjusted 
study 
size 

Temozolomide         
Brada et al. 
(2001) 1 0.5 1 0.5 0.2 0.1 138 13.8 

Yung et al.  
(2000) 1 0.8 0.9 0.8 1 0.8 112 89.6 

Brandes et al. 
(2003) 0.9 0.9 1 0.9 0.4 0.36 22 7.92 
          Total 272 111.32 
PCV         

Kappelle et al. 
(2001) 1 0.5 1 0.5 0.2 0.1 63 6.3 
Boiardi et al. 
2001 1 0.5 1 0.5 0.4 0.2 27 5.4 
Yung et al. 
2000  1 0.8 0.9 0.8 1 0.8 113 90.4 

Brandes et al. 
2003 0.9 0.9 1 0.9 0.4 0.36 32 11.52 
          Total 235 113.62 

  
*Pertinence score is the minimum value from three previous columns (Cancer type, Treatment and Endpoint).  
˚ Weight is pertinence score multiplied with validity score. 
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The transition probabilities (values associated with the arrows in Figure 21) needed in the model were 

estimated from the median PFS and median OS times reported in the selected articles. This was done 

using the following equations (Miller & Homan 1994): 
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where progp̂ = probability of transition from progression-free state into progression state, deathp̂ = 

probability of transition from progression state into death state, SSadji is the adjusted study size from 

study i, and  PFSi and OSi are the median estimates from the study i.  

 

The uncertainty related to these probabilities was characterised by expressing the parameter values in 

the model as beta distributions. (Gelman et al. 1995)  The beta distribution is commonly parameterized 

as beta(α,β), where α is the number of patients transferred to a state during one cycle and β is calcu-

lated as the total sample size of the treatment group minus the value of α. As none of the selected stud-

ies included information on the number of events, we obtained the approximate values of parameter α 

by using the following equations:  

[23]   progadjprogadj pSS _α=× )  

[24]   deathadjdeathadj pSS _α=× )  

where equation 23 gives αadj_prog for transitions to progression state, equation 24 gives αadj_death for tran-

sitions to death state, SSadj is the pooled adjusted study size and αadj is the adjusted number of patients 

transferring from one state to another.  

 

After calculating the adjusted α parameters, the β parameters were obtained by simply subtracting αadj 

from SSadj. Beta distributions for disease progression and death based on these estimated parameter 

values are presented in Figures 22 and 23. The use of the ‘quality’ adjusted parameters α and β within 

the beta distribution reflected the uncertainty associated with the methodological restrictions or the lim-

ited pertinence and validity of the studies in the decision model. A study with high pertinence and valid-

ity had a high weight and a large adjusted study size, thus contributing more to the estimates of clinical 



 

 

86

efficacy. The mean of the beta distribution is E(β) = α /α+β, where the sum α+β has an applicable prop-

erty to characterise uncertainty, since the larger the sum, the smaller the variance around this mean 

E(β). Thus, uncertainty related to the validity of trials could be taken into account by applying the com-

bination of sample size adjustment method (Tan et al. 2003) and the beta distribution when pooling 

data for modelling purposes.  
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Figure 22. Probability of disease progression during one month 
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Figure 23. Probability of death during one month 

 

Utility data. In order to perform cost-utility analysis, utility scores for patients in the model’s different 

health states were needed for the patients treated with TMZ or PCV. There was no preference-based 
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information directly available on the quality of life of patients with high-grade gliomas after the first and 

the second relapse at the time of our study. Therefore, the quality of life estimates were gathered using 

proxy respondents. Utility scores were obtained using a visual analogue scale (VAS) method. (Torrance 

et al. 2001, Brazier et al. 2003) The questionnaires were sent to eight leading neuro-oncologists, of 

whom 6 responded. The top anchor of the VAS scale (“perfect health”) was defined analogously with 

the Health Utilities Index Mark 3 (HUI3) system (Health Utilities, Inc) (Feeny et al. 1995) and the bottom 

anchor of the VAS scale was defined as ‘dead’, which was assumed to be the worst imaginable state. 

The utilities for health states were defined regardless of the treatment. The neuro-oncologists were not 

informed of the chemotherapies being compared and were not paid for participating in the study. Ad-

verse events related to particular chemotherapy were also defined without reference to the therapy in 

question to enable blind estimates of utilities.  

 

Uncertainty related to the utility scores was characterised using the beta distributions, since the utility 
scores are also bounded between 0 and 1. To obtain the beta parameters based on mean )(µ  and 

standard error )(σ estimates from the utility data, the following reformulations were made: α = r and α + 

β = n. Subsequently, we applied the following equations (Briggs et al. 2002):  

[25]    1)1(
2 −
−

=
σ

µµn  nr µ=  

The parameters of the beta distributions used in the model are shown in Table 7.  
 
Table 7. Utility parameters 

Disease stage* Mean 
(standard error) 

α β 

S1 0.55 (0.06) 39.08 31.76 

S2 0.41 (0.06) 26.05 37.48 

S3 0.43 (0.10) 9.14 12.24 

S4 0.31 (0.07) 13.67 30.42 

S5 0.14 (0.09) 2.13 12.72 

 
*Disease stages are: S1: 45-year-old glioma patient who is going to the first surgery; S2: Same patient after surgery and radio-
therapy (60 Gy) on the tumor area. The symptoms have recurred; S3: Chemotherapy alternative TMZ; S4: Chemotherapy alterna-
tive PCV; S5: Progression. 
 

Resource use and cost data. Data on the use of health care resources were collected mainly from hos-

pital databases. The resource use associated with TMZ treatment was gathered from a cohort (n=16), 

which consisted of high-grade GBM patients treated with TMZ in Helsinki and Turku University Hospi-

tals between 1998 and 2000. The resource use associated with PCV treatment was gathered from a 

cohort of patients (n = 10), who were treated in Turku University Hospital between 1998 and 2000. Re-

source utilisation associated with post-chemotherapy state was assumed to be equal in both groups.  
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The unit costs of the resource items were derived from the list of Finnish health service unit costs. (Hu-

janen 2003) All chemotherapy costs were derived from the official database of medicine prices in 

Finland, except for lomustine, for which the costs are based on the wholesale price paid by the Kuopio 

University Hospital Pharmacy. The wholesale price of lomustine was transformed to retail price using 

the official formula on Council of States decree on price list. (Council of States act on price list for drugs 

2002) All prices were used in Finland in 30th October 2003. When calculating costs of chemotherapy, 

the treatment with TMZ was assumed to be given during 5 days in 28-day cycles at dosages of 150–

200 mg/m2. Respectively, PCV treatment was assumed to be administered in 42-day cycles (lomustine 

110 mg/m2 per oral on day 1; procarbazine 60 mg/m2 per oral on days 8-21; vincristine 1.4 mg/m2 intra-

venously on days 8 and 29). All patients were assumed to have an average body surface area of 

1.73m2. The number of administered chemotherapy cycles correlated with the time that the patient 

spent in the progression free health-state. Unit costs of all resource items are shown in Table 8. 

 
Table 8. Unit costs of resource items 

Item  Unit Cost (€)‡ 

Oncologist visit 160 

Hospital day 338 

Laboratory visit 15 

MRI scan 480 

TMZ-chemotherapy cost (per month) 2093 

Anti-emetics related to TMZ chemotherapy (per month) 76 

PCV-chemotherapy cost (per month) 179 

Anti-emetics related to PCV chemotherapy (per month) 162 

Travelling cost (per visit) 30 
‡ Unit cost rounded to the nearest € 

 

An empirical examination showed that the sample distributions of the collected resource items were 

positively skewed. This is a typical phenomenon for cost data, and thus the uncertainty of the resource 

use was modelled using a gamma distribution. (Briggs & Gray 1998) The methods of moments were 

applied to obtain mean (α) and variance (β) parameters for the gamma distributions (Briggs et al. 2002) 

 

The impact of TMZ and PCV treatments on the probability of requiring antiemetics was represented as 

a beta distribution. It was assumed that a patient suffered from serious (grade 3-4) nausea or vomiting 

would be given 5-HT3-receptor antagonists. If a patient suffered from milder (grade 1-2) nausea or vom-

iting or did not experience any nausea, they were assumed to be treated with metoclopramide. The oc-

currence and severity of nausea or vomiting were obtained from reported clinical trials. (Brada et al. 

2001, Levin et al. 1985, Levin et al. 2003, Medical Research Council Brain Tumour Working Party 2001, 

Buckner et al. 2003, Prados et al. 1999, Yung et al. 1999, Yung et al. 2000) On the basis of clinical trial 

data, our model assumed that an average of 6.06% of the patients treated with TMZ and 16.13% of the 

PCV patients suffered from severe nausea or vomiting, and, therefore, required 5-HT3-receptor antago-
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nists. The rest of the patients in both treatment groups were assumed to use metoclopramide, regard-

less of whether or not they experienced mild nausea or vomiting or even nausea at all, in which case 

they would probably not have received any antiemetics in a real-life treatment scenario. However, the 

generalisation in this assumption was not considered crucial, as it would not favour TMZ. The parame-

ters for beta distribution were calculated using the equations proposed by Briggs et al. (2002). The 

mean amounts of all resources used and their distribution parameters are presented in Table 9. 
 
Table 9. Means and standard errors of utilised resources per month and the associated distribution parameters 

Resource 
item 

TMZ PCV Post chemotherapy 

 Mean (SE) Distribution  
parameters 

Mean (SE) Distribution  
parameters 

Mean (SE) Distribution 
parameters 

Oncologist 
visit 0.78 (0.13) Gamma(5,5.63)# 2.42 (0.41) Gamma(14.36, 5.94) 0.15 (0.07) Gamma(0.33, 2.15) 

Hospital days 1.20 (1.10) Gamma(1.3,1.1) 6.85 (2.51) Gamma(18.72, 2.73) 10.9 (4.17) Gamma(28.58, 2.62) 
Laboratory 
visits 0.90 (0.26) Gamma(3.17, 3.5) 2.55 (0.34) Gamma(19.03, 7.47) 1.20 (0.33) Gamma(4.3, 3.6) 

MRI scans 0.23 (0.11) Gamma(0.47,2.06) 0.25 (0.04) Gamma(1.44,5.85) 0.47 (0.14) Gamma(1.54, 3.28) 

Antiemetics  Beta(10.77;166.86)*  Beta(7.44;38.70)   

  

# Gamma(α,β); α = mean2/standard error; β = mean/standard error 
* Beta(α;β); α=r / β=n-α 
 

All costs were counted in the monetary values for the year, 2001. Both future costs and effects, which 

occurred over a one-year period, were discounted with a 5% annual discount rate. A monthly discount 

rate was obtained from the annual discount rate.  

 

Probabilistic sensitivity analysis. The cost-effectiveness model was analysed using a second-order 

Monte Carlo simulation. In the second-order Monte Carlo simulation, cohorts consisting of 1000 pa-

tients were run through the model 1000 times using Treeage DATA Pro software (Treeage Software 

Inc. Williamstown, USA). Each of these 1000 simulations consisted of the following steps:  

 

1. Parameter values were drawn from their prior distributions 

2. Expected costs and effects were estimated for each cohort  

         3. Steps 1-2 were repeated a large number of times to generate empirical distributions for the overall 

expected costs and effects.  

 

Evaluation of cost-effectiveness. The results from the decision model were summarised as an incre-

mental cost-effectiveness ratio (ICER). The ICER summarises the additional resource consumption 

needed for an increase in an additional unit of effectiveness as follows: 
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where TZMC = population mean costs of TMZ, PCVC = population mean costs of PCV, TZME = popula-

tion mean effectiveness of TMZ, PCVE = population mean effectiveness of PCV, C∆ = incremental 

population mean costs, E∆ = incremental population mean effectiveness and λ = maximum societal 

willingness-to-pay per each additional unit of effectiveness.  

 

Acceptability curves were applied to represent uncertainty in cost-effectiveness results. An acceptability 

curve represents the probability of cost-effectiveness as a function of willingness-to-pay per additional 

unit of effectiveness (λ) and helps decision makers to define the uncertainty associated with decisions 

and acquire more information, if necessary. (Stinnett & Mullahy 1998, O’Hagan et al. 2000) Based on 

the Monte Carlo simulation results, the acceptability curves were determined as the proportion of the 
( E∆ , C∆ ) points where the TZM was cost-effective as conditional to λ.    

 

Value of additional research. Information from additional research is valuable because it reduces the 

uncertainty surrounding a clinical decision. A net monetary benefit (NMB) approach was applied to es-

timate the value of additional research. (Tambour et al. 1998) Expressing expected net benefits in a 

monetary scale gives an explicit monetary valuation of the costs of uncertainty that can be compared 

with the cost of collecting further information. The net benefits can be expressed on a monetary scale 

by transforming the ICER into NMBs as follows (Tambour et al. 1998): 
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In the current study, the effectiveness was measured in the terms of QALYs. The expected costs of un-

certainty can be interpreted as an EVPI because perfect information (e.g. an infinite sample of patients) 

would eliminate all uncertainty surrounding the decision. The theoretical background of the EVPI ap-

proach and its applications in health economics have been previously presented by Claxton et al. (Clax-

ton 1999; Claxton et al. 2001) and others (Karnon 2002).  

 

In a Bayesian decision theoretic framework, the appropriate decision on treatment selection given exist-
ing (prior) information is to choose the treatment with the highest average NMB ( 0>−CEλ ).To obtain 

the highest average NMB with perfect information, we determined the optimal strategy after each itera-

tion and calculated the average NMB with perfect information from these choices. (Fenwick et al. 2000) 

The overall EVPI was estimated as follows: 

[28]   Overall EVPI = επ BMNBMN −  

πBMN  = the average NMB of the treatment chosen with perfect information 

εBMN  = the average NMB of the treatment chosen with the existing information. 
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From the societal decision makers’ point of view, it could be valuable to know the overall value of infor-

mation at a population level, which might be affected by the adoption decision. This population level 

information could be utilised in decisions concerned with whether to fund additional research to reduce 

uncertainty relating to the decision. Furthermore, the value of information methodology provides an op-

portunity for the decision makers to prioritise research in a more systematic and coherent fashion than 

is usually done.  

