
MARKO JÄNTTI

Difficulties in Managing
Software Problems and Defects

JOKA
KUOPIO 2008

KUOPION YLIOPISTON JULKAISUJA H. INFORMAATIOTEKNOLOGIA JA KAUPPATIETEET 11
KUOPIO UNIVERSITY PUBLICATIONS H. BUSINESS AND INFORMATION TECHNOLOGY 11

Doctoral dissertation

To be presented by permission of the Faculty of Business and Information Technology of

the University of Kuopio for public examination in Auditorium,

Microteknia building, University of Kuopio,

on Friday 1st February 2008, at 12 noon

Department of Computer Science

University of Kuopio

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UEF Electronic Publications

https://core.ac.uk/display/15167253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distributor : Kuopio University Library
 P.O. Box 1627
 FI-70211 KUOPIO
 FINLAND
 Tel. +358 17 163 430
 Fax +358 17 163 410
 www.uku.fi/kirjasto/julkaisutoiminta/julkmyyn.html

Series Editors: Professor Markku Nihtilä, D.Sc.
 Department of Mathematics and Statistics

 Assistant Professor Mika Pasanen, Ph.D.
 Department of Business and Management

Author’s address: Department of Computer Science
 University of Kuopio
 P.O. Box. 1627
 FI-70211 KUOPIO
 FINLAND
 Tel. +358 17 162 375
 Fax +358 17 162 595
 E-mail: Marko.Jantti@uku.fi

Supervisors: Professor Anne Eerola, Ph.D.
 Department of Computer Science
 University of Kuopio

 Professor Jyrki Kontio, D.Tech.
 Department of Computer Science and Engineering
 Helsinki University of Technology

Reviewers: Associate Professor Mira Kajko-Mattsson, Ph.D.
 Department of Computer and System Sciences
 Stockholm University and Royal Institute of Technology
 Sweden

 Professor Markku Oivo, D.Tech.
 Department of Information Processing Science
 University of Oulu

Opponent: Professor Ilkka Haikala, Ph.D.
 Institute of Software Systems
 Tampere University of Technology

ISBN 978-951-781-990-9
ISBN 978-951-27-0109-4 (PDF)
ISSN 1459-7586

Kop i j yvä
Kuop io 2008
F in l and

Jäntti, Marko. Difficulties in managing software problems and defects. Kuopio University
Publications H. Business and Information Technology 11. 2008. 61 p.
ISBN 978-951-781-990-9
ISBN 978-951-27-0109-4 (PDF)
ISSN 1459-7586

ABSTRACT
Many IT organizations are struggling with the increasing number of software prob-
lems and defects. The number of software problems and defects has increased due to
complex IT systems, new technologies, and tight project schedules. Software qual-
ity problems can rapidly increase the costs of software maintenance and development.
Unfortunately, support teams of IT organizations have limited resources for resolving
software problems and defects. Often, they do not have well-defined process models
for problem management. Additionally, traditional defect management models are not
adequate to service-oriented software business in which problem resolution requires
communication between several service providers.

The process of managing problems and defects includes a large number of diffi-
culties and challenges but has been given little consideration in software engineering
research. The research work of this thesis is organized around four goals. The first goal
is to study software quality assurance methods that can be used to detect defects. The
second goal is to identify the difficulties that organizations have in managing software
defects and which improvements are needed to existing defect management models.
The third goal is to study the concepts of service-oriented problem management. The
fourth goal is to study challenges and difficulties of service-oriented problem manage-
ment methods.

In this thesis, we have examined software quality assurance methods with a strong
focus on UML-based testing and studied how early test case planning helps to de-
tect defects and problems. We have identified difficulties that IT customers and IT
providers have regarding defect management. We have introduced a service-oriented
problem management model that describes the concepts of problem management, the
relationships between concepts, and connections between problem management and
other service support processes. The model has been tested and evaluated in practice
with several case organizations. As a part of the model, a checklist for evaluating prob-
lem management was created and a knowledge base for proactive problem management
was established.

The main contributions of this thesis are 1) evaluation of a UML-based test model
as a defect detection technique, 2) a documented list of challenges and difficulties
regarding defect management, 3) a systematic approach on service-oriented problem
management with recommendations and guidelines, and 4) a list of difficulties con-
cerning service-oriented problem management. These contributions can be used by
problem managers and quality managers to improve problem management processes.

Universal Decimal Classification: 004.052.4, 004.415.5, 004.415.53, 006.015.5
Inspect Thesaurus: computer software; software quality; software process improve-
ment; quality assurance, quality management; software management; errors; error de-
tection; Unified Modeling Language; program testing

Acknowledgments

In the fall 2003, Professor Anne Eerola encouraged me to start writing a doctoral
thesis after I had finished my master’s thesis on “Test case design based on UML mod-
els”. I have always been interested in defects and problems. Therefore, the process of
managing defects and problems was an obvious choice of research topic. Now, it is
time to give credit to the people who supported me during the research process.

This thesis is a result of research carried out in the Department of Computer Science
at the University of Kuopio. First of all, I want to thank my supervisor, Professor Anne
Eerola, for excellent guidance and support when I was writing this thesis. I would also
like to thank Associate Professor Mira Kajko-Mattsson and Professor Markku Oivo for
their reviews and valuable comments regarding the thesis.

I would like to thank all my research colleagues and the students that I have worked
with: Tanja Toroi, Aki Miettinen, Harri Karhunen, and Niko Pylkkänen who helped me
during the research process. I sincerely thank the organizations that participated in the
PlugIT project and Service Oriented Software Engineering project. Many thanks to the
co-writers and research partners from Kuopio University Hospital, TietoEnator For-
est & Energy, Savon Voima, Navicore, and Softera. Special thanks to Kari Kinnunen,
Kyösti Vähäkainu, Pirkko Pessi, Juha Vaaranmäki, and Jukka Kaukola for their contri-
bution.

My sincere thanks go also to the Department of Computer Science at the University
of Kuopio for providing an excellent working environment. I would like to thank Risto
Honkanen, Paula Leinonen and Janne Nieminen who gave me support in using La-
tex. Additionally, I would like to thank Kenneth Pennington from the HUT Language
Center for the language inspection of this thesis.

This work was supported financially by TEKES, the European Regional Develop-
ment Fund and the partner companies of the PlugIT project and the Service Oriented
Software Engineering (SOSE) project.

Finally, I want to thank my family and my wife Elina for their patience, support
and love.

Abbreviations and notations

Abbreviation Description
CAB Change Advisory Board
CI Configuration Item
CMDB Configuration Management Database
CMM Capability Maturity Model
FAQ Frequently Asked Question
ITIL IT Infrastructure Library
KB Knowledge Base
RFC Request For Change
SLA Service Level Agreement
SLM Service Level Management
SPOC Single Point of Contact

List of the original publications

This thesis is based on the following published articles, which are referred to in the text
by their Roman numerals I – VI:

I. M. Jäntti, T. Toroi, UML-Based Testing: A Case Study. In: Koskimies K, Kuzniarz
L, Lilius J, Porres I (editors). Proceedings of NWUML’2004. 2nd Nordic Work-
shop on the Unified Modeling Language, pages 33-44, Turku, Finland, August
19-20, Turku: Turku Centre for Computer Science, TUCS General Publication 35,
2004.

II. M. Jäntti, T. Toroi and A. Eerola, Difficulties in Establishing a Defect Management
Process: A Case Study. In: Münch Jürgen, Vierimaa Matias (editors), Product-
Focused Software Process Improvement, 7th Conference, PROFES 2006, pages
142-150, Amsterdam, The Netherlands, June 12-14, 2006, Germany: Springer
Verlag, 2006.

III. M. Jäntti, A. Eerola, A Conceptual Model of IT Service Problem Management.
Proceedings of the IEEE International Conference on Service Systems and Service
Management ICSSSM’06, pages 798-803, Troyes, France, 25-27 October, 2006.

IV. M. Jäntti, A. Miettinen, K. Vähäkainu, A Checklist for Evaluating the Software
Problem Management model, a Case Study. In: The IASTED International Con-
ference on Software Engineering SE 2007, pages 7-12, Innsbruck, Austria, Febru-
ary 12-15, 2007.

V. M. Jäntti, K. Kinnunen, Improving the Software Problem Management Process: A
Case Study. Proceedings of European Systems & Software Process Improvement
and Innovation, pages 40-49, Joensuu, Finland, October 11-13, 2006. Germany:
Springer Verlag, 2006.

VI. M. Jäntti, K. Vähäkainu, Challenges in Implementing a Knowledge Base for Soft-
ware Problem Management. Proceedings of the IASTED International Conference
on Knowledge Sharing and Collaborative Engineering (KSCE 2006), pages 63-68,
St. Thomas, US Virgin Islands. November 29-December 1, 2006.

Contents

1 Introduction 13

2 Research Methodology 15
2.1 Research framework . 15

2.1.1 Traditional software quality assurance 15
2.1.2 Service-oriented quality assurance 16

2.2 Research questions . 18
2.3 Research methods . 19
2.4 Research process and phases . 21

3 Quality assurance in software engineering 23
3.1 Traditional quality assurance methods for finding problems and defects 24
3.2 Difficulties in managing problems and defects 26

4 Service-oriented problem management 29
4.1 Background for problem management 29
4.2 Basic concepts of problem management 30
4.3 Reactive and proactive problem management 32
4.4 Problem management tools . 36
4.5 Metrics and the process maturity . 37
4.6 Connections to other service management processes 39
4.7 Difficulties in service-oriented problem management 40

5 Summary of papers 43
5.1 Relation of research papers and projects 43
5.2 Summary of papers . 44

5.2.1 UML-Based Testing: A Case Study 44
5.2.2 Difficulties in Establishing a Defect Management Process: A

Case Study . 45
5.2.3 A Conceptual Model of IT Service Problem Management . . 46
5.2.4 A Checklist for Evaluating the Software Problem

Management Model . 46
5.2.5 Improving the Software Problem Management Process 46

5.2.6 Challenges in Implementing a Knowledge Base for Software
Problem Management . 47

5.3 Summary of the results . 47

6 Conclusions 51
6.1 Contributions of the thesis . 51
6.2 Future work . 53

Bibliography 54

Chapter 1

Introduction

Software problems have become a part of our daily life. During a working day and
free time we face numerous software problems, including application failures, security
bugs, errors in user documentation, poor usability, availability and performance prob-
lems associated with IT services. Problems such as these are very common because the
IT systems are used everywhere.

The National Institute of Standards and Technology has estimated that software
defects and problems annually cost 59.5 billions the U.S. economy [24]. The rework
in software projects (problem resolution and bug fixes) leads to higher software devel-
opment and maintenance costs and and higher prices for IT services and products. In
addition to the increasing number of problems and defects, the quality of the process
of managing problems and defects needs to be improved.

Problems concerning quality in a problem management process can lead, for ex-
ample, following symptoms: end users do not know which contact person is the cor-
rect one and report problems to the wrong service desk; customers claim that the IT
provider does not react to the problems reported by customers; the number of open
problems rapidly increases in relation to closed problems at the service desk; and cus-
tomers have to wait a long time for solutions to problems.

An interesting question is why the above quality problems still exist in software
engineering? Previous studies have presented dozens of software quality assurance
methods, including reviews [91], inspections [12, 25], pair programming [80], various
testing approaches (module testing, integration testing, system testing, and acceptance
testing) [61], risk management techniques [57], and defect management methods [22,
13]. The answer might be that most of these methods were developed to assure quality
in product-oriented software development, not in service-oriented business.

Why do we need service-oriented problem management? First, traditional defect
management and testing primarily focus on managing and resolving defects related to
program code and other software artifacts. These defects are often directly assigned to
developers that have to resolve defects. Defect resolution decreases the time that was
originally reserved for developing new modules. In service-oriented problem manage-
ment, all the support requests are first sent to the service desk that is able to resolve
many problems without interrupting developers’ work.

13

14 Chapter 1. Introduction

Second, IT organizations world-wide have started to update their product-oriented
software development models to service management models, such as IT Infrastructure
Library (ITIL) [73] and COBIT [15]. Hence, old product-oriented and project-oriented
quality assurance methods need to be updated to service-oriented quality assurance
methods. Instead of software product quality, today’s IT managers emphasize service
quality. Service-oriented problem management uses the same concepts than service
management standards and frameworks. Thus, it is easier to integrate a service-oriented
problem management model into the organization’s service management framework
than a traditional defect management process.

Third, service-oriented problem management provides features that are either com-
pletely omitted or poorly defined by defect management frameworks, such as how to
use service level agreements to define target problem resolution times, and how to use
a knowledge base as a self-service desk. Service-oriented problem management can be
used both for managing non-code-related software problems and software defects. It
combines the customer-centric problem management activities of the service desk with
development-centric defect management activities.

Finally, service-oriented problem management emphasizes the customer’s active
role in problem management and service quality improvement. An informed customer
concept in service management means that customers should receive enough infor-
mation from an IT provider during problem handling, such as a confirmation that a
customer’s support request has been accepted by the service desk, and notifications
of problem status changes. Additionally, customers should be able to review problem
resolution before the problem is closed.

There is a clear need for service-oriented models of software problem management
that could help IT organizations both to handle already reported problems in IT services
as well as prevent problems before they occur.

