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ABSTRACT 
 
One of the major goals of gene therapy is the development of vectors able to precisely deliver a gene of 
interest to specific cells or organs in vivo. In this study we aimed at introducing more efficient and 
targetable baculo- and lentiviral vectors to the field of gene therapy. In addition, we studied the effects of 
baculovirus nuclear entry and viral gene transcription in human cells. 
 In the first article we show that a 21- amino acid EctoDomain in conjunction with transmembrane 
and cytoplasmic tail domains of VSV-G (VSV-GED), deprived of its tropism-mediating epitope, 
augments baculovirus-mediated gene-delivery to vertebrate cells in vitro and in vivo. We suggest that 
VSV-GED enhances baculovirus transduction by potentiating the membrane fusion activity of baculovirus 
envelope protein gp64. However, VSV-GED does not provide cell specificity and this is why other 
targeting strategies were sought. 
  An ideal targeting strategy would use a general system eliminating the need to engineer new 
vectors for each new ligand. The use of (strept)avidin and its extraordinary tight interaction with biotin 
(Kd ~ 10-13-10-15M) could offer an effective approach. In the second article we developed a targeting 
strategy based on metabolical biotinylation of baculovirus vectors. This was achieved by displaying a 
small biotin acceptor peptide, BAP, fused either to different sites in the baculovirus glycoprotein gp64 or 
to VSV-GED. Transduction efficiencies of different contructs showed significant differences highlighting 
the importance in choosing the peptide insertion site. Only vectors displaying BAP inserted at amino acid 
position 283 of the gp64 protein showed improved transduction when targeted to cancer cell lines with 
biotinylated ligands or antibodies. These vectors could also be concentrated by streptavidin conjugated 
paramagnetic particles to reach titers up to 1010 pfu/ml.  
 For applications requiring long-term transgene expression development of targeted lentiviral 
vectors is of great importance. In the third article we constructed lentiviral vectors displaying avidin and 
streptavidin fused to VSV-GED, codisplayed with gp64. We present data on targeting of these lentivirus 
vectors to transferrin, epidermal growth factor and CD46 receptors overexpressed on tumor cells in vitro. 
Further, we demonstrate the capability of avidin-display in non-invasive imaging in vivo.  
 The insect baculoviruses have the ability to transduce mammalian cell lines without replication. 
However, the baculovirus transduction can lead to the expression of some baculoviral immediate early 
genes in mammalian cells. In the last article we further studied the transcription and expression of viral 
immediate-early genes in human cells and examined the interactions between viral components and 
subnuclear structures. 
 In conclusion, this work presents a simple means to enhance baculoviral gene transfer by VSV-
GED pseudotyping and gives the proof of principle of the utility of avidin-biotin display as a versatile tool 
for targeting baculo- and lentivirus transduction. This conjugate-based strategy is readily adaptable for 
different targets in order to increase the gene delivery for ex vivo and in vivo applications. Finally, we 
elucidated the intranuclear events followed by baculovirus transduction in human cells. Together these 
results provide new insights into the future design of safer and more specific gene therapy vectors. 
 
National Library of Medicine Classification: QU 195, QU 350, QU 470, QU 475, QU 55.7, QW 162, QW 
168.5.H6, QZ 52, WN 185, WN 203  
Medical Subject Headings: Avidin; Baculoviridae; Biotin; Biotinylation; Cell Nucleus Structures; Cell Line; 
Cells, Cultured; Choroid Plexus; Gene Expression; Gene Targeting; Gene Therapy; Gene Transfer Techniques; 
Genetic Vectors; HIV-1; Lentivirus; Membrane Glycoproteins; Magnetic Resonance Imaging; Muscle, 
Skeletal; Rabbit; Rats; Receptor; Brain; Tomography, Emission-Computed, Single- Photon; Transcription, 
Genetic; Vertebrates; Viral Envelope Proteins; Viral Fusion Proteins 
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INTRODUCTION 

 
Gene therapy is a process by which nucleic acids are delivered into the cells with the goal of treating 
or curing a disease. Gene therapy was initially developed to treat monogenic diseases by replacing the 
missing or defective gene with the functional one. However, over the last decade, more emphasis has 
been put on the possibilities of treating a broader spectrum of disease conditions, such as 
cardiovascular diseases and cancer.  
 Major limiting factor in gene therapy continues to be the poor performance of vectors and 
their inability to precisely deliver a gene of interest to specific cells or organs in vivo. Viral vectors 
are known to be the most efficient tools for gene transfer. Because different diseases require either 
transient or persistent expression of the therapeutic gene, a single vector system is unlikely to be 
sufficient for all gene therapy purposes. Due to this, the development of a more general targeting 
method, applicable to different vector types, would be of great value for future evolution of gene 
therapy. 
 In this work we developed novel viral vectors for enhanced and targeted gene delivery. We 
studied the utility of avidin and biotin display for vector targeting, purification and imaging of viral 
biodistribution and transgene expression. Baculoviral and lentiviral vectors were chosen as 
technology platforms to improve their potential use for therapeutic purposes. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
       



 14 

2. REVIEW OF THE LITERATURE 

2.1 Gene therapy        
 
Gene therapy is a process by which DNA encoding specific proteins is delivered into the cells to treat 
or cure a disease. In comparison to classical medicines, gene therapy has the potential to mediate the 
highest possible level of therapeutic specificity. Over the last two decades gene therapy has moved 
from preclinical to clinical studies ranging from single gene disorders to more complex diseases such 
as cancer and cardiovascular disorders (Figure 1). Every year around 100 clinical trials are approved 
worldwide. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The indications addressed by gene therapy clinical trials. 
 

2.2 Gene delivery vectors 

In practice, we face the problem in realizing the concept of gene therapy: the gene delivery into target 
cells is very ineffective and presents a formidable challenge. Vectors that have been developed to 
overcome these obstacles include nonviral and viral vectors. Viral vectors have been reported as the 
most efficient tools for gene transfer in vitro and in vivo. Most of the clinical trials have focused on 
the use of vectors based on mammalian viruses, such as retroviruses, adenoviruses, adeno-associated 
viruses, vaccinia viruses and herpes simplex viruses (Figure 2). Their advantage is the natural 
adaptation to mammalian hosts. On the other hand, practical use of viral vectors is often limited by 
the emergence of replication competent viruses, cytotoxicity and immune responses, which presents a 
minimal problem for nonviral vectors. It is thus evident that the currently used classes of vectors have 
their own characteristics, advantages, drawbacks and applications. The next chapters will introduce 
some of the current vectors with a special focus on baculovirus and lentivirus. 
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Figure 2. Vectors used in gene therapy clinical trials. 
 