 

The overall value of information at a population level for the high-grade glioma patients was determined 

by multiplying the overall EVPI with the number of patients that would be affected by the information 

over the effective lifetime of the TMZ chemotherapy:  

[29]   Population EVPI = ∑
= +

∗
T

t
t

t

r
IEVPI

1 )1(
 

where I = incidence in period, t = period, T = total number of periods for which information from addi-

tional research would be useful and r = discount rate. (Claxton 1999, Claxton et al. 2001) 

 

The exact incidence figures of GBM in Finland could not be found from any official statistics. According 

to the Central Brain Tumour Registry of the United States, the incidence of GBM in 1995-1999 was 3.24 

per 100 000 person-years in the United States. (CBTRUS 2002) Calculations based on this American 

incidence figure and current estimates of the Finnish population suggest an annual incidence of around 

168 new cases in Finland. The present prevalence of the high-grade gliomas was assumed to be 

around 100 cases. Furthermore, we assumed that the information from research would be valuable for 

10 years and the discount rate was adjusted to be 5%. EVPI calculations were executed using a Visual 

Basic macro for Excel™. 
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6.2.4 Results 

 

Cost-effectiveness. Cost-effectiveness estimates were obtained by performing 1000 second-order 

simulations of the Markov model. The cost-effectiveness of TMZ, compared to PCV, was measured as 

the incremental cost-effectiveness ratio (ICER). The results of 1000 simulations performed for all effect 

variables are plotted in the cost-effectiveness plane in Figures 24-26. 
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Figure 24. Scatter-plot of mean cost and effect differences (life-months) 
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Figure 25. Scatter-plot of mean cost and effect differences (progression-free life-months) 
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Figure 26. Scatter-plot of mean cost and effect differences (QALYs)  

 

The mean values from the 1000 simulations for costs and effects with TMZ and PCV treatments are 

shown in Table 10. Additional costs for each extra life-month gained with TMZ treatment are € 2367 

(i.e. € 28 404 per gained life-year), each extra progression free life-month gained with TMZ treatment 

are € 2165 (i.e. € 25 980 per gained progression-free life-year), and each extra QALY gained with TMZ 

treatment are € 32 471.  

 
Table 10. Mean and median effects and costs of 1000 simulations 
 Overall survival 

(months) 
Progression free sur-

vival (months) 
Quality adjusted life 

months 
QALYs Mean costs (€) 

 Mean Median Mean Median Mean Mean  

TMZ 12.07 11.92 4.74 4.61 35 380 

PCV 11.11 10.96 3.69 3.59 

2.98 

2.14 

0.25 

0.18 33 107 

 

The acceptability curve approach was used to explore the uncertainty related to different levels of so-

cietal λ for each gained extra life-month, extra progression-free life-month and extra quality adjusted 

life-month. The value of λ was varied between 0 and € 100 000. The acceptability curves measured for 

extra life-months, extra progression-free months, and extra quality adjusted life-months for TMZ, com-

pared to PCV, is presented in Figure 27.  
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Figure 27. Acceptability curves for TMZ compared to PCV conditional to measured endpoint 

 

As is shown in Figure 27, the probability of TMZ being more cost-effective than PCV is over 60 per cent 

at all values of willingness-to-pay per gained life-month above € 5000. Similarly, the probability of TMZ 

being more cost-effective than PCV is over 75 per cent at all values of willingness-to-pay per gained 

progression-free life-month above € 10 000 and about 85 per cent at all values of willingness-to-pay per 

gained quality adjusted life-month above € 20 000.  

 

Value of additional research. The costs of uncertainty and the potential efficiency of additional research 

was characterised using the EVPI approach. Based on incidence and prevalence estimates the dis-

counted Finnish high-grade glioma population who could benefit from the TMZ treatment was estimated 

to be 1410 until the year 2012. The population EVPI as a function of λ is presented in Figure 28.  
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Figure 28. The population EVPI as a function of willingness to pay (λ) per additional QALY 

 

As shown in Figure 28, the EVPI for the population treatment decision reaches its peak when the mone-

tary benefit is 0 (this occurs when λ is € 32 471). At this point, the uncertainty of the decision is as high 

as it can be since the incremental net monetary benefit (INB) of 0 indicates that the mean benefits of 

the two treatments are equal and, in some cases (when the distribution of INB is symmetric), it also im-

plies a probability of 0.5 of making a wrong choice between the treatments. However, in the current 

case, the distribution of INB at this point is slightly positively skewed and the probability interpretation 

mentioned above does not hold. The population EVPI at this point is approximately € 4.1 million. This 

represents the maximum value of acquiring information and, if the fixed costs of proposed research are 

below this EVPI value, additional research is potentially cost-effective. As the value of λ increases, the 

TMZ becomes more cost-effective (this happens because the TMZ has positive health effects over the 

PCV and, with a higher value placed on that benefit, then the TMZ option will be favoured) and, hence, 

the uncertainty surrounding the decision decreases.  

 

6.2.5 Discussion 
 
In the current study, we have demonstrated the cost-effectiveness of TMZ in the treatment of GBM. 

There are few, if any, published cost-effectiveness studies of various treatments for GBM. Thus, it is 

difficult to compare the results of the current study to other studies associated with such treatments. 

Only one review by Dinnes et al. (2001) on the cost-effectiveness of TMZ compared to PCV was found, 

providing a speculative cost estimate of £42 920 (€ 64 2231) per gained quality adjusted life year with 

TMZ treatment. As our estimate of each extra quality adjusted life-years was € 32 471 in the Finnish 

health care system, the estimate by Dinnes et al. (2001), although studied within the British health care 
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system, is almost two times higher. The difference in the cost-effectiveness estimates seems to be at-

tributable to the differing costs of treatments since Dinnes et al. (2001) estimated that the difference of 

benefits (QALY) between TMZ and PCV is 0.09, whereas in this study the difference in QALYs gained 

was only 0.07. Due to lack of data, Dinnes et al. (2001) did not take into account the costs incurred after 

the progression of disease. Their estimate of the costs of PCV treatment before progression is far lower 

than the costs found in our study. These differences are due to the following factors: assumption that 

antiemetics are used for 5 days for TMZ patients and for 3 days for PCV patients, omission of hospital 

days for both treatments, omission of laboratory tests for PCV treatment and adding oncology visits 

only to TMZ treatment. However, according to our resource use data, more laboratory tests, oncology 

visits and hospital days were needed for PCV-treated patients compared to TMZ-treated patients. Also 

the assumption that the need for antiemetics is only related to CCNU in PCV-treated patients is ques-

tionable since nausea and vomiting are also side-effects of procarbazine (Yung et al. 2000), which is 

taken during 14 days in a treatment cycle as well as vincristine (according to the summary of product 

characteristics).  

 

There are some problematic issues related to this study. First, the resource use data in this study was 

collected from only two university hospitals. The resource use can vary from one hospital to another, 

but we consider these two institutions to represent a reasonable estimate of the resources used in 

Finland in the treatment of high-grade gliomas. On the other hand, these data were collected from pa-

tients treated between the same timeframe (1998-2000), which, for its part, increases the validity of 

these estimates.  

 

Secondly, the effectiveness of the two treatment options were obtained from only three (TMZ) and four 

(PCV) published reports, with total adjusted sample sizes of 111 and 113 subjects, respectively. The 

two comparative studies, which, because of their adjusted sample sizes, were also crucially decisive in 

the estimates of treatment effectiveness were by Yung et al. (2000) and Brandes et al. (2003) In the 

case of overall survival, Yung et al. (2000) report an OS that is 1.5 months better in the TMZ-treated 

group than in procarbazine-treated group. Furthermore, Brandes et al. (2003) suggest the OS of TMZ-

treated patients is 2.2 months greater than that of PCV-treated patients. Although Brandes et al. (2003) 

calculated the OS starting from surgery, this does not distort the results since results from this study are 

accounted for in both treatment options. In the current study, the difference in OS is again in favour of 

TMZ-treated patients. The magnitude of the estimate is only one month and, therefore, it can be stated 

that the OS estimates do not overrate the situation for TMZ when compared to PCV. 

 

Also, when the effectiveness indicator is PFS, Yung et al. (2000) report a difference of 2.9 months in 

favour of TMZ (vs. procarbazine alone) and Brandes et al. (2003) 3.8 months (vs. PCV). In the current 

study, the PFS estimate for TMZ is approximately one month better than that obtained with PCV. 

Therefore, in this study, the PFS estimates do not give undeserved credit to TMZ. 
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When the effectiveness was measured as QALYs, there are some more severe limitations to this study. 

First, the patients did not evaluate their own well-being. Instead, 6 neuro-oncologists were were asked, 

based on descriptions of average patient symptoms, to estimate the patients’ quality of life on a scale of 

0 to 1. Their evaluations of the QOL were considerably lower for the patients in the preoperative state of 

their treatment than patients themselves have elsewhere reported (0.55 vs. 0.84) (Salo et al. 2002) This 

was to be expected, since physicians are known to evaluate the health state of their patients as being 

worse than the patients themselves (Spangers & Aaronson 1992, Addington-Hall & Kaira 2001). Also, it 

has been previously noted that QOL scores are higher when measured with a 15D-questionnaire than a 

VAS-scale (Rissanen et al. 1995). Secondly, the disease-states that were described in the question-

naire were the views of a single, although experienced, neuro-oncologist. These states could be de-

scribed differently by a different expert. Nevertheless, the gained QALY estimates in this study are, 

again, not as high as previously assumed by Dinnes et al. (2001) (0.07 vs. 0.09).  

 

Uncertainty related to model’s inputs were handled simultaneously using probabilistic sensitivity analy-

sis (PSA). PSA offers a method to translate a parameter uncertainty into a decision uncertainty, which 

can be characterised using acceptability curves. PSA seems to be a valid method to handle uncertainty 

when the model’s inputs are gathered from heterogeneous sources, despite the fact that correlations 

between the inputs are often unavailable. The EVPI is a developing approach to prioritise further re-

search and it can offer valid information for decision makers in the near future. 

 

6.2.6 Conclusions 

 

There is a high probability that TMZ is more cost-effective than PCV in high-grade glioma patients when 

the society is willing to pay at least € 2035 for each month’s worth of effectiveness, regardless of the 

indicator used (life-month, progression free life-month, or quality adjusted life-month). When quality of 

life aspects are taken to account, TMZ, in addition to prolonging survival, becomes even more cost-

effective as compared to PCV in the treatment of high-grade glioma patients. 
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6.3 Synthesising evidence and modelling the cost-effectiveness of plant stanol esters in the 
prevention of coronary heart disease employing the comprehensive decision modelling ap-
proach8 

 

6.3.1 Introduction 

 

Coronary heart disease (CHD) is a major cause of death in many Western countries and is becoming 

an important cause of morbidity and mortality worldwide (WHO 2003) In Finland, CHD is the leading 

cause of death for both men and women and it accounts for a substantial share of health care costs. In 

2003, the total health care costs attributable to CHD were estimated to be 286 million euros. (Petersen 

et al. 2005) 

 

One of the major risk factors that predispose an individual to CHD is an elevated serum cholesterol 

concentration which is a risk which can be modified by changes in diet.  Incorporating foods enriched 

with plant stanols or sterols into the daily diet can substantially enhance the cholesterol-lowering effect 

of diet. Controlled trials have demonstrated that daily intake of 2 grams of stanols or sterols can reduce 

low-density lipoprotein (LDL) cholesterol by about 10 %. (Law 2000, Katan et al. 2003) Considered from 

both the viewpoint of the individual patient and the whole population, this reduction is significant. A 

meta-analysis of cohort studies showed that a long term reduction in serum cholesterol concentration of 

0.6 mmol/l (i.e. about 10 %), lowers the risk of ischemic heart disease by 50% at age 40, falling to 20% 

at age 70. (Law et al. 1994) 

 

The cost-effectiveness of prevention strategies for CHD has been widely studied. The evaluated inter-

ventions have included primary prevention with statins (Caro et al. 1997), smoking cessation counsel-

ling (Cummings et al. 1989), dietary advice (Lindgren et al. 2003) and exercise (Lindgren et al. 2003, 

Hatziandreu et al. 1988). However, the cost-effectiveness of plant stanol and sterol esters has re-

mained unevaluated though the use of spreads containing plant stanol or sterols as part of a healthy 

diet could potentially help to reduce the incidence of CHD and in that way impact on the associated 

health care costs.  

 

In the present study, we have evaluated the cost-effectiveness (€/QALY) of plant stanol ester incorpo-

rated in spread in the prevention of CHD without and with the combination of HMG-CoA reductase in-

hibitors (statins). In the current study, cardiovascular prevention is understood as a reduction of abso-

lute risk for CHD, irrespective of clinical stage. We assessed the cost-effectiveness of plant stanol ester 

                                                 
8 This chapter has been published in: Martikainen J, Ottelin A-M, Kiviniemi V & Gylling H. Plant Stanol Esters are Potentially Cost-
Effective in the Prevention of Coronary Heart Disease in Men: Bayesian Modelling Approach. Eur J Cardiovasc Prev Rehabil 
2007;14:265-272. Reproduced with permission.  
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enriched daily diet compared to normal daily diet from the society’s point of view. However, productivity 

changes due to the intervention are not considered in our analysis.  

 

6.3.2 Methods 

 

Clinical efficacy. We carried out two meta-analyses, which were based on systematic literature reviews. 

The first concentrated on studies examining total cholesterol reduction with plant stanol ester added to 

the spread. The second review was carried out to obtain information about reducing total cholesterol 

with the combination of plant stanol ester added spread and statin drug treatment. We selected the 

change in total cholesterol as a primary endpoint in meta-analyses, since all our CHD risk prediction 

algorithms applied in a model included total cholesterol as a risk factor.  

 

We identified the trials from Medline and Cochrane collaboration database (to December 2004), and 

previous review articles (Law 2000, Katan et al. 2003). We included all randomised placebo-controlled 

trials, irrespective of participants’ sex, age or disease. Participants in most trials were healthy with 

above average lipid concentrations. We excluded trials that used free stanols or some other product 

than spread, or participants that were children or had ileostoma. Trials using plant stanol ester and 

statin treatment in combination were utilised only in the second meta-analysis. The efficacy of plant 

stanol ester was defined as the reduction in serum total cholesterol concentration, expressed as the 

change from the placebo period in the treated group in cross-over studies or versus placebo groups in 

studies with parallel design. 

 

Due to perceived differences in the trial designs, methods and patient characteristics, we applied a 

Bayesian random effects model to estimate the summary measure for the placebo adjusted effect size 

for total cholesterol. (Schmid 2001, Smith et al. 1995) To adopt a full Bayesian approach, we specified 

prior distributions for the overall pooled effect size parameter and the between-trial heterogeneity pa-

rameter. We used non-informative prior distributions, however, to ensure that the data from the trials 

dominated the final inferences. Furthermore, we used the random-effects meta-regression approach to 

determine whether other recorded factors, such as trial size, dose, trial duration, age, and the baseline 

cholesterol level of participants would modify the effect size for total cholesterol (Thompson & Higgins 

2002).   

 

Decision model. We constructed a discrete-state discrete-time Markov model to estimate the expected 

costs and health outcomes in terms of gains in quality adjusted life years (QALYs) associated with plant 

stanol ester enriched daily diet and normal daily diet among hypothetical cohorts of Finnish men and 

women at a specific age who were initially without established CHD. We carried out the estimations for 

men and women separately at four different initial ages (i.e. 30, 40, 50 and 60 years) at which the regu-

lar use of STA as a part of daily diet was assumed to be started. 
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The structure of the Markov model was based on a previously published CHD model (Cook et al. 