The summary consists of five chapters. Chapter 2 describes the research frame-
work, research questions, research methods, and the research process. In Chapter 3,
we introduce the most common quality assurance methods of software engineering and
discuss the challenges and bottlenecks related to the process of managing problems and
defects. Chapter 4 presents the service-oriented problem management approach with
the description of problem management activities, roles, metrics, and connections to
other support processes. Chapter 5 summarizes the original papers and provides a
summary of research results. Finally, Chapter 6 draws conclusions from this thesis.

Chapter 2

Research Methodology

In the following sections, we first describe the research framework with two view-
points: traditional software quality assurance and service-oriented quality assurance.
Second, the research questions are defined. Third, we describe the research methods
used in this thesis. Finally, the research process and its phases are described.

2.1 Research framework

Currently, there are two main approaches that IT organizations use to assure quality
and to manage defects and problems: 1) traditional software quality assurance (includ-
ing defect management) and 2) service-oriented quality assurance (including problem
management). These two approaches are introduced in the following sections.

2.1.1 Traditional software quality assurance

The traditional software quality assurance methods include testing, reviews, inspec-
tions, defect management models and techniques, such as defect prevention [64], the
defect management process [81] and root cause analysis method [59, 13]. In addition
to these methods, Horch [32] emphasizes standards, vendor management, education
of software people, safety and security issues, and risk management. Software quality
assurance methods can be organized into a software quality system (SQS). There are
two goals for the software quality system [32]: to build quality into the software from
the beginning and to keep the quality in the software throughout the software life cycle.

This thesis focuses on the process of managing defects. We will not deal with
safety and security issues and risk management. Defect management is a research field
that includes many terms (defects, errors, bugs, faults, failures, and problems) that
are difficult to distinguish from each other. The definitions that we use are based on
international standards. Occasionally, software developers (programmers and design-
ers etc.) make errors or mistakes that are actions that result in software containing a
fault [21, 34].

15

16 Chapter 2. Research Methodology

A fault (or a bug) is “an accidental condition that causes a functional unit to fail to
perform its required function” [34]. A fault may cause a failure. Failures occur during
the execution of a software program. According to IEEE standard 729-1983 [34] a
failure is “an event in which a system or system component does not perform a required
function within specified limits”. Failures are caused by faults.

Moreover, a very common term in software engineering is a defect. A framework
for counting problems and defects defines a software defect as “any flaw or imperfec-
tion in a software work product or software process” [21]. Another definition is given
by the IEEE Standard Dictionary of Measures to Produce Reliable Software [35]. It
defines defects as product anomalies such as omissions and imperfections found during
early life-cycle phases and software faults.

We shall define a defect management process as a well-defined and documented
process for preventing, finding, and resolving defects. Defect management is a tra-
ditional way to see the process of handling defects. Defect management focuses on
preventing defects and resolving existing defects. Typical adopters of this approach
are product development units that focus on programming and testing software and
correcting bugs.

Defect management models usually include numerous references to other tradi-
tional quality assurance techniques. For example, the defect management process of
the Quality Assurance institute [81] emphasizes the importance of risk management in
identifying critical problem areas in software products and the software development
process. Risk management typically involves identifying critical risks, estimating ex-
pected impact and minimizing the estimated impact of risks [57].

2.1.2 Service-oriented quality assurance

Many IT departments and IT organizations have started to use IT service management
frameworks in order to manage both the services they provide their customers and the
services that they purchase from third-party service providers. Support and mainte-
nance services for software products and application services are good examples of IT
services. Problem management plays an important role within the support and main-
tenance process in software engineering. A recent industrial IT service management
survey [63] showed that IT organizations consider support processes (configuration
management and problem management) as key development targets in the near future.

Additionally, a systematic approach for managing defects and problems helps to
decrease support and maintenance costs and the amount of rework in software devel-
opment. Thus, it increases the effectiveness and the efficiency of the support processes.
Problem management aims to minimize the impact of software problems and defects
on the business and to identify the root cause of these problems [73]. A software prob-
lem can be defined as “any problem that a customer or a user encounters while using
a software product or an IT service” [21]. Hence, the definition of a problem encom-
passes software problems, hardware problems, and other problems, such as operational
ones.

Problem management has received little attention in the academic literature. Rather,
most research has focused on defect management. The following studies on problem
tracking, software maintenance and support, and service management have dealt with

2.1. Research framework 17

problem management. Cunningham [18] has examined the problem tracking and reso-
lution process at the university of Kansas and emphasized the importance of a problem
tracking tool: “A problem logbook is also more efficient, clearer, more consistent in
format than the paper notebook could ever be”.

Similarly, Kanter and Jones [53] have presented the features of the problem-tracking
system in the California State University network. They state that “The problem res-
olution process has given our group a more service-oriented focus and enhanced rep-
utation with our campus members”. Gruhn and Urbainczyk [28] have studied the de-
velopment of a business process-based problem-tracking system that can handle both
internal problem reports created by the quality assurance team and external problem re-
ports created by customers. Sandusky and Gasser have studied the process of managing
software problems in distributed software environments [84].

In software maintenance studies, problem management has been classified as cor-
rective software maintenance [46, 50]. Kajko-Mattsson et al. [48] have developed
the corrective maintenance maturity model (CM3) that includes problem management.
Their framework was developed in cooperation with ABB. Kajko-Mattsson notes that
main functions of problem management are collecting information of problems, iden-
tifying defects related to problems and removing defects [46]. Additionally, April et al.
[3] have presented software maintenance capability maturity model SM CMM. Finally,
service management studies dealing with service levels and service level agreements
[89, 29] are also valuable for problem management research. However, none of these
studies have thoroughly examined the difficulties that might arise in the problem man-
agement process.

The most comprehensive description of the problem management process can be
found in the IT service management framework IT Infrastructure Library (ITIL) [73].
For each service management process, ITIL has defined goals, benefits, basic concepts,
process activities, metrics, and roles. ITIL framework categorizes problem manage-
ment activities into two dimensions: reactive and proactive problem management. Re-
active problem management is focused on resolving reported incidents and problems
whereas the goal of proactive problem management is to prevent incidents before they
occur.

An incident can be defined as "any event which is not part of the standard operation
of a service and which causes, or may cause, an interruption to, or a reduction in the
quality of that service" [73]. A problem is defined in ITIL as “the unknown underlying
cause of one or more incidents” [73]. Reactive problem management is further divided
into problem control and error control activities where the problem control is respon-
sible for identifying the root cause of a problem and defining a temporary solution
(work-around) for the problem.

Problem control aims to convert problems into known errors. A known error is
“an incident or problem for which a root cause is known and for which a temporary
work-around or a permanent alternative has been identified” [73]. The error control
activity is responsible for processing known errors. Additionally, there are other service
management frameworks (CoBIT [15]) and company-specific IT service management
models (Microsoft Operation Framework [66]) available for problem management.

18 Chapter 2. Research Methodology

2.2 Research questions

This thesis answers four main research questions:

1. Which methods can be used to detect defects?

2. What types of difficulties do IT organizations have regarding defect manage-
ment?

3. What is service oriented problem management and which concepts are related to
it?

4. What types of difficulties do IT organizations have in introducing service-oriented
problem management?

Why is it important to answer those research questions? The first question is im-
portant because current software projects spend about 40-50 percent of their effort on
avoidable rework [9]. By rework, Boehm means, for example, fixing defects that could
have been detected earlier in software development and fixed less expensively. All
stages of testing are important for detecting defects. Because substantial research has
been made in the area of system testing, we do not deal with it in this thesis. However,
relatively little research effort [47] has been spent on how developer-testing should be
conducted and how UML diagrams support developer-testing and user-side testing.

Many studies on software testing recommend that testing should be started in the
early phase of software life-cycle [61, 65, 83]. It is much cheaper to fix problems in the
design phase than in the maintenance phase. Similarly, the service transition process
of the ITIL emphasizes that it is important to start service validation, including testing,
early in the service lifecycle [77]. McGregor and Korson [65] state that existing work
products, such as UML diagrams, can be used as the basis of deriving test cases.

The second research question is important because the difficulties regarding defect
management have been given very little attention in the software engineering literature.
We argue that organizations have several difficulties and challenges regarding defect
management. Information on difficulties in the current defect management processes
helps software development teams to improve the process of managing defects.

Unfortunately, a defect management model covers only part of the activities asso-
ciated with customer support. Defect management is a development-centric process
that does not define how user problems are managed or how problems are caused by
defects. There is a need for a well-defined, documented problem management model
that combines the processes of problem management and defect management together
and is suitable for service-oriented software businesss.

Concerning the third research question, more research efforts are needed to exam-
ine service-oriented problem management, as it is a relatively new approach compared
to defect management. IT organizations need well-defined process models for manag-
ing problems and defects. A service-oriented approach introduces new concepts that
need to be mapped into traditional quality assurance concepts thus highlighting the
need for a conceptual model describing service-oriented problem management.

The fourth research question addresses the need of IT organizations for guidelines
on how to introduce service management processes, including problem management,

2.3. Research methods 19

effectively and efficiently. It is important to publish research results on the challenges
arising from the introduction of service management processes because these results
help other IT organizations to identify and avoid similar problems in process imple-
mentation projects. Furthermore, these results help organizations to establish the basis
for continuous process improvement concerning problem management.

2.3 Research methods

There are several research approaches and methods that can be used in software engi-
neering research. Järvinen and Järvinen [45] categorize research approaches that study
reality into conceptual-analytical and empirical approaches. Conceptual-analytical
studies focus on analyzing existing constructs, identifying theories, models and frame-
works of previous studies, and performing logical reasoning. Empirical approaches
can be further divided into 1) those that examines the current state and past (includ-
ing a theory-testing approach and a theory-creating approach) and 2) those that take a
constructive approach.

The theory-testing approach includes field studies, surveys, and laboratory exper-
iments, while a theory-creating approach includes normal case studies, and grounded
theory studies. This thesis uses both conceptual-analytical approaches and empirical
approaches. According to Järvinen [44] case studies belong to either theory-creating or
theory testing approaches. Yin [93] defines a case study as “an empirical inquiry that
investigates a contemporary phenomen within its real-life context, especially when the
boundaries between the phenomenon and the context are not clearly evident”. Using a
case study as a research method has been criticized for a number of reasons. It has been
claimed that a case study lacks the academic rigor (the control of research), research
results based on case studies cannot be generalized, and that a case study requires a lot
of resources and experienced case study researchers. We can answer to these claims by
using Yin’s arguments concerning the case study method [93]. To increase the amount
of rigor in our case studies, we studied the recommendations for a good case study
research provided by Eisenhardt [19] and Yin [93], cited in Järvinen and Järvinen [45].
Yin [93] states that instead of statistical generalization, the case study method provides
the possibility to make analytical generalizations and thus extend theory. Regarding
the last claim, a case study requires considerable resources and good case study re-
searchers. However, this challenge also affects other research methods.

In Paper I, the purpose was to test a theory-based UML test model in practice and to
collect experiences regarding its strenghts and weaknesses. Thus, the paper has charac-
teristics of both theory-creating and theory-testing approaches. We explored how test
cases based on behavioral UML diagrams can be used to detect software problems and
defects. UML-based testing well supports traditional software quality assurance meth-
ods, such as reviews and inspections. Paper II was more a theory-creating paper that
presented a list of defect management challenges. Paper III introduced a conceptual
model for IT service problem management. The model was produced by analyzing
previous models and frameworks. It used a conceptual-analytical approach with a con-
structive research method. Paper IV presented a checklist for problem management and
experiences on applying the checklist. It used a combination of constructive research

20 Chapter 2. Research Methodology

method and a theory-creating case study method. In Paper V we used a theory-creating
case study method to improve the problem management process of a case organization.
Paper VI used both a case study research method and a constructive research method
(with a knowledge base as a construction). We selected case organizations from the
pool of our research partner organizations. The organizations that were interested in
software quality assurance were selected. Additionally, our goal was to choose cus-
tomer supplier pairs for our research in order to create an fruitful environment for pro-
cess improvement. Thus, a convenience sampling was the main case selection method.

Eisenhardt [19] points out that although data analysis plays a very important role
in creating theory of case studies, it is the most difficult part of the research process.
Eisenhardt introduces two different analysis techniques: a within-case analysis and a
cross-case analysis. The basic idea of the within-case analysis is to examine cases
carefully as stand-alone entities before making any generalizations. The cross-case
analysis in turn aims to search cross-case patterns [19]. In Paper II, we used a cross-
case analysis, while the other case studies focused on a within-case analysis.

A case study method was selected because it provides a deeper understanding of the
factors related to process improvement challenges than that offered by large surveys.
Additionally, those organizations participating in the research project recommended
using other data collection methods rather than long question forms. Our case studies
in papers IV-VI had features of an action research method [4] because the researchers
were involved as active participants, together with the employees of case organizations,
in improving the process and identifying bottlenecks in the working methods. How-
ever, action research requires several research cycles which was not possible in our
case due to limited time resources.

Figure 2.1 describes the research areas from which the literature was selected.

Testing and
Quality

Management

Defect
Management

Problem
Management

Knowledge
Management

Service desk &
Maintenance

UML-based test case design
UML in testing process

Defect management process
Framework for counting defects
and problems

Knowledge management
frameworks
Knowledge centered support
(KCS)

Problem management process:
goals, activities, roles, metrics
Reactive & proactive problem
management

ITIL

CoBIT

SEI

CMM

KCS

CEN

RUP

Incident Management
Corrective maintenance
Service Level Management

ISO/IEC 20 000

Figure 2.1: Literature used in the research process.