2.2.1 Baculoviruses 
 
The virus family Baculoviridae has been known for hundreds of years. They comprise a diverse 
group of over 600 viruses, which infect only arthropod hosts. Studies since 1920’s have 
acknowledged baculoviruses as effective natural insecticides against forestry and agriculture pests 
(Black et al., 1997). The research into the biology of these viruses and ways of improving them as a 
pest control method has lead to extensive studies of baculovirus genetics, ecology (Miller, 1997) and 
biosafety (Burges et al., 1980; Kost and Condreay, 2002).  
 Since the late-1980’s the baculovirus expression vector system (BEVS) became a popular 
choice for the production of numerous recombinant proteins in insect culture and larvae (Kost et al., 
2005). This technology has also led to the development of baculovirus surface display for the proper 
presentation of antigens, construction of eukaryotic libraries and for the enhancement of baculovirus-
mediated transduction (Makela and Oker-Blom, 2006; Oker-Blom et al., 2003). As with other 
eukaryotic expression systems, baculovirus expression of heterologous genes permits folding, post-
translational modification and oligomerization in manners that are often similar to those that occur in 
mammalian cells (Kost et al., 2005). Moreover, the flexibility of the capsid system allows insertion of 
very large genes into the AcMNPV genome and the expression of heterologous proteins under the 
control of strong viral p10 or polyhedrin promoter enables high production levels (Fraser, 1986).  
 In the early 1980 it was discovered that baculoviruses can enter into non-host cells, including 
many mammalian cells, without infectious reproduction. A few years later it was discovered that 
baculoviruses containing mammalian expression cassettes can transduce mammalian cells (Carbonell 
et al., 1985). During the late 1990s several studies confirmed the initial findings and the list of 
suitable target cells has continued to expand (Hu, 2006). Since then baculoviruses have gained 
popularity as potential vectors for both in vitro and in vivo gene therapy. 
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2.2.1.1 Virion structure  
 
Members of the Baculoviridae are divided into two genera, Granulovirus (GV) and 
Nucleopolyhedrovirus (NPV) (Miller, 1997). The NPVs can be further divided into two groups: 
single-nucleopolyhedroviruses (SNPV) containing a single nucleocapsid per virion, and multiple-
nucleopolyhedroviruses (MNPV) containing multiple nucleocapsids. Both the SNPVs and MNPVs 
can contain numerous virions per polyhedral inclusion body (PIB). 
 The most extensively studied baculovirus, Autographa californica multiple 
nucleopolyhedrovirus (AcMNPV), is a large enveloped virus with a double-stranded, circular genome 
of 134 kb. Its genome has been sequenced and predicted to contain 154 open reading frames (Ayres et 
al., 1994). They have a distinctive rod shaped nucleocapsid averaging 25-50nm in diameter and 250-
300 nm in length (Harrap, 1972b; Williams and Faulkner, 1997). Baculoviruses exist in two distinct 
forms involved in different phases of its natural life cycle. The form responsible for the horizontal 
spread of viruses between insect hosts is the occlusion derived virions (ODV) whereas budded viruses 
(BVs) are necessary for the propagation within the insect (Williams and Faulkner, 1997).  
 BVs and ODVs differ in lipid and protein components of their envelopes but the capsid 
composition is similar (Figure 3); only ODV-EC27 is found exclusively on the ODV capsids (Funk et 
al., 1997). Vp39 (orf89), p80 (orf104) and p24 (orf129) represent the major capsid proteins and 
orf1629 (orf9) encloses the capsid structure (Funk et al, 1997; Braunagel et al, 1996a) whereas DNA 
binding protein p6.9 (orf100) participates in the condensation of the viral genome inside the 
nucleocapsids (Figure 3) (Wilson & Consigli, 1985). As the ODVs are not produced during the 
production of baculovirus vectors due to deletion of polyhedrin gene, the next chapter will 
concentrate on the composition of envelope of the BV with a special focus on the major envelope 
protein gp64.    
 

Figure 3. Baculovirus structural proteins on the budded and occlusion-derived virus (Funk et al., 
1997) 



 17 

2.2.1.2 Major envelope glycoprotein gp64 
 
Budded virions contain one nucleocapsid surrounded by an envelope with gp64 major envelope 
protein found associated at one pole of the virus particles as peplomer structures (Figure 3). One 
virion is estimated to contain ~1000 gp64 peplomers (Wickham et al., 1990). The Gp64 exists as a 
disulfide-linked trimer with a molecular mass of 175 kDa (Oomens et al., 1995). The gp64 protein 
contains an N-terminal signal peptide and a C-terminal anchor domain. Gp64 accumulates at the 
plasma membrane during the early and late phases of infection, 8 and 24 hours p.i. (Blissard & 
Rohrmann, 1989; Monsma et al 1996; Monsma & Blissard, 1995; Volkman & Knudson, 1986). 
Nucleocapsids become surrounded by gp64-containing plasma membrane during budding from the 
cell surface in the late phase of infection. Furthermore, gp64 is required for efficient viral budding 
(Oomens and Blissard, 1999) and cell-to-cell transmission (Monsma et al., 1996). Gp64 mediates also 
virus binding to cell surface (Duisit et al., 1999; Ghosh et al., 2002; Hefferon et al., 1999; Hofmann et 
al., 1995) and low-pH-dependent membrane fusion (Blissard and Wenz, 1992). Successful membrane 
fusion requires the assembly of stable gp64 trimers into multiprotein aggregates in cell-cell contact 
regions (Markovic et al., 1998).  
 
