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ABSTRACT

In osteoporosis, changes in tissue structure and composition impair the mechanical strength
of bone and increase the risk of fractures. Osteoporosis causes millions of bone fractures an-
nually worldwide. It is commonly diagnosed by means of dual energy X-ray absorptiometry
(DXA), a technique that provides information on areal bone mineral density (BMD, g/cm?).
However, most of the low trauma fractures occur in people with normal BMD values.

Quantitative ultrasound (QUS) propagation and scattering depend on both the material
and structural properties of bone. Thus, ultrasound measurements provide a method for os-
teoporosis diagnosis. As ultrasound devices are portable, cheap and do not apply ionizing
radiation, they might be suitable for osteoporosis screening.

In the present thesis work, the composition of trabecular bone and its calcified matrix
was analysed and compared experimentally, and by using numerical analyses, to ultrasound
speed, attenuation and backscattering parameters. In addition, the diagnostic potential of a
point-like ultrasound measurement and that of quantitative ultrasound imaging were com-
pared. Further, the effect of overlying soft tissue on the measurement of human trabecular
bone was investigated at various ultrasound frequencies. Finally, a novel dual frequency ul-
trasound technique (DFUS) was evaluated for the soft tissue correction of bone ultrasound
measurements.

Bone quantity was the strongest determinant of ultrasound parameters (r = 0.64-0.84, p
< 0.01). Ultrasound backscattering was also significantly related (r = -0.66, p < 0.01) to the
content of calcified matrix collagen. Variation in ultrasound parameter values within the re-
gion of interest was seen to relate with the ultimate strength of trabecular bone (r = -0.82, p <
0.01). Soft tissues overlying the bone induced significant errors (4% - 127%) in the ultrasound
measurements. This effect increased with the ultrasound frequency. After correction with the
DFUS technique, the magnitude of errors induced by soft tissue on ultrasound backscattering
diminished significantly, typically to one tenth.

QUS parameters of trabecular bone are related to both the quantity and quality of tra-
becular bone. In addition, measurement of the variation in QUS parameters within the area
of interest significantly improves the prediction of bone mechanical strength. The present
findings together with the novel DFUS method may enable reliable QUS measurements of
trabecular bone at various clinically relevant sites. This could have a significant clinical value.

Universal Decimal Classification: 534-8

National Library of Medicine Classification: QT 34, QT 36, WE 200, WE 250, WN 208

Medical Subject Headings: Osteoporosis/diagnosis; Bone and Bones; Bone Matrix; Ultrason-
ics; Biomechanics; Tissues; Collagen; Numerical Analysis, Computer-Assisted
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CHAPTER 1
Introduction

Osteoporosis affects over 200 million individuals worldwide (159). The economic im-
pact of osteoporosis in Europe was about 36 billion euros in 2000 (42). It has been
estimated that both number of patients and the economic impact of osteoporosis will
further increase along with the aging of the population (113, 143, 147). In osteoporosis,
changes in tissue structure and composition impair the mechanical strength of bone
and increase the risk of fractures. Thus, early diagnosis of osteoporosis is essential
for prevention of fractures. Currently, osteoporosis diagnosis is based on information
on areal bone mineral density (BMD) (95), traditionally determined with dual energy
X-ray absorptiometry (DXA). Unfortunately, the availability of the DXA devices is
low relative to the number of potential patients. Although patients with osteoporotic
BMD values (i.e. BMD < 2.5 SD below young adult BMD) have a higher risk for frac-
tures than patients with normal BMD values (95-97), most of the low trauma fractures
occur in people with normal BMD values (36, 157).

Quantitative ultrasound (QUS) measurements of the heel have been demonstrated
to predict osteoporotic fractures with a similar accuracy as BMD (54, 70, 86). As ul-
trasound propagation and scattering depend on bone structure, composition and me-
chanical properties (28, 55, 66, 76-78, 125, 129, 170, 175) quantitative ultrasound mea-
surements provide a potential method for osteoporosis diagnosis. Since ultrasound
devices are portable and cheap, and use no ionizing radiation, they might be suitable
for osteoporosis screening.

The current clinical QUS parameters include the speed of sound (SOS) and the
broadband ultrasound attenuation (BUA). The clinical QUS parameters suffer from
the uncertainties arising from variable bone size and marrow composition (3, 76, 125,
183). Moreover, soft tissues overlying the bone have a significant impact on the pa-
rameters measured (29, 57, 99).

Clinical QUS instruments typically measure the acoustic properties of the calca-
neus, which is not a common osteoporotic fracture site (71). In contrast to current
clinical through-transmission measurements, backscattering measurements in pulse-
echo geometry could more easily enable analyses of common fracture sites, such as
the vertebrae, hip and wrist. This could significantly improve the clinical prediction
of an individual’s susceptibility for bone fracture. Unfortunately, the backscattering
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measurements suffer from the uncertainties induced by soft tissue and bone marrow
as well (3, 125).

The mechanical properties of trabecular bone depend on its trabecular structure,
organic composition and mineral density (24, 119, 132, 168). In osteoporosis, the vol-
ume fraction of calcified bone (or BMD) is known to decrease, while the osteoporotic
changes in the properties of calcified matrix are not fully understood. However, in
certain bone diseases, such as osteogenesis imperfecta, bone collagen is known to
be affected and the overall bone strength is decreased (41). QUS may detect decol-
lagenization and diagnose collagen disruption (Ehlers-Danlos syndrome) with more
sensitivity than the DXA (31, 78).

Most commercially available ultrasound devices measure acoustic properties at a
single point or by scanning an acoustic map of the heel (37, 47, 49, 93, 138, 164). How-
ever, the variation in the ultrasound parameters within the region of interest (ROI)
and the relation of spatial variation in parameters with the mechanical properties of
trabecular bone is poorly known. In addition, as trabecular bone is structurally het-
erogeneous, the selection of the tissue depth for analysis inside the bone may signif-
icantly affect the values of backscattering parameters. However, this issue has not
been extensively investigated.

This thesis work investigated the potential of the through-transmission and pulse-
echo ultrasound techniques for evaluating the composition of the calcified matrix.
The relation between the spatial variation in ultrasound parameters and the bone me-
chanical strength was also analysed. The effect of tissue depth applied in ultrasound
backscattering measurement was also characterized. The effect of overlying soft tissue
on acoustic measurements of trabecular bone was examined, and the dual frequency
ultrasound technique (DFUS) for minimization of soft tissue effects was introduced.
The DFUS technique was initially evaluated using elastomer samples and then val-
idated using human trabecular bone samples overlaid by heterogeneous soft tissue
layers.



CHAPTER 11
Properties of trabecular bone

The bony skeleton protects internal organs, and together with ligaments, tendons and
muscles it enables locomotion (15, 52, 94, 156). Bone stores various minerals such as
calcium, phosphorus, magnesium, sodium and potassium, and blood cells are pro-
duced in bone marrow. The human skeleton consists of two types of bone, cortical
and trabecular. All the bones in the human skeleton are covered by a cortical bone
layer, also called the compact bone layer. The shafts of long bones consist of a cortical
bone pipe and a central cavity filled with bone marrow. Trabecular bone can be found
in the ends of long bones (e.g. femur) and in cuboid bones (e.g. calcaneus). Trabecular
bone structure is spongy, consisting of calcified matrix and bone marrow (Fig 2.1).

Plate like trabeculae

Rod like trabeculae

Trabecular bone

Cortical bone

Figure 2.1: The skeleton consists of trabecular and cortical bone. All bones are covered by the cortical
bone, while trabecular bone can be found in the internal parts of bones. Trabecular bone consists of
calcified matrix i.e. trabeculae and marrow-filled pores. The image was acquired from bovine femoral
trabecular bone in vitro by means of microCT imaging.

2.1 Structure of trabecular bone

The calcified matrix of trabecular bone consists of a network of interconnected trabec-
ulae (154). In the network, the trabeculae are oriented optimally to resist the prevail-
ing loads. The trabeculae may be of various sizes and shapes, such as rods and plates

17



18 2.2. Composition of trabecular bone

(Fig. 2.1). The amount and direction of the mechanical stress control the size, shape
and orientation of trabeculae. This functional adaptation is described by Wolff’s law
(182), which states that trabeculae orientate gradually along the direction of the me-
chanical loading. The structure of trabecular bone can be described with morphome-
tric parameters such as bone volume fraction (BV/TV), trabeculae thickness (Tb.Th.),
trabeculae separation (Tb. Sp.), trabeculae number (Tb. N.), the degree of anisotropy
(DA) and the structural model index (SMI). These parameters may be determined e.g.
by means of microCT imaging (72-74, 135, 142). Bone volume fraction is the ratio of
calcified matrix volume and total trabecular bone volume. The degree of anisotropy
reflects the orientation of the trabeculae, whereas the structural model index indicates
their shape whether plate-like or rod-like (Fig. 2.1). Fully isotropic material has a DA
value of 1, while the anisotropic structures are described with DA values higher than
1. For a structure constructed ideally of either plates or rods, the SMI value is 0 or 3,
respectively. Typical values of morphometric parameters for specific anatomical sites
are presented in Table 2.1.

Table 2.1: Morphometric parameters of human trabecular bone at different skeletal sites (33, 44, 58,
100, 124, 144, 149). Extensive variation in the structure between different skeletal sites can be seen.

BV/TV (%) Tb.Th.(um) Tb.Sp.(um) Tb.N (mm7) DA SMI

Calcaneus

Rupprecht et al. (149) 09-394 70 - 307 501 - 4010 0.21-1.27

Eckstein et al. (44) 14.0 + 4.9 726 +132 1.31+0.19 1.66 + 0.49
Distal radius

Pothuaud et al. (144) 284 +43 226 +18 584 + 105 1.26 +0.17

Niégele et al. (124) 120+71 148 + 26 792 + 113 1.124+0.12 1.88+045 2.01+0.82
Proximal femur

Lai et al. (100) 9.0+33 123 £17 895 + 128 1.124+0.13 1.78+037 1.87 £045

Pothuaud et al. (144) 262 + 6.7 239 4+ 23 750 4+ 378 1.10 £ 0.25

Chevalier et al. (33) 9.3-31.8

Nagele et al. (124) 20.6 +£12.8 207 + 57 951 + 417 1.09 £+ 0.33 231+0.61 1.01+0.80

Eckstein et al. (44) 176 +£9.3 182 + 46 2.00+0.39 1.27+0.89
Vartebra

Pothuaud et al. (144) 30.6 £5.5 233+ 14 551 + 139 1.31+0.21

Nagele et al. (124) 102 +4.1 140 £ 14 986 4+ 177 0.99 +£0.17 150+ 029 1.71 +0.61

Gong et al. (58) 75+£18 113 +13 1.17 £ 0.19 143 £0.17
Distal tibia

Lai et al. (100) 7.6 +45 125 + 30 979 + 164 1.02 +0.15 2.01 £0.26 2.25+0.58

BV/TV = bone volume fraction, Tb.Th. = trabeculae thickness, Tb.Sp. = trabeculae separation, Tb.N. = trabeculae
number, DA = degree of anisotrophy and SMI = structural model index.

2.2 Composition of trabecular bone

Trabecular bone consists of bone marrow and calcified matrix (15, 52, 94, 156). In the
human skeleton, the relative portion of calcified matrix in trabecular bone volume, i.e.
the bone volume fraction, varies typically between 1% and 40% (33, 44, 58, 100, 124,
144, 149). Calcified matrix consists of two phases, i.e. an inorganic and an organic
phase; 65-70% and 30-35% of the calcified matrix weight consists of inorganic and or-
ganic substances, respectively. The inorganic part consists mainly of hydroxyapatite
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(Ca19(PO4)s(OH),) while the organic part consists of various proteins. The predomi-
nant protein is type I collagen, which accounts for 85-90% of the weight of the organic
component in the calcified matrix (6)(Fig. 2.2). Typical values for calcified matrix
mineral and collagen contents at specific anatomical sites are presented in Table 2.2.