2.4. Research process and phases 21

The context in which the studies were conducted was the service support inter-
face between IT companies and IT customers. In Paper I, the research was focused
on testing techniques [61, 79, 58] and model-based testing [30, 7]. In paper II, de-
fect management studies played an important role. Two frameworks were found to
be particularly valuable for this thesis: the defect management process of the Qual-
ity Assurance Institute [81] and the framework for counting problems and defects of
the Software Engineering Institute. In Paper III, the research focus shifted to prob-
lem management [73] and other service management processes [72, 70, 71]. Finally,
the problem management became the central focus of the research and the literature
search was expanded to include knowledge management frameworks [14, 11], knowl-
edge base studies [27, 85] and service desk and maintenance studies [84, 46, 48].

2.4 Research process and phases

Figure 2.2 describes the four phases of the research process and how research papers
are related to the research process.

Validate
the PM model

in practice

Create
a new PM

model and an
example how to

use it

Identify the
difficulties

in existing PM/
DM models

Identify
testing and DM

methods of
organizations

Phase 1 Phase 2 Phase 3 Phase 4

PM = Problem Management

DM = Defect Management

Paper I Paper II Paper III Papers IV, V and VI

2003 2004 2005 2006 2007

Figure 2.2: Phases of the research process.

In the first phase, we focused on early test case planning as a defect detection
method. It is much cheaper to remove potential problems from the products in the
design phase rather than after delivery of the software to the customers. The results
of the phase 1 were reported in Paper I. The study described in Paper I included one
case organization: an IS department of a hospital. Data collection methods included
interviews with customer-side testers and observations conducted during the testing ex-
periment (a researcher had access to the test version of a health care application). The
first phase provided the following results: evidence that that the customer support inter-
face contained several targets for improvement (including problem and defect reporting
procedures) between IS customers and IT providers, and documented experiences on
how UML-based testing can be utilized in practice to detect software defects.

22 Chapter 2. Research Methodology

In the second phase, we identified the difficulties encountered in establishing a de-
fect management process. The reporting of this phase includes Paper II describing
a case study with four case organizations: an IT service company, a project-oriented
software company, an energy company, and the IS department of a hospital. Data col-
lection methods included personal interviews that were based on a question form. Data
analysis was performed by tabulating data on the cases, comparing the results between
cases, and looking for similarities and differences in results. The list of identified chal-
lenges comprised the main result of the second phase. Additionally, we recognized
the need for a more customer-centric approach for managing defects and problems and
thus started to examine the problem management process of the ITIL framework.

In the third phase, we developed a conceptual model that describes the concepts
of problem management, the relationships between concepts, and their connections to
other service support processes within service management. The conceptual model
established the basis for problem management research. The model also helped us to
describe ITIL concepts to IT organizations and IT customers within the SOSE project.
In this phase, we used a constructive research method to establish the model and a
design pattern (Coplien Form) method [17] to document the pattern. The results of the
third phase (a conceptual model for IT service problem management and an example
on how to use it) were reported in Paper III. At the end of the third phase, we started
to study whether IT service management processes could be supported by knowledge
management frameworks.

The fourth phase focused on applying the service-oriented problem management
model in practice. The results of this phase were reported in Papers IV, V and VI. Be-
cause the conceptual model of problem management was a theoretical model, guide-
lines were needed to apply it in practice. Hence, we constructed a checklist of issues
considered important in establishing an ITIL-based problem management model (Pa-
per IV). Using the model and checklists together, IT organizations are able to create an
effective problem management process. In Paper V, we explored the strenghts and chal-
lenges of problem management in a case organization. In the fourth phase, a knowledge
base for proactive problem management was developed and implemented. The knowl-
edge base includes information concerning known problems and their resolutions. In
Paper VI, we presented a list of the challenges that were identified during a knowledge
base implementation project.

Chapter 3

Quality assurance in software
engineering

Software Engineering can be understood as a systematic approach to the analysis, de-
sign, implementation and maintenance of software. The goal of software engineering
is to build a new software product or improve existing products [41]. Thus, a software
development process focuses on transforming customer’s requirements into software
artifacts (a software product and its documentation) and transforming changes in those
requirements into new product versions. Each software development organization has
its own unique software development process that is usually based on a software life-
cycle model.

A software development process is an evolving concept. Various software life-
cycle models have become available for software development organizations. These
life-cycle models differ from each other in their use of different methodologies and
types of phases, or a number of phases. Royce has defined the three generations of
software development [82]: conventional (1960s-1970s), transition (1980s-1990s) and
modern software development (2000 and later). The waterfall model is a classic exam-
ple of a conventional model consisting of six phases: requirements, analysis, program
design, coding, testing, and maintenance. Transition models include object-oriented
models and the spiral model defined by Boehm [10]. A Rational Unified Process is a
widely used, modern software development model that consists of four iterative phases:
inception, elaboration, construction, and transition [41]. Additionally, modern models
include agile development models, such as Agile Unified Model [1]. Despite the tran-
sition from old process models to more modern process models, the same problems
remain in software development: software projects are not completed within budget,
on schedule and nor do the output of the project meet business requirements [6].

Lientz and Swanson [60] have categorized maintenance activities into four classes:
adaptive (implementing changes in software environment), perfective (dealing with
users’ new requirements), corrective (fixing errors and defects), and preventive main-
tenance. Bennet and Rajlich [5] use the term software evolution for those maintenance
activities performed after the initial development. They note that software evolution

23

24 Chapter 3. Quality assurance in software engineering

aims to adapt the application to ever-changing user requirements and operating envi-
ronment. It also aims to correct the application faults and respond to both developer
and user learning.

According to Wallmueller [91], software quality is comprised of two aspects: 1)
the quality of the software product and 2) the quality of the development process. Soft-
ware quality includes characteristics such as maintainability, user-friendliness, relia-
bility, efficiency, portability, and modularity. However, in addition to process features
and product features, today’s IT people emphasize service features, such as IT service
availability and IT service performance.

Various standards, theoretical frameworks and models regarding customer support,
problem management, and defect management can be used to improve the process of
managing problems and defects. Previously mentioned software development lifecycle
models (Rational Unified Process) include information on quality assurance methods
such as testing, risk management and defect prevention. Quality standards, such as the
IEEE Standard Classification for Software Anomalies [33], IEEE Standard Dictionary
of Measures to Produce Reliable Software [35], and ISO 20 000 service management
standard [36] provide standard definitions and auditable requirements for processes.

Maturity models are designed for measuring the maturity level of software devel-
opment processes or service management processes. Perhaps the most well-known
maturity model in software engineering is Capability Maturity Model CMM [42].
There is also a specific CMM model for IT service management processes [68]. IT ser-
vice management frameworks can be used to define how to perform support processes
(ITIL [73], COBIT [15], and Microsoft Operations Framework [66]). Finally, there is a
wide selection of other quality assurance models such as Defect Management Process
of Quality Assurance Institute (QAI) [81], and the Framework for Counting Problems
and defects by Software Engineering Institute (SEI) [21]. For our purposes, the most
useful models are those process models that clearly define the activities of problem
management and defect management (ITIL problem management, COBIT, the QAI
model and the SEI model).

3.1 Traditional quality assurance methods for finding
problems and defects

The IEEE Standard Classification for Software Anomalies [33] states that anomalies
(problems and defects) may be found during the review, test, analysis, compilation,
or use of software products or documentation. Similarly, the Framework for Count-
ing Problems and Defects by the Software Engineering Institute (SEI) emphasizes the
importance of software product synthesis, inspections, formal reviews, testing and cus-
tomer service in finding problems and defects [21]. These defect finding methods will
be briefly described below. First, we discuss the types of difficulties and challenges
associated with these methods followed by suggestions for improvements to existing
defect management models.

Software product synthesis: SEI’s framework defines the software product synthe-
sis as "the activity of planning, creating and documenting the requirements, design,

3.1. Traditional quality assurance methods for finding problems and defects 25

code, user publications, and other software artifacts that constitute a software product"
[21]. This definition should also include IT services in addition to products, since many
IT customers and IT providers see software products as services.

Software inspection is a formal evaluation technique in which requirements, design
and source code are examined to detect defects [12]. The important role of inspections
has already been noted in the 1970s. The following steps can be identified in the
inspection process: Entry, Planning, Kickoff meeting, Individual checking, Logging
meeting, Edit, Follow up, Exit, and Release [25]. Inspections are an efficient way
to find defects from documentation but require an experienced inspection leader that
is able to produce appropriate checklists and metrics for the inspection process, and
organization-wide rules and guides.

Formal reviews include code walkthroughs and defect causal analysis (DCA) meet-
ings. The defect causal analysis method is based on the data received from a software
problem report. The DCA approach has three major principles [13]:

1. Reduce defects to improve quality: software quality can be improved if the orga-
nization focuses on preventing and detecting defects in early phase of software
development.

2. Apply local expertise: people who really know the cause of the failure and how
to prevent problems in the future should participate in causal analysis meetings.

3. Focus on systematic errors: DCA people should select a sample of systematic
problems from a problem database to be reviewed because support resources are
limited and it is impossible to bring all problems and defects into DCA meetings.

A DCA meeting consists of the following steps: select problem sample, classify se-
lected problems, identify systematic errors, determine principal cause, develop action
proposals, and document meeting results [13].

Software testing is a process of executing a program on a set of test cases and
comparing the actual results with expected results. The testing process requires the
use of a test model that describes what should be tested and how the testing should be
executed [58]. Previous studies have emphasized the need of shifting testing to early
phases of the software development process, such as requirements, analysis [61], and
design [7].

UML-based test models are used to create test cases based on UML (Unified Mod-
eling Language) models of the system. In previous studies, the UML-based test model
has been used for such tasks as component integration testing [30] and generating test
cases from UML statecharts [52]. Salem and Balasubramanian recommend that the
following steps be used to generate UML-based test cases [83]: study the software re-
quirements, develop use cases with scenarios (including system’s responses to inputs),
generate test cases based on UML use cases, execute generated test cases, and evaluate
and analyze the results. In Paper I of this thesis, we studied whether the UML-based
test model provides useful information for software testing in practice. According to
our experiences use case diagrams together with use case scenarios provide descrip-
tions of exceptional and alternative flows that are often sources of defects. Activity
diagrams show different action flows that a tester should test (activity coverage), thus

26 Chapter 3. Quality assurance in software engineering

making software testing more systematic with a test model. Furthermore, state dia-
grams can be used to measure the transition coverage (the tester must go through each
state transition).

Defect management techniques including defect analysis create a bridge between
product-oriented software quality control and process-oriented software quality assur-
ance [32]. The defect management process of the Quality Assurance Institute includes
activities such as defect prevention, defect discovery, defect resolution and process
improvement. It especially emphasizes the role of defect prevention [81]. Defect pre-
vention activity involves the analysis of defects that were encountered in the past and
defining and implementing actions to prevent the occurrence of those defects in future
projects. Trends are analyzed to track the types of defects that have been encountered
as well as to identify defects that are likely to recur. Defect discovery describes the
techniques used to find defects. A defect is considered to have been discovered once
it has been formally brought to the attention of the developers, and the developers ac-
knowledge that the defect is valid.

Defect resolution consists of prioritizing and scheduling the fix, fixing the defect
and reporting the resolution [81]. When the defect has been fixed, the vendor has to
send a defect resolution report to customers, end-users and system developers to inform
that the defect no longer exist, which parts of the system were fixed, and how the fix
would be made available, such as a website for downloads.

3.2 Difficulties in managing problems and defects

Most of the research that has been conducted in software quality assurance has focused
primarily on introducing new quality assurance models and techniques for finding de-
fects and testing them in practice. However, difficulties and challenges associated with
these quality assurance methods have not been studied comprehensively. Nevertheless,
the following challenges can be extracted from previous studies. Inspections and re-
views are considered to be useful, though expensive quality assurance methods since
they require considerable resources [90]. Miller et al. point out that the inspection
process requires computer-based monitoring facilities [67]. An additional challenge is
how to estimate the number of remaining faults after an inspection [88]. In terms of
risk management the problem often entails the quantification and ranking of risks [57].

Testing-related challenges include, for example, how testing can be started at early
phases of the software project [7], test tools cannot test the whole application or testing
is not given enough resources, time, or priority until initial development is completed
[78]. Ahonen et al. [2] have reported that the problems of testing are more related
to the organizational model rather than technical problems with testing. For exam-
ple, it is impossible to ensure that all teams use good practices and it is difficult to
get skilled people from the other teams when needed. Kajko-Mattsson and Björnsson
[47] have reported that organizations do not have well documented developers’ testing
processes. As a solution, they provide a framework that describes most of the activi-
ties of developers’ unit testing and unit integration testing. There are also challenges
in specifications-based testing, such as in using a UML-based testing method. First,
testers and developers may not have the necessary domain knowledge [87] to create a

3.2. Difficulties in managing problems and defects 27

comprehensive test model. Second, testers need to be trained to use and understand
various UML-diagrams. One UML diagram does not provide enough information for
testing. UML diagrams have to be well-planned and documented in order to be useful
for testing purposes.