2.2.1.3 Baculovirus life cycle 
 
The baculovirus infection is initiated by ODVs in the gut epithelium (Figure 4). Occluded virions in 
large PIBs are protected from the environmental factors by a crystalline polyhedrin matrix (Braunagel 
and Summers, 1994; Harrap, 1972a), but in the alkaline midgut of insect larva the matrix is 
solubilized and the occluded viruses are released (Harrap et al, 1974). Occluded viruses enter the 
midgut epithelial cells via direct membrane fusion (Granados, 1978; Summers, 1971). Transcription 
of viral genes begins immediately after the virus DNA is transported to the nucleus.  
 Baculovirus infection can be divided into three phases, early (0-6 h post-infection), late (6-24 
h p.i.) and very late phase (18-24 to 72 h p.i.) (Williams and Faulkner, 1997). During the early phase 
of infection genes involved in the regulation of the replication cascade and those involved in 
preventing host responses are expressed. Early genes of the baculovirus are transcribed by the host 
RNA polymerase (Friesen, 1997). The late phase viral gene expression includes the replication of the 
viral DNA, the shutdown of host cell transcription and translation and the production of the budded 
form of the virus (Williams and Faulkner, 1997). The switch from early to late gene expression 
involves the appearance of a novel virus-induced RNA polymerase activity (Yang et al., 1991). In the 
very late phase the virus becomes occluded in the protein polyhedrin and the polyhedral envelope 
(calyx) is produced. Polyhedral inclusion bodies are released by cell lysis and the spreading of 
infection by adsorptive endocytosis leads eventually to the death of larva and the release of PIBs into 
the environment (Granados and Lawler, 1981).  The cycle begins again when new insect ingests 
infected food. 
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Figure 4. Baculovirus life cycle consisting of the primary infection (on right) and the secondary 
infection (on left) (Airenne et al., 2008).  
 
2.2.1.3 Baculovirus entry and gene delivery 
 
Budded viruses attach to and enter insect cells by absorptive endocytosis (Blissard and Wenz, 1992; 
Volkman and Goldsmith, 1985; Wang et al., 1997) followed by internalization into clathrin-coated 
vesicles. Recent observations in vertebrate cells also suggest involvement of macropinocytosis and 
caveolae (Long et al., 2006; Matilainen et al., 2005) 
 The sheer number of mammalian cell lines that can be transduced by baculovirus vectors 
suggests that uptake of baculovirus by mammalian cells is a general phenomenon. The nature of the 
cell surface molecule that interacts with baculovirus is unclear but the involvement of receptors 
(Hofmann et al., 1995), electrostatic interactions (Duisit et al., 1999) and phospholipids (Tani et al., 
2001) has been proposed. One possible explanation for these contradictory results is that mechanisms 
of virus-cell interactions are different between cell types. 
 Following endosomal escape, nucleocapsids traverse the cytoplasm potentially with the help 
of actin filaments and enter the nucleus (van Loo et al., 2001) where the viral genome is released in 
response to the phosphorylation of basic core protein p6.9 (Funk and Consigli, 1993; Wilson and 
Consigli, 1985).  
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 Baculoviruses are gaining popularity as potential vectors for gene transfer technology (Table 
1).  They are easily manipulated and produced in high titers (1010-1012 pfu/ml). The inherent inability 
of baculoviruses to replicate in mammalian cells and low cytotoxicity and lack of pre-existing 
immunity makes them good candidates for gene therapy in vivo (Hu, 2006). The transient nature of 
baculovirus-mediated gene delivery makes it an attractive candidate for the treatment of cancer (Song 
and Boyce, 2001; Wang et al., 2006) and cardiovascular diseases (Airenne et al., 2000; Grassi et al., 
2006). A number of studies have also implicated the potential use of baculoviruses for bone (Chuang 
et al., 2007) and cartilage tissue engineering (Sung et al., 2007) and for gene delivery into nervous 
system (Lehtolainen et al., 2002b; Sarkis et al., 2000; Tani et al., 2003; Wang et al., 2007).  
 Even though considerable progress has been made in elucidating the biology of baculovirus 
vectors, some limitations regarding the efficacy and specificity of these vectors have slowed their 
widespread applications. The major hurdle for baculovirus-mediated transduction lies in the stage of 
nuclear entrance since the viral DNA is unable to enter the nucleus of many vertebrate cells 
(Kukkonen et al., 2003; Volkman and Goldsmith, 1983). This might be due to the inability of the 
virus to escape from endosomes (Barsoum et al., 1997) or blockage of the transport or entry into the 
nucleus (Kukkonen et al., 2003; van Loo et al., 2001). It has been suggested that microtubules may 
constitute a barrier to nucleocapsid transport towards the nucleus in the cytoplasm (Salminen et al., 
2005).  
 Attempts to enhance baculovirus-mediated gene delivery have mainly focused on the virion 
surface modifications (Makela and Oker-Blom, 2006), promoter choices (Spenger et al., 2004; Wang 
et al., 2006), insertion of transgene expression enhancing elements (Mahonen et al., 2007; Venkaiah 
et al., 2004) and optimization of the transduction protocol in vitro (Condreay et al., 1999; Hsu et al., 
2004; Shen et al., 2007). Despite these advances, in vivo gene delivery is still unsatisfactory. One 
obstacle is the inactivation of baculovirus by serum complement (Hofmann and Strauss, 1998). 
Different strategies have been pursued to overcome the problem of complement: to inactivate the 
complement system for the period of infection, to generate complement-resistant vectors (Huser et al., 
2001) and to deliver viruses into immunopriviledged areas (Haeseleer et al., 2001; Lehtolainen et al., 
2002b; Sarkis et al., 2000) or to sites where the exposure to the complement can be avoided (Airenne 
et al., 2000; Sandig et al., 1996).  
 Baculovirus transduction leads to transient expression peaking at 3-5 days (Airenne et al., 
2000; Lehtolainen et al., 2002b) and can last up to 200 days in the absence of complement (Pieroni et 
al., 2001). The gradual disappearance of the transgene expression is attributed to the degradation of 
baculoviral DNA (Ho et al., 2004). The transgene expression has been substantially prolonged by 
using baculovirus hybrid vectors, taking advantage of AAV ITRs necessary for replication and 
integration (Palombo et al., 1998; Wang and Wang, 2005; Zeng et al., 2007), or viruses capable of 
episomal replication (Shan et al., 2006). 
 Even though baculoviruses are non-pathogenic to humans, recent evidence suggests that 
baculovirus transduction can induce the expression of some baculoviral immediate early genes in 
mammalian cells, namely ie-0, ie-1, pe-38, gp64 and p35 (Fujita et al., 2006; Kitajima et al., 2006). 
All these genes belong to the essential (p143, ie-1, lef-1, lef-2 and lef-3) or to the stimulatory (dnapol, 
p35, ie-2, lef-7, and pe38) genes involved in viral replication in the host cells (Kool et al., 1994; Lu 
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and Miller, 1995). This has shown to alter the expression profiles of mammalian genes although the 
physiology of the cells is not altered (Fujita et al., 2006; Kenoutis et al., 2006). Furthermore, 
administration of baculovirus induces expression of interferons and cytokines such as TNF-α, IL- 1α, 
IL-1β and IL-6 (Abe et al., 2003; Abe et al., 2005; Gronowski et al., 1999). These safety issues have 
to be taken into consideration when designing new vectors and therapies but also open new avenues 
for baculovirus-based vaccination and cancer immunotherapy (Kitajima and Takaku, 2008). 
 