Organic part (30-35%) Inorganic part (65-70%)
Non-collegenous

proteins (~5%) . o

Type | collagen (~30%) ¥ Hydroxyapatite (~65%)

e

Figure 2.2: Calcified matrix consists of inorganic (mainly hydroxyapatite) and organic (mainly colla-
gen I) parts.

Table 2.2: Mineral (ash) and collagen content of calcified matrix at different human skeletal sites
(1, 40). Significant variation in composition can be seen between the sites. Ding et al. (1997) (40)
assumed that 13.4% of the collagen content is hydroxyproline. This assumption is used to derive the
collagen content from the results of the study by Aerssens et al. (1997)(1).

Collagen content (%)  Mineral content (%)

Calcaneus

Aerssens et al. (1) 21.6 60.5
Iliac crest

Aerssens et al. (1) 23.5 59.9
Proximal femur

Aerssens et al. (1) 234 61.9
Vertebra

Aerssens et al. (1) 249 59.2
Proximal tibia

Ding et al. (40) 25.4 66.4

Almost all (99%) of the calcium in the body is stored in the bones, in the form of
calcium hydroxyapatite. With this dynamic calcium storage, the body can regulate the
calcium balance in the blood circulation. Collagen I is a highly cross-linked protein
(41) with a diameter and length of 50-80 nm and 300 nm, respectively. The tensile
strength of collagen fiber is higher even than that of steel (52), and, together with
hydroxyapatite, collagen determines the mechanical properties of bone (48, 165).

Most of the bone marrow can be found in the central cavity of long bone shafts
and also in pores within the trabecular structure (156). All the marrow cavities of
a newborn human contain hemapoietically active red marrow whereas the marrow
cavities of an adult also contain yellow marrow, which is mainly fat. The central cavity
of long bone shafts of an adult human consists mainly of yellow marrow whereas red
marrow can be found in trabecular bone marrow cavities (59).
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2.3 Mechanical properties of trabecular bone

Since the skeleton enables locomotion and protects the internal organs, the mechani-
cal properties of bone are important for functionality and wellbeing. The mechanical
properties of trabecular bone depend on the structure, composition and quantity of
calcified matrix. These properties are strongly affected by the mechanical stresses ap-
plied to the bone. According to Wolff’s law, the trabeculae orientate gradually along
the direction of mechanical loading, so that eventually the trabeculae will be paral-
lel with the prevailing loading direction. This structure is strong when loaded in the
direction of the trabeculae but weaker for loads in other directions. The mechanical
properties of trabecular bone can be determined in vitro e.g. by using tension (4, 26),
compression (11, 27, 34, 51, 56, 87, 107, 115, 151, 179) and shear tests (69). With these
techniques the mechanical properties are derived by analysing the stress-strain be-
haviour of the sample under mechanical loading (Fig. 2.3).

F F+AF
1 Ultimate strength
J [ Yiedpont | 2~
Water bath a
. L
N L-t :
B -~ | AStress
1 :
S g :
’ N AStrain
The sample
Elastic phase Plastic phase
Strain = As/s

Figure 2.3: A compression test of a trabecular bone sample. The sample is immersed in a saline bath
and compressed destructively with a constant strain rate. When the force (F) is normalized by the area
of the sample (A), the stress that produces the deformation of the sample (strain) is determined. Finally,
the strain is determined by normalizing the deformation of the sample with the original thickness of
the sample. During an experiment, the stress and strain are recorded. The Yield point divides the
stress-strain curve into elastic and plastic phases. In addition, the area under the stress-strain curve
before the Yield point (shaded area) defines the resilience, i.e. the energy stored in the sample. Young’s
modulus (E) is determined as the slope of the linear part of the curve and the ultimate strength (o,.q.)
is determined as the local maximum of the stress.

In the compression test, the compressive stress and deformation (i.e. strain) of the
sample are recorded. The test may be conducted in confined (27) or unconfined ge-
ometry (Fig. 2.3). Typically, the sample is compressed with a constant strain rate and
the induced stress is continuously recorded. The result is a stress-strain curve (161)
(Fig. 2.3). Mechanical parameters such as Young’s modulus (E), ultimate strength
(0maz) (161) and strain, yield stress and strain and resilience can be determined from
the stress-strain curve. Young’s modulus is a measure of the elastic stiffness of tra-
becular bone. Ultimate strength indicates the stress value where the calcified matrix
structure collapses permanently. The yield point divides the stress-strain curve into
elastic and plastic phases (Fig. 2.3), i.e. the deformation of the trabecular bone sample
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is permanent after the Yield point. The area under the stress-strain curve before the
Yield point defines the resilience (Fig. 2.3), i.e. the energy stored in the sample during
the elastic phase. Young’s modulus (E) is determined as the slope of the linear part of
the curve (Fig. 2.3) and ultimate strength is determined as the local maximum stress
value (Fig. 2.3). Typical values of Young’s modulus and ultimate strength at several
anatomical sites of the human skeleton are presented in Table 2.3.

Table 2.3: Mechanical parameters of human trabecular bone at different skeletal sites (23, 67, 118, 127).
Extensive variation in mechanical parameters between different skeletal sites can be seen.

Ultimate strength (MPa)  Young’s modulus (MPa)  Orientation

Calcaneus
Mittra et al. (118) 19+1.0 70 + 59 ML
Distal femur
Burgers et al. (23) 32+21 376 + 347 AP
Hakulinen et al. (67) 109 +4.2 624 + 214 SI
Proximal femur
Schoenfeld et al. (151) 0.1-13.5
Proximal tibia
Hakulinen et al. (67) 9.5+3.9 575 £ 179 SI
Vartebra
Nicholson et al. (127) 165+ 72 SI
Nicholson et al. (127) 52 +£31 AP
Nicholson et al. (127) 43 + 25 ML

ML, medial-lateral; AP, anterior-posterior; SI, superior-inferior

In the compression test, the sample preparation, hydration, temperature and strain
rate influence the values of the mechanical parameters of trabecular bone. Misaligned
surfaces of the sample can cause underestimation of Young’s modulus and ultimate
strength (109, 160, 161), whereas dehydration of the sample causes overestimation
of the mechanical parameters (110). Young’s modulus of bone has been found to
be 7% higher at room temperature than at body temperature (21). Therefore, it is
important to control the variation of the ambient temperature. Control of the strain
rate is important in trabecular bone mechanical testing (27, 108). Trabecular bone
consists of solid (calcified matrix) and fluid (marrow) phases, which is characteristic
of poroviscoelastic material (108). Because of this property, high strain rates induce
hydraulic stiffening of bone, as there is not enough time for the marrow to flow out of
the bone. Further, due to the intrinsic viscoelasticity of calcified matrix, both ultimate
strength and Young’s modulus may increase with strain rate even when the marrow
is removed (27).

2.4 Bone changes in osteoporosis

In osteoporosis, bone mass decreases and the calcified matrix structure deteriorates.
Three bone cell types are responsible for the variation in bone mass: osteoblasts, os-
teocytes and osteoclasts (15, 52, 94, 156). Osteoblasts produce osteons and help them
to mineralize, whereas the osteoclasts dissolve the mineralized osteons. Osteocytes
are osteoblasts which have drifted into mineralized bone. It is thought that osteocytes
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play an active role in bone turnover but the function of osteocytes is not fully un-
derstood (122). However, the osteoclasts are more active than the osteoblasts in bone
turnover in osteoporosis. As the osteoclasts and osteoblasts act at the bone surface,
this is the area where the bone turnover takes place. Although 80% of the skeleton
mass consists of cortical bone, the surface of cortical bone covers only 20% of the total
bone surface within the skeleton. Because of this, trabecular bone is renewed about
eight times faster than cortical bone (141, 154). For this reason, measurement of the
properties of trabecular bone is thought to be essential in osteoporosis diagnosis.

In osteoporosis, the cortical bone layer becomes thinner and trabecular bone struc-
ture becomes more sparse. Furthermore, the thickness and connectivity of trabeculae
decrease and the separation of trabeculae increases (7) (Table 2.4). As a consequence,
the bone volume fraction and the mechanical strength decrease.

Table 2.4: Morphometric properties of healthy and osteoporotic trabecular bone at different skeletal
sites (18, 80, 122, 153).

BV/TV (%) Tb.Th.(um) Tb.Sp. (um) Tb.N.(mm 1)

Vartebra
Homminga et al. (80)  Healthy 14 268 957 0.99
Homminga et al. (80)  Osteoporotic 10 238 1111 0.87
Iliac crest
Mullender et al. (122)  Healthy 23 138 479 1.66
Mullender et al. (122)  Osteoporotic 14 117 790 1.19
Shahtaheri et al. (153)  Healthy 25 121 0.48
Shahtaheri et al. (153)  Osteoporotic 10 96 0.11
Distal radius
Boutroy et al. (18) Healthy 13 78 517 1.71
Boutroy et al. (18) Osteoporotic 9 63 714 1.32
Distal tibia
Boutroy et al. (18) Healthy 14 89 551 1.60
Boutroy et al. (18) Osteoporotic 10 77 750 1.27

BV/TV = bone volume fraction, Tb.Th. = trabeculae thickness, Tb.Sp. = trabeculae seperation and Tb.N.
= trabeculae number.



CHAPTER 1II
Bone diagnostics with ultrasound

3.1 Basic physics of ultrasound

Ultrasound is defined as a propagating mechanical wave with a frequency of over
20 kHz. Sound waves can be divided into transverse, longitudinal, surface and plate
wave modes. However, only the longitudinal wave mode is considered in the present
studies. In a transverse wave, particles of the medium vibrate perpendicularly to the
travelling direction of the wave, whereas in a longitudinal wave the particles vibrate
in parallel with the wave direction. The sound wave can be described in three dimen-
sions using the wave equation (75)

10 150%
2
A e T v A VAV 3.1

p 02 at2 02/Bat2 + [p p]? ( )
where V is the gradient operator, ¢ the average sound speed in medium, p the sound
pressure, t the time, 3 the fluctuation of compressibility and p is the fluctuation of
density of the medium. With an assumption that the medium exhibits constant com-
pressibility and density, equation 3.1 can be written as follows (75):

2, L

T

By simplifying the presentation from three dimensions to one, a solution for the
partial differential equation 3.2 can be expressed as follows (43, 75):

=0. (3.2)

p(x,t) = Aetkle=et), (3.3)

where z is distance, A is the amplitude, k& the wave number and i the imaginary
unit. Newton’s second law can be written as follows (75):

ou 1
A 4
ot pr, (3.4)

where u is the velocity of medium particles and p the density of the medium. The
velocity of medium particles v can be solved from equations 3.3 and 3.4 as follows:
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10A ik(x—ct) 1 )
U(x, t) = /—;eairdt = ;pAelk(miCt). (35)

Acoustic impedance Z is the ratio of pressure p and particle velocity u (14, 75, 181).
For the plane wave, the acoustic impedance can be solved from equations 3.3 and 3.5
as follows:

Aeik(z—ct)

= ?Acik(z—d) = pc. (3.6)

Table 3.1: An ultrasound wave is reflected at the interface of two acoustically different materials. The
amplitude of the reflected wave depends on the difference between the acoustic impedances of the
materials (75). The speed of sound in isotropic solid material depends on the mechanical properties
and density of the material (180).