Surprisingly little research has focused on the difficulties arising during the process
of managing problems and defects. The results of the QAI research report [81] indi-
cate that the key problems regarding defect management are the lack of well-defined
defect management processes, the lack of anyone who would be responsible for track-
ing and reporting on defects, the lack of a common vocabulary to describe defects,
and a lack of an accepted set of defect reports or metrics. According to Boehm and
Basili [9], avoiding defects is difficult due to the software’s complexity and accelerated
project schedules. The Framework for Counting Problems and Defects by the Software
Engineering Institute [21] addresses the variety of defect finding activities and related
problem reports leading to difficulties in communicating clearly. Additional challenges
have been a lack of list of known errors in delivery documentation [31] and too simple
defect classification categories [56].

Theoretical models for managing problems and defects also need improvements.
Although the QAI model [81] provides a comprehensive description of defect manage-
ment activities and references to other quality improvement techniques, such as testing,
early test case design, inspections, and risk management, it poorly defines the connec-
tion between service desk and customer support activities. However, it is noted that
users might report software problems that would never become defects.

The Framework for Counting Problems and Defects by the Software Engineering
Institute [21] provides information on how to find problems and defects and informa-
tion on the metrics that can be used for problem management and defect management
processes. The strenght of the SEI model lies in its discussion of the differences be-
tween problems and defects, a comprehensive list of problem attributes and examples
of how to use the metrics. The major weakness of this model, however, is the absence
of process diagrams for problem management.

Because there is a clear research gap in the defect management research, the second
research goal of this thesis is to determine the types of difficulties associated with man-
aging software problems and defects. In Paper II of this thesis, we presented the results
of a case study that examined the difficulties in implementing defect management in
four case organizations.

Chapter 4

Service-oriented problem
management

In this chapter, we describe the background of the service-oriented problem manage-
ment approach and its the basic concepts, activities, roles, metrics and tools. This
chapter provides an answer to the third research question: what is service-oriented
problem management and which concepts are related to it?

4.1 Background for problem management

IT Service management is divided into two sections: service delivery processes and ser-
vice support processes. Service delivery consists of service level management, capac-
ity management, financial management for IT services, availability management and
IT service continuity management. The processes of service support include incident
management, problem management, change management, configuration management,
and release management. In this thesis, the main focus is on problem management.
Perhaps the most comprehensive description of the problem management process can
be found in the IT service management framework ITIL. The ITIL problem manage-
ment section describes process goals, scope (inputs, outputs), benefits, basic activities,
and the metrics for problem management. There are also other service management
frameworks that include problem management, such as COBIT (Control Objectives
for Information and related Technology). COBIT provides management guidelines for
service management processes such as Deliver and Support processes (DS) including
problem management (DS10) [15]. COBIT includes a detailed description of control
objectives for the problem management process. It defines process inputs (change au-
thorisation, incident reports, IT configuration details, error logs), outputs (request for
change, problem records, process performance reports and known problems, known
errors and workarounds) functions, goals and metrics for problem management. How-
ever, COBIT process descriptions are not as broad as in the ITIL framework.

An important question is why should IT organizations update their traditional de-
fect management models to a service oriented problem management approach. The first

29

30 Chapter 4. Service-oriented problem management

answer is that traditional defect management is too development-oriented. Defect man-
agement models do not give guidance on how service-related problems (for example,
service availability problems) are monitored or handled. Second, defect management
models focus only on defects. They do not tell how problems reported by customers
are related to defects. Third, the service oriented approach emphasizes the importance
of three support levels. Therefore, customers and users cannot get into a direct contact
with programmers or developers in a problem situation and interrupt their work, which
is a major problem in many IT organizations. When service desk and problem manage-
ment can resolve most of the simple problems, developers have more time for software
development. Finally, IT organizations world-wide are adopting service management
processes that can be audited through ISO/IEC 20 0000 international standard [36].
IT Service Management Forum, a not-for-profit organisation dedicated to IT service
management, has operation in over 40 countries [39]. Thousands of IT organizations
use ITIL-based processes with the number increasing rapidly. Many of these organi-
zations have started to require that their partners and subcontractors also use service
management processes, including problem management.

4.2 Basic concepts of problem management

Service-oriented customer support is based on three customer support levels: the ser-
vice desk (incident management), problem management, and third-line support (change
management, product development). Support processes begin when a customer en-
counters a problem while using the software product, IT service or their documentation
and contacts the service desk. This contact is usually done by phone, by e-mail or by
a web-form. The term “incident” is used for this contact. An incident is "any event
which is not part of the standard operation of a service and which causes an interrup-
tion to, or a reduction in the quality of the service" [73]. Incidents can be classified
into two groups according to their type: failures and service requests. Failures are sit-
uations in which customers or users seem to have a clear problem, such as a hardware
failure or a software failure. Service requests are requests from the user for support,
delivery, information, advice or documentation, not being a failure in the IT infrastruc-
ture [75]. Typical service requests are those requests for new passwords or requests
for more disk quota. In addition to incidents, customers and users send requests for
change (RFCs) to the service desk. RFCs are “requests for a change to configuration
items or to procedures within the infrastructure” [73].

The service desk is a function that performs an incident management process. It
must be noted that problem management cannot work well without a well-defined ser-
vice desk function that is responsible for managing incidents. Service desk workers are
responsible for carrying out the following incident management activities: detecting
and recording incidents, classifying incidents and giving initial support, investigating
incidents and providing a diagnosis, resolving incidents and closing incidents. Figure
4.1 shows an example of the incident report that is created by the service desk engineer
when a customer contacts the service desk.

If the service desk is not able to identify the root cause of an incident, the next
step is to open a problem record. Root cause is “the underlying or original cause of

4.2. Basic concepts of problem management 31

Figure 4.1: An incident report.

an incident or problem” and a root cause analysis is “an activity that identifies the root
cause” [76]. In software engineering studies, the term ’root cause’ is often related to
defects [13]. It is typically used for IT Infrastructure failures [76]. ITIL recommends
that problem records should be independent of incident records. This can be understood
as follows:

• The service desk can collect several incidents before opening a problem record.
If there is a major incident, the service desk can assign it to problem manage-
ment.

• In a normal case, closing a problem also closes any related incidents.

• Problem investigation can also continue after an original incident has been closed.

Incidents and problems have a status attribute that reflects their position in their life-
cycle (new, accepted, scheduled, assigned, work in progress, on hold resolved, closed)
[73]. Thus, resolved and closed statuses are not synonyms. Incidents and problems are
open until they reach a status “closed”.

The second support level is problem management. Problem management is a pro-
cess of managing problems and errors. Problem management aims to find the root
cause of incidents and define a corrective solution or a process improvement [73].
The objectives of problem management include minimizing the impact of incidents

32 Chapter 4. Service-oriented problem management

and problems, solving problems and errors before customers send incidents, reduc-
ing the number of problems, and performing trend analyses and root cause analyses
[73, 94, 66].

Paper III of this thesis introduces the conceptual model that captures the concepts
(artifacts, processes and support levels) within problem management and the relation-
ships between them. The problem management process includes a problem manager
and problem support specialist roles [73]. A problem manager is responsible for devel-
oping the problem management process, developing and maintaining the applications
of problem control and error control, reviewing both reactive and proactive problem
management activities, and producing information for management.

A problem support specialist has both reactive and proactive responsibilities. Reac-
tive responsibilities include identifying and investigating problems, generating RFCs,
defining work-arounds, advising service desk of work-arounds, and handling major
incidents by identifying the root cause. Proactive responsibilities include identifying
problem trends, creating RFCs to prevent problems from happening again and prevent-
ing the replication of problems. Problem management has both reactive and proactive
aspects (see Figure 4.2).

Problem Management (PM)
Process

- Problem control
- Error control
- The proactive prevention of problems
- Identifying problem trends
- Producing information to managers
- Problem reviews

Incident details
from Incident
Management

Configuration
details from
CMDB

Any defined
Work-arounds

Inputs Major activities Outputs

Known Errors

A Request for Change

An updated Problem record
(including a solution/Work-around)

A closed Problem record for a
resolved Problem

Response from Incident matching
to Problems and Known Errors

Management information

Figure 4.2: Problem management activities.

4.3 Reactive and proactive problem management

Reactive problem management aims to resolve already reported incidents and problems
whereas the goal of proactive problem management is to prevent incidents before they
occur. Reactive problem management is further divided into problem control and error
control activities where problem control is responsible for identifying the root cause of
a problem and defining a temporary solution (work-around) for the problem. A work-
around (for example, simple advice from the service desk) enables the user to continue

4.3. Reactive and proactive problem management 33

using a service or a product while problem management is looking for a permanent
solution to the problem. Figure 4.3 shows the phases of problem control and error
control.

Problem
identification
and recording

Problem
classification

Problem
investigation

and diagnosis

RFC and Problem
resolution and

closure

Tr
ac

ki
ng

 a
nd

 m
on

ito
rin

g
of

 P
ro

bl
em

s

Error
identification
and recording

Error
assessment

Record
error resolution

Tr
ac

ki
ng

 a
nd

 m
on

ito
rin

g
of

 E
rr

or
s

Close error and
associated
problem(s)

RFC

Change
successfully
implemented

Service Desk & Incident
Management

Proactive Problem Management
- trend analysis, preventive actions, major problem reviews

Figure 4.3: Phases of problem control and error control.

Problem control consists of four phases: problem identification and recording,
problem classification, problem investigation and diagnosis, and problem resolution
and closure [73]. In the problem identification and recording phase, a problem record
is opened if the service desk is not able to identify the root cause of an incident or
if there is a major incident or several similar incidents that need careful investigation.
A problem record can include the following attributes: problem id, title, description,
team code, impact, urgency, priority, a configuration item, status, category, entering
date and time, the name of the person who entered the problem, reference to a service
level agreement or target resolution time, resolution or work-around, and a comment
field. The number and names of problem attributes vary between different IT organi-
zations, between teams within the same organization, and between different problem
management frameworks. As a result, it is impossible to compare the performance of
problem management between different organizations and teams if the measurement
framework is not the same.

Problem classification involves defining the category, impact, urgency, and priority
for the problem (see Figure 4.4).

34 Chapter 4. Service-oriented problem management

Figure 4.4: A problem record [8].

Additionally, the problem status is defined (problem, known error, resolved, closed)
[75]. Advanced IT service management tools provide a category tree that enables the
categorization of a problem into domains and subdomains. The priority of the problem
can be determined based on its impact and urgency [73].

Problem investigation and diagnosis aims to determine the root cause of the prob-
lem. This phase is perhaps the most difficult part of the problem management process
[94]. In order to analyse and diagnose the problem, the problem management team
might need the expertise of other teams, such as product development teams or com-
munication with third-party service providers. However, customers and end-users ap-
preciate Single Point of Contact (SPOC) service in which they can communicate with
one IT service provider although several service providers might be involved in resolv-
ing the problem. The SPOC service consists of three contact levels between the IT
provider and the customer [74]: a business manager level in which service level agree-
ments are negotiated, a project manager level in which the RFCs from a customer are
handled by the IT provider, an end-user level in which incidents are managed. The
SPOC model usually requires substantial changes to existing support service agree-
ments. Additionally, a SPOC service provider needs to charge problem handling costs
from third-party service providers.

Problem investigation provides detailed information regarding which configuration

4.3. Reactive and proactive problem management 35

items, components of an IT infrastructure, the problem is related to. Causes to prob-
lems can be classified into defects and non-software causes [49]. In addition to hard-
ware and software errors, problems can be caused by human errors, documentation
errors and procedural errors [75]. Some useful methods for this phase are Fault Tree
Analysis (FTA) [69] and the Kepner and Tregoe analysis. Fault Tree Analysis, FTA
is based on the fault tree in which the root node represents the most principal failure
[69]. The Kepner and Tregoe analysis emphasizes five steps: defining the problem;
describing the problem, its location and scope; determining the possible causes of the
problem; testing the most probable cause; and verifying the true cause [54]. After the
root cause of the problem and related configuration items have been identified, prob-
lem specialists check whether there is a workaround available for the problem. If not,
a workaround is defined by the problem management team. A workaround might, for
example, consist of an instruction for how to install a printer, an example of how to
change file permissions, a reference to a user manual, or a security bug fix.

Problem resolution and closure: Once the root cause of the problem has been found
and the workaround for the problem defined, the status of the problem is changed to a
known error. According to ITIL release 3 [76] an error is “a design flaw or malfunction
that causes a failure of one or more configuration items or IT services” or “a mistake
made by a person or a faulty process that affects a CI or IT service” whereas IEEE
defines an error as “ a human action that results in software containing a fault” [35] or
“deviation from the expected results”. A known error is “an incident or problem for
which a root cause is known and for which a temporary work-around or a permanent
alternative has been identified” [73]. Thus, a known error is a problem that is known
in the organization and it may be under resolution or not. If it is not under resolu-
tion, the reason might be that a problem is too expensive to resolve and there is a good
workaround for it. In practice, the known-error record is almost the same as the prob-
lem record. Only the problem status is different. Finally, the problem can be closed
and a Request for Change raised if necessary or the problem is sent to the error control
team. In fact, the error control activity seems to be equivalent to the defect manage-
ment process in software engineering. In addition to problem control activity, product
development and testing units produce information on known but unresolved errors.