 
2.2.2 Retro- and lentiviruses 
 
Retroviridae is a large family of enveloped RNA viruses found in all vertebrates. The most peculiar 
feature of retroviruses is their ability to integrate the viral genome into the host chromosomal DNA, 
which can lead to lifelong expression. Retroviruses are currently classified into seven genera based on 
nucleotide sequence relationship: alpharetroviruses, betaretrovirus, gammaretroviruses, 
deltaretroviruses, episilonretroviruses, spumaviruses and lentiviruses (Goff, 2001).  
 Gammaretroviruses, based on the murine leukaemia virus (MLV), are among the first viral 
delivery systems developed for gene therapy applications in 1990. Over the past decade, however, 
lentiviruses have gained a lot of attention due to their ability to transduce non-dividing cells. The 
advantages and disadvantages of these vectors are listed in Table 1.  
 
 
2.2.2.1 Lentivirus structure and genome  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Structure of lentivirus with major viral proteins presented. 
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 Lentivirus virions are roughly spherical particles with a diameter of 100-150 nm. Lentivirus 
genome is diploid and contains two plus-stranded RNA copies of its genome. Like other members of 
the retroviral family, the HIV genome contains the gag, pol and env genes (Wang et al., 2000). The 
env encodes for complex envelope protein, which consists of an outer protruding surface protein (SU) 
and a stem transmembrane protein (TM) (Figure 5). The gag gene products produce the protein core 
of viral particles consisting of p17 (matrix), p24 (capsid), p7 and p6 (nucleocapsid). In addition to 
nucleocapsid, the major elements contained within the viral core are two single strands of 9 kb RNA 
genome and three enzyme proteins, p66/p51 (reverse transcriptase), p11 (protease) and p32 
(integrase), encoded by the pol gene (Figure 5). In addition, several other nonstructural proteins 
which serve regulatory functions including tat, rev, nef, vif, vpu and vpr are encoded by the HIV 
genome (Wang et al., 2000). Tat induces the transcriptional activation of the promoter situated at the 
long terminal repeat (LTR) whereas Rev plays a role in the nuclear export of viral mRNAs. The other 
accessory proteins Nef, Vif, Vpu and Vpr contribute to the replication and persistence of infection in 
vivo (Seelamgari et al., 2004). There are also a number of cis-acting elements required at different 
stages of the virus life cycle including the LTRs, packaging and dimerization signal (Ψ), Rev-
responsive element (RRE), and the central polypurine tract (cPPT) (Wang et al., 2000). 
 Lentivirus vectors. The general strategy in designing lentiviral vectors for gene therapy is 
based on the deletion and alteration of the native viral sequences, in order to prevent the generation of 
replication competent retroviruses. The state-of-the-art 3rd generation lentivirus vector system 
consists of four plasmids (Figure 6) (Delenda, 2004). The minimal transgene expression cassette 
contains the LTRs, packaging signal, a heterologous promoter and the transgene. Three additional 
plasmids provide the factors required for virus production and packaging (gag, pol, rev, env). The 
envelope proteins are typically replaced by a heterologous viral glycoprotein, most commonly 
vesicular stomatitis virus G-protein (VSV-G) (Naldini et al., 1996b), to modify the host range of the 
vector. An important safety feature is also the deletion of the promoter-enhancer region form the 3’ 
LTR preventing transcription from this region and subsequent viral replication (self-inactivating 
vector; SIN) (Miyoshi et al., 1998). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The four-plasmid transfection system for lentivirus production. The vector plasmid (1), the 
packaging plasmid (2), rev (3), and an envelope plasmid (4) are needed for HIV vector production. 
The packaging signal (Ψ), the rev-binding element (RRE) are indicated. (Sinn et al., 2005b) 



 22 

 2.2.2.2 Lentivirus life cycle 
 
Lentivirus infection is initiated by binding of the virion surface protein (SU) to the cognate receptor 
(Figure 7). The SU protein is attached to the virus by a non-covalent binding to the transmembrane 
protein (TM) which anchors the complex in the lentiviral envelope. SU receptor binding triggers 
conformational changes in the TM protein leading to the fusion between the viral membrane and the 
host cell membrane (Freed and Martin, 2007). For HIV-1, however, the binding of SU (gp120) to 
CD4 receptor is followed by the exposure of a chemokine receptor (CXCR4 or CCR5) binding site on 
SU protein and only subsequent binding to this co-receptor is able to trigger TM(gp41)-mediated 
fusion (Nisole and Saib, 2004) .  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The lentivirus replication cycle (http://www.retrovirus.info). 
 