2004).The simplified flow chart of the Markov model is illustrated in Figure 29. Our Markov model used 

an annual cycle length. Each year, the hypothetical cohort of men or women without established CHD 

were at risk of having of a fatal non-cardiovascular event, a fatal CHD event, an acute non-fatal CHD 

event, or they might survive to the next year without the occurrence of any CHD event. After that year, 

the subjects’ risk factors were updated based on Finnish age- and sex-specific risk factor profile data 

and the Markov model was run again until all subjects in the cohort were entered into terminal states or 

until 100 years of age was reached. The age of 100 years was determined to be the maximum allowed 

subject age in the Markov model.  

Healthy

Death:
Non-CHD death

CHD death

CHD event History of 
CHD event

Re-CHD
event

 
Figure 29. Simplified illustration of the Markov model for outcomes. CHD, Coronary Heart Disease. Transition 
probabilities conditional to age and sex between defined health states were derived from life-tables and risk func-
tions based on FINRISK and 4S studies.  
 

Assessing the risks of CHD and non-CHD events. We used data derived from the FINRISK (Laati-

kainen et al. 2002a, Laatikainen 2002b) and Health 2000 (Aromaa & Koskinen 2000) -studies to deter-

mine age- and sex-specific risk factor profiles (including total serum cholesterol level [mmol/l], systolic 

blood pressure [mmHg], high-density lipoprotein cholesterol level [mmol/l], smoking prevalence [%], and 

diabetes prevalence [%]) for the cohorts of interest in the Markov model. We estimated the age- and 

sex-specific annual risk of non-CHD death cause by subtracting down the total mortality (derived from 

Finnish standard all-cause mortality life-tables by age and sex) by the fraction of deaths due to cardio-

vascular diseases (ICD-10: I20-I25, I46, R96, and R98). (Statistics Finland 2002, National Public Health 

Institute 2004)  

 

We estimated the annual total risk of initial non-fatal CHD event (ICD-10: I20-I21) or CHD death (ICD-

10: I20-I25) using the modified (i.e. the risk of events were estimated per annum instead of over 10-

year periods) FINRISK risk function (Bhopal et al. 2005). We used age- and sex-specific probabilities 

obtained from the National Cardiovascular Disease Register to allocate the total FINRISK risk function 

predictions into the two health states (hospitalisation due to non-fatal CHD event or CHD death) in the 

Markov model (National Public Health Institute 2004). After the initial occurrence of the non-fatal CHD 

event, the model was programmed to transit subjects to the secondary prevention part of the Markov 
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model (i.e. the history of CHD event health state). We estimated the annual risk of the subsequent 

events using risk function derived from the 4S study (Johannesson et al. 1997). Finally, we combined 

the pooled estimates of reduction in total serum cholesterol (mmol/l) from the meta-analyses with FIN-

RISK and 4S risk functions to estimate reduction in the annual risk of CHD events in subjects using 

stanol ester.    

 

Costs. We estimated all costs from a societal perspective including the direct costs of prevention and 

morbidity. All costs were estimated in year 2001 euros. When CHD developed in subjects, the model 

tracked the costs due to hospitalisation and other treatments. The average age- and sex-specific costs 

of hospitalisation and outpatient care were based on a Finnish dataset comprising 9 226 patients. (Häk-

kinen et al. 2002) 

 

We programmed the Markov model assuming that after the discharge subjects received a prescription 

for chronic CHD or dyslipidemia medication. In year 2001, the average annual medicine cost of treating 

chronic CHD was 163€ in both men and women based on National Agency for Medicines’ and the So-

cial Insurance Institution’s databases (2003). The average annual costs for treating dyslipidaemia asso-

ciated with chronic CHD were 438€ in men and 416€ in women. For modelling purposes, we estimated 

the average annual medicine costs. The average annual medicine costs were estimated by weighting 

the average costs by the proportion of recorded patients in both medicine categories in Finland. The 

weighted average annual costs of medicines were 239€ and 225€ in men and women, respectively.  

 

In the model, plant stanol ester was assumed to be incorporated into a spread. The cost of STA spread 

(Raisio Benecol®) and corresponding regular spread (Raisio Keiju® light) were obtained from a survey 

by The Finnish Consumer Agency and the state provincial offices. (Finnish Consumer Agency 2004) 

The average price for plant stanol ester spread was estimated to be 13.2€ per kilo and the price of rec-

ommended daily dose (2 g) 120€ per year. The price of using plant stanol ester spread was compared 

with the price of using regular spread that is equivalent to the plant stanol ester spread but lacks the 

added plant stanols. The additional cost of using the recommended dose of plant stanol ester spread 

per day was estimated to be 97€ per year.  

 

Quality of life. We obtained the age- and sex-specific quality of life for the population of interest without 

acute CHD events from a Finnish EQ-5D survey (n=2 374). (Ohinmaa et al. 1996)  When a CHD event 

occurred in subjects, the model tracked the decreases in quality of life due to the CHD event. The dis-

utility due to the initial or subsequent CHD event was estimated to be approximately -0.078 (SD 0.245) 

in men and -0.127 (SD 0.247) in women as measured by the EQ-5D instrument from a dataset of 615 

patients who underwent coronary artery bypass grafting (CABG) or percutaneous transluminal coronary 

angioplasty (PTCA) in Finland. (Kattainen 2004) 
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We assumed that after 12 months, the postoperative quality of life had linearly improved to the same 

level as in the age- and sex-matched general population (Kattainen 2004). The use of STA as such was 

not assumed to affect the quality of life.  

 

Discounting. In the base case scenario, we discounted costs and quality adjusted life years at 3.5% per 

annum to generate the present value of future costs and health benefits. (NICE 2004) In terms of sensi-

tivity analyses, the results are presented also when costs and health benefits are discounted at 0% and 

5% (as recommend by the Finnish health economic guidelines) per annum.  

 

Uncertainty analysis. We performed the meta-analyses and uncertainty simulations within a Bayesian 

modelling framework. The Bayesian modelling framework offers a coherent approach to synthesise all 

available sources of evidence into a single model. (Spiegelhalter & Best 2003) The advantages of the 

Bayesian modelling framework have been discussed in more detail elsewhere (Cooper et al. 2004, 

Samsa et al. 1999). We estimated the joint posterior distribution of the model parameters by simulation 

using the Gibbs sampler programmed in WinBUGS software (version 1.4, MRC Biostatistics Unit, Cam-

bridge, UK). Final posterior parameter estimates were based on a total of 10000 Markov Chain Monte 

Carlo (MCMC) samples. The first 2000 samples were discarded to ensure stability of the posterior 

sampling procedure. Results are reported with 95% credibility intervals (CrI), analogous to confidence 

intervals from a frequentist approach.  

 

The decision as to whether the use of stanol ester incorporated in spread is cost effective in the preven-

tion of CHD depends on the decision makers’ maximum willingness to pay for additional QALY gained 

with the use of stanol ester added spread. To illustrate this decision uncertainty, we constructed cost-

effectiveness acceptability curves for the cost per QALY gained (Fenwick et al. 2004).  

 
6.3.3 Results 

 

Clinical efficacy. The primary clinical outcome was a reduction in total serum cholesterol levels (mmol/l) 

(Table 11). The first meta-analysis included a total of 19 randomised trials. All these trials were placebo 

controlled and their design was either parallel or crossover. The trials included a total of 1192 subjects 

from Europe, Australia, Canada, and Japan with the trial durations ranging from 3 to 52 weeks, and 

stanol doses of 0.8 to 3.4 g/day.  
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Table 11. Description of the studies included in the meta-analysis 
Reference No of subjects in 

treatment group/ 
placebo group 

Mean 
age 

Duration 
(weeks) 

Dose 
(g/day) 

Placebo adjusted re-
duction in total choles-

terol (mmol/l) 
Plat & Mensink (2000) 70/42 33 8 4 -0,39 

Niinikoski et al. (1997) 12/12 37 5 3 -0,50 

Hallikainen & Uusitupa 

(1999) 
 

38/17 
 

43 
 

8 
 

2,3 
 

-0,61 
Westrate & Meijer (1998) 95 * 45 3,5 2,7 -0,37 

Miettinen et al. (1995) 7/8 45 9 1 -0,31 
Vanhanen et al. (1994) 34/33 46 6 3,4 -0,37 

0,8 -0,32 Vanhanen  (1994) 7/8 47 6 
2 -0,50 

Hallikainen et al. (2000a) 34 * 49 4 2 -0,57 
1,8 -0,44 Miettinen et al. (1995) 51/51 50 52 
2,6 -0,62 

Gylling et al. (1997) 22 * 51 7 3 -0,55 
0,8 -0,17 
1,6 -0,45 
2,3 -0,69 

Hallikainen et al. (2000b) 22 * 51 4 

3 -0,76 
Jones et al. (2000) 15 * 52 3 1,8 -0,33 
Gylling & Miettinen (1999) 21 * 53 5 2,4 -0,46 

77/76 2 -0,27 
71/76 3 US -0,42 

Nguyen et al. (1999) 

74/76 

53 8 

3 EU -0,31 
Andersson et al. (1999) 19/21 55 8 2 -0,42 
Noakes et al. (2002) 46 * 57 3 2,5 -0,46 
Gylling & Miettinen (1994) 11 * 58 6 3 -0,36 
Plat et al. (2000) 39 * 31 4 2,5 -0,32 

33/34 2 -0,34 Homma et al. (2003) 
34/34 

47 4 
3 -0,29 

Vanhanen. (1994) 7/7 55 6 1,5 [a] -0,17 
Gylling & Miettinen (1996) 8 * 60 7 3 [a] -0,24 
Gylling et al. (1997) 10 * 52 12 3 [b] -0,56 
Blair et al. (2000) 71/77 56 8 3 [c] -0,41 
Gylling & Miettinen (2002) 11 * 67 8 2,25 [d] -0,54 

 

*cross-over studies. [a],  combined with pravastatin 40 mg/day. [b], combined with simvastatin 10-20 mg/day. [c], combined with 
lovastatin, pravastatin, simvastatin or atorvastatin, doses/day not available. [d], combined with simvastatin 20 mg/day. 
 

The random-effect meta-analysis indicated mean difference of 0.362 mmol/l (95%CrI 0.31 to 0.41) 

when comparing the effect of plant stanol ester and placebo in lowering the total cholesterol level. A 

corresponding mean percentage change in total cholesterol level was 6% (95%CrI 5.1 to 6.8). Based 

on the results of random effect meta-regression, none of the selected trial-level covariates were signifi-

cant confounders. Thus, these results ensured the appropriateness of data synthesis for the pooled 

analysis.  

 

The second meta-analysis included five trials of reducing total cholesterol with the combination of plant 

stanol ester and statin treatment (Table 12) (Vanhanen 1994, Gylling & Miettinen 1996, Gylling et al. 

1997, Blair et al. 2000, Gylling & Miettinen 2002). Of the studies, three trials were placebo controlled 

and in two studies, the effect of STA and statin treatment was compared with the baseline diet. The 

studies included 191 subjects from Europe and USA. The statins used in the studies were simvastatin, 

pravastatin, atorvastatin and lovastatin at doses of 10-40 mg/day. Pooled results from the combination 

treatments showed that the plant stanol ester was able to decrease total cholesterol levels more effi-
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ciently when combined with statin treatment in comparison to a single drug or plant stanol ester therapy 

alone. The mean placebo-adjusted decrease in total cholesterol level was 0.385 mmol/l (95%CrI 0.18 to 

0.61). The corresponding mean percentage change in total cholesterol was 6.2% (95%CrI 2.9 to 9.9). 

 

Cost-effectiveness. The primary economic outcome was cost (€) per QALY. Table 12 shows the mean 

cost per QALY estimates in different age groups for men and women. The use of different discount 

rates for both costs and benefits markedly altered the cost per QALY gained by 19-56 % (9-46 %) this 

being dependent on age and sex. The costs of plant stanol ester were partly offset due to savings in the 

health care sector. Discounted lifetime cost savings in the health care sector ranged approximately from 

20.4€ to 124€ per subject conditional on age and sex, if the cost of plant stanol ester was ignored. 

These saving estimates are real savings to health care providers, since the cost of the plant stanol es-

ter spread is actually paid by the consumer.  
 
Table 12. Cost per quality adjusted life year gained (€/QALY) with plant stanol esters as compared to normal diet 

 
Subgroup 

 

 
Base case 

(3.5%) 

 
0% discount 
rate for costs 
and benefits 

 
5% discount 
rate for costs 
and benefits 

 
Men 
30 
40 
50 
60 

 
 

20 999 
14 554 
10 106 
7 436 

 
 

9 742 
8 959 
7 254 
6 010 

 
 

28 101 
17 399 
10 772 
8 104 

 
Women 

30 
40 
50 
60 

 
 

112 151 
75 289 
50 043 
34 327 

 
 

49 090 
39 683 
31 733 
25 602 

 
 

163 255 
99 738 
60 857 
38 889 

 

Figures 30 and 31 show the cost-effectiveness acceptability curves in different age groups for men and 

women in the base case. An incremental cost-effectiveness ratio (ICER) of about 30 000€ - 50 000€ per 

QALY gained is likely to be considered cost-effective by the National Institute for Health and Clinical 

Excellence (NICE) in UK. (NICE 2005) If the decision makers’ maximum willingness to pay per QALY 

gained is assumed to be this upper value, then the use of plant stanol ester is cost-effective for men in 

all age groups. For women at the age of 50 years and younger there is a less than 15% probability, 

whereas at the age of 60 years and older there is an over 90% probability, that the use of STA would be 

considered cost-effective, if the NICE’s scale of willingness to pay is used.  
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Figure 30. Cost effectiveness acceptability curves for men applying 3.5% discount rate. Cost effectiveness accept-
ability curve shows probability that plant stanol ester in spread is cost effective as compared to daily diet with regu-
lar spread for a range of decision makers’ maximum willingness to pay (a ceiling ratio) for a quality adjusted life 
year (QALY). 
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Figure 31. Cost effectiveness acceptability curves for women applying 3.5% discount rate 
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6.3.4 Discussion 

 

Our study suggests that the use of plant stanol ester incorporated in spread is a cost-effective option in 

the prevention of CHD in all adult males and in women in older age-groups with average total serum 

cholesterol levels of 5 mmol/l or higher. The study results show that the regular use of plant stanol ester 

in the prevention of CHD yields an incremental cost-effectiveness ratio (ICER) which ranges from 7 

436€ to 112 151€, conditional on age and sex. The cost-effectiveness of plant stanol ester increases in 

older age-groups, since age is the single strongest predictor of CHD risk (Avins and Browner 1998). 