Error identification: If resolving the problem requires changing a configuration
item or the cause of a problem is a defect in a component, the problem is escalated to
the error control team that is responsible for identifying and recording known errors,
classifying them and making an error assessment [73]. Whereas the problem con-
trol team is responsible for determining the root cause of the problem and identifying
workarounds, error control aims to ensure that errors related to problems are resolved
by application development teams through the change management process.

Error assessment: An assessment of how to resolve an error is performed by the
problem management team. The known error will be resolved by sending a request for
change to change management and application development. According to the ITIL,
there are two sources for known errors [73]: live operations environment (customers
and end users) and development environment (designers and developers). ITIL also
recommends that errors in third-party products are recorded in the problem database.
However, Paper V of this thesis shows that all IT service providers do not record third-
party errors.

36 Chapter 4. Service-oriented problem management

Error resolution and closure: In the error resolution phase, the resolution process
for each known error is recorded in the problem database [73]. In the future, this in-
formation can be used by other problem management and incident management teams.
After the change has been successfully implemented, the problem management team
is able to close the known error record, as well as any related problem records and
incident records. Support teams should ensure that the customer is satisfied with the
error fix before the final closure of the incident [73]. The IT organization should agree
with customers on how often bug fixes are delivered (see Paper II).

Instead of reactive problem management, IT organizations should focus on proac-
tive problem management, such as preventing incidents and problems before they are
found and reported by customers and users to the service desk. Proactive problem
management can mean performing problem trend analyses, targeting preventive ac-
tions and carrying out major problem reviews. Problem trend analyses [15, 73] are
usually based on incident and problem analysis reports. These analysis reports provide
information on problem trends (when and where problems occur), weak components
in the IT infrastructure, recurring problems, and training needs. Preventive actions
include defining the training and education needs for both customers and developers,
identifying process improvements (for example, improvements to the customer support
web interface), ensuring that support teams follow the process descriptions of incident
management and problem management, as well as providing feedback for software
testers, developers, and designers [73]. Finally, problem reviews can be organized for
major problems in order to define how to prevent similar problems from re-occurring.

In addition to the three above-mentioned proactive methods, we consider a knowl-
edge base as offering a very useful tool for proactive problem management (as stated in
Paper VI). A knowledge base can be defined as a database for knowledge management.
IT organizations can use knowledge bases to collect, organize, and search the knowl-
edge regarding IT products and services. In this thesis, the knowledge base provides
its users with solutions to known problems in software products (see Figure 4.5).

A well-designed knowledge base helps the service desk to find solutions to prob-
lems quickly. It is an important step towards a self-service desk because customers
and users are able to search problem solutions without the help of the service desk.
Knowledge bases have been popular especially in university environments by provid-
ing, for example, technical support for university staff and students [40], and extending
help desk services [27]. In paper VI, we presented results of a case study in which a
knowledge base was implemented for the purposes of proactive problem management.

4.4 Problem management tools

There are numerous commercial (HP Unicenter, IBM Tivoli, Rational ClearQuest,
BMC Remedy) and open source tools (e.g., RequestTracker, Bugzilla, JIRA) avail-
able for reporting problems and defects. Some of these tools are called IT service
management tools that can be used in several IT service management processes in ad-
dition to problem management. Automated tools, such as web-based tools are useful
for reporting incidents and problems since people are able to deliver problem reports
whenever they want (also outside of office hours). Some users like to send reports

4.5. Metrics and the process maturity 37

Figure 4.5: A web-based knowledge base for problem management.

anonymously. There are also tools that have been originally designed for knowledge
management, content management and customer relationship management (Frequently
Asked Question (FAQ) managers, knowledge-base applications) but are suitable for
problem management purposes.

The problem management tool must fit to the organization’s current needs. A cost-
benefit analysis should be performed for a problem management tool as well as other
software engineering tools including build-or-buy decisions. It is also important to test
the problem management tool before buying it and to check whether it is possible to
customize problem records, to define the lifecycle for a problem record, produce per-
formance reports based on metrics and publish known errors to customers. Other im-
portant questions before selecting the tool include how many languages are supported
by the tool, and whether the tool supports service level management, such as creating
service level agreements.

4.5 Metrics and the process maturity

Defining metrics is an important part of any process improvement framework. Metrics
are measurements that quantify results. Metrics provide a quantitative assessment of
software quality [61]. Quality metrics can be categorized in several ways. In this thesis,
we divide metrics into two groups (see Table 4.1): problem management metrics and
defect management metrics.

The metrics can be also categorized into complexity metrics (the complexity of

38 Chapter 4. Service-oriented problem management

Table 4.1: Metrics for defect management and problem management

Defect Management Problem management (PM)
Total number of defects Average number of open problems
Number of defects by development
activity

Number of closed problems

Number of defects fixed in testing Number of known errors
Number of reported bugs fixed Number of problems that missed

target resolution time
Number of fixes returned to devel-
opers

Number of change requests raised
by PM

Manhours per major defect Amount of time spent on investiga-
tions and diagnoses

Average age of uncorrected defects Average time to close a problem
Mean time between failures Total user downtime
Estimated number of remaining
faults

Customer satisfaction on PM

the code), defect metrics (number of defects by type), product metrics (module size,
number of lines of code), process metrics (inspection hours, defect correction time),
cases per period metrics, and time-based performance metrics.

Problem management metrics are used to monitor the performance of the problem
management process. Defect management metrics are also suitable for the error con-
trol phase of problem management though they are often categorized into application
development metrics. Using metrics provides several benefits. In addition to perfor-
mance measuring, metrics help organizations to identify weak areas and strengths in
the processes, as well as to avoid dangers by identifying them in time [37]. However,
an organization should carefully plan which metrics will be used, since measuring a
process and producing reports can incur significant costs.

Another aspect of process measurement is measuring the maturity of service man-
agement processes. There are several maturity models that can be used to measure
the maturity level of the problem management process: IT Service Capability Maturity
Model [68], COBIT maturity model [15], and ITIL Service Management Self Assess-
ment Model [38]. In the IT Service Capability Maturity Model [68] the service process
maturity is measured by five maturity levels: initial, repeatable, defined, managed, and
optimizing. The problem management process is mentioned on the third level and
problem prevention on the fifth level. Incident management belongs to Level 2. CO-
BIT provides a different type of maturity model in which each service management
process is evaluated according to a 1-5 scale [15]. The ITIL Service Management Self
Assessment Model [38] consists of a self-assessment questionnaire that tests whether
there is complete conformance with ITIL. Organisations can use maturity models to set
the goals for process improvement, for example, they might set a goal that the problem
management process shall achieve maturity level 3 by the year 2009.

4.6. Connections to other service management processes 39

4.6 Connections to other service management processes

There should be a close interface between problem management and other service man-
agement processes, including incident management, change management, configura-
tion management, service level management, and application development. In Paper
VI of this thesis, we proposed that the knowledge management process would be ben-
eficial for problem management.

Incident management: An IT organization can identify problems and known errors
by analysing already reported and recorded incidents. Problem management receives
incident details and temporary solutions (workarounds) from incident management
[73, 54, 15]. Thus, the success of the problem management process depends very much
on the performance of the incident management process. An IT organization should
carefully analyze which datafields are really needed in incident and problem records.
Recording incidents and problems is not effective if there are too many datafields. Ad-
ditionally, the IT service management tool should have a function that enables relating
similar incidents to one problem, as we stated in Paper V.

Change management is responsible for carrying out or controlling some of the error
resolution activities: impact analysis, detailed assessment of the error, replacing the
faulty component, and testing the change. The major task of change management is
to process requests for change. A change advisory board (CAB) can be established to
assist the change management team. CAB members typically review submitted RFCs
and participate in CAB meetings where changes are authorized [73].

Configuration management aims to identify and record configuration items (CIs)
and the relationships between CIs [75] in the IT infrastructure. Configuration items
should be stored in a secure repository [92] referred to as a Configuration Management
Database (CMDB) [73]. The version information of CIs must also be recorded in the
CMDB. Configuration details should be available for problem management team as
well as other service management processes. Paper V of this thesis proposed that in
addition to problems in software configuration items, problem management should also
record problems related to hardware configuration items.

Service level management (SLM): Service level management focuses on maintain-
ing and improving IT Service quality. The SLM process manages service level agree-
ments (SLAs) that are written agreements between service providers and customers
[72]. SLAs define service targets and responsibilities of an IT service provider and a
customer [55]. The problem management process should provide a close connection to
service level management (see Paper V). Service level requirements (target resolution
times for incidents and problems, for instance) should be defined for problem man-
agement. Monitoring services helps organizations to identify the weakest components
in the service. An IT organization should ensure that service level requirements for
handling problems and incidents in SLA match the SLA targets that are configured to
the service desk tool. A service desk tool needs to monitor what has been agreed on
between the IT provider and customers.

Application development and testing: Developers should be well aware of defensive
programming methods [26]: exception handling, coding assertions (early warnings of
upcoming failures), overengineering (building the system stronger than needed), and
audit trails (a trail of past events that might help to identify the cause of the failure).

40 Chapter 4. Service-oriented problem management

The responsibilities of application developers and testers should include participation
in problem reviews and defect causal analysis meetings, since application development
and testing produce considerable information that is useful for problem management
purposes such as defect lists, inspection material and known error lists. Unfortunately,
the connection between testing and problem management in ITIL is very poorly de-
fined. Therefore, organizations implementing ITIL should not forget the importance of
testing. It might be a good idea to maintain the traceability chain between incidents,
problems, errors, changes and test cases, as was proposed in Paper V.

Knowledge Management (KM): In the European KM framework [14], knowledge
management is defined as “the management of activities and processes for leveraging
knowledge to enhance competitiveness through better use and creation of knowledge
resources.” Similarly, Schultze and Leidner define knowledge management as "a pro-
cess of generating, representing, storing, transferring, transforming, applying, embed-
ding, and protecting organizational knowledge" [86]. Problem management can also
benefit from the basic methods of knowledge management. Knowledge management
helps IT organizations to share and reuse existing experiences of software development
[20]. In problem management, organizations create and share knowledge concerning
software products, IT services, technologies, customers, and development partners (see
Paper VI). Hence, the concepts and methods of knowledge management and organiza-
tional learning can strongly support studies of software problem management. Knowl-
edge management helps organizations to take a step towards a learning IT organization
with knowledge-centered support. A learning organization is an organization skilled
at creating, acquiring, and transferring knowledge, and at modifying its behavior to
reflect new knowledge and insights [23]. The main principle of knowledge-centered
support is to define the workflow for knowledge items, document problem solutions in
a structured way, collect experiences on how people search for information and produce
just-in-time solutions to users through a knowledge base [16].

4.7 Difficulties in service-oriented problem management

Although the service-oriented problem management resolves many shortcomings of
traditional defect management models, it also results in new challenges and the follow-
ing difficulties. The first challenge is related to the terminology. Service management
frameworks use concepts (incidents, known errors, service level agreements) that have
not been used in traditional software development models. Additionally, some con-
cepts, such as problems and service requests, are used in different ways in service
management and software engineering.

The second challenge is the lack of practical examples that would show the dis-
tinction between incidents, problems, service requests and change requests [62]. These
concepts are quite unclearly explained in service management frameworks. Often, it is
unclear how incidents are related to problems and known errors and which attributes
are related to these concepts. It is important to remember that incidents never become
problems and they are stored in separate records. Thus, ten incidents can lead to open-
ing of one problem record. This challenge can be solved by providing support team
members with enough examples, for example, which help-desk cases can be classified

4.7. Difficulties in service-oriented problem management 41

as service requests.
The third challenge arises from poorly defined connection between problem man-

agement and software testing and defect management. However, there are recently
published studies that deal with this challenge. For example, Kajko-Mattsson has sug-
gested a process model that defines front-end and back-end support processes [51].
Additionally, ITIL does not define how to integrate service management models and
organization’s existing software development models. Nevertheless, ITIL recommends
its own application management process for software development.

The fourth important challenge is that service management frameworks do not de-
fine clearly enough how the knowledge base is related to service management pro-
cesses, nor how service management roles are connected to the maintenance of the
knowledge base. The difficulties and challenges regarding knowledge-base implemen-
tation are presented in Paper VI. These included tool-related problems (poor language
support and tailoring problems) but also process-related (creating KB articles is dif-
ficult) and resource-related problems (a service desk needs more time for proactive
problem management).

The fifth challenge is that service management frameworks do not tell how to
handle incidents and problems that are sent to the wrong service desk. Often, an IT
customer is dependent on several service providers and does not know which contact
person is the correct one for a particular problem situation. Therefore, incidents and
problems might pass through a long decision chain, thus lengthens the problem reso-
lution time or even causing a situation in which customers may never find a solution
to their problem. A Single Point of Contact service model might solve this challenge.
The final challenge is that there is no comprehensive service support process diagram
that would show the connections between different service support processes and their
activities.

Most of these challenges are discussed in papers IV, V and VI. Solutions to the
last two challenges are currently under work in our research group. These solutions
shall include a description of a SPOC model in which a customer communicates with
one service provider that assigns the case to other service providers if necessary. The
first version of the service support process diagram was published in August 2007
[43]. It shows the activities of incident management, problem management and change
management in a single process diagram.

Chapter 5

Summary of papers

In this chapter, the original papers are summarized and reviewed. This thesis includes
six research papers all of which are related to managing problems and defects. These
research papers are related to two research projects: the PlugIT and SOSE projects.