 
The fusion of viral and cellular membranes delivers the viral core into the cytoplasm, where it 
undergoes a partial and progressive disassembly leading to the generation of pre-integration 
complexes (PICs). Subsequently the viral RNA is reverse transcribed into double-stranded cDNA in a 
process mediated by viral reverse transcriptase enzyme (Figure 7). The PIC associated cDNA enters 
the nucleus with the help of integrase, matrix protein and Vpr (Sherman and Greene, 2002). In the 
nucleus, the integrase protein catalyzes the integration of the viral cDNA into the host genome (Freed 
and Martin, 2007).  
 Transcriptional regulation of HIV-1 gene expression is controlled by several host cell 
transcription factors and the viral Tat protein (Rohr et al., 2003). In the early phase of viral gene 
expression the newly transcribed mRNA is spliced by the cellular splicing machinery into multiply 
spliced transcripts, which mainly produces Tat, Rev and Nef proteins. When Rev has accumulated to 
a critical level the mRNA production shifts from multiply spliced to the singly spliced and unspliced 
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transcripts (e.g. gag, vif, env), characteristic of the late phase of gene expression. The Rev binding to 
RRE leads to the nuclear export of the late-phase transcripts (Freed and Martin, 2007).  
 Following the production of viral structural proteins, the virus particle is assembled at the 
plasma membrane (Figure 7) (Bukrinskaya, 2004). In this process the Gag and Gag-Pol polyproteins 
interact with each other by protein-protein interaction, most probably via the capsid protein domain 
(Gelderblom, 1991). The viral genome is packaged in a process in which the packaging signal is 
recognized by the nucleocapsid protein domain of the Gag protein (Zhang et al., 1998). The mature 
HIV particles bud from the host membrane ready to infect another cell and to begin the replication 
process all over again. 
 
 
2.2.2.3 Lentivirus as a gene therapy vector 
 
Lentiviruses have gained much attention as a gene delivery tool over the past decade due to their 
ability to transduce non-dividing cells, giving rise to first clinical trials in 2001. Lentivirus 
development has mainly focused on human immunodeficiency virus type 1 (HIV-1) and 
improvements of the vector have enabled efficient in vivo and ex vivo gene delivery to many tissues. 
However, also non-human pathogens, such as feline (FIV), simian (SIV) and bovine (BIV) 
immunodeficiency virus and equine anemia infectious virus (EIAV) are currently being investigated 
for gene therapy due to their safety advantages (Romano, 2005).  
 Lentiviral vectors are rapidly becoming the vectors of choice for hematopoietic stem cell 
(HSC) gene therapy due to capacity to transduce also quiescent cells, in which state most of HSCs are 
(Naldini et al., 1996b). Lentiviral vectors can also deliver genes to HSCs with a superior efficiency to 
MLV vectors without affecting the repopulating capacity of these cells (Kay et al., 2001). 
Consequently the first clinical studies with HIV-based lentiviral vectors were concentrated on 
delivering anti-HIV-, antisense- or RNAi- genes to the HSCs of HIV infected patients 
(http://www.wiley.co.uk/genmed/clinical/). Lentiviral gene transfer to HSC has been also proposed to 
provide a potential cure for many inherited diseases such as sickle cell disease (Pawliuk et al., 2001) 
and chronic granulomatous disease (Roesler et al., 2002) and β-thalassaemia (Imren et al., 2002; May 
et al., 2002; Vacek et al., 2003) where progression towards the clinic can be seen (Bank et al., 2005). 
 Another promising target area for lentivirus-mediated gene delivery is the brain. The VSV-G 
pseudotyped vectors based on HIV (Kordower et al., 1999; Naldini et al., 1996a), FIV (Alisky et al., 
2000) and EIAV (Mitrophanous et al., 1999) vectors were shown to efficiently transduce neurons in 
various areas of the brain while leading to long-lived transgene expression. Since then, several studies 
have demonstrated convincing therapeutic efficacy of lentivirus-mediated gene delivery in animal 
models of lysosomal enzyme deficiency disorders, Huntington’s disease, Alzheimer’s disease and 
Parkinson’s disease (Wong et al., 2006).  
 Like MLV, HIV integrates randomly into the host genome. This poses a risk of insertional 
mutagenesis as was demonstrated by the appearance of several cases of leukaemia in the gene therapy 
trials for X-SCID (Gaspar et al., 2004; Hacein-Bey-Abina et al., 2003; Wilson, 2008). This malignant 



 24 

transformation is likely related to gammaretroviruses’ inherent disposition to integration near the 
5’ends of transcription units leading to proto-oncogene activation (Wu et al., 2003). In contrast, 
lentiviruses strongly favor integration within active transcription units which might be a safer 
alternative (Mitchell et al., 2004; Schroder et al., 2002). In addition, the careful design of 3rd 
generation SIN vectors might further reduce the risk of insertional gene-inactivation or proto-
oncogene deregulation in the case of lentiviruses (Miyoshi et al., 1998; Thornhill et al., 2008). Other 
strategies to overcome this problem have led to the development of non-integrating (Philpott and 
Thrasher, 2007) or site-specifically integrating vectors (Bushman, 1994; Tan et al., 2006).  
 
 
2.2.3 Adenoviruses  
 
Adenoviruses (Ad) belong to the family of Adenoviridae which to date includes 51 immunologically 
distinct human adenovirus serotypes (A-F) that can cause human infections ranging from respiratory 
disease, and conjunctivitis, to gastroenteritis. Replication defective viruses based on subgroup C 
adenovirus type 5 (Ad5)  and type 2 (Ad2) are the most widely used for gene transfer in many 
applications (Shenk, 2001).  
 Adenoviruses are double-stranded DNA viruses with a genome of 36 kb (Chroboczek et al., 
1992). The virions are nonenveloped and icosahedral in shape with a diameter of 70-90 nm. The viral 
capsid containins four principal protein components: the hexon, fiber, penton base and protein IX 
(Figure 8). Ads enter the host cells by receptor-mediated endocytosis. Initial interaction with the host 
cells is mediated by the fiber protein and the coxsackie virus and adenovirus receptor (CAR) 
(Bergelson et al., 1997) and subsequent internalization results from the activation of αv integrin by 
penton base (Wickham et al., 1993). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Structure of adenovirus as a simplified cross-section of the capsid showing the capsid 
proteins and adenovirus genome (Noureddini and Curiel, 2005). 
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Adenoviruses have passed retroviruses as the most commonly applied viral vectors with over 340 
clinical trials finished or ongoing (Figure 2). The major advantages of adenovirus vectors is the the 
large DNA insertion capacity, the easy generation and purification of high titer stock (1010-1012 
pfu/ml) (Table 1). They have a broad host range and can efficiently transfer genes into both dividing 
and non-dividing cells. Adenoviral genomes do not integrate into the host genome, making them safe 
vectors for transient gene expression. However, both natural immunity against adenovirus (Chen et 
al., 2000) and acute inflammatory (Knowles et al., 1995; Yei et al., 1994) and immunological 
responses (Zoltick et al., 2001) have limited the current clinical applications to few areas such as 
localized cancer and cardiovascular gene therapy. The concomitant knowledge about adenovirus 
biology has led to the development of conditionally replicative adenoviruses (CRAds) which exhibit 
tumor specific amplification resulting in lysis of the cancer cells (Heise and Kirn, 2000). On the other 
side of the scope, the aspiration to enlargen the field of adenovirus application has led to development 
of methods to minimize the viral gene content (gutless Ads), to decrease the immunogenicity of the 
vectors and to retarget the vector tropism (Campos and Barry, 2007; Ghosh et al., 2006). 
 