Parameter Equation

R= (Z250501 —Z1cos6y )2

Reflection coefficient e T ey

Transmission coefficient T= éf;{fgﬁ%
- . . E(l—v)

Sound speed in isotropic solid ¢ =4/ a5y

Pressure field plx, t) = Aethlz=ct) gra

Z = acoustic impedance, A = amplitude, E = Young’s modulus, v =
Poisson’s ratio, p = density, i = imaginary unit, k = wave number, x =
distance, t = time and « = attenuation coefficient. 61 and 62 are the
angles of the incidence and refraction, respectively. Subscripts 1 and 2
refer to the first and second medium.

When the ultrasound wave travels through the medium, it is attenuated (43, 75)
(Table 3.1). The main causes of attenuation are scattering, reflection and absorption
(180). Scattering is due to elastic discontinuities (i.e. scatterers) in a medium. Ultra-
sound scattering can be divided into three categories based on sound wavelength. The
scattering phenomenon is different when the ultrasound wavelength is shorter than,
the same as, or greater than the size of the scatterers in the medium (181). When the
wavelength is shorter than the scatterer dimensions, the scattering can be described
as a reflection phenomenon. When the wavelength is the same as the dimensions of
the scatterer, the scattered sound field has a complex distribution and is sensitive to
changes in scatterer dimensions and acoustic impedances (45). When the wavelength
is much greater than the scatterer, the scattered sound field is uniformly distributed.
For example, with spherical scatterers the intensity of scattering sound (I) is propor-
tional to wavelength A and the radius of the scatterer (a) as follows (181):
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CL6

I v (3.7)

In absorption, the energy of the mechanical ultrasound wave is dissipated as heat
and in other forms of energy through heat conduction, viscous relaxation and some
other relaxation processes (75, 181). Absorption (o) can be described mathematically

as follows (75, 92):

0u(f,T) = 47;(; {4?:7 T W;UX] + 3BT (3.8)

where f is the ultrasound frequency, T" the temperature of the medium, p the density
of the medium, c the sound speed in the medium, 7 the viscosity, v the gas constant, x
the thermal conductivity, C, the heat capacity at constant pressure, and B the absorp-
tion due to other relaxation processes.

3.2 Quantitative ultrasound methods in osteoporosis diagnosis

The first studies on the ultrasonic determination of the mechanical properties of tra-
becular and cortical bone date back to the 1970s (102, 186). At that time, the interest
was in basic ultrasound research. In the 1980s, interest in using ultrasound for os-
teoporosis diagnosis increased rapidly. Christian Langton’s study on the ultrasound
attenuation in the calcaneus (104) initiated a new field in osteoporosis diagnosis.

3.2.1 Clinical methods

Clinical ultrasound devices designed for osteoporosis diagnosis can make measure-
ments of peripheral skeletal sites such as the calcaneus (35, 50, 53, 54, 70, 86, 88, 93,
117, 134, 148, 164) radius (8, 20, 35, 158) and phalanxes (2, 8, 35, 54, 158). The pe-
ripheral sites are easily reachable since the thickness of the disturbing soft tissue layer
overlying the bone is smaller than at central skeletal sites such as the lumbar spine
and proximal femur.

Current clinical methods can be divided into through-transmission and axial-trans-
mission techniques (133). The most common clinical approach has been the measure-
ment of the acoustic properties of the heel using the through-transmission technique
(Fig. 3.1). With this technique, ultrasound attenuation and speed through the heel are
determined. Two measurement techniques have been commonly applied: i.e. sub-
stitution (104) and contact techniques (3). In the substitution technique, the time of
flight and the frequency spectrum of an ultrasound pulse are measured through the
water bath with and without the heel. The difference in the time of flight through the
water bath with and without the heel is used in the calculation of the sound speed (Ta-
ble 3.2). The ultrasound attenuation spectrum can be determined by comparing the
frequency spectra of the ultrasound pressure amplitude measured through the water
bath with and without the heel. The broadband ultrasound attenuation (BUA) is de-
termined as the slope of the linear part of the attenuation spectrum (Table 3.2). In the
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contact method, ultrasound transducers are located on the skin surface and coupled
with acoustic gel. The ultrasound signal measured through the heel is compared with
a reference signal measured through the phantom for determination of speed and at-
tenuation. The sound speed is calculated by comparing the distance of transducers
and the time of flight through the heel (Table 3.2). The BUA is calculated similarly as
in the substitution technique, although the reference spectrum is determined through
a phantom.

Although the heel measurement is a relatively simple ultrasound technique, there
are several sources for uncertainty in the technique. The size of the calcaneus (30,
162, 183) and the amount of overlying soft tissue (29, 57, 90, 99) are significant error
sources which might affect the measurement. Some devices using the substitution
technique assume constant thickness of bone for all subjects, which inevitably induces
inaccuracy in the calculated ultrasound parameters (Table 3.2). Further, the size of the
foot may introduce variations in the values of the ultrasound measurement (37, 39,
163, 164) because the anatomical locations of the acoustic measurement for small and
large feet may not be identical. This error source can be minimized using imaging
devices with which the region of interest in the calcaneus can be accurately located.
Furthermore, as the composition of the overlying soft tissue may vary, it can affect the
measurements. This is important, since the current clinical ultrasound devices do not
take into account the variation in thickness and composition of overlying soft tissue.

The through-transmission technique The axial-transmission technique

a) Water bath b)

Figure 3.1: Clinical ultrasound devices designed for osteoporosis diagnosis are based on through-
transmission or axial-transmission techniques. (a) The through-transmission technique is suitable for
the measurement of peripheral trabecular bones such as the heel bone. (b) The axial-transmission
technique is used for evaluation of the acoustic properties of cortical bone e.g. in the radius.

In the axial-transmission technique (Fig. 3.1), both ultrasound transducers are lo-
cated on the same side of the bone. With this technique, the speed of sound on the
surface of cortical bone (Table 3.2) can be measured at various locations. For example,
the acoustic properties of the radius and phalanxes can be measured. As the speed of
ultrasound propagation in the cortical bone layer depends on the elastic properties,
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porosity and geometrical properties of the cortical bone, this technique can provide
clinically valuable information (17, 123, 145). Soft tissues overlying the bone affect the
values of sound speed and only peripheral sites can be measured reliably.

Table 3.2: Basic ultrasound equations used in the determination of the ultrasound parameters of bone
in clinical ultrasound devices.

Technique Parameter Equation
Substitution Speed of Sound _ Cwdh
P sn— (Atey)
. . Sh
Contact Limb Velocity o
Uh
Axial Ultrasound Velocity 2

t

Substitution and Contact Ultrasound attenuation spectrum*  8.686(In( f{lf((ff)) )+ In(TspThs))

cw = sound speed in water, s;, = thickness of the heel, At = time of flight difference through the water bath with and
without the heel, ¢, = time of flight through the heel, s = distance between the ultrasound transducers, ¢ = time of flight
between the ultrasound transducers, A, and A,, = ultrasound pressure amplitude spectra measured through the water
bath with and without the heel, respectively. T = transmission coefficient. Subscripts sb and bs refer to soft tissue-bone
and bone-soft tissue interfaces, respectively.

*Broadband Ultrasound Attenuation (BUA) is determined as the slope of the linear part of the attenuation spectrum.

3.2.2 Potential ultrasound methods for diagnosis

Fractures in the lumbar spine and proximal femur may be most accurately predicted
when the bone properties are measured directly at the fracture sites, not at the pe-
ripheral sites (19, 114). Thus, current clinical ultrasound devices which are capable
of only peripheral measurements are not optimal for the prediction of osteoporotic
fractures at central sites. Consequently, there is increasing interest in the possibility of
ultrasound measurements of central skeletal sites (9, 10, 38, 60, 62, 63, 126, 138).

The acoustic properties of the proximal femur have been measured with the through-
transmission technique in vitro (10, 38, 60, 62, 63, 138) and in vivo (9). In these studies,
ultrasound was successfully applied for parametric imaging of the human proximal
femur. The speed of sound and broadband ultrasound attenuation in the proximal fe-
mur were found to be significant predictors of bone mineral density. Further, Nichol-
son et al. (2007)(126) measured the acoustic properties of the vertebra lumbalis by
using the through-transmission technique and compared those with the mechanical
properties of the samples. In that study, ultrasound speed and attenuation were found
to be significant predictors of failure load of the vertebrae.

An alternative to through-transmission and axial-transmission methods is the pulse-
echo ultrasound technique (Fig. 3.2). In this technique, only one ultrasound trans-
ducer is used for the measurement of ultrasound scattering and reflection. The reflec-
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tion and backscattering parameters have been shown to relate with the mechanical
properties, structure and mineral density of trabecular bone (28, 66-68, 77, 125, 175,
176, 178). There is also some evidence that by using the pulse-echo technique it is pos-
sible to measure the thickness of the cortical bone layer in long bone shafts (98, 172)
with comparable accuracy to peripheral quantitative computed tomography (98). Ad-
vantageously, the pulse-echo measurements may be conducted at typical fracture sites
that are not readily accessible by trough-transmission techniques.

Upper head of femur Ultrasound transducer

Acoustic stand-off pad

Figure 3.2: Pulse-echo ultrasound measurement of the trochanter major. This kind of in vivo measure-
ment set-up is used for measurement of the calcaneus (174) and preliminary trochanter major (in the
our laboratory in 2008). Reflection and backscattering of ultrasound from the trochanter major may
predict hip fractures. An acoustic stand-off pad may be used to focus the ultrasound beam on the
surface of the bone.



CHAPTER IV

Models of
the acoustic properties of trabecular bone

4.1 Analytical models

Quantitative ultrasound measurements of trabecular bone have been in use for over
20 years. However, the relationships between the ultrasound propagation and the
structural, compositional and mechanical properties of trabecular bone are not fully
understood. Modelling ultrasound propagation through bone tissue provides tools
for understanding the interaction between ultrasound and trabecular bone.

Biot’s theory, traditionally used in geophysical applications, has been applied in
modelling ultrasound propagation through trabecular bone (46, 65, 85, 105, 152, 177).
Biot’s theory considers the propagation of longitudinal and transverse elastic waves
in porous solids (12, 13) by assuming that the medium is isotropic and scattering
is negligible. As input Biot’s theory requires 14 different parameters for the wave
calculations. For example, material parameters such as densities of calcified matrix
and marrow, Young’s modulus for calcified matrix and bulk modulus for marrow are
required (46, 65, 85, 105). Moreover, specific structural parameters, such as porosity
and the sample pore size must be known. Some of the input parameters are difficult to
determine experimentally, so the application of Biot’s theory is rather difficult in the
case of trabecular bone. However, when applied successfully, Biot’s theory has been
found to predict the propagation of fast and slow compressive waves in trabecular
bone, which has been verified in experimental studies (83).

Schoenberg’s theory of ultrasound propagation in a periodic stratified medium
assumes that the medium is layered (84, 85, 106, 171). When modelling ultrasound
propagation in a trabecular bone layered medium, the assumption is valid only for a
plate-like trabecular bone structure (84, 85, 106). Schoenberg’s theory needs only six
input parameters for wave calculations: the densities of calcified matrix and marrow,
porosity, speed of the longitudinal wave in calcified matrix and marrow, and speed
of the transverse wave in calcified matrix. Schoenberg’s theory has been reported to
predict the dependence of the phase velocity of a fast wave with trabecular orientation
(84). It has also been shown to predict the slow wave when ultrasound propagates in
parallel with the orientation of plate-like trabeculae (84). Importantly, Schoenberg’s
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theory can predict the positive linear relation between ultrasound attenuation and
frequency (106).