5.1 Relation of research papers and projects

PlugIT was a Finnish national research and development project on healthcare appli-
cations integration (2001-2004) financed by the National Technology Agency TEKES
and private companies. PlugIT was implemented by a multidisciplinary research group
from four departments at the University of Kuopio and the Savonia Polytechnic. The
PlugIT research team included 20-30 researchers, developers, students and supervi-
sors. PlugiT was carried out in four subprojects. The first research paper (UML-Based
Testing: A Case Study) of this thesis was created in a TEHO subproject. The goal of
TEHO was to develop and improve the methods and practices of software engineering,
software quality assurance and testing. The research work regarding testing focused on
component-based testing, automated testing, and early test case design.

SOSE (Service-Oriented Software Engineering) was a research project conducted
at the University of Kuopio, Department of Computer Science (2004-2007). The
project was financed by the National Technology Agency TEKES (European Regional
Development Fund, ERDF) and five companies. The objective of the SOSE project
was to develop methods of software engineering and software business with IT com-
panies and their customers. The SOSE research team consisted of a project manager,
two full-time researchers and part-time research assistants.

The SOSE project covered the following research areas: software business, busi-
ness driven and service-oriented software engineering, service architectures, process
integration, and application integration. The project was strongly focused on exam-
ining the service management processes of the IT Infrastructure Library (ITIL). In
practice, the SOSE research team analyzed the existing support processes of IT orga-
nizations, identified challenges and bottlenecks in the customer support and problem
management, and produced recommendations on how to resolve these challenges and

43

44 Chapter 5. Summary of papers

transform processes into ITIL-based processes. The results of the SOSE project in-
clude international research publications on problem management and service archi-
tectures; masters theses on knowledge management, problem management, software
project failures, and defect management; and reports on availability management and
service management maturity models. Additionally, SOSE produced research material
for designing and establishing a knowledge base for problem management purposes.
Papers II-VI were created during the SOSE project.

Both projects dealt with software quality assurance techniques. While the PlugIT
TEHO project focused more on traditional software quality assurance methods and
defect detection techniques, such as testing and inspections, the SOSE project em-
phasized the service-oriented way of managing problems and defects. These projects
played a very important role as a research platform for this thesis. The IT companies
and IT customer organizations participating in these research projects provided us with
a playground where we were able to test quality assurance methods in practice, and
served as valuable information sources when we examined challenges in the support
processes. Because we performed our case studies in cooperation with the companies
that were members of our research project, our case selection method is quite close
to a convenience sampling method. However, it is a very common way to select case
organizations.

5.2 Summary of papers

For each article, the author of this thesis was the corresponding author with most con-
tribution. In paper I, Section 4 (Testing components) was created in cooperation with
Tanja Toroi. Regarding paper II, the co-authors reviewed the paper and provided valu-
able comments on the structure of the paper. In paper III, the co-author professor Anne
Eerola provided good comments regarding research methods, the structure of the paper,
and the content of the conceptual model. The first version of paper IV was published at
the 29th Information System research seminar (IRIS), with the final version becoming
published at the IASTED conference on Software Engineering. The second co-author,
Aki Miettinen, helped in the literature search and in defining the problem management
checklist. The third co-author represented the case organization and acted as a valuable
informant for the study. The fifth paper was designed and implemented by the author
of this thesis. The second co-author provided some comments concerning the process
improvement ideas. Finally, the paper VI was written by the author of this thesis and
the second co-author provided us with access to the knowledge base application and
helped to perform the study in practice. The following sections briefly describe the
research papers.

5.2.1 UML-Based Testing: A Case Study

Paper I introduces a UML-based test model that can be used for building test cases
more systematically. The UML-based test model helps testers and developers to detect
defects effectively. The model focuses on behavioral UML diagrams, such as activity
diagrams, state diagrams, and use case diagrams. The main contribution of Paper I was

5.2. Summary of papers 45

to evaluate the UML test model in a case study with an IT department at the Kuopio
university hospital. During the study, we noticed that use case diagrams and scenarios
are very useful for testing purposes because they include descriptions of exceptional
and alternative flows that often comprise the sources of defects. Similarly, activity
diagrams show the different action flows that a tester must go through in testing. Ad-
ditionally, transition coverage derived from a UML state diagram and a state transition
table can be used for measuring test coverage. Our testing experiment for a healthcare
application revealed three serious run-time errors and dozens of minor defects.

There are also challenges regarding the use of the UML-test model. UML diagrams
are often produced in such way that they do not provide enough information to support
software testing. A very common situation is that no specification documentation for
the system or related UML diagrams are available, and end users and software testers
do not have the time to draw UML diagrams in the testing phase. This paper was
included in the thesis because it describes the starting point of my research. The study
on UML based testing revealed how IT customers struggle with software problems
and led us to explore defect management processes. Although our original plan was
to explore defect classification in component-based software development in Paper II,
we started to write an article about defect management process because our partner
organizations were interested in process improvement.

5.2.2 Difficulties in Establishing a Defect Management Process: A
Case Study

In Paper II, the main research question is what types of difficulties are encountered by
organizations with regard to the defect management process. In the case study involv-
ing four case organizations, we explored the organizations’ goals in defect manage-
ment, defect management processes, and the problems related to the activities in defect
management. The main contribution of Paper II was to help IT companies and IT
customers to identify and avoid typical problems in defect management. Our findings
showed that software providers had problems, for example, in defining good metrics for
IT service problem management, creating a large amount of test data for testing, using
load testing and performance testing tools, and in creating an organization-wide defect
management process. IT customers complained, for example, that IT companies do
not send defect resolution reports to customers, and software vendors deliver applica-
tions containing many bugs that should have been found during developer-side testing.
While exploring various defect management frameworks for Paper II, we found an IT
service management framework ITIL (IT Infrastructure Library). At this point, we de-
cided to focus our research on ITIL for the following reasons: First, the ITIL model
seemed to provide a clear advantage compared to other defect management models.
The problem management process of ITIL combines both problem control (problem
management) and error control (defect management) activities into one model while
most models do not even recognize the gap between defect management and problem
management. Second, the organizations within the SOSE research project were very
interested in the ITIL-based process improvement.

46 Chapter 5. Summary of papers

5.2.3 A Conceptual Model of IT Service Problem Management

Paper III presents a conceptual model of problem management. The conceptual model
was based on the problem management principles of the IT Infrastructure Library
(ITIL). The main contribution of Paper III is to describe the concepts of problem man-
agement and their relationships as a conceptual model; explain the context, benefits,
and limitations of the problem management model as a pattern; describe the attributes
related to incidents, problems, and known errors; and validate the model with an exam-
ple showing how to use it in software business. The conceptual model was validated
during a problem management study with a case organization. The objective of the
study was to examine how ITIL-based problem management concepts can be com-
bined with the problem management process.

5.2.4 A Checklist for Evaluating the Software Problem
Management Model

Paper IV continued our work regarding ITIL-based problem management. We recog-
nized that instead of heavy IT service management standards IT organizations need
practical guidelines and checklists to be able to implement ITIL-based processes. The
main contribution of Paper IV was to provide a checklist of issues that are essential for
implementing the problem management process.

The checklist consist of ten requirements: 1) establish a service desk, 2) define the
lifecycle for incidents, 3) identify two dimensions of problem management: reactive
and proactive, 4) establish a problem management repository and a knowledge base, 5)
establish the problem control activity, 6) establish the error control activity, 7) define
appropriate metrics for monitoring the problem management process, 8) monitor the
problem management process against SLAs, 9) generate a request for change to the
change management team, and 10) continuously improve the problem management
process.

Managers who are responsible for establishing or improving the problem manage-
ment process can use the checklist to evaluate whether their problem management pro-
cesses meet ITIL requirements.

5.2.5 Improving the Software Problem Management Process

Paper V describes the challenges identified during the validation of our software prob-
lem management model. First, a list of the challenges and bottlenecks in the case
organization’s problem management process were created. These challenges included,
for example, the increasing number of incidents and open problems, poorly defined
connections between problem management and testing, and difficulties in combining
service management concepts with existing business concepts. Second, we defined the
tasks or activities required to solve these challenges. For example, service-desk and
product-support teams need clear instructions on how to handle incidents and service
requests, and the problem records needs a category for the errors of third-party service
provider’s products. Finally, we analyzed why it is important to solve these challenges.

5.3. Summary of the results 47

The main contribution of Paper V was to help IT organizations to identify the chal-
lenges and problems associated with ITIL-based problem management. This paper
inspired us to examine proactive problem management methods, such as the introduc-
tion of a knowledge base for problem management.

5.2.6 Challenges in Implementing a Knowledge Base for Software
Problem Management

Paper VI focuses on proactive problem management. In this paper, we presented the
results of a case study that identified the challenges in building a knowledge-base sys-
tem for software problem management. In our case, the knowledge base (KB) provided
its users with solutions to known problems. As the main contribution of Paper VI, we
described the implementation process of the knowledge base in the context of soft-
ware problem management, identified the challenges arising from the implementation
process, described the datafields related to the knowledge-base articles, and validated
the study with an example showing how a knowledge base could be used for energy
network management software.

The DISER framework was used to document the implementation process of the
knowledge base. DISER (Design and Implementation of SE repositories) [11] de-
scribes the process, techniques and tools for the life-cycle of an experience factory.
Identified challenges included, for example, difficulties in creating public KB articles
because service desk cases contain much customer-specific information, difficulties in
establishing a structure for the KB, and poor language support of the tool used for the
KB articles.

5.3 Summary of the results

The main contributions of this thesis were to evaluate the UML-based test model as
a defect detection technique (Paper I), compile a documented list of challenges and
difficulties regarding defect management (Paper II), develop a systematic approach
for service-oriented problem management (Paper III), and identify a list of difficulties
concerning service-oriented problem management and recommendations together with
guidelines how service-oriented problem management should be performed in practice
(Papers IV-VI). Next, a short summary of the results is given.

In the first phase, we provided an answer to the first research question: which meth-
ods can be used to detect defects. Traditional software quality assurance methods such
as reviews, inspections, pair programming, testing approaches (module testing, integra-
tion testing, system testing and acceptance testing), risk management techniques, and
defect management methods provide developer-side information on defects. UML-
based testing is also a promising defect-detection technique with certain restrictions.
Additionally, customer support (help desks and service desks) collects very useful in-
formation for defect management.

The second research question was: What types of challenges are related to the
process of managing defects. The following challenges regarding defect management
were identified during the research process. Based on the case studies (Papers I, II)

48 Chapter 5. Summary of papers

we argue that IT providers have the following difficulties in managing defects: Project
teams use non-standardized problem management and defect management methods;
there is no service desk that would be responsible for collecting all service requests;
it is difficult to find a good frequency for customer bug fixes; and IT providers have
limited resources for fixing defects. The first two issues are consistent with the results
of the Quality Assurance Institute [81]. IT organizations should establish organization-
wide processes for managing defects. A well-defined, documented defect management
process enables organizations to repeat the process from day to day and to improve the
methods for managing defects. It was not surprising that there were limited resources
for fixing defects and that this was a challenge. However, the biggest surprise was
that there are still software development organizations that have not implemented a
service desk. In these organizations, developers and coders are usually responsible for
recording defects and problems reported by users, even the most simple problems.

In order to gain a richer view on the challenges hindering defect management, we
studied the types of experiences encountered by IT customers with regard to defect
management. Our results showed that the problems experienced by IT customers were
different from those of IT providers. For example, IT customers do not receive con-
firmation on whether their support request has been accepted, nor do they receive any
information concerning the progress of defect handling. Additionally, IT customers do
not receive enough feedback on how problems were resolved or could be avoided in
the future. Customers also considered such comments from the service desk as “This is
not a bug” or “This is not our bug” to be a big problem. Moreover, users reported that
they need training regarding defect reporting tools. Finally, customers complained that
software vendors deliver applications that include bugs that should have been found
during the developer-side testing.

The third research question was: what is service-oriented problem management
and which concepts are related to it? We created a conceptual model and validated it in
cooperation with an IT service provider and an IT customer. The validation started with
an observation phase where we observed working practices of a service desk worker
and participated in the customer support team’s meetings. We analyzed whether the
ITIL-based concepts of our conceptual model were visible in the customer support
processes of the IT provider. Additionally, we analyzed relationships between con-
cepts and the rationale of concepts in the case organization. We reported our findings
to customer support teams during an ITIL training day. The following list of recom-
mendations for a service-oriented problem management model is based on both a lit-
erature review (defect management and problem management literature) and empirical
findings (interviews with IT providers and IT customers, and our observations) during
the research process.

1. The service-oriented problem management model should include a clear def-
inition of the goals, inputs, outputs, activities, roles, and metrics for problem
management. A customer user role needs to be divided into a main user role
and an end-user role. A well-defined, documented process can be measured and
improved, in contrast to ad hoc processes.

2. The model should be based on the three-level service support model in which
the first level consists of the service desk that manages the incident management

5.3. Summary of the results 49

process, the second level corresponds to problem management, and the third
level includes, for example, change management and application development
processes. Simple incidents and problems are resolved by the service desk and
problem management.