Actually, it seems that, at least in Finland, plant stanol ester spread is mostly used by those age groups 

where the cost-effectiveness is highest (i.e. the average user is aged 55 years or over) (Anttolainen et 

al. 2001) The use of plant stanol ester reveals significantly lower ICERs for men than for women in all 

age groups. However, no difference in the cholesterol-lowering response to plant stanol administration 

between genders has been reported (Vanhanen et al. 1993, Miettinen & Vanhanen 1994, Vanhanen et 

al. 1994). The gender difference in ICER is probably due to the fact that CHD is markedly more com-

mon in men than in women (Jousilahti et al. 1999). For both sexes, CHD risk increases with age but the 

increase is sharper for women which can be also seen in the results of this analysis.  

 

For the purposes of this study, the adherence to using plant stanol ester spread was not examined and 

the consumed amount was assumed to be 25 grams daily (2 grams stanol /day). The adherence in 

normal practice is likely to be less than perfect. (Luoto et al. 2004) However, changing from regular 

spread to plant stanol ester spread as the daily spread is a very minor change in dietary habits when 

compared to many other interventions recommended to reduce CDH risk factors (e.g. smoking cessa-

tion, increasing physical activity) that require an active effort to modify the lifestyle. The effect of some-

what poorer adherence may be balanced, to some extent, by the fact that 5% of Finnish adult popula-

tion uses butter as their spread and 16% use mixtures of butter and plant oils. (Laatikainen 2002b) 

When used as a substitute for butter, plant stanol ester spread will evoke an even greater reduction in 

cholesterol levels. 

 

The current analysis was based on a Finnish health care setting and, therefore, the study results might 

not be directly transferable to other countries. Cost-effectiveness estimates might vary between coun-

tries e.g. due to differences in CHD risk profiles, health care resource use, unit costs, and health state 

utilities. However, we believe that the study results are at least somewhat relevant to other Western 

Countries having populations with intermediate CHD mortality rates. (Kromhout 2001) 

 

The study results are based on the assumption that changes in serum cholesterol levels could be con-

verted to changes in the incidence of CHD events via the CHD risk equations. It is generally the case 

that economic models are able to predict fairly accurately the incidence of CHD events experienced by 

hypothetical individuals fulfilling selected entry criteria. (Morris 1997) However, in the future, it would be 
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valuable if the long-term cost-effectiveness of plant stanol ester could be proved also in a controlled 

and randomised trial.   

 

6.3.5 Conclusions 

 

Based on the results presented here, the recommendation that plant stanol ester incorporated in spread 

be used as a part of daily diet instead of regular spread could be viewed as cost-effective public health 

policy in the prevention of CHD in all adult males and in older age-groups of women with total serum 

cholesterol levels of 5 mmol/l or greater. The use of plant stanol ester in spread could also be seen as a 

potentially cost effective option in the prevention of CHD when compared to previously published cost-

utility estimates (University of Oxford 2005).   
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6.4 Economic evalution of sunitinib malate in the treatment of cytokine-refractory metastatic re-
nal cell carcinoma (mRCC) - the comprehensive decision modelling approach9 

 

6.4.1 Introduction 

 

Renal cell carcinoma (RCC) is the most common kidney cancer among adult population. Since there 

are few, if any early-warning signs or symptoms, the diagnosis is usually delayed. Thus, a great propor-

tion of diagnoses are made when RCC is already at a locally advanced or metastatic stage (mRCC). 

(Motzer et al. 1996) RCC is most frequently diagnosed between the ages 50 and 70, although it can 

occur at any age (Martel and Lara 2003). The incidence in men is higher than that in women (Bray et al. 

1995). 

 

RCC has a poor if any response to chemo- or radiation therapy and low response rates for cytokines 

interleukin-2 (IL-2) or interferon-α (IFN-α). Even in the first-line treatment, the response rate for these 

agents is only in the range of 10 to 20%. (Motzer et al. 1996, Motzer & Russo 2000) The prognosis for 

mRCC is poor, the five-year survival has been estimated to be below 10% (Motzer et al. 1996) 

 

There is no generally approved standard treatment for mRCC. Cytokine therapy (IFN-α or IL-2) is 

thought to be the most effective treatment, and is commonly used as a first-line therapy, even though 

only a small number of patients respond to these agents (Motzer et al. 1996). For second-line therapy, 

the treatment options are even more limited (Motzer et al. 2004). Until recently there has been no effec-

tive therapy available for those mRCC-patients who fail to respond, who are unable to tolerate cytokine 

therapy, or whose disease progresses after an initial response (Motzer et al. 2006a). However, a grow-

ing understanding of the biological process underlying different malignancies including RCC has offered 

possibilities for new treatment alternatives. 

 

Tyrosine kinases play important roles in the regulation of cellular proliferation and survival through nu-

merous pathways. In cancer cells, tyrosine kinases are disregulated in several ways and this distur-

bance has been implicated in cancer progression. (Krause & Van Etten 2005)  Sunitinib is a novel multi-

targeted tyrosine kinase inhibitor which inhibits these malignant processes through multiple pathways 

and it has been shown to have anti-tumour and anti-angiogenetic activity (Motzer et al. 2006a). A dose 

of 50 mg is administered orally on 28 consecutive days followed by a 2 weeks rest period. The treat-

ment is continued in 6-week cycles until progression in disease or intolerable adverse effects occur. 

                                                 
9 This chapter has been published in: Purmonen T*, Martikainen JA*, Soini EJ, Kataja V, Vuorinen R-L, Kellokumpu-Lehtinen P-L. 
Economic Evaluation of Sunitinib malate in the Second Line Treatment of Metastatic Renal Cell Carcinoma (mRCC). Clinical 
Therapeutics, in press. Reproduced with permission. 
* Authors share equal contribution 
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Sunitinib has shown high objective response rates in patients with cytokine-refractory mRCC compared 

with other therapies (Motzer et al. 2006b, Staehler et al. 2006).  

 

This study compares the costs and outcomes among patients with mRCC actively treated with sunitinib 

to those receiving second line treatment as currently practiced in the Finnish health care setting. The 

present second line treatment is usually Best Supportive Care including palliative BioChemoTherapy 

(BSC+BCT, referred subsequently to as BSC). The difference in costs and outcomes between these 

two treatment arms represents the incremental impact of the use of sunitinib for second-line treatment 

of mRCC. The viewpoint of the analysis is societal; however indirect costs are not included. 

 

6.4.2 Methods 

 

Disease model. Economic evaluation was conducted using a probabilistic Markov state-transition 

model. A model with three disease states was used to describe the natural history of patients with 

mRCC, who have experienced failure of prior cytokine-based therapy. The simplified structure of the 

model is shown in Figure 32. The transitions through the states were assumed to occur in one-month 

cycles (i.e. 30 days) and the model was run up to 5 years since the life expectancy for mRCC patients 

is relatively short. 

 

The Bayesian modelling approach was applied to enable the simultaneous estimation of all inputs in the 

model (including transition probabilities, resource use, unit costs, and utilities), sensitivity analysis for 

data and model specifications, and evaluation of the model (Cooper et al. 2004). Uncertainty was 

propagated into the model using prior probability distributions, which were specified from the prior evi-

dence identified from clinical trials, the literature and the local sample. The model was constructed and 

evaluated using a Markov Chain Monte Carlo (MCMC) simulation implemented in the WinBUGS soft-

ware (version 1.4, MRC Biostatistics Unit, Cambridge, UK). 

 

No new progression
-related events

History of progression
-related events Death

 
Figure 32. Structure of the Markov-model of mRCC  

 

Transition probabilities. The efficacy of sunitinib in the treatment of mRCC was gathered from recently 

published trials (Motzer et al. 2006b, Motzer et al. 2006c). Both studies were single-arm, multi-center, 

open-label, phase II trials. A pooled analysis (n=168) of these trials was used to determine the median 

progression-free survival (PFS) (Motzer et al. 2006b). Since the median overall survival (OS) was not 
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attained in both trials, the information from a single trial (n=63) was utilized (Motzer et al. 2006c). De-

tailed information on survival estimates and patient characteristics in sunitinib-trials can be found in the 

original reports (Motzer et al. 2006b, Motzer et al. 2006c). 

 

Since both sunitinib-trials (Motzer et al. 2006b, Motzer et al. 2006c) were single arm trials, a comparator 

arm was needed in order to perform the incremental cost-effectiveness analysis. Therefore, the data 

from the local sample (n=39) was gathered from the medical records of two Finnish university hospitals 

and this was utilized to represent survival and resource use in the BSC-arm in the comparison. 

 

Information about the BSC was collected on a structured form by clinical experts. The sample was col-

lected cumulatively one year at a time from patients who had deceased during the years 1996-2006. 

According to expert opinion, the treatment practice had not changed during these years and, thus, the 

sample was coherent. 

 

To ensure better consistency with the sunitinib-trials’ exclusion criteria, patients with a history of brain 

metastases, other cancers or serious cardiac events were not included in the sample. In addition, pa-

tients with a poor general condition were excluded, since their condition would not have permitted ac-

tive treatment. The baseline characteristics of the local sample are illustrated in Table 13. Prior 

nephrectomy was not an inclusion criterion in both sunitinib-trials (Motzer et al. 2006b, Motzer et al. 

2006c), and thus, the patients in the local data sample were not excluded, even if nephrectomy had not 

been done. 
 
Table 13. Characteristics of Finnish mRCC-population from two university hospitals 

Characteristics (n=39)  

Sex, No. (%)  

 Men 27 (69) 

 Women 12 (31) 

Age, median, years 68 

Prior nephrectomy, No. (%) 33 (85) 

Prior systemic cytokine-based treatment, No. (%)  

 Interferon-alpha 39 (100) 

 Interleukin-2 0 (0) 

 

In the sunitinib-trials, progression was defined by the RESICT-criteria or by death due to RCC. How-

ever, in daily clinical practice, it is neither possible nor meaningful to use imaging (e.g. X-ray, CT or 

MRI) to define progressions in a stage IV disease. In the local data sample, a progression was as-

sumed to occur, when there had been a major change in treatment (e.g. starting radiation therapy, sur-
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gical operation, hospitalization or a change in cytostatic treatment). The medical expert collecting the 

information made the retrospective expert decision if the change in treatment line was connected to 

progression. Progression-free survival (PFS) was defined as the time between cytokine failure and pro-

gression in the disease. Death due to RCC was also considered as a progression of the disease. 

 

Estimating progression-free and overall survival times from the local sample. Survival analysis was per-

formed to estimate the overall (OS) and the progression-free survival (PFS) after cytokine failure by 

fitting a Weibull model to data from the local sample (n=39). The probability that an individual survives 

from the time origin to a point in time beyond t, was estimated by the Weibull survival function S(t): 

 
[30]   )exp()()( γλttTPtS −=≥=  

 
where the lambda (λ ) parameter gives the scale of the distribution and the gamma (γ ) parameter de-

fines the shape of the distribution. The scale parameter was parameterized as exp(β0) and the shape 

parameter was estimated from the data. 

 

Correlation between the PFS and the OS were also modelled assuming that the PFS may influence the 

OS, but that there was no inverse effect of the OS influencing the PFS. Hence, correlation structure 

was modelled using a Weibull regression model: 

 
[31]   ))(exp(exp()( 10

γββ tSFPPFSPFStS −+−=  

 
where the PFS was used as a covariate. The PFS was centered to mean ( SFP ) to speed up conver-

gence. To obtain a fully Bayesian approach, the model specification was completed by adding prior dis-

tributions on β, λ and γ. Non-informative prior distributions for the model parameters were assumed 

without any prior expectations about the magnitude of parameter values. This assumption was used to 

ensure that the data from the local sample dominated the final inferences. 

 

Goodness-of-fit of survival models. A point estimate of the deviance (i.e. -2log(likelihood)) was used to 

assess the goodness-of-fit of the Weibull models for the data from the local sample (Nixon and Thomp-

son 2004). The estimated Weibull survival curves and the corresponding product-limit survival times 

from the local sample are presented in Figure 33. 
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Figure 33. Goodness-of-fit of Weibull survival estimates for the data from the local sample (n=39) 

 

Transition probabilities between health states. Since the mean survival times were not attained or avail-

able in sunitinib-trials, the median values were used to estimate monthly transition probabilities in both 

study arms. For the sunitinib-treatment arm, the median survival estimates were obtained from the pub-

lished trials, whereas for the BSC-treatment the corresponding figures were estimated directly from the 

collected data. The median survival estimates (Table 14) were converted to monthly transition probabili-

ties using the following formula: 

 

[32]   Risk of an event (1 month) = [1-(0.5)^(1/median time to event)] 

 

The estimated base-case transition probabilities of disease progression were 0.0811 in the sunitinib-

arm and 0.3841 in the BSC-arm. The corresponding monthly risks of death due to mRCC were 0.0408 

and 0.1649. In the analysis, these transition probabilities were assumed to remain constant over time 

(i.e. the OS- and PFS-curves were assumed to follow a declining exponential distribution in both 

groups). 
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Table 14. Median survival times of mRCC-patients with BSC- and sunitinib-treatments 

 Median 95% CI SE 

Overall survival, months    

   Sunitinib (n=63) 16,4 10,8-NA (NA) 

   Best Supportive Care (n=39) 3,83 (2.16-5.51) 0.85 

Progression-free survival, months   

   Sunitinib (n=168) 8,2 (7.8-10.4) 0.66 

   Best Supportive Care (n=39) 1,43 (0.7-2.17) 0.37 

NA= Not yet attained    

 

Characterizing uncertainty related to transition probabilities. The uncertainty related to transition prob-

abilities in the sunitinib-arm was characterized by expressing the parameter values in the model as beta 

distributions. The beta distributions were parameterized as beta (α, β), where α was defined as the 

number of patients transferring to a new state during one month and β was defined to be the sample 

size of the sunitinib-trials minus the value of α. The values of α were approximated based on the esti-

mated monthly probabilities of disease progression and death. 

 

In the BSC-arm, the uncertainty related to transition probabilities was propagated directly from the 

Weibull survival models. Thus, no further distribution assumptions were needed. Since there were mul-

tiple possibilities to transitions from “No new progression-related events” -health state in the model, the 

associated transition probabilities were normalized to ensure that they summed up to 1 during the simu-

lation process. 

 

Resource use and costs. In order to define the monthly costs of BSC in the Finnish setting, the health 

care resource utilization and medication use of each patient (n=39) was collected for the entire follow-

up period. The recommended unit prices for health care services were case-mix adjusted for the Fin-

nish regional price differences (Hujanen 2003) and real-valued to the year 2005 with the official health 

care price index (Statistics Finland 2006). 

 

The consumption and cost of cancer medications, additional IFN-α-products, analgesics and bisphos-

phonates were specified. It was assumed that medical costs not related to RCC were equal in both 

treatment arms and therefore were not collected. A medical specialist collecting the data made the ex-

pert decision about whether or not a particular medicine was related to the treatment of RCC. 