 
2.2.4 Adeno-associated viruses (AAVs) 
 
AAV is one of the smallest viruses with a non-enveloped icosahedral capsid of approximately 20-25 
nm in diameter belonging to the parvoviridae family (Xie et al., 2002).  To date, at least 11 
serologically distinct AAVs have been identified from humans or primates (Mori et al., 2004). The 
most extensively studied AAV is AAV type 2 (AAV-2), it also being the most common in active 
clinical trials (Coura and Nardi, 2007). The most peculiar feature of AAV is its dependence on helper 
viruses (e.g. adenovirus or herpes virus) for productive infection (Muzyczka and Berns, 2001). It 
infects humans and some other primate species but the virus has not been linked to any human 
diseases. Despite the nonpathogenic nature of virions, most humans are seropositive to AAV which 
may limit the gene delivery efficiency in vivo. The pros and cons of AAV vectors are listed in more 
detail in Table 1.  
 The AAV has a linear 5 kB single-stranded genome of either plus or minus polarity. The 
genome harbors two open reading frames (ORFs): one encoding for Rep proteins involved in 
regulation of replication and transcription and the other for virus capsid proteins VP1, VP2 and VP3 
which form the virion in ratio (1:1:10) (Muzyczka and Berns, 2001). AAV-2 capsid proteins mediate 
the virion attachment to heparin sulfate proteoglycan (HSPG), fibroblast growth factor receptor-1 
(FGFR1), integrin αvβ5 and hepatocyte growh factor receptor (HGFR) on host cell membrane and 
subsequent endocytosis through clathrin-coated pits (Kashiwakura et al., 2005; Qing et al., 1999; 
Summerford and Samulski, 1998). The ends of the genome form short inverted terminal repeats 
(ITRs), which serve as origins of viral replication. The ITRs are the only cis element required for 
replication and packaging of the virus and therefore all the other elements, provided in trans, have 
been deleted from the recombinant AAV-2 vectors (rAAV-2).  
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 The wild type AAV-2 is able to integrate into the genome of the host with the help of Rep 
proteins with a site preference on human chromosome 19 (Samulski et al., 1991). However, even in 
the absence of rep-genes on AAV-2 vectors the rAAV genome has been shown to persist in episomal 
(Afione et al., 1996; Yang et al., 1999) or integrated (Nakai et al., 2001) form. The mechanism lying 
beneath integration has been thought to involve the host cell DNA break repair machinery, which 
inserts rAAV genome into existing chromosomal breaks (Nakai et al., 2003).  For gene therapy 
applications, this feature of rAAV is a double-edged sword: rAAVs can maintain high levels of 
transgene expression but at the same time insertional mutagenesis becomes an issue. However, since 
rAAVs don’t create but instead insert into existing chromosomal breaks, they could be considered 
safer than retroviruses. 
 rAAV has shown great potential for the gene delivery to muscle, brain, liver and eye. The 
current clinical trials are mainly concentrated for the treatment of monogenic diseases, especially 
cystic fibrosis, hemophilia B, retinal degeneration, and cancer (http://www.wiley.co.uk/genmed/ 
clinical/). The results so far have shown that rAAVs are safe and efficient tools for gene delivery but 
the therapeutic benefit to human patients is still limited by the inadequate organ-specific transgene 
expression (Coura and Nardi, 2007).  
 
2.2.5 Other viruses 
 
Over 200 clinical trials have been conducted with less conventional viral vectors including 
poxviruses, herpes simplex virus, Semliki forest virus, Sendai virus, Simian virus, measles virus, 
poliovirus, flavivirus and Venezuelan equine encephalitis Newcastle disease virus. The former two 
represent the vast majority of the studies and will be discussed in more detail. 
 Poxviruses are enveloped viruses which can infect as a family both vertebrate and 
invertebrate animals (Moss, 2001). Vaccinia virus (VV) is the prototypical recombinant poxvirus. 
Vaccinia virus has been used clinically as a vaccine for smallpox since the late 18th century, and has 
thus a well known biology and extensive clinical experience (Niemialtowski et al., 1996). 
Recombinant VVs, as non-replicating viral vectors, have been demonstrated to have great potential as 
vaccines due to their safety, low cytotoxicity, high level of protein expression and ability to generate 
potent antibody and T-cell responses. A number of clinical trials using recombinant VV as vaccines 
have shown promising results for treating HIV and cancer (Moroziewicz and Kaufman, 2005). On the 
other hand, replicating VVa are promising candidates for oncolytic virotherapy (Thorne et al., 2005).  
 Herpes simplex virus (HSV) is a human infecting pathogen with a double stranded genome of 
152 kB (Whitley, 2001). Among the herpes viruses, HSV-1 is an attractive vector for gene transfer to 
the nervous system because the natural infection leads to lifelong persistence of viral genomes in 
neurons in which the latent phase and lytic phase alternates. Two types of vectors have been 
developed for gene therapy applications: replication defective vectors, whose cytotoxicity has been 
abolished by deleting lytic gene products, and amplicon vectors, which are plasmids packaged into 
HSV particles with the aid of a helper virus (Whitley, 2001). Logically, these vectors have been 
primarily used for neuronal gene delivery for the treatment of neuropathies (Parkinson's disease, pain, 
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stroke) and lysosomal storage disorders (Berto et al., 2005). The majority of the clinical studies with 
HSV-1 are, however, concentrated on cancer therapy. For these applications, the HSV-1 vectors high 
infectivity and inherent cytotoxicity is harnessed to conditionally drive viral replication in tumor cells 
leading eventually to cell lysis (Shen and Nemunaitis, 2006). Similarly, other viruses have been 
studied as candidates for the oncolytic viral treatment of tumors, including Newcastle disease virus, 
reovirus, measles virus, Semliki forest virus, sindbisvirus, vesicular stomatitis virus, influenza virus 
and poliovirus (Kelly and Russell, 2007).  
 