3. The model should provide a description of the problem management concepts
(incidents, problems, known errors and requests for change) and attributes re-
lated to these concepts. Clear rules are needed concerning how to classify inci-
dents into failures and service requests, as well as how to relate incidents into
problems, known errors, and RFCs. Service-desk workers do not have extra time
to think about how to categorize or classify incidents and service requests such
as service availability problems and support tool-related problems

4. The model should provide a process diagram that shows the connections be-
tween problem management and other processes such as service desk & inci-
dent management, change management, service level management and appli-
cation development. Well-established connections between processes decrease
the number of information gaps within the organization and improve the total
performance of service management. Additionally, other processes (application
development and testing, for instance) produce considerable information that is
useful for problem management purposes such as defect lists, inspection material
and known error lists.

5. The model should define both proactive and reactive activities. A greater focus
should be placed on proactive problem management, including problem reviews,
trend analyses, and preventive actions. All the defect prevention and problem
prevention techniques used in the organization should be documented and the
staff trained to use them. The results of problem reviews and trend analyses help
in identifying weak areas in products and services.

6. The model should define how problems and errors in the products and services of
third-party service providers are monitored and handled. The service quality of
the service provider often depends on the quality provided by third-party service
providers. Thus, it is important to describe how incidents move forward in the
network of service providers.

7. The model should combine problem management with defect management into
a seamless process in order to close the gap between service-desk activities and
software-development activities. A common tool for problem management and
defect management is a good improvement idea.

8. The model should define how a knowledge base can be implemented and used
as part of the problem management process. The knowledge base can be used as
a proactive tool to decrease the number of incidents.

The last research question was: What kind of difficulties are associated with the
introduction of service-oriented problem management. These difficulties were iden-
tified in evaluating service-oriented problem management methods in practice. For

50 Chapter 5. Summary of papers

example, the following difficulties were discussed in research papers IV, V, and VI:
there are no proactive problem management methods defined in the IT organization
(IV, VI); combining ITIL concepts with existing business concepts is difficult (V); the
activies and roles of IT support teams are poorly documented (IV); there is no prob-
lem category for third-party errors (V); the problem database often includes duplicate
records or incomplete records (V); problem management is poorly linked to other pro-
cesses, such as service level management, testing and application development (IV);
and finally, it is difficult to integrate the knowledge base into service management pro-
cesses (VI). Moreover, knowledge base implementation projects may include resource-
related, process-related and tool-related difficulties (VI).

Perhaps the most important challenge regarding service-oriented problem manage-
ment is that IT organizations solely focus on reactive problem management (solving
already reported problems), thus ignoring the benefits of proactive work. The second
significant problem is the different terminology between service management and tra-
ditional software engineering. Service management concepts need to be mapped into
the organization’s existing concepts and people need to be trained to use these concepts.

Additionally, a major problem is the gap between service desk and product develop-
ment. IT organizations often consider these two processes as strictly separated activies
and use different tools for these processes. This gap results in a communication barrier.
Software developers do not receive all information on users’ problems reported to the
service desk, and the service desk does not receive all information on defects found by
testers and developers.

The contributions of this thesis are useful for those problem managers, service man-
agers and quality managers who are responsible for improving software quality assur-
ance methods or are planning to implement a problem management process in the near
future. Our research focused on identifying the difficulties and challenges regarding
problem management. Some of difficulties we identified can be solved by changing
a problem management tool or performing some configuration work (e.g., defining a
category tree for problems and defects, sending an automated incident confirmation
report to customers) whereas other process-related difficulties (e.g., ensuring that each
team uses standardized methods for tracking problems and defects) are more difficult to
resolve. In the future, we shall focus our research on providing solutions to these chal-
lenges and on establishing a well-documented, service-oriented problem management
model.

Chapter 6

Conclusions

IT organizations are constantly looking for new ways to improve the quality of IT
services and to decrease the costs of managing problems, while at the same time they
are struggling with an increasing number of incident and problem reports. There is
a clear need for a service-oriented problem management process that combines two
previously separate activities: problem management and defect management. A large
number of open defects and problems can cause significant financial losses for both IT
companies and IT customers.

6.1 Contributions of the thesis

This thesis has made the following contributions: In the first phase, we found answers
to the first research question: which methods can be used to detect defects? Various
software quality assurance methods were identified and analyzed. We introduced a
UML-based test model for creating test cases and identifying defects in the early phases
of the software life-cycle. Several defects and problem areas in a health care application
were detected using a UML-test model in a case study.

In the second phase, we identified the difficulties arising in organizations’ de-
fect management processes. Several difficulties were found: project teams use non-
standardized problem management and defect management methods, and IT providers
have limited resources for fixing defects and problems. IT customers also reported
interesting challenges. For example, it is difficult to gain enough feedback from IT
providers on how a problem was resolved or can be avoided in the future. This phase
provided an answer to the second research question: What types of difficulties are
encountered by IT organizations with regard to defect management?

Third phase helped IT companies and IT customers to identify the concepts and
their relationships within service-oriented problem management. The service-oriented
problem management model provides IT organizations with a solution on how to man-
age the software problems reported by IT customers, end-users or other stakeholders,
as well as how to transform problems into errors (defects). IT organizations with well-
defined problem management models will have fewer difficulties in managing prob-

51

52 Chapter 6. Conclusions

lems than those without well-defined process models. The third phase provided an
answer to the third research question: what is service oriented problem management
and which concepts are related to it?

The fourth phase answered to the last research question: what types of difficulties
do IT organizations experience in introducing service-oriented problem management?
Recommendations concerning which issues are important in establishing a problem
management process were produced in the form of a problem management checklist.
Service-oriented problem management is needed because defect management models
do not provide enough guidance on how service-related problems and failures can be
monitored or handled. The service desk and problem management are able to resolve
a large number of the simple problems that are traditionally solved by busy software
developers. Service-oriented problem management ensures that developers have more
time to focus on developing software.

Many IT service providers have developed their own models based on ITIL. Be-
cause reading ITIL-based books and standards requires considerable time and effort
from organizations, we have extracted information on ITIL processes to a conceptual
model, providing practical examples and a checklist for problem management. These
examples and checklists have increased the value of the conceptual model and pro-
vided research partners with a faster learning process regarding problem management
concepts. We have received positive feedback from IT organizations and IT customers
within the SOSE project regarding our service-oriented problem management model,
the problem management checklist and the difficulties identified in support processes.
The results of the fourth phase are especially interesting and important because chal-
lenges and difficulties affecting problem management and knowledge-base implemen-
tation projects have previously been given very little consideration.

The main contributions of this thesis are 1) an evaluation of a UML-based test
model as a defect detection technique, 2) a documented list of challenges and difficul-
ties regarding defect management, 3) a systematic approach to service-oriented prob-
lem management and 4) a list of difficulties concerning service-oriented problem man-
agement, as well as recommendations and guidelines describing how service-oriented
problem management can be achieved in practice. Based on the results of this thesis,
we are able to present the following concluding remarks:

1. The UML-based test model effectively supports such traditional quality assur-
ance methods as black-box testing, reviews and inspections in the identification
of defects and problems. However, UML-based testing requires that testers have
good UML skills and experience with test case design.

2. IT organizations have several difficulties in managing defects. One major diffi-
culty is a lack of well-defined defect management model. These difficulties seem
to have an influence on customer satisfaction with support services.

3. Service-oriented problem management provides a systematic approach for man-
aging problems and defects. It creates a bridge between customer-oriented prob-
lem management and development-oriented defect management activities. IT
organizations should focus on proactive problem management, such as using
problem reviews and knowledge bases.

6.2. Future work 53

4. IT organizations have tool-related, process-related and resource-related difficul-
ties in introducing service-oriented problem management.

There are some limitations to this study. The first limitation is related to the gen-
eralizability of the results. Instead of providing generalizeable conclusions we have
focused on extending the theory of problem management. The second limitation is
related to the small number of case organizations. Research data for this thesis has
been collected from five case organizations. The reported results regarding the diffi-
culties in problem management are based on the work with two case organizations.
Service-oriented problem management concepts were tested in cooperation between
one service provider company and one IT customer company. We have already started
to study the challenges of service-oriented problem management also with yet other
case organizations in order to improve our problem management model [43].

6.2 Future work

In this thesis, the primary focus was to identify difficulties in managing defects and
problems rather than developing a well-documented problem management model. In
future studies we intend to use the results of this thesis to build a well-defined, docu-
mented problem management model that meets the requirements of ISO/IEC 20 000
standards, solves most of the difficulties identified by this thesis, includes practical ex-
amples and process diagrams that would make implementing the process easier. Future
work could attempt to derive a more complete list of problem management challenges
and examine which proactive problem management methods are used by IT organi-
zations. Finally, more research efforts are needed to examine service management
maturity models from the IT customer’s viewpoint.

Bibliography

[1] Agile Data. Agile data website. http://www.agiledata.org/, 7 2007.

[2] Jarmo J. Ahonen, Tuukka Junttila, and Markku Sakkinen. Impacts of the or-
ganizational model on testing: Three industrial cases. Empirical Softw. Engg.,
9(4):275–296, 2004.

[3] Alain April, Jane Huffman Hayes, Alain Abran, and Reiner Dumke. Software
maintenance maturity model (smmm): the software maintenance process model:
Research articles. J. Softw. Maint. Evol., 17(3):197–223, 2005.

[4] Izak Benbasat, David K. Goldstein, and Melissa Mead. The case research strategy
in studies of information systems. MIS Q., 11(3):369–386, 1987.

[5] Keith H. Bennett and Vaclav T. Rajlich. Software maintenance and evolution: a
roadmap. In ICSE ’00: Proceedings of the Conference on The Future of Software
Engineering, pages 73–87, New York, NY, USA, 2000. ACM Press.

[6] Richard Berntsson-Svensson and Aybueke Aurum. Successful software project
and products: An empirical investigation. In ISESE ’06: Proceedings of the 2006
ACM/IEEE international symposium on International symposium on empirical
software engineering, pages 144–153, New York, NY, USA, 2006. ACM Press.

[7] Robert Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley, 2000.

[8] BMC Software Inc. Bmc remedy it service management. Marketing material, 8
2007.

[9] Barry Boehm and Victor R. Basili. Software defect reduction top 10 list. Com-
puter, 34(1):135–137, 2001.

[10] Barry Boehm and Frank Belz. Experiences with the spiral model as a process
model generator. In Proceedings of the 5th international software process work-
shop on Experience with software process models, pages 43–45, Los Alamitos,
CA, USA, 1990. IEEE Computer Society Press.

[11] Frank Bomarius and Raimund Feldmann. Get your experience factory ready for
the next decade: Ten years after "how to build and run one". Profes 2006 Tutorial,
Amsterdam, Netherlands, 6 2006.

55

56 Bibliography

[12] M. Bush. Improving software quality: the use of formal inspections at the jpl.
In ICSE ’90: Proceedings of the 12th international conference on Software engi-
neering, pages 196–199, Los Alamitos, CA, USA, 1990. IEEE Computer Society
Press.

[13] David N. Card. Learning from our mistakes with defect causal analysis. IEEE
Software, 15(1):56–63, January/February 1998.

[14] CEN Workshop Agreement CWA 14924-1. European Guide to Good Practice in
Knowledge Management, Part 1. European Committee for Standardization, 2004.

[15] COBIT 4.0. Control Objectives for Information and related Technology: COBIT
4.0. IT Governance Institute, 2005.

[16] Consortium for Service Innovation. The kcs sm operational model (knowledge-
centered support). http://www.serviceinnovation.org/ourwork/kcs.php, 2007.

[17] James Coplien. Software Patterns. Bell Laboratories, the Hillside Group, 2000.

[18] Jeanne Lee Cunningham. The problem is problems: problem tracking, resolution
and record keeping in a large university environment. In SIGUCCS ’92: Pro-
ceedings of the 20th annual ACM SIGUCCS conference on User services, pages
77–80, New York, NY, USA, 1992. ACM Press.

[19] Kathleen Eisenhardt. Building theories from case study research. Academy of
Management Review, 14:532–550, 1989.

[20] Peter Feher and Andras Gabor. The role of knowledge management supporters in
software development companies. Software Process Improvement and Practice,
11(3):251–260, June 2006.

[21] William Florac. Software quality measurement a framework for counting prob-
lems and defects. Technical Report CMU/SEI-92-TR-22, 1992.

[22] Michael Fredericks. Using defect tracking and analysis to improve software qual-
ity. US Air Force Research Laboratory Report SP0700-98-D-4000, 1998.

[23] David Garvin. Building a learning organization. Harward Business Review, pages
78–91, July-August 1993.

[24] John Geralds. Software bugs cost billions. IT Week, June 2002.

[25] Tom Gilb and Dorothy Graham. Software Inspection. Addison-Wesley, 1993.

[26] Robert Glass. Building quality software. Englewood Cliffs: Prentice Hall, 1992.

[27] Jay Graham and Brian Hart. Knowledge integration with a 24-hour help desk.
In SIGUCCS ’00: Proceedings of the 28th annual ACM SIGUCCS conference on
User services, pages 92–95, New York, NY, USA, 2000. ACM Press.

Bibliography 57

[28] Volker Gruhn and Juri Urbainczyk. Software process modeling and enactment:
an experience report related to problem tracking in an industrial project. In ICSE
’98: Proceedings of the 20th international conference on Software engineering,
pages 13–21, Washington, DC, USA, 1998. IEEE Computer Society.

[29] Andreas Hanemann, Martin Sailer, and David Schmitz. Assured service quality
by improved fault management. In ICSOC ’04: Proceedings of the 2nd interna-
tional conference on Service oriented computing, pages 183–192, New York, NY,
USA, 2004. ACM Press.