 

The costs of medication were calculated using the most economical generic product prices in the official 

price list when applicable. For medications no longer on the consumer market, the last existing price 

was used. Prices from previous years were not converted to 2005 currency, since medications in 

Finland do not follow the general price index. Prices for products with special sales permit were gath-

ered directly from the distributor and transformed to retail prices using the official formula (2006). Medi-
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cations administered in hospital care were assumed to be included in the cost of a treatment day and, 

thus, were not included in the costs of medication in order to avoid double counting of costs. If the dura-

tion or dose of medication was not mentioned, the defined daily doses from the year 2006 (National 

Agency for Medicine 2006) were used, and the duration was assumed to be one month. Travel costs 

were allocated to all separate outpatient visits and radiation therapy treatment days. 

 

The resource use for the follow-up time is presented in Table 15. The resource use among BSC-

patients is very heterogenic. Thus, an average cost per follow-up day from the whole population was 

used in the analysis and this comprised an average treatment cost of 1339 €/month. The price without 

VAT was used in all costs. 
 
Table 15. Resource utilization in local mRCC-patient sample (n=39) 

Number of medications used during the follow-up No. (%) 

 

 

IFN-α 

 

Cancer medication Bisphosphonates Analgesics 

0 33 (85) 14 (36) 32 (82) 9 (23) 

1 6 (15) 12 (33) 5 (13) 12 (31) 

2 0 (0) 7 (18) 2 (5) 6 (15) 

3 or more 0 (0) 5 (13) 0 (0) 12 (31) 

 

Number of imaging examinations used during the follow-up No. (%) 

 X-ray CT Ultrasound MRI 

0 12 (31) 24 (61) 25 (64) 36 (92) 

1 11 (28) 10 (26) 8 (20) 3 (8) 

2 3 (8) 2 (5) 3 (8) 0 (0) 

3  3 (8) 1 (3) 1 (3) 0 (0) 

4 or more 10 (25) 2 (5) 2 (5) 0 (0) 

 

Number of health care service units utilized during the follow-up No. (%) 

 Ward care days 

(University hospital) 

Ward care days 

(Health care centre) 

Outpatient visits 

(all levels) 

Radiation therapy days 

0 10 (26) 19 (49) 14 (36) 23 (59) 

1-5 6 (15) 2 (5) 15 (38) 2 (5) 

6-10 6 (15) 2 (5) 6 (15) 6 (15) 

11-19 12 (32) 3 (8) 3 (8) 3 (8) 

20 or more 5 (13) 13 (34) 1 (3) 5 (13) 

 

Since no published information exists on the use of sunitinib in current Finnish practice, an expert panel 

of four clinicians treating mRCC-patients was used to estimate an average treatment protocol for those 

patients. The monthly treatment costs for sunitinib-treatment arm were defined according to this proto-

col. Patients were assumed to be seen by an oncologist and also to have laboratory tests taken twice in 
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the first cycle and once in all latter cycles. Imaging was utilized once in the two first cycles and then on 

every other cycle. One third of the use of imaging was assumed to be CTs and two thirds to be ultra-

sound or X-ray assessments. The cost of medication and estimated costs for treatment of adverse 

events were added to the monthly costs. 

 

The mean monthly costs are illustrated in table 16. The more active resource use at the beginning is 

due to the follow-up of the treatment tolerability and entry medical examinations. After the termination of 

sunitinib-treatment, the monthly costs are assumed to be equal to BSC-treatment arm. The costs were 

assumed to be gamma distributed. Since no information was available on the variance of mean monthly 

costs in the sunitinib-treatment, the variance was assumed to be proportionally equal to the variance of 

the mean monthly costs in the data from the local sample. The parameters of gamma distributions were 

estimated using the methods of moments (Briggs et al. 2002). 
 
Table 16. Mean monthly costs per patient in sunitinib- and BSC-treatments 

SUNITINIB-arm  Cost (€) SE Distribution 

Health care utilization    Month 1  545b 114x Gamma (2600, 4.77) 

 Months 2-3 324 68x Gamma (1546, 4.77) 

 Months 3 => 201 42x Gamma (959, 4.77) 

Drug costs per month 3748  Uniform (3748, 4061)  

BSC-arm* 1339* 281x 

 

Gamma(6389, 4.77)  

b) Includes treatment of adverse events 

*) Total costs within the follow-up divided by cumulative days alive (x30) 

x) Proportionally equal to SE of mean monthly costs in the data from the local sample 

 

Utilities. The utility values were obtained on day 1 and day 28 of every 6-week cycle in the sunitinib-trial 

using EQ-5D. The average (SE) utility before new progression was 0.764 (0.026) and decreased to 

0.731 (0.061) after the progression (data on file, Pfizer). The utility of a deceased patient was defined to 

be zero. Since utility data was unavailable for the BSC arm, utility values in different health states were 

assumed to be equal in both study arms and to be beta-distributed. The parameters of beta distribu-

tions were obtained using the methods of moments (Briggs et al. 2002). 

 

Sensitivity analysis. The sensitivity of selected discount rates and time horizon was considered using 

different discount rates and time horizons in the analysis. In the base-case analysis for five years, both 

costs and QALYs were discounted using a discount rate of 5 per cent. 

 

Since the survival data used in the current model was not collected in a parallel study setting, it was 

considered to be a potential source of uncertainty. When the observed covariates between sunitinib-

trials and the local sample were compared, the differences in the average age were considered to be 

the most important source of uncertainty, and thus, the impact of age difference was studied. 
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Model evaluation. To evaluate the Markov model, a cohort of 1000 artificial mRCC patients with evi-

dence of metastases was entered into the model. It was also assumed that mRCC patients had failed to 

benefit from cytokine therapy because of intolerance or disease progression before they entered into 

the model. This Markov model was evaluated simultaneously with the Weibull survival models.  

 

Final posterior parameter estimates were based on a total of 50 000 MCMC samples. The first 10 000 

samples were discharged to ensure stability of the posterior sampling procedure. Furthermore, the 

model convergence was confirmed by checking the trace plots of the samples, autocorrelation samples, 

and the Monte Carlo standard error statistics in WinBUGS. The code for the cost-effectiveness model is 

given in Appendix 1.  

 

Cost-effectiveness. Cost-effectiveness and cost-utility analyses were conducted. The parameter uncer-

tainty was converted into decision uncertainty using cost-effectiveness acceptability curves (CEACs). 

CEACs illustrate the probability of cost-effectiveness at different willingness-to-pay threshold values. 

 

Value of information analysis. Additional research evidence is valuable because it reduces the expected 

costs of uncertainty surrounding an implementation decision. If a wrong decision has been made, the 

expected costs can be determined as a product of the probability of wrong decision and its conse-

quences. In the field of health care, the consequences of wrong decision can be determined in the 

terms of net monetary benefits (NMB) lost due to a wrong decision. The expected costs of uncertainty 

surrounding the adoption decision were estimated by applying the expected value of perfect information 

(EVPI) approach. Briefly, the EVPI for an individual patient (EVPIpatient) is simply the difference between 

the expected value of the decision made with perfect information about the uncertain model parameters 

and the decision made on the basis of existing information. When a probabilistic Markov model is em-

ployed, the calculation of EVPI is rather straightforward as the EVPI is obtained by taking the average 

of the maximums in each iteration of the simulation. (Claxton 1999) 

 

Population EVPI. To estimate the EVPI at the population level for the mRCC patients, the EVPIpatient was 

multiplied by the number of patients with mRCC that would be affected by the information over the ef-

fective lifetime of the sunitinib-treatment: 

 

[33]   Population EVPI = EVPIpatient*∑
=

−+
T

t

t
t rN

1
)1(*  

where T is the total length of the assumed effective lifetime, which in this particular case was assumed 

to be either 5 or 10 years. Nt is the number of patients that may potentially benefit from the sunitinib-

treatment at time t. (Claxton 1999) 
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The number of new mRCC-cases was estimated based on statistics obtained from the Finnish cancer 

registry. According to the registry, the incidence of new RCC cases was 710 in the year 2004. Using the 

assumptions that 50% of the cases will eventually develop to mRCC and that 50% of those would re-

ceive active second-line treatment, the number of mRCC-patients affected by second-line sunitinib-

treatment amounts to 914 and 1 440 at the 5 and 10 year time period, respectively. A discount rate (r) 

of 5% was used in the calculations. 

 

6.4.3 Results 

 

According to the simulation results, treatment with sunitinib compared with Finnish current treatment 

(BSC) prolonged life expectancy by approximately 1 year and progression-free time by 6.3 months. It 

also resulted with 0.72 additional QALYs compared with BSC. However, in the 5-year time period, it 

was responsible for around 30 880 € incremental costs per patient. The base-case results indicated that 

cost per progression-free month (PFM) gained was 4 883 €, cost per life-year gained (LYG) was 30 250 

€, and cost per an additional QALY was 42 877 €. When parametric uncertainty was taken into account, 

it was observed that the incremental QALYs ranged from 0.5 to 0.9 while the mean difference in costs 

ranged from around 24 000 € to 38 000 € (Figure 34). According to our results, sunitinib is more costly 

but also more effective than BSC in all situations.  
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Figure 34. Cost-effectiveness plane. Base case probabilistic sensitivity analysis for 5 years 

The uncertainty related to ICER is depicted as a cost-effectiveness acceptability curve (Figure 35) 

which is established through the probabilistic sensitivity analysis (PSA) carried out in the second-order 

Monte Carlo simulation framework. It seems that when society’s willingness-to-pay rises above 40 000 

€ / QALY, the probability of sunitinib‘s cost-effectiveness increases rapidly. For example, with a 45 000 
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€ / QALY willingness-to-pay threshold, sunitinib has approximately an 88% probability of being cost-

effective compared to BSC in a 5-year period in the Finnish setting.  
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Figure 35. Cost-effectiveness acceptability curve of sunitinib versus BSC  

 

The population EVPI for the decision between sunitinib- and BSC -treatments was 607 000 euros at a 

willingness to pay level of 42 500 €. Very low population EVPI values were associated with willingness-

to-pay values in the range of 0 € to 37 500 € per QALY gained. This indicates that if a decision maker’s 

willingness-to-pay for an extra QALY is clearly less than 37 500 €, then the requirement for further in-

formation is unlikely to be cost-effective. This is the same, when the decision maker’s willingness-to-pay 

for an extra QALY is more than 52 500 €. The results from the EVPI analysis are depicted in Figure 36. 
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Figure 36. Expected value of perfect information for Finnish mRCC-patients  

 

Sensitivity analyses. The discounting of costs and effects did not have any significant effect on the re-

sults. Most of the sunitinib-related costs are incurred in the first year because of the relatively short time 

to disease progression. The incremental cost-effectiveness ratio for an additional QALY decreased after 

the first year and rapidly leveled off to the base-case level. 

 

No statistically significant difference either in the OS or the PFS was found when comparing the patient 

groups under and over 60 years in the BSC-arm. Results from analysis using survival data from pa-

tients under 60 years in the BSC-arm were in line with results obtained from the base case analysis. 

The sample size of patients under 60 years was only 12 and therefore cannot be used as a reliable 

source of information for the analysis. However, this analysis revealed that the average age in this 

population did not bias the results. 

 

6.4.4 Conclusions 

 

The incremental cost-effectiveness ratio in our study was 42 877 € per QALY gained in a 5-year time 

period, which indicates that sunitinib-treament is potentially cost-effective when compared with the 

current Finnish treatment practice. There are only a limited number of studies concerning the cost-

effectiveness of novel cancer treatments in the Finnish setting. However, in a recent study, the cost 

per QALY gained for temozolomide in the treatment of glioblastoma multiforme was 32 471 € which is 



 

 

127

of a similar magnitude as the value calculated in this study (Martikainen et al. 2005). These figures are 

also comparable to those stated by NICE (Devlin & Parkin 2004). 

 

Despite the rather good reliability of the data sources, this study has some limitations. The first limita-

tion in this study concerns the comparability of the patient populations. Differences in patient charac-

teristics, health status and severity of disease at baseline may raise doubts about the comparability of 

Finnish data and data from clinical sunitinib-trials. However, in order to obtain the costs and effective-

ness related to the Finnish current care, unselected sampling with comparable criteria to the sunitinib-

trials was carried out in two university hospitals. Thus, a real Finnish situation in mRCC-treatment was 

obtained and in this respect the survival difference due to different baseline characteristics in our data 

and clinical trials should have only a minor impact on the main questions related to survival and costs. 

Furthermore the subgroup analysis revealed no significant difference in survival times in the different 

age groups. 

 

Another limitation of this study is that the results are dependent on the expected survival times. How-

ever, the survival estimates from the Finnish data sample are comparable to those stated in earlier 

studies. It has been previously reported that median survival for recurrent or metastatic RCC ranges 

from around 2 to 13 months, depending on the patient’s risk factors (Elson et al. 1988). Survival esti-

mates from 29 consecutive clinical trials involving 251 patients with conventional second-line mRCC 

treatment showed the median OS and PFS to be 10.2 and 2.4 months, respectively (Motzer et al. 

2004). In a previous Finnish study concerning first-line treatment the median OS was 37.8 weeks with 

vinblastine monotherapy (n=81) and 67.6 weeks when the treatment was the combination of INF-α2a 

and vinblastine (n=79). The corresponding figures for PFS were 9 weeks and 13 weeks. (Pyrhönen et 

al. 1999) 

 

Nonetheless it has to be stated, that the patients confronted in daily clinical practice may be in a weaker 

initial health-state than patients participating in clinical trials. There may also be a selection of patients 

with more slowly progressive disease in clinical trials of second-line therapy, because patients with poor 

health status would not be included in the population receiving such treatment [5]. Thus, the expected 

survival in clinical studies may be longer than that encountered in the average mRCC-population. For 

these reasons, a weak general condition was one of the exclusion criteria in our study. However, it may 

be challenging for the investigators to identify those patients relying on patient files. Nevertheless, the 

data used in this study was collected from patients suffering from mRCC and, thus, can be considered 

reliable. At the time of writing this article, a Phase III trial of sunitinib versus IFN-α in first-line treatment 

of mRCC was published. Sunitinib showed marked improvement in the progression-free survival and 

was associated with a higher objective response. This provides more evidence on the efficacy of sunit-

inib also when compared to active treatment. (Motzer et al. 2007) 
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The final limitation of this study concerns the fact that the treatment protocol of the sunitinib-arm was 

solely based on expert opinion and does not necessarily depict the real practice. However, since there 

is no consensus on what represents current practise for a patient treated with sunitib exists, this as-

sumption was used as the best available information. The assumption that sunitinib-treatment would be 

discontinued immediately after observed disease progression may also not reflect the clinical practice in 

all settings. Currently there is also no evidence to suggest that switching from sunitinib to another tyro-

sine kinase -inhibitor after the onset of progression would be effective (Staehler et al. 2006). 