Biot’s and Schoenberg’s theories have been used to model ultrasound propagation
in trabecular bone. There are also models for ultrasound backscattering inside the tra-
becular bone (89, 130, 140, 169). Wear (1999) used the theory for acoustic wave scatter-
ing from solid cylinders to model ultrasound backscattering in trabelular bone. Jen-
son et al. (2003) used autocorrelation functions to compute the ultrasound backscat-
tering coefficient for human trabecular bone. These studies reported an agreement
between the experimental backscattering measurements and the model prediction of
frequency dependence of backscattering (89, 169). The ultrasound model developed
for scattering in soft tissues may also be applied for trabecular bone (130). In this
model, scattering is assumed to depend on the sound speed fluctuation between bone
and marrow. Nicholson et al. (2000) applied this model and showed that the acous-
tic properties of trabecular bone were affected by bone structure (size of scatterers)
independently of bone volume fraction.

4.2 Numerical models

Analytical models are generally applicable when the structure of the medium is ho-
mogenous, isotropic or otherwise periodical. However, the structure of trabecular
bone is more complicated and varies typically with bone volume fraction; the struc-
ture of dense bone is more plate-like than that of porous bone (72, 100). Numerical
models combine acoustic theories (wave equation) and complicated trabecular bone
structure (81, 82). Real trabecular bone structure, obtained using the microCT tech-
nique, is used as a basis for the numerical model (61, 64, 112, 139). In these models,
the wave equation is solved using numerical techniques, for example using the finite-
difference time-domain (FDTD) algorithm (61, 64, 81, 82, 139). This makes it possible
to study the interactions between the ultrasound and bone structure and composi-
tion. Since it is complicated or even impossible to solve the detailed interactions of
the structure and composition of calcified matrix on ultrasound speed, attenuation
and scattering with experimental studies, numerical simulations play an important
role in bone ultrasound research.

Hosokawa (2006) found that an FDTD model extended with Biot’s theory can
predict both fast and slow waves when ultrasound propagates through the trabec-
ular bone in a direction parallel to the trabeculae orientation in a 2D structure (82).
Hosokawa also found that the model predicted the amplitude ratio of fast and slow
waves more precisely than the analytical Biot’s theory did (81). Padilla et al. (2006)(139)
investigated the numerical simulation of ultrasound propagation in 3D trabecular
bone geometry (61, 64, 139). They found, in agreement with the experiments, that
an increase in ultrasound speed and attenuation is positively related with the bone
volume fraction. Furthermore, they also observed the fast and slow waves when
ultrasound propagated through trabecular bone in a direction parallel to the orien-
tation of the trabeculae. With these 3D simulation techniques it is possible to evaluate
the effect of the quality and quantity of calcified matrix on ultrasound propagation
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and scattering. Haiat et al. (2006 and 2007) have investigated this issue and report
that the quantity (i.e. volume fraction) significantly affects the ultrasound parame-
ters, whereas the quality (i.e. properties of trabeculae) has only a minor affect (61, 64).
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CHAPTER V
Aims of the present study

Clinical ultrasound measurements can predict future bone fractures with moderate
accuracy. Typically, clinical measurements are conducted in the heel using the through-
transmission technique. Unfortunately, the typical osteoporotic fracture sites, i.e. the
vertebra and proximal femur, are not accessible with current clinical ultrasound tech-
niques. Further, the effect of soft tissues overlying the bone on bone ultrasound mea-
surements is not controlled. Moreover, the optimal ultrasound frequency and the
region of interest to predict the mechanical properties of trabecular bone are still un-
known.

The aims of the present study were:

1. To investigate the relationships of ultrasound parameters with the composition
and mechanical properties of trabecular bone

2. To compare the feasibility of a single value, spatial variation and mean value of
ultrasound parameters within the region of interest to predict the mechanical proper-

ties of trabecular bone

3. To clarify, at various ultrasound frequencies, the effects of overlying soft tissues
on the acoustic parameters of trabecular bone

4. To develop a novel method for minimizing the effects of soft tissues on bone ul-
trasound measurements
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CHAPTER VI

Materials and methods

This thesis work consists of four independent Studies (I - IV). In this section the ma-
terials and methods used in the Studies are summarized.

6.1 Materials

The material investigated in Studies I - IV is summarized in Table 6.1. Human trabecu-
lar bone specimens were investigated in all Studies. Porcine soft tissues and elastomer
samples were also investigated in Studies III and IV.

Table 6.1: Summary of materials investigated in Studies I - IV.

Study Materials n Geometry Size Site
I Human 26 Cylindrical d =16 mm FMC
trabecular samples h=8mm T™P
bone FG
I Human 20  Cylindrical d=16 mm FMC
trabecular samples h=8mm T™MP
bone
1T Human 25  Cylindrical d=16 mm FLC
trabecular samples h=7.5mm TLP
bone
Porcine 25  Cylindrical d =48 mm -
adipose and samples h=10-20 mm
lean tissue
v Elastomer 6  Cylindrical d=15-26 mm -
samples h=4-10 mm
Human 25  Cylindrical d =16 mm FLC
trabecular samples h=75mm TLP
bone
Porcine 25  Cylindrical d =48 mm -
lean tissue samples h=10-20 mm

FMC = femoral medial condyle, TMP = tibial medial plateu, FG = femoral
groove, FLC = femoral lateral condyle and TLP = tibial lateral plateu.
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Figure 6.1: The anatomical sites of the human trabecular bone samples investigated in Studies I - IV.

6.1.1 Human samples

In Studies I - IV, human trabecular bone samples were collected from cadaver knees (1
= 13, Figure 6.1) with the permission of the National Authority of Medicolegal Affairs
(Helsinki, Finland, permission 1781/32/200/01). In Studies I and II, cylindrical plugs
of trabecular bone were drilled from the medial femoral condyle, femoral groove and
tibial plateau (n = 20 - 26), whereas in Studies III and IV the samples were drilled
from the lateral femoral condyle (n = 13) and lateral tibial plateau (n = 12), using a
hollow drill bit. The sample surfaces were cut so as to be parallel using a low speed
diamond saw (Buehler Isomet Low Speed Saw, Buehler Ltd., Lake Bluff, IL, USA)
and the EXACT micro-grinding system (Macro Exact 310 CP, EXACT Apparatebau
GmbH & Co., Norderstedt, Germany). Subsequently, the samples were immersed in
phosphate buffered saline (PBS) and stored in a freezer (-20°C) until measurement.

6.1.2 Porcine samples

In Studies III and IV, cylindrical soft tissue disks were prepared just before measure-
ment from fresh porcine adipose (1 = 25, fat content 70%) and lean (n = 25, fat content
4%) tissues provided by the local slaughterhouse (Atria Oy, Kuopio, Finland). The
disks (diameter = 48 mm, thickness = 1 - 2 cm) were prepared using a custom-made
biopsy punch (diameter = 48 mm). In addition, the typical composition of human soft
tissue was mimicked in backscatter and reflection measurements using porcine lean
tissue (n = 25) with a fat content of 30%.

6.1.3 Elastomer samples

In Study IV, the acoustic properties of three elastomers (3a-c, Teknikum Oy, Vammala,
Finland, diameter = 26 mm) were analysed. The thickness of the elastomers 3a, 3b and
3c were 10.25 mm, 5.50 mm and 6.00 mm, respectively (x5 in Figure 6.3, diameter = 16
mm). The elastomers 3a-c (Figure 6.3) were measured with and without the overly-
ing elastomers 1 and 2 (RAPRA Technology Ltd, Shropshire, UK) (Figure 6.3). Three
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interfering layers were constructed by applying different thicknesses for elastomers 1
and 2 (z; and z, in Figure 6.3, respectively), i.e. 1.19 mm and 3.22 mm (combination
1), 2.00 mm and 1.85 mm (combination 2) and 3.01 mm and 0.97 mm (combination 3),
respectively. Thus, the elastomers 3a, 3b and 3c were measured with three different
combinations (1-3) of overlying interfering elastomers.

6.2 Methods

The methodology used in Studies I-IV is summarized in Table 6.2

Table 6.2: Summary of the methods applied in Studies I - IV.

Study Methods Device Parameters Voltage/Frequency
1 QuUs UltraPAC nBUA, SOS, AA, BUB,IRC  2.25 MHz
microCT SkyScan 1072 BV/TV 80 kV
Biochemical assay - Water content, fat content, -
CCcm, PCom
DXA Lunar Prodigy = BMD 76 kV
(K-edge filter)
I QUS UltraPAC nBUA, SOS, AA, AIB, IRC 2.25MHz
Mechanical Zwick 1484 Omax -
testing
III QuUS Optel nBUA, SOS, AA, BUB, IRC 0.5 MHz, 1.0 MHz, 2.25 MHz,
3.5MHz, 5.0MHz
DXA Lunar Prodigy = BMD 76 kV
(K-edge filter)
Mechanical Instron 8874 E, omax -
testing
v QuUs Optel BUB, IRC 2.25 MHz, 5.0 MHz
UltraPAC SOS, AA, IRC 2.25 MHz, 5.0 MHz

QUS = quantitative ultrasound, nBUA = normalized broadband ultrasound attenuation, SOS = speed of sound,
AA = average attenuation, BUB = broadband ultrasound backscattering, IRC = integrated reflection coefficient,
BV/TV =bone volume fraction, CC¢ s = calcified matrix collagen content, PCcps = calcified matrix proteglycan
content, BMD = bone mineral density, DXA = dual energy X-ray absorptiometry, AIB = apparent integrated
backscattering, oy = ultimate strength and E = Young’s modulus.

6.2.1 Experimental ultrasound methods

In Studies I, IT and IV, acoustic measurements were conducted with an ultrasound sys-
tem (UltraPAC, Physical Acoustic Co., NJ, USA) consisting of a 500 MHz A /D-board
and a 0.2 - 100 MHz pulser-receiver board. In Studies III and IV, ultrasound measure-
ments were conducted with the Opbox-01/100 (Optel Ltd., Wroclaw, Poland) portable
ultrasound instrument. The resolution and sampling frequency of the A/D converter
were 8 bits and 100 MHz, respectively. The pulser-receiver bandwidth (-6 dB) was 0.1
- 25 MHz. In Studies I and II, the UltraPAC ultrasound system was equipped with a
tank and scanning drives (Fig 6.2 a), whereas in Studies IIl and IV a custom measure-
ment set-up was constructed for ultrasound measurements (Fig. 6.2 b). In Studies I
and II, the measurements were conducted using a single pair of ultrasound transduc-
ers (2.25 MHz) whereas in Study IlI five pairs of ultrasound transducers (Panametrics
Inc., Waltham, MA, USA) with different focal properties and centre frequencies (0.5
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MHz, 1.0 MHz, 2.25 MHz, 3.5 MHz and 5.0 MHz) were used. In Study IV, the mea-
surements were conducted using two pairs of ultrasound tranducers (2.25 MHz and
5.0 MHz). In Studies I and II, the measurements were performed in a scanning mode
(scan area of 16 mm x 16 mm, step size 0.5 mm), whereas in Studies IIl and IV the mea-
surements were conducted at a single point within the sample. Prior to ultrasound
measurement, bone and soft tissue samples were degassed in PBS. All measurements
were conducted in a degassed temperature-controlled (TES 1310 TYPEK, TES Elec-
trical Electronic Corp., Taipei, Taiwan) water bath. Custom LabVIEW (version 6.1,
National Instrument, Austin, Texas, USA) measurement and analysis programs were
developed for each study.