2.2.6 Nonviral vectors 
 
Nonviral vectors represent an attractive alternative to viral vectors due to the ease of large-scale 
production, large insertion capacity, stability, flexibility and lack of immune response. Nonviral gene 
delivery can be divided into two broad categories: naked DNA delivery by a physical method and 
delivery by a complex of DNA with a cationic carrier. The latter group can be further divided into 
lipoplexes (cationic lipid/DNA complex) and polyplexes (cationic polymer/DNA complex) and more 
recently to the lipid-polymer hybrid systems (Gao et al., 2007).  
 The physical approaches consist direct delivery of DNA to the cytoplasm of target cells by 
microinjection, gene gun, electroporation, sonoporation or laser irradiation (Mehier-Humbert and 
Guy, 2005). For systemic administration, however, the plasmid DNA needs to be protected from the 
nucleases and mononuclear phagocyte system (Kawabata et al., 1995; Mahato et al., 1995). 
Therefore, plasmid DNA is often shielded from the degradation by cationic compounds. 
 Cationic lipoplexes (Felgner et al., 1987) and polyplexes (Wu and Wu, 1987) were introduced 
already in 1987 and are today the most studied strategy for nonviral gene delivery. These compounds 
condense and decrease the negative charge of DNA and thus facilitate its interaction with the cell 
membrane. Following binding, endocytosis or endocytosis-like mechanisms are proposed to be 
responsible for the entry of lipoplexes and polyplexes (Elouahabi and Ruysschaert, 2005). One of the 
major bottlenecks for effective transfection has been the subsequent release of DNA-complexes from 
the endosomes. This has been circumvented by the use fusogenic “helper” lipids such as 
dioleoylphosphatidylethanolamine (DOPE) (Farhood et al., 1995) or polymers with intrinsic 
endosomolytic activity, the most popular being polyethylenimine (PEI) (Boussif et al., 1995). Both 
vectors have shown excellent efficiency in cell culture but the in vivo gene delivery is still 
unsatisfactory. In addition, the in vivo administration can sometimes lead to aggregation, toxicity and 
acute immune responses (Gao et al., 2007). Various strategies have evolved to overcome these 
problems, the most promising being the shielding of the cationic compounds with polyethyleneglycol 
(PEG) (Ambegia et al., 2005; Kichler, 2004; Song et al., 2002).  
 Despite some drawbacks, efficient in vivo gene delivery has been achieved to the lungs, brain, 
kidney and tumors and some of the vectors have undergone clinical trials for the treatment of cancer 
and cystic fibrosis (Nishikawa and Hashida, 2002)(www.wiley.co.uk/genmed/clinical/).  
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In the future, the combination of the best features of viral and non-viral vector systems by creating 
chemically modified viral vectors or synthetic virus-like systems could provide significant therapeutic 
benefits over the traditional vector systems (Boeckle and Wagner, 2006). 
 
Table 1. Properties of the most common gene delivery vectors (Gao et al., 2007; Kootstra and Verma,  
2003; Moroziewicz and Kaufman, 2005; Waehler et al., 2007). 
 Pros Cons 

Baculovirus • High titers (1010-1012 pfu/ml) 
• Large insertion capacity > 100 kB 
• Non-human pathogen, safety 

• Inactivation by complement 
• Immunogenic 
• Large size 

Retro-and 
lentiviruses 

• Stable gene expression 
• Insert capacity 8-9 kB  
• No pre-existing immunity 
• Moderate titers 106-1010 TU/ml 

• Risk of insertional mutagenesis 
• Risk of replication competent 

virus formation 
• Inactivation by complement 

Adenovirus • High titers (1010-1012 pfu/ml) 
• Insert capacity 7-8 kB, for gutless vectors 

36 kB 
• Broad tropism 
• High short-term gene expression 
• Oncolytic potential 

• Pre-existing immunity: 
neutralizing antibodies  

• Acute inflammatory and 
immunological responses 

• Complicated vector genome 

Adeno-
associated 
virus (AAV) 

• Stable gene expression possible  
• Nonpathogenic 
• Highly stable virions 
• Small size (22 nm) 
• No need for viral genes in vectors 

• Small insert capacity, 4.6 kB 
• Slow onset of gene expression 
• Risk of insertional mutagenesis 
• Production requires helper viruses 
• Large-scale production difficult 

Vaccinia • Well established safety profile 
• Oncolytic potential  

• Immunogenicity 

Herpes 
simplex 
virus (HSV) 

• Long-term expression in neuronal cells, 
neurotropism 

• High titers, 108-1011 pfu/ml 
• Transgene capacity 30 kB, for amplicons 

152 kB 
• Oncolytic potential 

• Host immune responses, 
inflammation and toxicity 

• Complicated vector genome 

Nonviral 
vectors 

• Low degree of toxicity, non-infectious 
• Easy and simple production 
• High efficiency in vitro 
• No insert size limit  

• Low transfection effic. in vivo 
• Only transient expression 
• For some vectors acute immunity, 

toxicity, aggregation in vivo 

                                                                                                                                                
2.3 Targeted gene delivery  
 
Key issues for future development of gene therapy include improved gene delivery and targeting. In 
theory, targeted therapeutic gene delivery can be achieved by targeting entry of the vector 
(transductional targeting) or by targeting the gene expression (transcriptional targeting) to certain cell 
types or tissues. Transcriptional targeting has been shown to be highly feasible in the context of most 
viral vectors (Miller and Whelan, 1997). It provides a safety net by limiting the transgene expression 
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to specific target cells using tissue specific promoters. However, transcriptional targeting does not 
obviate the need for transductional targeting which is essential for allowing the administered 
therapeutic dose to be reduced, thereby lessening toxic side effects and costs for the treatment. 
Thereby the focus of this chapter will be on targeted transduction. 
 