 

Despite the possible limitations of this study, sunitinib can be considered a suitable alternative as a 

second-line therapy of mRCC. The limitations of the study settings were noticed and carefully assessed 

in the analyses. The assumptions made in this study were confirmed by clinical experts treating mRCC-

patients and were conservative rather than over-optimistic. 
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7 FINDINGS AND DISCUSSION 

7.1 Applicability of Markov models 

 

The conducted case studies proved that the Markov models offer a clear and coherent mathematical 

structure to combine all relevant evidence and to assess the consequences, such as expected costs 

and effects, of different decision options in advance. The Markov models are particularly suited to the 

modelling of disease progression over time. In addition, the decision-analytic models are relatively in-

expensive vehicles to utilise, especially, when compared to trial-based studies. However, it should be 

noted that the decision-analytic models are complementary rather than substitute vehicles for the trial-

based cost-effectiveness analyses (Claxton et al. 2002). For example, the decision-analytic models can 

be applied when there is a need to assess all relevant evidence (chapters 6.1-6.4), to link intermediate 

outcomes (e.g. change in serum cholesterol levels) to final endpoints (e.g. change in QALYs) (chapter 

6.3), to make results applicable to the decision-making context due to a gap between clinical trial evi-

dence and the requirements for a decision (chapters 6.2 and 6.4), or to estimate cost-effectiveness for 

specific subgroups (chapter 6.3). However, there is a range of issues that affect the applicability of 

Markov models to inform decision-making in practice. Therefore, some practical considerations that are 

common across model-based cost-effectiveness studies are discussed below.  

 

One important aspect relates to the clinical validity of a developed model, since it is important to ensure 

that the health state definitions and the transitions used in the decision-analytic models hold clinical va-

lidity in the face of current understanding. Therefore, when the development of a model structure is 

guided by previous published model structures, it is essential that clinical experts are used to validate 

the applied model structure. For example, in case study in chapter 6.1, the applied model structure was 

modified after consulting clinical experts, since they considered that one transition between health 

states used in the previous cost-effectiveness model was biologically implausible due to the nature of 

the disease (i.e. transition from the moderate disease state back to the mild disease state was consid-

ered to be biologically implausible, since the Alzheimer’s disease is a neurodegenerative disease char-

acterised by progressive deterioration in memory, and it was omitted from the model).  

 

The decision-analytic models are meant to be an aid to decision making under uncertainty at a particu-

lar point in time (Sculpher et al. 2000). Consistency between a decision problem and a model structure 

is evidently a basic requirement in decision-analytic modelling but the attainment of this requirement 

may sometimes be challenging due to the rapid flow of new scientific evidence affecting the current un-

derstanding about the standard of care. In the case study of chapter 6.2, for example, the initial model 

structure was developed to model the decision problem about the cost-effectiveness of temozolomide 

as a second-line treatment (i.e. after surgery and radiotherapy) for patients with recurrent glioblastoma 

multiforme. However, just before the publication of the cost-effectiveness report a new RCT with prom-
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ising results was published. This new study indicated that when temozolomide was administered as a 

first-line adjuvant treatment with radiotherapy statistically significant survival benefit with minimal addi-

tional toxicity was achieved as compared to radiotherapy alone (Stupp et al. 2005). This clinical finding 

changed the current standard of care in a way which diminished the usefulness of the developed cost-

effectiveness model to inform decision-making in the changed situation. This finding highlights the im-

portance of the timing of cost-effectiveness evaluations and emphasises the need for the models to 

adapt to new evidence as it becomes available (cf. the iterative approach introduced in chapter 2). 

 

The decision-analytic models primarily purpose is to bring together all relevant evidence into considera-

tion and to reveal the relation between the model parameters and outcomes in a transparent way rather 

than to make very accurate predictions about possible consequences in the future. The optimal balance 

between a model’s accuracy and transparency is hard to determine due to trade-off between these two 

concepts; when the model is made more accurate, the complexity of the model increases simultane-

ously, which decreases the decision-makers’ ability to understand it. Therefore, the published guide-

lines for decision-analytic modelling have recommended that transparency should have a somewhat 

greater weight in model development. (Weinstein et al. 2003). However, since transparency does not 

determine the model’s accuracy (i.e. even if we could replicate the model’s results, replication would not 

tell us the model’s accuracy), it is always reasonable to assess the external consistency of a developed 

model e.g. by comparing the model’s results, such as the time to disease progression, to previously 

published results (Eddy 2006). 

 

The application of Markov process approach increases flexibility in the decision-analytic modelling. The 

case studies of chapters 6.1, 6.2, and 6.4 were developed assuming that the transition probabilities be-

tween the defined health states would stay constant over time. In fact, the case study of chapter 6.3 

proved that covariate- and time-dependency can be built into Markov transition probabilities in a way 

that the transition probabilities vary according to the patients’ underlying risk profiles and time in the 

model (i.e. the risk of events increases as the cohort ages). In addition, the case study of chapter 6.3 

showed that the Markov assumption can be relaxed by building temporary tunnel states into the model. 

In this particular case, this was done by modelling the occurrence of myocardial infarction as a tempo-

rary health state, in which the members of cohort spend only one year, which after they move into a 

health state depicting patients with a history of myocardial infarction event.   

 

The models should be kept as simple as possible, while capturing all essential parts of disease proc-

esses including the effects of health technologies, in order to aid their comprehension by decision-

makers (Buxton et al. 1997). However, this may entail some justified simplifications. For example, the 

quite complex structure of the model in the case study of chapter 6.3 was developed trying to keep a 

chain of evidence (i.e. a health technology  intermediate outcomes  main health outcomes) as 
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transparent as possible. Therefore, possible additional preventive effects e.g. those related to the risk of 

stroke (Law et al. 2003) were omitted.  

 

Finally, the conduction of logical checks and programming the models in alternative software packages 

ensures internal consistency (i.e. the mathematical logic of the models). For example, in the case study 

described in chapter 6.4, the model was developed using both WinBUGS and Microsoft Excel™ to 

identify any possible logical and programming errors.   

 

7.2 Applicability of evidence synthesis methods 

 

The identification, selection, and critical appraisal of evidence for the decision-analytic models are the 

most time consuming parts of the model development process. When systematic literature reviews are 

conducted, the definition of inclusion criteria is the critical driver of time-consumption, since imprecise or 

too extensive criteria may lead to a substantial increase in the time required to conduct a single sys-

tematic review. However, if the inclusion criteria are too strict, there is the increased risk that all relevant 

evidence will not be identified. Therefore, it is important that the inclusion criteria are derived consis-

tently from the decision problem.  

 

The critical appraisal of identified studies is the essential phase of evidence synthesis. Structured qual-

ity assessment forms were found to be helpful in the evaluation of the identified articles, since they 

standardise and make the review process more transparent, especially when there is more than one 

reviewer. In addition, the filled forms provide a historical record of decisions occurring during the review 

process.  

 

Once the critical appraisal of selected studies is done, evidence is extracted from the selected studies 

by trained reviewers. For example, in case study described in chapter 6.3, the data extraction was done 

by one principal reviewer and verified by other members of research team, whereas, in case study de-

scribed in chapter 6.2, evidence was extracted and evaluated independently by each member of re-

search team. In both cases, however, disagreements were resolved by consensus. It is recommended 

that at least two reviewers are used to extract evidence from the selected studies, since multiple data 

extraction reduces errors in the evidence extraction process (Buscemi et al. 2006).  

 

Well defined evidence extraction tables are helpful in the organisation of extracted evidence. In the pre-

sent case studies, evidence was first extracted into the evidence tables developed in Microsoft Excel™ 

in its original form and then transformed as needed. The advantage of spreadsheet-based tables is that 

they can be programmed to calculate data conversions (e.g. mg/dl to mmol/l) automatically for data re-

ported in various formats.     
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The quality of reporting may cause problems in the evidence extraction, since published studies fre-

quently do not report all of the information required for meta-analysis. For example, in the case study of 

chapter 6.3, missing data was first tried to locate by requesting from the authors of the study. However, 

we did not manage to obtain all missing data and therefore data imputation methods were applied to 

estimate replacement estimates in some studies, where all required evidence was not reported in study 

reports (Higgins & Green 2006).   

 

Finally, meta-analyses and meta-regressions are conducted to summarise and analyse the collected 

evidence. The present study proved that the analyses are relatively easy to conduct with WinBUGS-

software, since models can be specified by using either a graphic- or text-based model description 

(Spiegelhalter et al. 2003). Appendix 2 depicts the graphic- and corresponding text-based model de-

scriptions for the meta-analysis applied in the case study in chapter 6.3 as an example.  

 

Generally, cost-effectiveness evaluations tend to focus on a time period at or around the implementa-

tion of new health technology, when experience and evidence about its clinical and economic conse-

quences may still be relatively limited. In the conducted case studies, it was often possible to obtain the 

resource use data from published sources or hospital administration systems. When data was collected 

from hospital administration systems, patient records were first identified from the patient administration 

systems according to defined inclusion criteria, after which data were extracted from patient records by 

using structured data extraction forms. Since the resource use may vary from one hospital to another, 

the resource use data were collected from separate hospitals to obtain a sufficient estimate for resource 

use (see chapters 6.2 and 6.4 for example). In the near future, the extraction of resource use from the 

hospital administration systems would be expected to become easier and less time-consuming, with the 

introduction of electronic patient records.  

 

It is not always possible to obtain all evidence from published sources or hospital administration sys-

tems. In these cases, the use of expert opinions is generally accepted (Sculpher et al. 2000). In the 

case study described in chapter 6.4, evidence about the use of sunitinib in current Finnish practice was 

not available and therefore an expert panel of clinicians treating mRCC-patients was asked to deter-

mine an average treatment protocol for those patients in advance. Expert opinions were also applied to 

define the number of scheduled visits (chapter 6.1) and as proxy respondents to define utility values for 

cancer patients (chapter 6.2). When expert opinions are used to define the scheduled administration 

patterns of drugs, the elicited information can be assumed to be quite reliable but when the experts are 

used as proxy respondents to define patients’ utilities, then caution is needed. If the expert opinions are 

the only available source of evidence for utilities, it may be more valuable to try reflect the uncertainty 

inherent in the proxy answers rather than to attempt to achieve a consensus statement about the “true” 

utility value.   
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Finally, the present study showed that evidence used in meta-analysis and decision-analytic models 

requires very often adaptation or translation to other value scales, which increases the number of the 

additional sources of methodological and process uncertainty. For example, additional assumptions are 

needed e.g. when median time to progression estimates are converted to the monthly transition prob-

abilities (cf. chapter 6.4) or when the standard error of mean is estimated based on the assumed 95% 

confidence interval (cf. chapter 6.1).    

 

7.3 Applicability of different approaches to parameter uncertainty 

 

The probabilistic approach was applied in all conducted case studies. The case studies described in 

chapters 6.1 and 6.2 applied the two-stage approach, where evidence synthesis and cost-effectiveness 

modelling were conducted as separate processes. In contrast, the case studies of chapters 6.3 and 6.4 

applied the comprehensive modelling approach, where evidence synthesis and cost-effectiveness 

modelling processes are conducted simultaneously. The use of the probabilistic decision-analytic mod-

els enables a more realistic representation of uncertainty in the model’s outcomes. Furthermore, the 

probabilistic models correctly estimate expected costs and effects under conditions of parameter uncer-

tainty; even though decision-analytic models are non-linear (i.e. the model outputs are multiplicative 

functions of input parameters) (Ades et al. 2005). This is a particularly important feature in the case of 

the Markov models, which are non-linear due to the transition matrix. 

 

A common criticism related to the probabilistic approach is that the choice of prior distributions for 

model parameters is essentially arbitrary. However, the present study revealed that the choice of distri-

bution for an individual parameter is guided mainly by the nature of that parameter and by assumptions 

commonly employed to estimate confidence intervals in statistics (Briggs et al. 2006, 84). In addition, 

the number of statistical probability distributions needed in such models is relatively small. Table 17 

summarises and justifies commonly used statistical probability distributions for model parameters.  
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Table 17.  Summary of statistical distributions used in the probabilistic decision-analytic models.  
Parameter type 
 

Distribution  Justification  

Transition probabilities Beta (binomial data) 
 
 
Dirichlet (multinomial 
data) 
 

Returns values within the logical constraints [0,1]. 
 
The multivariate generalization of the beta distribu-
tion. It will generate the exactly same results as a 
series of conditional beta distributions (see Briggs 
et al. 2003).   
 

Baseline clinical data 
 

Normal distribution Justification rests on the central limit theorem, 
which states that the sampling distribution of mean 
will be normally distributed with sufficient sample 
size.  
  

Resource use data 
 
 

Log-normal / gamma Positively skewed distribution required with values 
above zero. 

Unit costs 
 
 
 
 

Fixed  
 
 
 
Normal 

Assumes that fixed unit cost reflect the true oppor-
tunity cost of consumed resource. 
 
Assumes that unit costs are located far from 0 and 
the sampling distribution of mean is normally dis-
tributed.  
 

Relative risks  
 

Lognormal Relative risk ratios are estimated on the log scale, 
which justifies the use of lognormal distribution. 
 

Utilities Beta Returns values within the logical constrains [0,1]. 
 

 

The results of the case study described in chapter 6.2 indicated that it is possible to incorporate the 

quality of clinical evidence into the decision-analytic model by applying probability distributions that re-

flect uncertainty associated with the efficacy parameters. A justification for the use of statistical distribu-

tions rests on the assumption that evidence with poor quality makes a model parameter less precise. 

However, the quality of evidence is a multidimensional concept and therefore it may be difficult to cap-

ture quality fully in a single score. Furthermore, the fundamental relationship between the precision of 

evidence and the quality of evidence needs to be paid further attention, since the stance that is taken 

on different types of evidence is not necessarily a statistical issue, but a question of expert judgement 

(i.e. should we include only randomised studies, or allow also other types of studies that may include 

additional sources of bias?) (Ades & Sutton 2006). 

 

Some model parameters are deterministic in nature and hence there is no need to specify statistical 

distributions for them. Discount rates, for example, are handled as deterministic, because (methodo-

logical) uncertainty arises due to lack of consensus about the most appropriate value for a discount 

rate, not due to the imprecision of the parameter estimate. In addition, most of the model parameters 

that describe the characteristics of a patient cohort, such age and sex, are handled as deterministic 

variables. (Briggs 2000) Uncertainty related to these deterministic parameters can be depicted using 

simple univariate sensitivity analysis. For example, in Table 12 an applied discount rate is varied and 

incremental cost-effectiveness ratio are re-estimated to see how the applied discount rate affects on the 

results.    
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There are some limitations that may affect the usefulness of the probabilistic models in general. First, 

insufficient evidence may prevent the specification of proper prior distributions for the model parameters 

(e.g. a standard error of mean is not reported) and thereby additional assumptions are needed (e.g. the 

standard error is the same value as the mean), which may increase the levels of uncertainty. For ex-

ample, at the moment the Finnish resource use and unit cost list do not provide information about the 

precision (i.e. the standard errors) of mean resource use estimates. Therefore, univariate analyses are 

still required to help understand the relative importance of individual parameters. Second, the probabil-

istic methods can create a misleading impression about the accuracy of the results, which may detract 

attention away from the considerations of model structure uncertainty and the quality of evidence. Third, 

the imprecise and insufficient appreciation of the probabilistic approach by the decision-makers may 

diminish the implementation of these methods. However, this problem may be purely an educational 

issue and it might be solved by arranging further training on this topic.  