PULSE-ECHO MEASUREMENTS

In Studies I - IV, echo signals recorded from the samples were compared with the echo
signal recorded from the reference surface (a polished steel plate). All pulse-echo pa-
rameters were analysed within the effective frequency range of each transducer (0.3-
0.7 MHz, 0.7-1.5 MHz, 1.5-3.8 MHz, 2.0-5.5 MHz and 3.2-6.7 MHz for transducers
with centre frequencies of 0.5 MHz, 1.0 MHz, 2.25 MHz, 3.5 MHz and 5.0 MHz, re-
spectively). In Studies I, IIl and IV, IRC (32) and BUB (148) were determined whereas
in Study II AIB (32) was derived with the reference method (Table 6.3). In addition,
to investigate the effect of signal windowing, the AIB was analysed using five dif-
ferent time window lengths from 1 to 5 iis with 1 microsecond steps. The BUB was
determined from the AIB by compensating the AIB value with the ultrasound atten-
uation within the sample. The attenuation compensation was determined by using
an approximation (Nicholson and Bouxsein 2002) (125) of a more complex compen-
sation term (O'Donnell and Miller 1981) (136). The sample specific attenuation and
SOS values determined with the through-transmission technique were used in the at-
tenuation correction (125). In Studies I and II, acoustic parameters were calculated
as a mean value within a circular ROI (88 mm?, the total number of the pixels was
352). In addition, in Study II standard deviations of the parameters within the ROI
were analysed. In Studies IIl and IV, acoustic parameters were determined at a single
measurement point.

THROUGH-TRANSMISSION MEASUREMENTS

In Studies I - III, speed of sound (SOS), normalized BUA (nBUA) and average attenu-
ation (AA) were determined with the substitution method (104) (Table 6.3). In Study
IV, only SOS and AA were determined. SOS was determined with the time of flight
(TOF) method (131). TOF was analysed from the radio frequency signal using the
threshold technique (128) with a 20% threshold value. AA was determined from the
effective range of each transducer, whereas nBUA was calculated as a slope of the lin-
ear part of the attenuation spectrum normalized with the sample thickness. The linear
part of the attenuation spectrum was defined as a part where the linear correlation co-
efficient between the attenuation coefficient and the frequency was > 0.9. In Studies
I and II, the nBUA was determined using the frequency range of 0.3 - 0.6 MHz, 0.7 -
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Figure 6.2: The experimental set-up for acoustic measurements applied in Studies I-IV. (a) In Studies
I and II, the trabecular bone samples were acoustically imaged (scan area of 16 mm x 16 mm, step
size 0.5 mm). (b) In Studies III and IV, the trabecular bone samples were placed in the focal plane
of the transducers positioned on opposite sides of the sample and the ultrasound measurements were
conducted at a single point. The sample holder stabilized the soft tissues on both sides of the specimen.
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Table 6.3: The mathematical definitions of ultrasound parameters determined in Studies I - IV.

Technique  Parameter Equation
Substitution SOS T

s — (Atey)
Substitution  Attenuation* @(ln(ﬁ:‘éﬁ) + In(TwsTsw))
Substitution AA SN #(In( ((ff;) +1n(TysTsw))
Reference IRC B9%0 [ In( 3((;;)
Reference AIB 53 JasIn

8.686 686 Av(f) s (fleptw
Reference BUB Ja, (i) + 252)

¢y = sound speed in water, s = thickness of the sample, At = time of flight dif-
ference through the water bath with and without the sample, A; and A,, = ul-
trasound pressure amplitude spectra measured through the water bath with and
without the sample, respectively. T' = transmission coefficient calculated based
on the measured ultrasound reflection coefficient at the surface of the sample.
Subscripts ws and sw refer to water-sample and sample-water interfaces, respec-
tively. Af = effective frequency range, A, and A, = ultrasound pressure am-
plitude spectra analysed from the echo signal from the sample surface and the
reference, respectively. A; = ultrasound pressure amplitude spectra of the echo
signal (backscattering) from the inner structure of the sample. oy, = attenuation
coefficient of the sample, ¢; = sound speed in the sample and tw = time window
length for the determination of backscattering.

*normalized Broadband Ultrasound Attenuation (nBUA) is determined as a slope

of the linear part of attenuation spectrum normalized with the sample thickness.

1.5 MHz, 1.0 - 2.8 MHz, 1.0 - 3.0 MHz and 1.5 - 3.0 MHz for the center frequency of
0.5 MHz, 1.0 MHz, 2.25 MHz, 3.5 MHz and 5.0 MHz, respectively. In Study III, the
nBUA was calculated using the frequency range of 0.2 - 0.5 MHz, 0.7 - 1.5 MHz, 0.5
-2.0 MHz, 0.5 - 2.0 MHz and 1.0 - 4.0 MHz for the center frequency of 0.5 MHz, 1.0
MHz, 2.25 MHz, 3.5 MHz and 5.0 MHz, respectively.

6.2.2 Ultrasound analysis of overlying soft tissues

In Study III, the trabecular bone samples were measured with and without an in-
terfering layer of overlying soft tissue. In addition, sound speed and attenuation in
overlying adipose and lean tissues were measured separately. Uncorrected (without
the soft tissue correction) ultrasound parameters for trabecular bone samples were de-
termined as presented in Table 6.3. When applying numerical soft tissue correction,
the ultrasound parameters were determined as presented in Table 6.4
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Table 6.4: The mathematical definitions of soft tissue corrected ultrasound parameters (Study III).

Parameter Equation

C1CqCwSh
cica(s1 4 sa + 8p) — (Atcweica) — CaCwSi — ClCwSa

S0OS

Attenuation* 2856 (In( LUy 4 In((1 = Ruu(£))(1 = Ry (£))(1 + Rap(£))(1 + Rua(f)))

Sb

—ai(f)s1 — aa(f)sa)

IRC 8080 [ (In(48) — In(1 = B2 (f)) + 204(f)ss)
AIB S8 [ (In(4) —In(1 = R2,,(f)) + 204(f)s.)
BUB 080 [ (In(488) 4 @l _in (1 — B2 (f)) + 204(f)s,)

¢ = sound speed. Subscripts [, a, b and w refer to lean tissue, adipose tissue, bone and water, respectively. s =
thickness of the sample. At = time of flight difference through the water bath with and without the soft tissue-
bone combination, A;p, and Ay, = ultrasound pressure amplitude spectra measured through the water bath with
and without the soft tissue-bone combination, respectively. R = reflection coefficient. Subscripts wl, b, ab, wa and
ws refer to water-lean tissue, lean tissue-bone, adipose tissue-bone, water-adipose tissue and water-soft tissue in-
terfaces, respectively. A f = effective frequency range, A, and A, = ultrasound pressure amplitude spectra of the
echo signal recorded from the sample surface and the reference, respectively. A; = ultrasound pressure amplitude
spectra recorded from the echo signal (backscattering part) from the inner structure of the sample. « = attenuation
coefficient. Subscript s refers to soft tissue. tw = time window length for the determination of backscattering.
*normalized Broadband Ultrasound Attenuation (nBUA) is determined as a slope of the linear part of the attenu-
ation spectrum normalized with the sample thickness.

6.2.3 Dual frequency ultrasound technique
THEORY OF DUAL FREQUENCY ULTRASOUND TECHNIQUE

In Study 1V, a new technique for the elimination of the soft tissue effect on bone ultra-
sound measurement was introduced. The DFUS technique utilizes prior knowledge
of the values of the ultrasound (US) attenuation coefficient and speed at two frequen-
cies in multilayered materials consisting of two different materials. The US reflection
is measured from the front (first) and the back (last) surface of the multilayered struc-
ture using two different US frequencies. However, during in vivo measurement the US
transducer is set against the skin and only the echo arising from the soft tissue-bone
interface is recorded.

Ultrasound reflection amplitudes at low and high frequency (4,, A;,) from the first
surface of the object of interest (e.g. bone or elastomer 3 (figure 6.3)) can be expressed
as follows:

Al = Hle_gauzl@_zaz'lzZA07l, (61)

Ap = Hye 200mm1e=2020m2 A, (6.2)

where H is the term including ultrasound reflections at the surfaces of the interfer-
ing layers and the object of interest, o the attenuation coefficient and z the thickness
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Figure 6.3: Experimental set-up for acoustic measurement of elastomer samples. The region of in-
terest in the ultrasound signal is located at the echo arising from the surface of elastomer 3. The dual
frequency ultrasound technique was used to minimize the artifacts induced by elastomers 1 and 2 in
the determination of the acoustic properties of elastomer 3 (Study IV).

of an interfering layer. Subscripts 1 and 2 and ! and A refer to interfering layers 1
and 2 and low and high ultrasound frequencies, respectively. Ag; and Ay, refer to
ultrasound reflection amplitudes from the polished steel plate (reference) at low and
high frequencies, respectively. If the ultrasound reflection coefficient depends on the
frequency, it can be taken into account in the calculations:

H(f) = af’, (6.3)

where coefficients a and b denote the frequency dependence of the reflection term.
Thus, the relation between the term H at low and high frequencies can be expressed
as follows:

H = Hh(%)b = mHy, (6.4)
h

where f is the frequency and the coefficient m denotes the frequency dependence of
H. The ultrasound reflection amplitude A; (equation 6.1) can now be expressed as
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follows: A
A = m(7}”62(041,}@1-&-&2,;#2))6—2041,1116—2042,112Aojl. (65)
Aon
By substituting:
S = 2041,}1 - 20(1,1, (66)
J = 20[27}1 - 20[271, (67)
equation 6.5 can be expressed as follows:
Alevh __ x1SHxad
A Ao, =¢ . (6.8)

The time difference At between the reflections from the first surface of the interfering
layer and from the surface of the sample (see figure 6.3) can be written as follows:

no T 2z,

At =2 ), (6.9)

(&1 Ca Cy

where ¢, ¢; and ¢,, are the average sound speeds measured at low and high ultra-
sound frequencies. The subscript w refers to water. The thickness of interfering layer

1 can be expressed as:
At xo 2wy,

)i (6.10)

T4 =
! (2 Co Cuw

The thickness of interfering layer 2 can now be solved from equations 6.8 and 6.10:

(L) + In(25) — In(£) — (4t - Z)e,s

J—as

Cc2

(6.11)

Lo =

Using the determined thickness of layer 2, the thickness of interfering layer 1 can now
be solved from equation 6.10.

DETERMINATION OF SOFT TISSUE COMPOSITION WITH THE DFUS TECHNIQUE

In measurement of a bone-soft tissue combination, the thickness of adipose (fat) and
lean tissue can be solved with the dual frequency ultrasound technique. Reflection
at the bone surface was found to be frequency independent (2.25 MHz vs. 5.0 MHz,
Study III) and the reflections from the soft tissue surface and adipose-lean tissue in-
terfaces were minimal, thus b = 0 (equation 6.3) and therefore m =1 (equation 6.4). As
there is no water layer (z,, = 0) between the adipose and lean tissue, equation 6.11 can
be simplified and the lean tissue thickness can be expressed as:
In(£4) () = ()

_ 015 ?
c2

(6.12)

To =

where subscripts 1 and 2 refer to adipose and lean tissues, respectively.
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NUMERICAL CORRECTION OF ULTRASOUND PARAMETERS

In Study IV, to eliminate the error induced by interfering elastomers, their thicknesses
and acoustic properties must be known. The thicknesses of the interfering layers can
be determined using the DFUS technique. In Study 1V, three IRC values for each elas-
tomer (3a, 3b and 3c) were determined: (1) IRC: parameter determined without the
interfering overlying elastomers; (2) IRC,,cor-: parameter determined with the inter-
fering overlying elastomers; and (3) IRC,,,,: parameter determined with the interfer-
ing overlying elastomers by means of the DFUS attenuation correction. The corrected
IRC (I RC,,,,) can be determined as follows:

IRCCOTT = IRCunco’r'r + 2'1.1041 + 21’2042 + Ki7 (613)

where z is the elastomer thickness and « is the ultrasound attenuation coefficient for
an investigated elastomer. Subscripts 1 and 2 refer to elastomers 1 and 2, respectively.
K is the correction factor for the compensation of ultrasound reflections at the sur-
faces of elastomers 1 and 2:

K; =8.68In((1 — R)?(1 — R3)?), (6.14)

where R is the reflection coefficient. In addition, three average attenuation values for
elastomers 3a-c were determined and named analogously with the IRC. The corrected
average attenuation (AA.,,) can be determined as follows:

AACO’I‘T = AAunco’rT — X101 — Talig — Kaa (615)

where AA,,,. is the uncorrected average attenuation and kK, is the correction factor
for the compensation of ultrasound reflections at the surfaces of elastomers 1, 2 and 3.