[30] Jean Hartmann, Claudio Imoberdorf, and Michael Meisinger. Uml-based integra-
tion testing. In ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT international
symposium on Software testing and analysis, pages 60–70, New York, NY, USA,
2000. ACM Press.

[31] Eva Holmquist, Malin Jernrup, Susanne Lieberg, and Tore Qvist. Experiences
of testdriven development. In EUROSTAR 2001: Proceedings of the 9th Euro-
pean International Conference on Software Testing Analysis& Review, Galway,
Ireland, 2001. EuroSTAR Conferences.

[32] John Horch. Practical guide to software quality management. Boston, MA :
Artech House, 2003.

[33] IEEE Standard 1044-1993. IEEE Standard Classification for Software Anomalies.
IEEE, 1994.

[34] IEEE Standard 729-1983 1. IEEE Standard Glossary of Software Engineering
Terminology. IEEE, 1983.

[35] IEEE Standard 982.1-1988. IEEE Standard Dictionary of Measures to Produce
Reliable Software. IEEE, 1988.

[36] ISO/IEC. ISO/IEC 20000 A Pocket Guide. Van Haren Publishing, 2006.

[37] IT Service Management Forum. Metrics for IT Service Management. Van Haren
Publishing, 2006.

[38] IT Service Management Forum. Itil service management self assessment.
http://www.itsmf.com/bestpractice/selfassessment.asp, 5 2007.

[39] IT Service Management Forum. Itsmf website. http://www.itsmf.org/, 5 2007.

[40] Anne Jackson, Gregory Lyon, and Janet Eaton. Documentation meets a knowl-
edge base: blurring the distinction between writing and consulting (a case study).
In SIGDOC 98: Proceedings of the 16th annual international conference on Com-
puter documentation, pages 5–13, New York, NY, USA, 1998. ACM Press.

[41] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Devel-
opment Process. Addison-Wesley, 1999.

58 Bibliography

[42] Pankaj Jalote. CMM in Practice, Processes for Executing Software Projects at
Infosys. Addison-Wesley, 2000.

[43] Marko Jäntti and Niko Pylkkänen. The role of problem management in cus-
tomer support. In IRIS 30. Information Systems Research Seminar in Scandi-
navia.Proceedings of the 30th IRIS, Tampere, Finland, 2007.

[44] Pertti Järvinen. On research methods. Opinpajan Kirja, 2004.

[45] Pertti Järvinen and Annikki Järvinen. Tutkimustyön metodeista. Opinpaja Oy,
1995.

[46] Mira Kajko-Mattsson. Corrective maintenance maturity model: Problem man-
agement. In ICSM ’02: Proceedings of the International Conference on Software
Maintenance (ICSM’02), page 486, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[47] Mira Kajko-Mattsson and Therez Björnsson. Outlining developers’ testing pro-
cess model. In Proceedings of the 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2007). IEEE Computer Society,
2007.

[48] Mira Kajko-Mattsson, Stefan Forssander, and Ulf Olsson. Corrective mainte-
nance maturity model (cm3): maintainer’s education and training. In ICSE
’01: Proceedings of the 23rd International Conference on Software Engineering,
pages 610–619, Washington, DC, USA, 2001. IEEE Computer Society.

[49] Kajko-Mattsson, M. A conceptual model of software maintenance. In ICSE ’98:
Proceedings of the 20th international conference on Software engineering, pages
422–425, Washington, DC, USA, 1998. IEEE Computer Society.

[50] Kajko-Mattsson, M. Problem management maturity within corrective mainte-
nance. Journal of Software Maintenance, 14(3):197–227, 2002.

[51] Kajko-Mattsson, M. Maturity status within front-end support organizations.
In Proceedings of 29th International Conference on Software Engineering
(ICSE’07). IEEE, 2007.

[52] Supaporn Kansomkeat and Wanchai Rivepiboon. Automated-generating test case
using uml statechart diagrams. In SAICSIT ’03: Proceedings of the 2003 annual
research conference of the South African institute of computer scientists and in-
formation technologists on Enablement through technology, pages 296–300, Re-
public of South Africa, 2003. South African Institute for Computer Scientists and
Information Technologists.

[53] Sharon Kanter and Gary Jones. No problem problem tracking. In SIGUCCS ’93:
Proceedings of the 21st annual ACM SIGUCCS conference on User services,
pages 351–356, New York, NY, USA, 1993. ACM Press.

Bibliography 59

[54] Victor Kapella. A framework for incident and problem management. Interna-
tional Network Services whitepaper, 2003.

[55] Harri Karhunen and Marko Jäntti. Service-oriented software engineering (sose)
framework. In Proceedings of the Second IEEE Conference on Service Systems
and Service Management, ICSSSM05, June 2005.

[56] Diane Kelly and Terry Shepard. A case study in the use of defect classification in
inspections. In CASCON ’01: Proceedings of the 2001 conference of the Centre
for Advanced Studies on Collaborative research, page 7. IBM Press, 2001.

[57] Jyrki Kontio. Software Engineering Risk Management: A Method, Improvement
Framework, and Empirical Evaluation. PhD thesis, Helsinki University of Tech-
nology, 2001.

[58] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley, 2001.

[59] Marek Leszak, Dewayne E. Perry, and Dieter Stoll. A case study in root cause
defect analysis. In ICSE ’00: Proceedings of the 22nd international conference on
Software engineering, pages 428–437, New York, NY, USA, 2000. ACM Press.

[60] Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980.

[61] Vladimir Marik, Lubos Kral, and Radek Marik. Software testing & diagnostics:
Theory & practice. In SOFSEM ’00: Proceedings of the 27th Conference on
Current Trends in Theory and Practice of Informatics, pages 88–114, London,
UK, 2000. Springer-Verlag.

[62] Hank Marquis. How to classify incidents. Newsletter in
http://www.itsmsolutions.com/newsletters/ DITYvol2iss50.htm, 10 2007.

[63] Materna Oy. Itsm survey. http://www.materna.de/FI/Home/, 11 2005.

[64] R. G. Mays, C. L. Jones, G. J. Holloway, and D. P. Studinski. Experiences with
defect prevention. IBM Syst. J., 29(1):4–32, 1990.

[65] John D. McGregor and Timothy D. Korson. Integrated object-oriented testing and
development processes. Commun. ACM, 37(9):59–77, 1994.

[66] Microsoft. Microsoft operations framework. http://www.microsoft.com/ tech-
net/solutionaccelerators/cits/mo/mof/default.mspx, 5 2007.

[67] James Miller, Fraser Macdonald, and John Ferguson. Assisting management de-
cisions in the software inspection process. Inf. Tech. and Management, 3(1-2):67–
83, 2002.

[68] Frank Niessinka, Viktor Clerca, Ton Tijdinka, and Hans van Vlietb. The it service
capability maturity model version 1.0. CIBIT Consultants&Vrije Universiteit,
2005.

60 Bibliography

[69] Atsushi Noda, Tsuneo Nakanishi, and Teruaki Kitasuka. Introducing fault tree
analysis into product-line software engineering for exception handling feature
exploitation. In Proceedings of the 25th IASTED International Multi-Conference
Software Engineering, pages 229–234, Innsbruck, Austria, 2007.

[70] Office of Government Commerce. ITIL Application Management. The Stationary
Office, UK, 2002.

[71] Office of Government Commerce. ITIL ICT Infrastructure Management. The
Stationary Office, UK, 2002.

[72] Office of Government Commerce. ITIL Service Delivery. The Stationary Office,
UK, 2002.

[73] Office of Government Commerce. ITIL Service Support. The Stationary Office,
UK, 2002.

[74] Office of Government Commerce. ITIL Business Perspective: The IS View on
Delivering Services to the Business. The Stationary Office, UK, 2004.

[75] Office of Government Commerce. Introduction to ITIL. The Stationary Office,
UK, 2005.

[76] Office of Government Commerce. ITIL Service Operation. The Stationary Office,
UK, 2007.

[77] Office of Government Commerce. ITIL Service Transition. The Stationary Office,
UK, 2007.

[78] Tauhida Parveen, Scott Tilley, and George Gonzalez. A case study in test man-
agement. In ACM-SE 45: Proceedings of the 45th annual southeast regional
conference, pages 82–87, New York, NY, USA, 2007. ACM Press.

[79] Mauro Pezz and Michal Young. Testing object oriented software. In ICSE ’04:
Proceedings of the 26th International Conference on Software Engineering, pages
739–740, Washington, DC, USA, 2004. IEEE Computer Society.

[80] Monvorath Phongpaibul and Barry Boehm. An empirical comparison between
pair development and software inspection in thailand. In ISESE ’06: Proceedings
of the 2006 ACM/IEEE international symposium on International symposium on
empirical software engineering, pages 85–94, New York, NY, USA, 2006. ACM
Press.

[81] Quality Assurance Institute. A software defect management process. Research
Report number 8, 1995.

[82] Walker Royce. Software Project Management: A Unified Framework. Addison-
Wesley, 1998.

Bibliography 61

[83] Ahmed Salem and Lalitha Balasubramanian. Utilizing uml use cases for testing
requirements. In Software Engineering Research and Practice, pages 269–275,
2004.

[84] Robert J. Sandusky and Les Gasser. Negotiation and the coordination of informa-
tion and activity in distributed software problem management. In GROUP ’05:
Proceedings of the 2005 international ACM SIGGROUP conference on Support-
ing group work, pages 187–196, New York, NY, USA, 2005. ACM Press.

[85] Annie Saunders. Online solutions: looking to the future of knowledgebase man-
agement. In SIGUCCS ’04: Proceedings of the 32nd annual ACM SIGUCCS
conference on User services, pages 194–197, New York, NY, USA, 2004. ACM
Press.

[86] Ulrike Schultze and Dorothy Leidner. Studying knowledge management in infor-
mation systems research: discourses and theoretical assumptions. MIS Quarterly,
26(3):213–242, Sep 2002.

[87] Avik Sinha and Carol Smidts. Hottest: A model-based test design technique
for enhanced testing of domain-specific applications. ACM Trans. Softw. Eng.
Methodol., 15(3):242–278, 2006.

[88] Thomas Thelin. Team-based fault content estimation in the software inspection
process. In ICSE ’04: Proceedings of the 26th International Conference on Soft-
ware Engineering, pages 263–272, Washington, DC, USA, 2004. IEEE Computer
Society.

[89] Jos J. M. Trienekens, Jacques J. Bouman, and Mark Van Der Zwan. Specification
of service level agreements: Problems, principles and practices. Software Quality
Control, 12(1):43–57, 2004.

[90] Gursimran S. Walia, Jeffrey Carver, and Thomas Philip. Requirement error ab-
straction and classification: an empirical study. In ISESE ’06: Proceedings of the
2006 ACM/IEEE international symposium on International symposium on em-
pirical software engineering, pages 336–345, New York, NY, USA, 2006. ACM
Press.

[91] Ernest Wallmueller. Software quality assurance: A practical approach. Prentice
Hall International, 1994.

[92] Brian White. Software Configuration Management Strategies and Rational Clear
Case. Addison-Wesley, 2000.

[93] Robert Yin. Case Study Research : Design and Methods. Beverly Hills, CA:
Sage Publishing, 1994.

[94] Jian Zhen. It needs help finding root causes. Computerworld, 39(33):26, 2005.

Kuopio University Publications H. Business and Information technology

H 1. Pasanen, Mika. In Search of Factors Affecting SME Performance: The Case of Eastern Finland.
2003. 338 p. Acad. Diss.

H 2. Leinonen, Paula. Automation of document structure transformations.
2004. 68 p. Acad. Diss.

H 3. Kaikkonen, Virpi. Essays on the entrepreneurial process in rural micro firms.
2005. 130 p. Acad. Diss.

H 4. Honkanen, Risto. Towards Optical Communication in Parallel Computing.
2006. 80 p. Acad. Diss.

H 5. Laukkanen, Tommi. Consumer Value Drivers in Electronic Banking.
2006. 115 p. Acad. Diss.

H 6. Mykkänen, Juha. Specification of reusable integration solutions in health information systems.
2006. 88 p. Acad. Diss.

H 7. Huovinen, Jari. Tapayrittäjyys – tilannetekijät toiminnan taustalla ja yrittäjäkokemuksen
merkitys yritystoiminnassa.
2007. 277 p. Acad. Diss.

H 8. Päivinen, Niina. Scale-free Clustering: A Quest for the Hidden Knowledge.
2007. 57 p. Acad. Diss.

H 9. Koponen, Timo. Evaluation of maintenance processes in open source software projects
through defect and version management systems.
2007. 92 p. Acad. Diss.

H 10. Hassinen, Marko. Studies in mobile security.
2007. 58 p. Acad. Diss.

	art2.pdf
	Introduction
	Research Methods
	Data Collection Methods
	Data Analysis Methods

	Empirical Findings
	Defect Management Processes
	Problems Regarding the Defect Management Process

	Analysis
	The Analysis of Defect Management Processes
	The Analysis of the Identified Problems
	Lessons Learned

	Discussion and Conclusions

	art5.pdf
	Introduction
	Research Methods
	A Case Organization and Data Collection Methods
	Data Analysis Methods

	Empirical Findings
	The Strengths of the Problem Management Process
	The Challenges in the Problem Management Process

	Lessons Learned
	Discussion and Conclusions