 

When the two-stage and comprehensive approaches to decision-analytic modelling are compared, sev-

eral advantages can be found in the comprehensive approach. Firstly, it effectively integrates statistical 

evidence synthesis and parameter estimation with probabilistic decision-analytic model into a single 

unified framework. Secondly, the comprehensive approach enables the use of coherent Bayesian 

methods for updating prior distributions with available data; even in situations where priors and likeli-

hoods are not conjugate distributions. Thirdly, the use of the comprehensive approach removes need to 

assume parametric distributional shapes for the posterior probability distributions. (Spiegelhalter 2004) 

Fourthly, MCMC simulation from the joint posterior distribution of model parameters will incorporate and 

propagate the dependency structure of model parameters (as a result of explicitly defined evidence 

structure), rather than assuming independency between the model parameters (Spiegelhalter 2004, 

335, Ades et al. 2006). Fifthly, the comprehensive approach permits the incorporation of informative 

prior evidence directly in a decision-analytic model. However, the incorporation of informative prior dis-

tributions is not a necessary requirement in MCMC simulation, since non-informative prior distributions 

can be used when there is no relevant prior evidence available (Cooper et. al. 2004).      

 

There are also some disadvantages relating to the comprehensive approach. First, the comprehensive 

approach is much more complex than the two-stage approach and its implementation requires full 

MCMC software, which is not very user friendly at the moment. Second, the comprehensive decision-

analytic models may be computationally expensive in terms of the computer time required in simulation. 

For example, in the case study described in chapter 6.3 the first version of the model took over 24 

hours to compute. However, reprogramming managed to reduce the computer time markedly and finally 

the generation of 10 000 samples took only approximately 15 minutes on a PC with a Pentium 4 CPU 

2.66GHz-processor using 1.5 GB of RAM. 
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7.4 Applicability of different approaches to represent and interpret the cost-effectiveness results 

 

Once the simulations of decision-analytic models have been undertaken, the results of simulation are 

usually reported with means and 95% credibility intervals (95% CrI) (see Tables 5 and 10 for example). 

The credibility intervals are analogous to confidence intervals from the frequentist approach but they 

allow a more flexible interpretation than the conventional confidence intervals. Hypothesis testing is not 

meaningful in the modelling context. In a cost-effectiveness analysis, the emphasis is placed on the 

estimation of mean cost and effect differences between health technologies of interest, since the incre-

mental cost-effectiveness ratio or the corresponding net benefit estimate is estimated based on the 

mean differences.  

 

The point estimates, such as ICER and ∆NB(λ), do not take into account uncertainty that is related to 

these factors. However, the modelling results can be presented on the cost-effectiveness plane, which 

depicts graphically the joint uncertainty around the mean cost difference (∆C) and the mean effect dif-

ference (∆E) (see Figures 24-26 for example). The graphical approach is illustrative, since it clearly de-

fines the location of joint density on the four separate quadrants with totally different meanings. The 

interpretation of graphics is relatively easy when the joint density lies in only one quadrant (see Figure 

34 for example), whereas the situation where the joint density is spread over all four quadrants is much 

more complicate to interpret. However, in such situations where the cost and effect differences are in-

significant, it is possible to estimate the posterior probability that the joint density lies in the particular 

quadrant (see the results of the case study described in chapter 6.1 as an example) to aid decision-

making.   

 

When the aim is to illustrate uncertainty relating to the different levels of willingness to pay (λ), the 

credibility intervals (or the confidence intervals in the frequentist approach) and the cost-effectiveness 

acceptability curves (CEACs) are applicable to reflect that uncertainty. However, the 95% credibility 

intervals are only valid if all simulated replications are only in one quadrant of the cost-effectiveness 

plane, whereas the CEACs offer a solution to reflect uncertainty also in situations where the joint den-

sity lies more than one quadrant. Since the threshold value for λ itself is unknown, the CEACs are usu-

ally drawn as a function of λ. The use of CEACs allows the presentation of decision uncertainty in terms 

of probability that a new health technology is considered as being cost-effective for a given value of λ. 

One minus this probability reflects the error probability, that is, the chance that an inefficient decision 

will be made on the basis of the available evidence.   

 

In addition to being used to depict parameter uncertainty, CEACs can be applied to illustrate heteroge-

neity and methodological uncertainty related to the cost-effectiveness results. For example, figures 30 

and 31 depict multiple CEACs, which are used to reflect the same treatment choice between alternative 

health technologies in the presence of heterogeneity (i.e. the probability of cost-effectiveness may vary 
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according to age and sex). Similarly, the multiple CEACs can be used to depict methodological uncer-

tainty that arise due to the disagreement of proper discount rates, time horizons or clinical endpoints. 

For example, in the case study in chapter 6.3, multiple CEACs were used to reflect the probability of 

cost-effectiveness conditional on a particular treatment endpoint (see figure 27 for example). Further-

more, they can also be applied to reflect the effect of additional evidence (i.e. prior evidence is updated 

by additional data) on the probability of cost-effectiveness in the Bayesian context (Briggs 2001).   

 

Recent debate, however, has raised some concerns related to the capability of CEACs to reflect uncer-

tainty in cost-effectiveness analysis. The CEACs have been claimed to be insensitive to any change of 

the joint density in the NW and SE quadrants of the cost-effectiveness plane and to a radial shift of the 

joint density in the NE and SW quadrants. (Groot Koerkamp et al. 2007) These limitations have been 

acknowledged, but the CEACs are still considered as useful in representing uncertainty, especially, 

when combined with alternative ways to represent the cost-effectiveness results, such as the cost-

effectiveness planes and the EVPI analyses (Fenwick & Briggs 2007, Schwartz 2007).  

 

7.5 Applicability of the value of information methods 

 

When the cost-effectiveness of a new health technology is uncertain, the decision-makers worry about 

the expected costs of uncertainty (i.e. the probability of an inefficient decision multiplied by the conse-

quences of that wrong decision). Any additional evidence that can reduce the expected cost of uncer-

tainty around the decision is naturally valuable. However, when the decision about the acquisition of 

additional evidence is done, the expected benefit of additional evidence with expected cost of that addi-

tional evidence needs to be compared.   

 

The concept of expected value of perfect information (EVPI) has been developed to provide a formal 

analysis of the expected benefit of additional evidence (Claxton 1999, Claxton et al. 2002). The applica-

tions of the EVPI approach were developed in the case studies in chapters 6.2 and 6.4. The results of 

these applications reflect the value of additional research at the population level. For example, Figure 

36 illustrates the population EVPI. At the cost-effectiveness threshold of 42 500 euros per QALY, the 

population EVPI is 607 000 euros. This point, which is equal to the expected ICER, represents the 

maximum value of acquiring additional evidence and, if the fixed costs of proposed research are below 

this EVPI value, additional research is considered to be potentially cost-effective. When the value of λ is 

low (i.e. much less than 42 500 euros), the technology is not expected to be cost-effective and addi-

tional evidence is unlikely to change that decision (the EVPI is very low). Similarly, when the value of λ 

is higher (i.e. much higher than 42 500 euros) the technology does appear to be more cost-effective 

and hence, the uncertainty surrounding the decision decreases markedly. This happens because the 

expected ICER is much lower than the value of λ. This example shows that the population EVPI can be 
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used to define sufficient evidence to adopt a new technology by determining when it is inefficient to col-

lect additional evidence (Sculpher & Claxton 2005). However, in reality, the object functions of society 

and commercial parties may differ from each other, which may lead to the different definitions of suffi-

cient evidence. For example, the commercial value of additional evidence can be determined as the 

value of increased turnover due to the increased probability of regulation and reimbursement approvals, 

whereas the societal value of additional evidence can be determined as the amount of health gain e.g. 

measured in terms of QALYs. 

 

The present study revealed some limitations related to the EVPI analyses. The EVPI analysis places 

the emphasis on the evaluation of the precision rather than the quality of evidence, meaning that the 

accuracy of EVPI estimations depend heavily on the quality of evidence and the validity of a developed 

decision-analytic model. The concept of EVPI increases also the number of uncertain parameters in the 

analysis. For example, the population relevant to a particular decision is in itself uncertain. Uncertainty 

also relates to epidemiological parameters, such as the incidence and prevalence of a disease. Fur-

thermore, the future price levels and the effective lifetime of technologies in comparison are uncertain. 

For example, in the case study described in chapter 6.4 the effective lifetime of technology was as-

sumed to be either 5 or 10 years, since no more precise estimates were available. In addition, the re-

sults of the EVPI analyses are conditional on the unknown level of λ and hence, the results have to be 

represented as a function of λ. A further problem related to the implementation of the concept of EVPI 

into practice is the fact that decision-makers may consider the concept of EVPI as being too complex. 

Recently experiences from UK indicate that the problems of conducting EVPI analyses may not be pri-

marily technical or methodological but rather related to be the policy environment, where decisions re-

lated to reimbursement and research decisions are made in separate remits (Claxton & Sculpher 2006).  

 

7.6 Future research indicated by the case studies 

 
The applied case studies indicated a range of targets for further research related to both evidence syn-

thesis and decision-analytic modelling. When the decision-analytic models are developed, one of the 

major limitations that affects the validity of developed models is an absence of head-to-head trials com-

paring the technologies of interest in a particular cost-effectiveness analysis. Since this is a common 

problem in the cost-effectiveness analyses, further applications to enable indirect comparison via a 

common comparator (e.g. placebo) are needed. Recent developments in medical statistics may offer a 

potential solution for the indirect comparisons in decision-analytic modelling (see Nixon et al. 2007 for 

example).   

 

The present study as well as other recent developments (Claxton et al. 2002, Briggs et al. 2002) has 

mainly concentrated on modelling the random error of individual data sources rather than estimating 
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uncertainty that arises when evidence for model parameters is weak. The combination of data from 

multiple sources may produce more precise estimates due to the increased sample size but the combi-

nation of different types of studies may increase heterogeneity across the studies. However, recent de-

velopments related to generalised evidence synthesis may offer a solution to combine evidence from 

different sources into a single model parameter, while reflecting the potential sources of bias e.g. due to 

confounding variables and patient selection (Ades & Sutton 2006). Unfortunately, one disadvantage of 

this approach is that it increases the complexity of the analysis, which may cause problems with the 

presentation and interpretation of the results.    

 

In addition, further developments to assess and reflect the quality of evidence used in the decision-

analytic models are needed. The assessment of the quality of evidence is challenging, since as men-

tioned above, the concept of quality is multidimensional and therefore it is hard to encapsulate into one 

score that gives a quality weight for each study. Recent developments, however, may offer a potential 

basis for attempts to incorporate the quality of evidence into the decision-analytic models in the near 

future (Spiegelhalter et al. 2003, Braithwaite et al. 2007)  

 

This study applied the Markov modelling approach. However, in the future it is important to try to de-

velop new approaches that can be used to relax assumptions needed in the Markov modelling. For ex-

ample, one critical constraint in a Markov model is that each patient can be only one health state at a 

time, which leads to the requirement for multiple distinct health states to represent all possible combina-

tions (i.e. distinct health states are needed to model the subsequent course of disease conditional on a 

patient’s previous history).  One promising approach that relaxes the assumptions used in the Markov 

modelling is discrete event simulation (DES), which is widely used in the operational research (Caro 

2005). Some cost-effectiveness analysis applications have been already published (see for example 

Caro 2005 and Heeg et al. 2005).  

 

Further developments to enhance the handling of model uncertainty and transparency are also to be 

welcomed. The rapid development of information and communication technology may lead to the op-

portunity to utilise internet-based applications offering a more transparent approach to the decision-

analytic modelling in the near future. For example, Hubben et al. (2007) have demonstrated that web-

based user-interfaces enhance the usefulness of decision-analytic models in the support of decision-

making10. However, they did not manage to develop a model that permitted incorporation of structural 

changes as a part of the uncertainty analysis. In addition, the use of web-based models may raise a 

range of intellectual property right issues that need to be resolved in advance.   

 

At the moment, there are relatively few published studies that have validated the cost-effectiveness re-

sults by comparing the modelling results directly to the trial-based results (see Morris 1997 for exam-

                                                 
10 The interface is publicly accessible at http://pcv.healtheconomics.nl 
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ple). One reason for that is inherently true that this kind of validation will only be meaningful if the condi-

tions under which a trial is actually implemented closely reflect those assumed in the decision-analytic 

model. However, since the case study described in chapter 6.1 was conducted before the actual clinical 

study was started, it would be interesting to ascertain the validity of the developed model to identify a 

cost-effective option by comparing the previously published modelling results to the results obtained 

from the clinical study after they are made available.  

 

The present study did not consider the recently developed concepts of the expected value of partial 

perfect information (EVPPI), the expected value of sample information (EVSI), and the expected net 

benefits of sampling (ENBS) methods. The EVPPI identifies the type of additional evidence which is 

most valuable for a decision. EVSI is defined as the difference in net benefits between the baseline 

population EVPI and the posterior population EVPI estimated using updated probability distributions. 

Finally, one way of defining ENBS is that it represents the difference between EVSI and the cost of ob-

taining the additional data (i.e. sampling cost). (Ades et al. 2004) However, further research is needed 

to establish the feasibility of these advanced methods in practice. In addition, one further challenge that 

relates to the net benefit approach itself is the absence of explicit cost-effectiveness threshold(s) (λ). 

Therefore, further research is also needed to establish the explicit threshold value(s) or at least explicit 

criteria that affect the maximum willingness to pay for additional QALY in Finland (cf. e.g. Devlin & 

Parkin 2004, Dakin et al. 2006).  

 

Finally, further consensus work is needed to develop Finnish standards for reporting the cost-

effectiveness results. For example, in recent Finnish publications, the presentation of cost-effectiveness 

results on the cost-effectiveness plane (cf. Linna et al. 2002, Räsänen et al. 2006, Kellokumpu-Lehtinen 

et al. 2007) has differed somewhat from international recommendations (cf. Drummond et al. 2005, 40) 

and this may lead to misunderstandings in the interpretation of the cost-effectiveness results. 
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8 CONCLUSIONS  
 

Based on the study findings, the following conclusions can be drawn: 

1. The Markov models offer flexible and modifiable mathematical structure to reflect the courses of 

diseases and their consequences in the presence of particular health technologies at both the 

patient group and the population level. The applications of Markov models are one potential 

way of informing decision-makers about the decision problems relating to the implementation of 

new health technologies, since they offer a systematic, clear structured and coherent frame-

work to combine evidence from a range of sources and to assess the consequences of different 

decision options in advance. However, further developments are needed to improve the as-

sessment of the effect of structural uncertainty on decision uncertainty. 