K, =8.68mn((1— R)*(1 - R3)*(1 — R). (6.16)

To analyse precision errors, one elastomer (3c) was measured five times with and
without the interfering overlying elastomers (combinations 1-3). Twenty measure-
ments was conducted and the coefficient of variation (CV)(133) was determined.

For IRC and BUB measurements in living tissues, the soft tissue correction was
conducted similarly as for elastomers (equation 6.13). Since no clear acoustic bound-
aries existed in the heterogeneous mixture of lean and adipose tissue, the K; term
could be neglected.

6.2.4 MicroCT measurement of trabecular bone

In Study II, the bone volume fraction (BV/TV, %), i.e. the volume fraction of the
calcified matrix within the sample, was determined using a microCT (SkyScan 1072,
SkyScan, Aartselaar, Belgium) (Hakulinen et al. 2006, (66)). The voxel size was 18
x 18 x 18 um?®. Subsequently, the image data were segmented to include calcified
matrix and marrow using the local threshold method (166).
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6.2.5 Analyses of bone composition
DUAL ENERGY X-RAY MEASUREMENTS

In Studies I and III, the bone mineral densities (BMD, g/cm?) of the samples were
measured in a direction perpendicular to the parallel ends of the plugs using a Lunar
Prodigy DXA system (GE Medical, Wessling, Germany) in the spine measurement
mode (voltage = 76 kV, current = 0.75 mA). During measurement, the bone samples
were placed in a water bath to simulate overlying soft tissues and to optimize the
measurement accuracy. Volumetric BMD (vBMD, g/cm?) values were calculated by
normalizing measured areal BMD values with the sample thickness, as determined
with a digital micrometer (Mitutoyo Co., Mexico City, Mexico).

WATER AND FAT CONTENT

In Study I, the volumes, weights and densities of the bone cylinders were determined
using Archimedes’ principle. Subsequently, the samples were freeze-dried (Christ Al-
pha 1-2, B. Braun Biotech International, Melsungen, Germany) for the determination
of dry weights. To determine the fat-free weight of the sample, the fat was dissolved
in acetone. The acetone was then removed from the samples by drying them at 45°C
for 18 hours. Finally, the water and fat contents were determined by normalizing
water and fat masses with the sample volume.

COMPOSITION OF CALCIFIED MATRIX

In Study I, the composition of calcified matrix (trabeculae) was determined by nor-
malizing the biochemically determined collagen and proteoglycan masses and DXA-
measured BMC with the calcified matrix volume, as determined with the microCT. To
determine the masses of collagen and proteoglycan, the fat-free bone samples were
pulverized. Some of the powder (approximately 20 mg) from each sample was taken
for acid hydrolysis in 5 M hydrogen chloride (HCI) at 108°C for 16 hours, and hy-
droxyproline content was analyzed using a microplate assay (22). Collagen contains
approximately 14% of hydroxyproline by mass, so estimates for total collagen con-
tents were obtained by multiplying the hydroxyproline content by a factor of 7 (155).
To investigate the yield of the assay, soluble rat type I collagen was also added to
defatted bone samples before acid hydrolysis. The yield of the added collagen was
91.8 £ 1.3%. Proteoglycans were extracted from the fat-free bone powder (approxi-
mately 20 mg) with 4 M guanidine hydrochloride (GuHCl) containing 0.2 M ethylene-
diamine tetraacetic acid (EDTA) in 50 mM sodium acetate buffer, pH 6.0, for 70 hours.
Uronic acid content was then measured using a spectrophotometric assay (16). An
estimate for proteoglycan content was derived by assuming that the major proteogly-
cans, decorin and biglycan (167), are present in approximately equal molar contents.
The average molecular weight of glycosaminoglycan chains was assumed to be 30
kDa, based on decorin and biglycan molecular weights of 70 and 100 kDa, respec-
tively (91, 146). Therefore, the uronic acid content represents approximately 26% of
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the proteoglycan pool, which gives a factor of 3.78 to be used for the determination of
proteoglycan content from the uronic acid results.

6.2.6 Analyses of bone mechanical properties

In Studies II and 111, the mechanical properties of the bone samples were determined
with servo-hydraulic material testing devices (Zwick 1484, Zwick GmbH & Co., KG,
Ulm, Germany, and Instron 8874, Instron Co., Canton, MA, USA, respectively). Dur-
ing the test teflon foils were set between the sample surfaces and the compressive
plates to minimize the friction between the surfaces (Study II). In Study II, bone sam-
ples were subjected to prestress of 0.25 MPa before testing, and preconditioned with
five consecutive nondestructive cycles to 0.5% strain. Subsequently, the bone samples
were destructively compressed to 5% strain, using the strain rate of 4.5x107% s~1. In
Study II, the measurement protocol was the same but the prestress applied was 0.10
MPa and the strain rate was 8.2x107° s7!. In Study II, Young’s modulus was deter-
mined as a linear fit to the stress-strain data between 45% and 60% of the maximum
stress whereas in Study III Young’s modulus was determined as a linear fit to the
stress-strain data between 40% and 65% of the maximum stress. Ultimate strength
was obtained as the maximum stress recorded during the test.

6.2.7 Numerical modelling

In Study I, Wave2000 Pro software (Cyberlogic Inc., New York, NY, USA) was used
to simulate acoustic wave propagation through a trabecular bone sample. MicroCT
images (one 2D cut of a 3D image set) of the trabecular samples (Study II) were used
in the numerical modelling. The software solves the 2D wave equation by utiliz-
ing the finite difference time domain technique (FDTD). Earlier, we have demon-
strated a good agreement between the experimental ultrasound measurements and
two-dimensional (2D) numerical simulations (Hakulinen et al. 2006, (66)). The acous-
tic simulations were based on the real 2D microCT images of three trabecular bone
samples with characteristic bone volume fraction ranging from 9% to 24%. Trabecular
bone was assumed to consist of two components, i.e., calcified tissue (trabeculae) and
fat (marrow). The reference values of the acoustic and material properties for calcified
matrix and fat were obtained from the material library of Wave2000 Pro. The refer-
ence value for the density of calcified matrix was set to be equal to that of the cortical
bone (1850 kg/m?®). For fat tissue the density was set to 937 kg/m?. In the model,
calcified tissue was assumed to be an isotropic elastic solid with a Poisson ratio of
0.37 (5). In further simulations, trabecular architecture was kept constant while den-
sity and Young’s modulus of the calcified matrix were altered. According to Bossy et
al. (2004, Figure 6)(17) the bulk velocity of ultrasound in cortical bone increases by
140 m/s as the cortical bone density increases by 50 kg/m?. Therefore, the values of
Young’s modulus were altered correspondingly, i.e. the increase in bulk velocity was
138-140 m/s when the calcified matrix density increased by 50 kg/m?. These calcu-
lations were based on the relation between the ultrasound velocity and the material
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properties of the isotropic elastic medium

= \/E(l_y) 6.17)

p(1+v)(1—2v)’

where c is the bulk velocity, E is the Young’s modulus, p is the density and v is Pois-
son’s ratio. Similarly, for shear velocity (c;) in isotropic elastic material

E

Tk (6.18)

Cs =

The simulation geometry was identical to that of the experimental set-up. How-
ever, in the simulations the samples were immersed in deionized water (21°C) in-
stead of PBS as in the experiments (Hakulinen et al. 2005, (67)). The characteristics
of the 2.25 MHz ultrasound transducer used in the experimental measurements were
adopted from the calibration data provided by the transducer manufacturer (Pana-
metrics V304, Panametrics Inc., Waltham, MA, USA) and used in the simulations.
The QUS parameters were determined from the simulation outputs similarly as from
the experimentally measured signals.

In Study III, numerical simulations were conducted to investigate the effect of soft
tissue thickness and composition on the measured attenuation and SOS values. The
typical adipose to lean tissue ratio in human soft tissue, 25/75 (Morabia et al. 1999,
(121)), was used to represent the real soft tissue composition in the simulations. The
experimentally measured mean attenuation spectra and SOS values in bone and adi-
pose and lean tissues were used for the simulations. Thereafter, the differences be-
tween uncorrected and corrected acoustic parameters were calculated with various
soft tissue thickness and adipose to lean tissue ratios.

6.2.8 Statistical analyses

In Studies I - III, a normal distribution of compositional, mechanical and ultrasound
parameters was tested with the Shapiro-Wilk test. Pearson’s correlation analysis was
used for the investigation of linear associations between the parameters. In Study I,
to adjust the specific correlation analyses for other variables, partial correlation coef-
ficients were calculated. In Study II, the Wilcoxon two-related-samples test was used
to investigate the significance of the differences in ultrasound parameter values deter-
mined at discrete point at the ROI center and as a mean within the ROI In addition,
in Study II a stepwise linear regression analysis was used to investigate the relations
between the ultimate strength and the linear combinations of ultrasound parameters.
A p value of < 0.05 defined the statistical significance. SPSS v.11.5 and 14.0 softwares
(SPSS Inc., Chicago, IL, USA) were used for the statistical analyses.



48

6.2. Methods




CHAPTER VII
Results

7.1 Relations of acoustic, compositional and mechanical properties
in trabecular bone

In Study I, QUS parameters were found to be significantly related to bone volume
fraction (r = 0.64-0.84) and fat content (» = -0.47 - -0.54). In addition, linear correlations
between the ultrasound parameters (SOS, nBUA, AA and AIB)) and the calcified ma-
trix collagen content were statistically significant (r = -0.46 - -0.66, Table 7.1). Bone
ultimate strength was significantly related to bone volume fraction (r = 0.95) and fat
content (r = -0.51).

When the correlations were adjusted for other compositional variables (partial cor-
relation), in addition to bone volume fraction, the collagen and proteoglycan con-
tent of calcified matrix were significant independent determinants of bone ultimate
strength (r = 0.63 and r = -0.55, respectively, p < 0.05). Moreover, bone volume fraction
was significantly related to SOS (r = 0.68). Only a moderate association was found
between fat content and AIB (r = -0.59). Partial correlation analysis of ultrasound and
composition parameters suggested that AIB and BUB are the only QUS parameters
that are independent predictors of the calcified matrix collagen content (r = -0.66 vs. r
=-0.69 and r = -0.62 vs. r = -0.66, respectively).

Table 7.1: Linear correlations between the mean values of ultrasound parameters within the circular
ROI (88 mm?) and the composition and ultimate strength of trabecular bone (1 = 19 - 20). Partial
correlation between parameters are shown in brackets.* p < 0.05, ** p < 0.01.

BV/TV Water content ~ Fat content CCeonm PCeo MCcon Omaz
SOS 0.84** (0.68**) -0.18 (0.41) -0.47* (0.08) -0.59** (-0.46) -0.14 (0.08) -0.03 (-0.11)  0.75**
nBUA 0.64** (0.49) 0.08 (0.46) -0.53* (0.07) -0.46* (0.42) 0.07 (-0.11) 0.14 (0.23) 0.55*
AA 0.76** (0.29) -0.13 (-0.01) -0.54* (-0.39) -0.54* (-0.50) 0.10 (0.15) -0.10 (-0.35)  0.65**
IRC 0.84** (0.42) -0.34 (-0.24) -0.54* (-0.36) -0.39 (-0.19) -0.13 (-0.37) 0.13 (0.10) 0.89**
AIB 0.68** (-0.19) -0.31 (-0.44) -0.39 (-0.59%)  -0.66** (-0.69**) -0.02 (0.10) -0.08 (-0.26)  0.62**
BUB 0.80** (0.37) -0.17 (-0.01) -0.55% (-0.46)  -0.62** (-0.66**) -0.06 (0.05) -0.07 (-0.32)  0.70**

Omaz  095%(091%)  -042(0.39)  -051%(040)  -0.31(0.63%)  -0.02(-0.55%)  0.21(0.37) -
vBMD 095" (0.99")  -0.41(-025)  -0.53*(-0.12)  -0.39 (-0.03) 0.12(-024)  0.39(0.98") 0.92*

49
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7.2 Spatial variation of ultrasound parameters

In Study II, SOS and AIB, but not nBUA, AA or IRC, were significantly different when
determined as a mean value within the ROI or as a discrete value at the center of
the ROI (p = 0.03, n = 19 - 20, Table 7.2). Linear correlation coefficients between the
mean values of ultrasound parameters within the ROI and the ultimate strength were
higher than those obtained for the single point measurements (Fig. 7.1). Based on the
stepwise linear regression analysis, the linear combination of mean and SD of AA was
a significantly stronger predictor of the ultimate strength than either the mean or SD
of AA alone (r = 0.76 vs. 0.65 and -0.32, respectively). However, from variations (SD)
of ultrasound parameters within the ROI, only SD of AIB was a significant predictor
of ultimate strength (Fig. 7.1).

Table 7.2: Mean values of ultrasound parameters within the ROI and at the discrete measurement
point of the ROI center. A significant difference was revealed in SOS and AIB (p = 0.03, n = 19 - 20),
whereas no statistically significant differences were found in nBUA, AA or IRC.

SOS nBUA AA IRC  AIB (2 us tw)
(m/s) (dB/MHz/cm) (dB/cm) (dB) (dB)
ROI mean 2236 11.0 38.1 -12.7 -26.7
ROI Center 2451 10.3 39.3 -12.2 -27.8
ROI SD 359 3.3 4.1 2.6 3.3
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Figure 7.1: Linear correlations between the mean values of ultrasound parameters within the ROI
and the ultimate strength showed a trend for higher values than those obtained for a single point
measurement. SD of AIB within the ROI was a significant predictor of the ultimate strength (n = 19 -
20).  *p<0.05,*p<0.01

7.3 Effect of time window length on AIB analysis

The increase in time window length increased the values of AIB within the ROI and
decreased the variation of AIB within the ROI (Fig. 7.2). Further, the strength of cor-
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relation between AIB and ultimate strength was dependent on the window length
(Fig. 7.2). Mean AIB within the ROI predicted ultimate strength strongly only when
assessed using a short time window (tw =1 us, r = 0.62). However, the strongest as-
sociation (r = -0.82, p < 0.01) between SD of AIB within the ROI and ultimate strength
was revealed with the long time window (tw = 4 us).

Pulse-echo parameters (IRC and AIB) were analysed from the same echo signal
and therefore these parameters were measured simultaneously. Based on the stepwise
linear regression analysis, the linear combination of mean IRC and SD of AIB within
the ROI served as a strong predictor (r = 0.92, p < 0.01) of the bone ultimate strength.

6
— 08 fF @ ROI mean
o 4 s - O ROISD
%) u] 2
o 2 = o £ °
s & g 04 [ [ ] ° [ ]
° 0 °
3 S
] z 0
[ o) L
=z 3 04
< 2ot ) [} = o
= o e
g8 5 08 | o o o
30 L L L L L L L L L L
1 2 3 4 5 1 2 3 4 5
a) Time window length (us) b) Time window length (us)

Figure 7.2: (a) The effect of time window length (tw) on the values and variation (SD) of AIB within the
ROL. (b) Mean value of AIB within the ROI was significantly correlated with the ultimate strength only
when using a short time window. SD of AIB within the ROI was significantly related with the ultimate
strength (1 = 19) also when determined by using long time windows. The time window length 1 s
corresponds to the distance of 1.1 mm when the mean SOS value for the bone samples (2236 m/s) is
used.

7.4 Effect of overlying soft tissue on ultrasound measurement of tra-
becular bone

The overlying soft tissues induced significant errors in the measurement of bone
acoustic properties (Fig. 7.3 and 7.4). The error in SOS (at the centre frequency of
5 MHz) was 7% when the effect of soft tissue was ignored (i.e. uncorrected values)
and 3% when the soft tissue induced errors were mathematically minimized (i.e. cor-
rected values) (Fig. 7.3). In Study III, all corrections were calculated using average
SOS and attenuation values measured for adipose and lean tissue. At the centre fre-
quency of 2.25 MHz, the error in average attenuation decreased from 22% to 3% (Fig.
7.3) and, in IRC, from 60% to 20%, when the soft tissue correction was applied (Fig.
7.4). Similarly, the error in BUB (at the centre frequency of 5 MHz) was reduced from
60% to 5% when the soft tissue induced errors were mathematically minimized (Fig.
7.4).
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Figure 7.3: (a, ¢) The mean values of through-transmission parameters, SOS and average attenuation,
before and after the numerical soft tissue correction and as measured without overlying soft tissues.
(b, d) The error induced by soft tissue increased as a function of ultrasound frequency. The error could
be effectively reduced by means of numerical correction (Study III).
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Figure 7.4: (a, ¢) The mean values of pulse-echo parameters, IRC and BUB, before and after the soft
tissue correction and as measured without the overlying soft tissues. (b, d) The error induced by soft
tissue increased as a function of ultrasound frequency. The error could be effectively reduced by means

of numerical correction (Study III).
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7.5 The dual frequency ultrasound technique

In Study 1V, the relative precision (CV) of IRC and AA for the elastomers measured
with 5.0 MHz were 1.2% and 1.3%, respectively, so only single measurements were
conducted for other elastomer measurements. The DFUS technique reduced the mean
error induced by interfering elastomers in IRC and in AA (at 2.25 MHz) from 37.5 -
77.5% to -12.0 - 4.9% and from 70.0 - 201.1% to -1.1 - 34.6%, respectively (Fig. 7.5). At
the higher frequency (5.0 MHz), the DFUS technique reduced the mean error induced
by interfering elastomers in IRC and in AA from 103.6 - 289.4% to -15.9 - 5.6% and
from 33.8 - 158.3% to -29.7 - 6.5%, respectively (Fig. 7.5)
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Figure 7.5: (a, b) The errors induced by interfering elastomers in IRC before and after the DFUS
correction with a frequency of (a) 2.25 MHz and (b) 5.0 MHz. (c, d) The errors induced by interfering
elastomers in AA before and after the DFUS correction with a frequency of (c) 2.25 MHz and (d) 5.0
MHz. The absolute errors are determined by using the mean values of parameters (Table 7.3).

In the soft tissue-bone combination, the DFUS technique reduced the mean error
in BUB and in IRC (at 5.0 MHz) from 58.6% to -4.9% and from 127.4% to 23.8%, re-
spectively (Fig. 7.6).
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Table 7.3: Values of the integrated reflection coefficient (IRC) and average attenuation (AA) of elas-
tomers (3a-c) at 2.25 MHz and 5.0 MHz. The values of acoustic parameters for elastomers 3a-c were
also determined with the interfering overlying elastomers (1 and 2) present (Fig. 6.3). Uncorrected
(mean=+SD) as well as corrected values (mean+SD, DFUS-technique) are also presented. The absolute
errors are determined by using the mean values of parameters.

2.25 MHz 5.0 MHz
Elastomer Elastomer Elastomer Elastomer Elastomer Elastomer
3a 3b 3c 3a 3b 3c
IRC (dB) -35.7 -18.7 20.1 -31.7 -14.1 -19.3
AA (dB/cm) 10.5 17.1 6.1 30.0 42.8 17.8
Uncorrected values
IRC (dB) -49.0+2.7 -33.2+3.4 -31.4+1.7 -64.5+2.7 -55.0+5.5 -49.6+4.8
AA (dB/cm) 17.8+1.7 33.24+4.3 18.4+1.7 40.14+1.6 72.3+4.3 46.14+6.0
Corrected values
IRC (dB) -37.4+2.8 -16.5+£2.8 -20.2+0.9 -33.44+2.8 -11.9+£2.8 -19.44+0.9
AA (dB/cm) 11.8+1.7 16.94+4.5 8.24+0.6 24.0+1.9 30.1+4.5 19.0+1.9
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Figure 7.6: (a) The errors induced by overlying soft tissues in IRC before and after the DFUS correction
at frequencies of 2.25 MHz and 5.0 MHz. (b) The errors induced by overlying soft tissues in BUB
before and after the DFUS correction at frequencies of 2.25 MHz and 5.0 MHz. The absolute errors are
determined by using the mean values of parameters (Table 7.4).

Table 7.4: Values (mean + SD) of IRC and BUB in human trabecular bone at 2.25 MHz and 5.0 MHz.
The acoustic properties of the bone samples were also determined with the overlying soft tissue layers.
Uncorrected (mean+SD) as well as corrected values (mean4SD, DFUS-technique) are also presented.
Absolute errors are calculated using the mean values of parameters.

Trabecular bone (1=26)
2.25 MHz 5.0 MHz

IRC (dB) -10.1£2.8 -10.1£3.1
BUB (dB) -15.5+4.3 -16.5+3.8
Uncorrected values

IRC (dB) -16.4+4.0  -22.945.6
BUB (dB) -22.1+4.8  -26.11+6.3
Corrected values

IRC (dB) -12.54+4.0 -12.54+4.0

BUB (dB) -18.14+4.1 -15.74+4.8




CHAPTER VIII
Discussion

There are several challenges in the sensitive ultrasound diagnostics of trabecular bone.
Clinical ultrasound devices are designed for the measurement of only peripheral sites.
Novel ultrasound techniques should be developed for the measurement of central
skeletal sites, and the selection of clinical reference measure is crucial in this endeav-
our. Most studies compare clinical ultrasound devices with DXA devices, the present
gold standard in osteoporosis diagnosis. However, the DXA technique determines
only the areal bone mineral density. Although it is an important determinant of bone
strength, areal bone density is only one of many compositional, structural and ge-
ometrical factors affecting the probability of bone fracture. The potential of a novel
ultrasound technique should be evaluated by comparing it with mechanical testing or
the prevalence of fractures. Further, soft tissues overlying the bone are a major chal-
lenge in bone ultrasound measurements. Extensive individual variation in the thick-
ness and composition of the soft tissue layer creates significant uncertainty. Moreover,
the effect of the cortical layer has to be eliminated to obtain an accurate clinical ultra-
sound measurement of trabecular bone.