2. A Bayesian approach to evidence synthesis offers a coherent and applicable approach to syn-

thesising the available relevant evidence while still reflecting their imprecision and heterogene-

ity. The combination of data from several studies produces more precise estimates due to the 

increased sample size but the combination of different studies may simultaneously increase 

heterogeneity between the studies. Since the quality of evidence has obvious relevance to the 

validity of decision-analytic models, further developments are needed to reflect the quality of 

evidence used in the decision-analytic models. Furthermore, the present study proved that the 

data used in meta-analysis and decision-analytic models requires very often preparation and 

this can increase the number of additional sources of methodological and process uncertainty.  

3. Both the two-stage approach applying Monte Carlo simulation and the comprehensive ap-

proach applying Markov Chain Monte Carlo (MCMC) simulation are valid ways to reflect the pa-

rameter uncertainty (i.e. the imprecision of parameter values) in the decision-analytic models. 

The main advantage of the comprehensive approach over the two-stage approach is that it 

provides on integrated approach to the decision-analytic modelling, where evidence synthesis 

and decision-analytic modelling are conducted simultaneously. This improves handling of the 

sources of uncertainty in the decision-analytic models. However, the disadvantage of the com-

prehensive approach is its additional complexity, which diminishes its applicability in practice. 

Therefore, more user friendly programs are needed to ensure that this approach can be applied 

more widely.  

4. Incremental cost-effectiveness ratios, which are estimated as the ratio of the expected means, 

do not provide information about the joint uncertainty around the mean estimates. Therefore, al-

ternative methods should be used to depict the joint uncertainty of expected costs and effects. 

Since single methods, such as the cost-effectiveness acceptability curves (CEACs) based on 

the net benefit estimates, have their own limitations in depicting the joint uncertainty, the simul-

taneous use of multiple approaches, such as the CEACs, the cost-effectiveness acceptability 

frontiers (CEAFs) and the expected value of perfect information (EVPI), to represent uncertainty 

in the cost-effectiveness analyses would be preferable. Furthermore, the conventional sensitiv-
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ity analyses can be still recommended as ways of reflecting the methodological and structural 

uncertainty in the cost-effectiveness results.     

5. The concept of expected value of perfect information (EVPI) is theoretically consistent but its 

applicability in practice is challenging due to the complexity of this concept. Therefore, more re-

search is needed to determine how this useful concept can be better utilised in practice.   



 

 

Appendix 1. WinBUGS code for the case study 6.4 
 
# ECONOMIC EVALUATION OF SUNITINIB MALATE IN THE TREATMENT OF CYTOKINE-REFACTORY mRCC 
 
model{ 
 
# SUNITINIB MALATE 
  

# Probability of progression 
 

 tp_prog~dbeta(13.62, 154.37) 
  
 #  Probability of death 
  
  tp_death~dbeta(2.57, 60.429) 
  
 # Transition probabilities 
  
 for (i in 1:cycles) { 
  
 TP_A_A[i]<- (1-tp_prog)/((1-tp_prog)+tp_prog+tp_death) 
 TP_A_B[i]<- tp_prog/((1-tp_prog)+tp_prog+tp_death) 
 TP_A_C[i]<- tp_death/((1-tp_prog)+tp_prog+tp_death) 
  
 TP_B_B[i]<- 1-tp_prog 
 TP_B_C[i]<- tp_prog 
 } 
  
 # Markov model 
  

# Number of individuals in each health state at the start 
  

 pi[1,1]<- N   
 pi[1,2]<- 0 
 pi[1,3]<- 0 
  
 for (i in 2:cycles){    
   
  lambda[i,1,1]<- TP_A_A[i] 
  lambda[i,1,2]<- TP_A_B[i] 
  lambda[i,1,3]<- TP_A_C[i] 
 
  lambda[i,2,1]<- 0 
  lambda[i,2,2]<- TP_B_B[i] 
  lambda[i,2,3]<- TP_B_C[i] 
   
  lambda[i,3,1]<- 0 
  lambda[i,3,2]<- 0 
  lambda[i,3,3]<- 1 
 }  
  
 # Marginal probability of being in each state at time >1  
 
 for (s in 1:S) {  # Number of health states 
 
  for(i in 2:cycles){   
  
  pi[i, s]<- inprod(pi[(i-1),], lambda[i, ,s]) 
  
  } 
 }  
  
  
 
 
 
 
 
 



 

 

# Distributions for costs 
  
 for (i in 1:cycles){ 
  
 C_sutent[i] ~ dunif(3748, 4061) 
 } 
  
 for (i in 1:2){ 
  
 C_treat[i] ~dgamma(2600, 4.7761) 
 } 
  
 for (i in 3:4){ 
  
 C_treat[i] ~ dgamma(1546, 4.7761) 
 } 
  
 for (i in 5:cycles){ 
  
 C_treat[i] ~ dgamma(959, 4.7761) 
 } 
  
 # Distributions for utilities 
  
 for (i in 1:cycles){ 
  
 U_stable[i] ~ dbeta(203.01, 62.71) 
  
 U_prog[i] ~  dbeta(37.90, 13.25) 
 } 
  
 # Costs in the treatment group 
  
 for (i in 1:cycles){ 
   
  c[i,1]<- (C_sutent[i] + C_treat[i]) 
  c[i,2]<- C_treat[i] 
  c[i,3]<- 0 
   
 TotalCost[i]<- inprod(pi[i, ], c[i, ])/pow((1+discount), (i-1)) 
 } 
  
 TotalCum.Cost<- sum(TotalCost[]) 
  
 # Progression-free survival (PFS) 
  
 for (i in 1:cycles){ 
   
  PFS_S[i]<- inprod(pi[i, ], bl_PFS[]) 
 } 
   
 TotalCum.PFS<- sum(PFS_S[]) 
  
 # Overall survival (OS) 
 
 for (i in 1:cycles){ 
   
  OS_S[i]<- inprod(pi[i, ], bl_OS[]) 
 } 
   
 TotalCum.OS<- sum(OS_S[]) 
  
 # Quality adjusted survival 
  
 for (i in 1:cycles){ 
   
  u[i,1]<- U_stable[i] 
  u[i,2]<- U_prog[i] 
  u[i,3]<- 0 
   
 TotalUtility[i]<- inprod(pi[i, ], u[i, ])/pow((1+discount), (i-1)) 



 

 

 } 
   
 TotalCum.U<- sum(TotalUtility[]) 
 
 # Mean costs and benefits in the treatment group 
 
 mean.C<-TotalCum.Cost/ N 
 mean.PFS<-TotalCum.PFS/ N 
 mean.OS<- TotalCum.OS / N 
 mean.U<-TotalCum.U/ N 
 
# BEST SUPPORTIVE CARE (BSC) 
 
 # Probability of progression in the BSC group 
 
 for(p in 1:39) {                           
   t.pfs[p] ~ dweib(gamma_1, mu1.pfs[p])  
   mu1.pfs[p]<- exp(beta0.pfs) 
       } 
     
   beta0.pfs ~ dnorm(0.0, 0.0001) 
    
   # Prior distribution for a shape parameter 
    
   gamma_1 ~ dgamma(1, 0.0001)   
    
   # Median survival 
    
   median.pfs<- (log(2)/exp(beta0.pfs))  
    
   #  Transition probability based on median survival time 
    
   tp_prog_bsc <- 1-pow(0.5, (1/median.pfs)) 
    
 # Probability of death after progression (OS - PFS) in the BSC group 
  
   diff<- median.os - median.pfs 
   tp_subprog_bsc <- 1-pow(0.5, (1/diff)) 
          
 #  Probability of death 
 for(p in 1:39) {                           
   t.os[p] ~ dweib(gamma_2, mu2.os[p]) 
   mu2.os[p]<- exp(beta0.os+beta1.os*(t.pfs[p]-mean0.pfs))  
       } 
  
   beta0.os ~ dnorm(0.0, 0.0001) 
   beta1.os ~ dnorm(0.0, 0.0001) 
    
   # Prior distribution for a shape parameter 
    
   gamma_2 ~ dgamma(1, 0.0001)  
    
   # Median survival 
    
   median.os<- (log(2)/exp(beta0.os+beta1.os))  
    
   # Transition probability based on median survival time 
      
   tp_death_bsc<- 1-pow(0.5, (1/median.os)) 
    
 # Transition probabilities 
  

for (i in 1:cycles) { 
  
 TP_A_A_bsc[i]<- (1-tp_prog_bsc)/((1-tp_prog_bsc)+tp_prog_bsc+tp_death_bsc) 
 TP_A_B_bsc[i]<- tp_prog_bsc/((1-tp_prog_bsc)+tp_prog_bsc+tp_death_bsc) 
 TP_A_C_bsc[i]<- tp_death_bsc/((1-tp_prog_bsc)+tp_prog_bsc+tp_death_bsc) 
  
 
 TP_B_B_bsc[i]<- 1-tp_prog_bsc 
 TP_B_C_bsc[i]<-  tp_subprog_bsc 



 

 

 } 
 # Markov model 
  
 pi_bsc[1,1]<- N  # Number of individuals in each health state at the start  
 pi_bsc[1,2]<- 0 
 pi_bsc[1,3]<- 0 
  
 for (i in 2:cycles){    
   
  lambda_bsc[i,1,1]<- TP_A_A_bsc[i] 
  lambda_bsc[i,1,2]<- TP_A_B_bsc[i] 
  lambda_bsc[i,1,3]<- TP_A_C_bsc[i] 
 
  lambda_bsc[i,2,1]<- 0 
  lambda_bsc[i,2,2]<- TP_B_B_bsc[i] 
  lambda_bsc[i,2,3]<- TP_B_C_bsc[i] 
   
  lambda_bsc[i,3,1]<- 0 
  lambda_bsc[i,3,2]<- 0 
  lambda_bsc[i,3,3]<- 1 
 }  
  
 # Marginal probability of being in each state at time >1 
 
 for (s in 1:S) {  # Number of health states 
 
  for(i in 2:cycles){   
  
  pi_bsc[i, s]<- inprod(pi_bsc[(i-1),], lambda_bsc[i, ,s]) 
  
  } 
 }  
  
 # Distributions for costs 
  
 for (i in 1:cycles){ 
  
  C_BSC[i] ~ dgamma(6389, 4.77) 
 } 
  
 # Costs in the BSC group 
  
 for (i in 1:cycles){ 
   
  c_bsc[i,1]<- C_BSC[i] 
  c_bsc[i,2]<- C_BSC[i] 
  c_bsc[i,3]<- 0 
   
  TotalCost_bsc[i]<- inprod(pi_bsc[i, ], c_bsc[i, ])/pow((1+discount), (i-1)) 
 } 
  
 TotalCum.Cost_bsc<- sum(TotalCost_bsc[]) 
  
 # Progression-free survival (PFS) 
  
 for (i in 1:cycles){ 
   
  PFS_BSC[i]<- inprod(pi_bsc[i, ], bl_PFS[]) 
 } 
   
 TotalCum.PFS_bsc<- sum(PFS_BSC[]) 
  
 # Overall survival (OS) 
 
 for (i in 1:cycles){ 
   
  OS_BSC[i]<- inprod(pi_bsc[i, ], bl_OS[]) 
 } 
   
 TotalCum.OS_bsc<- sum(OS_BSC[]) 
  



 

 

 
 # Quality adjusted survival 
  
 for (i in 1:cycles){ 
   
  u_bsc[i,1]<- U_stable[i] 
  u_bsc[i,2]<- U_prog[i] 
  u_bsc[i,3]<- 0 
   
 TotalUtility_bsc[i]<- inprod(pi_bsc[i, ], u_bsc[i, ])/pow((1+discount), (i-1)) 
 } 
   
 TotalCum.U_bsc<- sum(TotalUtility_bsc[]) 
 
 # Mean costs and benefits in the BSC group 
 
 mean.C_bsc<-TotalCum.Cost_bsc/ N 
 mean.PFS_bsc<-TotalCum.PFS_bsc/ N 
 mean.OS_bsc<- TotalCum.OS_bsc / N 
 mean.U_bsc<-TotalCum.U_bsc/ N 
  
 # Incremental costs and benefits 
 
 d_C <- mean.C - mean.C_bsc 
 d_PFS <- mean.PFS - mean.PFS_bsc 
 d_OS <- mean.OS - mean.OS_bsc 
 d_QALY<- (mean.U - mean.U_bsc)/12 
 
 # Probability of cost effectiveness at K euros per progression-free months gained 
 
 for(k in 1:40) { 
  
        INB.PFS[k] <- K[k] * d_PFS - d_C     
        P.PFS[k] <- step(INB.PFS[k])     
 
 # Probability of cost effectiveness at K euros per life months gained 
    
        INB.OS[k] <- K[k] * d_OS - d_C     
        P.OS[k] <- step(INB.OS[k])       
 
 # Probability of cost utility at K euros per QALY 
  
        INB[k] <- K[k] * d_QALY - d_C     
        P.CUA[k] <- step(INB[k])       
 } 
} 
 
# DATA 
 
list(cycles=45, N=1000, S=3, bl_PFS=c(1,0,0), bl_OS=c(1,1,0), discount=0.004166, K=c(2500,…, 100000),t.os=c(4.67,…, 0.10), 
t.pfs=c(0.87,…, 0.10)) 
 
# INITIALS 
 
list(beta0.pfs=0, beta0.os=0, gamma_1=1, gamma_2=1) 
 



 

 

Appendix 2.  Graph- and text-based model descriptions for random-effects meta-analysis in WinBUGS. 
 

for(i IN 1 : n)

sigma2

theeta[i]

v[i]y[i]

taumyy

 

model{
# Description of model

for (i in 1:n){
v[i] <- 1/pow(SD[i],2)
y[i] ~ dnorm(theeta[i],v[i])
theeta[i] ~ dnorm(myy,tau)

}
# Prior distributions

myy ~ dnorm(0,0.000001)
tau ~ dgamma(0.001,0.001)
sigma2<-1/tau

}

 

 

In the above figure, arrows represent a stochastic relationship, double arrows represents logical rela-

tionships, circles represent parameters, a square represents data and a large square plate represents 

loops (i= 1,..., n), where n is the number of studies included into the meta-analysis. In the specified 

model, between-study variation (v[i]) is handled as known and needed data is extracted from the se-

lected studies. In addition, some data transformations are needed, since WinBUGS parameterises the 
normal distribution as N(µ,τ ), where τ = 1/σ2.  
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