In the present thesis work, the composition of trabecular bone and calcified matrix
was analysed and related to measured ultrasound parameters (Study I). Bone quan-
tity was the strongest determinant of ultrasound parameters, while backscattering
was also found to be significantly related to the collagen content of calcified matrix.
In Study II, the diagnostic potential of a single point measurement and quantitative
ultrasound imaging was compared. In addition, the spatial variation in ultrasound
parameter values within the region of interest was investigated. A significant varia-
tion in ultrasound parameter values within the ROI was found, and the variation was
found to be related to the mechanical parameters of trabecular bone. In Study III, the
effect of overlying soft tissue on the ultrasound measurement of human trabecular
bone was investigated at various frequencies. Soft tissue was found to induce signifi-
cant errors in the ultrasound measurements of trabecular bone, and the effect of over-
lying soft tissue was found to increase with the ultrasound frequency. To minimize
this source of measurement uncertainty, a new ultrasound method (DFUS) was intro-
duced for soft tissue correction (Study IV). After DFUS correction, the error caused
by the soft tissues on the QUS parameters was typically 1/10 of the error without any
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correction.

EFFECT OF COMPOSITION ON THE ACOUSTIC AND MECHANICAL PROPERTIES OF TRA-
BECULAR BONE

In Study I, the partial correlation analysis indicated, as expected, that vBMD is af-
fected only by the bone volume fraction and mineral content of trabeculae. Inter-
estingly, partial correlation coefficients between the ultrasound parameters and bone
volume fraction were lower than the linear correlation coefficients. This suggests that
ultrasound parameters are influenced not only by bone volume fraction but also by
other compositional properties of bone. Furthermore, AIB showed a significant nega-
tive correlation, even after adjustment by other variables of composition, with the col-
lagen content of calcified matrix. Wear (1999)(169) has demonstrated less scattering
from elastic scatterers than from inelastic scatterers. Thus, the negative association
between AIB and collagen content may be explained by the variation in the elastic
properties of the scatter (78).

Since collagen is an important determinant of bone toughness, ultrasound backscat-
tering may provide information that is valuable when predicting fracture risk. Huo-
pio et al. (2004)(86) demonstrated that calcaneal ultrasound measurements predicted
early postmenopausal fractures as accurately as axial BMD. Fracture risk depends
on bone volume fraction, bone microstructure, and the composition and mechanical
properties of the calcified matrix as well as tissue turnover and microdamage accu-
mulation (25, 41). Bone ultimate strength and toughness are known to decrease sig-
nificantly along with collagen denaturation (168). In Study I, however, the ultimate
strength of trabecular bone was dependent on the bone volume fraction, but not on
the calcified matrix collagen content. Low variation (CV) in the calcified matrix col-
lagen content (11.2%) among the samples may explain this finding. Since there was
a considerable variation in donor age (24 - 76 years) and bone volume fraction (CV =
25.1%), the detected low variation in collagen content suggests that the collagen con-
tent of calcified matrix is relatively constant, exhibiting only minor variation within
the healthy population. However, quantitative information on bone organic compo-
sition, e.g. collagen content, could be of clinical benefit. Taken together, the present
findings suggest that acoustic measurements may provide diagnostically useful in-
formation not only about bone volume fraction but also about the composition of
trabecular calcified matrix.

SPATIAL VARIATION OF ULTRASOUND PARAMETERS

Variation of AIB within the ROI was found to be a significant predictor of bone ulti-
mate strength (Study II). Notably, the linear association between the variation of AIB
and ultimate strength was negative. Backscattering is related to scatterer size i.e. to
the thickness of the trabeculae or to the size of the pores (28). With small pore sizes,
e.g. in compact bone, trabecular bone is acoustically more homogenous diminishing
the variation of AIB. With greater pore sizes, e.g. in osteoporotic trabecular bone, tra-
becular bone is acoustically more heterogeneous, increasing the variation in AIB.
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The high variation of ultrasound parameter values within the ROI raises the ques-
tion of the value of point measurements and emphasizes the potential and role of
parametric imaging. Since spatial variation in ultrasound parameters within e.g. the
human proximal femur has been reported (138), the present findings are not surpris-
ing. The variation in acoustic properties may be explained by the structural character-
istics of trabecular bone and the relatively small focus size of the applied transducer
(a beam diameter (-6 dB) = 1.4 mm at focus). The more focused the beam is, the more
it is affected by spatial variation in trabecular structure, density and mechanical prop-
erties. As the mean trabecular separation of the samples was between 0.3 and 0.8 mm,
the variation in pore size and porosity can significantly contribute to the spatial varia-
tion detected in ultrasound parameter values. When conducting ultrasound imaging
of trabecular bone, the phase cancellation effect (173) may also contribute to spatial
variation in the backscattering parameters. Based on the investigations by Wear (173),
the phase cancellation effects are more significant at high frequencies.

EFFECT OF TIME WINDOW LENGTH ON AIB ANALYSIS

In Study II, the association between AIB and ultimate strength was dependent on the
length of the time window in ultrasound analysis. Mean AIB within the ROI pre-
dicted ultimate strength significantly only with a short time window (r = 0.62, tw =1
us), while significant associations were observed between the variation of AIB within
the ROI and ultimate strength also when longer time windows were applied (r =-0.82,
tw =4 ps). Hoffmeister ef al. (2002)(78) found weak negative and positive correlations
(r =-0.35 - 0.50) between AIB and BMD in human trabecular bone in vitro. In bovine
trabecular bone, Hoffmeister et al. (2000)(79) reported a weak negative association
between AIB and apparent density (r = -0.34 - -0.51). Both studies (Hoffmeister et
al. 2000, 2002) were conducted using an ultrasound transducer with a 2.25 MHz cen-
ter frequency. In their analyses, a 4 us time window length was applied. Recently,
Hoffmeister et al. (2006)(77) reported a strong negative correlation (v = -0.90) between
AIB and BMD, measured using a 5.0 MHz center frequency and a 4 s time window
length. The positive linear correlation between AIB and ultimate strength reported
in Study II may be explained by the smaller effect of ultrasound attenuation. Since
ultrasound backscattering arises from the deeper bone structures with long time win-
dows, the backscattered sound is more attenuated. Further, ultrasound attenuation
increases as a function of frequency, so the attenuation effect on AIB is higher at 5.0
MHz than at 2.25 MHz. This may explain the negative association between AIB and
BMD reported by Hoffmeister et al. (2006) as well as the positive correlation between
AIB and ultimate strength reported in Study IL. In human trabecular bone, the true
backscattering (broadband ultrasound backscattering, BUB), compensated by attenu-
ation, is similar to that measured with 2.25 or 5.0 MHz (67). Our results suggest that
the association between AIB and mechanical properties is positive when low frequen-
cies and short time windows (in the present Study II, f = 2.25 MHz and tw =1 ps)
are used. Due to the attenuation, an increase in frequency and time window length
diminishes the strength of the correlation between AIB and mechanical properties.



58

INVESTIGATION AND ELIMINATION OF THE EFFECT OF OVERLYING SOFT TISSUES ON
QUS PARAMETERS

In Study III, overlying soft tissues were found to influence significantly the measured
values of ultrasound attenuation, speed, reflection and backscattering in bone in vitro.
The earlier studies have also demonstrated the influence of soft tissue on measured
SOS in bone (29, 57, 99). Both Kotzki et al. (1994)(99) and Gomez et al. (1997)(57)
reported that an increasing amount of adipose tissue significantly reduces the SOS
values measured for bone. Similarly, ankle oedema has been shown to significantly
decrease the measured BUA and SOS values (90). In Study I1I, the effect of soft tissues
was eliminated by applying a numerical correction with a priori knowledge of soft
tissue thickness and the lean and adipose tissue ratio. Soft tissue-related errors were
seen to increase as a function of ultrasound frequency; however, with the numerical
correction the soft tissue-induced errors could be effectively minimized.

In Study IV, a new dual frequency ultrasound (DFUS) method for soft tissue cor-
rection of bone ultrasound measurement was introduced. The initial validation with
elastomer samples demonstrated a significant improvement in the accuracy of ultra-
sound measurements. The error of IRC at 5.0 MHz diminished from 103.6 - 289.4%
to -15.9 - 5.6%. The reproducibility (CV) of the IRC measurements for the elastomers
was 1.2% (at 5.0 MHz). Similarly, with human trabecular bone samples with 10 - 20
mm of overlying soft tissue the error in BUB (at 5.0 MHz) diminished from 58.6% to
-4.9%.

Several patent descriptions (101, 103, 116, 120, 150, 184, 185) and scientific papers
(111, 137) have been published on ultrasound techniques for the determination of
soft tissue composition and the correction of the soft tissue effect in bone ultrasound
measurements. However, these techniques are based on the through-transmission
technique, assume a linear relation between attenuation and ultrasound frequency, or
require detection of acoustic interfaces between the adipose and lean tissue layers.

In the patent GB2257253 (103), bone properties are measured with the through-
transmission technique, while the effect of soft tissue is determined with the pulse-
echo technique. The thickness of the soft tissue is analysed with the assumption of
constant sound speed in the soft tissue. In addition, the reflections from the inter-
faces between the adipose and lean tissues must be detected in order to determine the
thickness of the adipose and lean tissue layers.

In the patent US4512195 (120), a technique for the ultrasonic characterization of
living body tissues is described. The thickness of the tissue layers is analysed from
the echo signal by assuming constant sound speed in all tissues. Moreover, the ultra-
sound attenuation in tissues is analysed with the echo signals arising from the front
and back surfaces of the tissue layers. With this technique, the front and back sur-
faces of the tissues have to be parallel in order to analyse the attenuation correction.
Furthermore, all interfaces between the tissue layers must be acoustically visible.

Luetal. (1995)(111) introduced a soft tissue correction method for backscatter mea-
surements. In this technique, two different frequencies are used to estimate the effec-
tive attenuation coefficient of soft tissue between the ultrasound transducer and the
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object of interest. However, this technique assumes constant sound speed in different
tissues, so it estimates the thickness of tissues differently than the DFUS technique.
In addition, the technique assumes a linear relation between the attenuation of ultra-
sound in soft tissue and frequency. The DFUS technique is free from this assumption.

In summary, the DFUS technique introduced in Study IV is the first pulse-echo
ultrasound technique capable of determining the amount and composition of over-
lying soft tissue without reflection information from the interfaces between adipose
and lean tissues, and may therefore enhance the accuracy of clinical ultrasound mea-
surements significantly.



60




CHAPTER IX
Summary and conclusions

The gold standard in osteoporosis diagnosis is currently dual energy X-ray absorp-
tiometry. DXA provides information about the areal bone mineral density. However,
bone strength depends on both the quantity and quality of the calcified matrix of tra-
becular bone. These are the properties which also affect the QUS measurements. Un-
fortunately, current clinical QUS measurements are only moderately good predictors
of osteoporotic bone fractures.

In this thesis work, the effect of trabecular bone composition on ultrasound, DXA
and mechanical parameters was analysed. The effect of spatial variation in 2D ultra-
sound parametric images was also investigated, as was the effect of overlying soft
tissue on trabecular bone ultrasound measurements. A novel soft tissue correction
method (DFUS) was introduced and evaluated.

The most important results can be summarized as follows:

1. Ultrasound backscattering is a significant predictor of collagen content in calci-
fied matrix.

2. Spatial variation of ultrasound backscattering is significantly associated with the
ultimate strength of trabecular bone.

3. Overlying soft tissues can induce significant errors in the values of ultrasound
parameters of trabecular bone.

4. The DFUS technique can be used to determine the thickness and composition of

overlying soft tissues. Therefore, the DFUS technique reduces significantly the error
induced by soft tissues in the ultrasound measurement of bone.
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