2.3.1 Targeting of membrane-enveloped viruses  
 
Targeted gene delivery is currently the most attractive concept to achieve specificity and, in principle, 
this strategy is applicable for all current vectors (Waehler et al., 2007). The outer surface of virus, 
through its interaction with cellular receptors, plays a major role in determining the tropism of the 
virus. There are several strategies for modifying the binding characteristics of membrane-enveloped 
virus vectors and most of the studies have been conducted using retro- and lentiviruses because they 
are highly permissive for incorporation of heterologous attachment proteins. In theory, all of these 
targeting approaches can be extrapolated to other enveloped viruses on condition that the virus 
budding, fusion activity and infectivity is not compromised. The focus of this chapter will therefore 
be on these vectors with an extension to baculovirus. 
 Pseudotyping. The simplest form of transductional targeting consists of changing the virus 
surface protein itself for the envelope or capsid protein of another virus which is not of the same 
genus. This approach is called pseudotyping. One of the most commonly used pseudotyping tools is 
Vesicular stomatitis virus G protein, VSV-G (chapter 2.3.1.1). It is routinely used to broaden the 
target range and enhance the transduction efficiency of retroviruses (Emi et al., 1991) and HIV-1-, 
HIV-2-, SIV-, FIV-, EIAV- and BIV- based lentiviruses (Cronin et al., 2005; Naldini et al., 1996b; 
Reiser et al., 1996). Significant advantage of VSV-G pseudotyping is its ability to confer high vector 
particle stability allowing virus concentration by ultracentrifugation (Burns et al., 1993). There are 
also several reports of VSV-G pseudotyped baculoviruses which show improved transduction 
efficiency (Barsoum et al., 1997; Tani et al., 2001; Tani et al., 2003). Unfortunately, VSV-G is 
cytotoxic to producer cell lines (Burns et al., 1993; Ory et al., 1996; Schauber et al., 2004) and there 
have also been reports where the VSV-G included in the viral envelope increased the toxicity of the 
vector (Facciabene et al., 2004; Park et al., 2000; Watson et al., 2002). Together these features can 
limit the clinical use of VSV-G and alternative glycoproteins have been extensively studied. Some of 
the most prominent lentivirus pseudotypes and their target cells/organs are presented in Table 2. 
These include glycoproteins from the families rhabdoviridae, arenaviridae, togaviridae, filoviridae, 
paramyxoviridae, orthomyxoviridae, and hepadnaviridae (Cronin et al., 2005). In addition, lentiviral 
vectors pseudotyped with baculovirus envelope glycoprotein gp64 have been produced. Gp64-
displaying HIV-1 vectors were produced at similar titers to VSV-G with no associated cytotoxicity 
and concetration by ultracentrifugation was well tolerated (Kumar et al., 2003). These vectors 
transduced efficiently various cell types, with a tropism restriction against hematopoietic cell types 
(Schauber et al., 2004). More recently, two reports have demonstrated the utility Gp64 pseudotyped 
FIV-vectors for hepatocyte and  nasal epithelia targeting (Kang et al., 2005; Sinn et al., 2005; Sinn et 
al., 2007).   
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Table 2. Cell and organ preferences of lentivirus pseudotypes. Modified from (Cronin et al., 2005). 
 

Glycoproteins 
(Genus) 

Target 
cell/organ 

Remarks References 

VSV-G 
(Rhabdoviridae) 

Liver 
CNS 

Retina 

Toxicity issues 
Targets  primary neurons 

Photoreceptors and 
retinal pigm. epithelium 

(Park, 2003) 
(Blomer et al., 1997)  

(Auricchio et al., 2001; Miyoshi et 
al., 1997) 

Rabies 
(Rhabdoviridae) 

CNS 
 

Cancer 

Retro- and anterograde 
axonal transport 
Neuroblastoma 

(Mazarakis et al., 2001; Wong et al., 
2004) 

(Steffens et al., 2004) 
Mokola 

(Rhabdoviridae) 
CNS 

 
Retina 
Muscle 
Cancer 

Neurons 
 

Retinal pigm. epithelium 
Cardiomyocytes 
Neuroblastoma 

(Desmaris et al., 2001; Watson et 
al., 2002) 

(Auricchio et al., 2001) 
(MacKenzie et al., 2002) 

(Steffens et al., 2004) 
LCMV 

(Arenaviridae) 
Liver  
CNS 

 
Pancreas 
Cancer 

Non-toxic 
Neural progenitor cells 

Astrocytes 
Islet cells 

Malignant glioma 

(Park, 2003) 
(Stein et al., 2005) 

(Miletic et al., 2004) 
(Kobinger et al., 2004) 

(Miletic et al., 2004; Steffens et al., 
2004) 

RRV (Togaviridae) Liver 
CNS 

Nonhepatocytes, 
nontoxic 

Neuroglial cells 
Complement resistance 

(Kang et al., 2002) 
(Kang et al., 2002) 
(Strang et al., 2005) 

Ebola (Filoviridae) Lung airway 
epithelia 
Muscle 

Apical surface 
preference 

 
Cardiomyocytes 

(Kobinger et al., 2001) 
 

(MacKenzie et al., 2002) 

Marburg 
(Filoviridae) 

Lung airway 
epithelia 

Apical surface 
preference 

(Sinn et al., 2003) 

JSRV 
(Betaretrovirus) 

Lung Alveolar type II cells (Sinn et al., 2005a) 

MLV 
(Gammaretrovirus) 

Cancer Neuroblastoma (Steffens et al., 2004) 

GALV 
(Gammaretrovirus) 

Hematopoietic 
system 
Cancer 

Increased serum stability 
 

Fusogenic glycoprotein 

(Sandrin et al., 2002) 
 

(Diaz et al., 2000) 
RD114 

(Gammaretrovirus) 
Hematopoietic 

system 
Less toxic and more 

efficient than VSV-G 
(Sandrin et al., 2002) 

Sendai 
(Paramyxoviridae) 

Lung airway 
epithelia 

Apical and basolateral 
surfaces 

(Kobayashi et al., 2003) 

Influenza A 
(Orthomyxoviridae) 

Airway 
epithelia 

Apical surface 
preference 

(Sinn et al., 2005) 

HBV 
(Hepadnaviridae) 

Liver Primary hepatocytes (Chai et al., 2007) 

Baculovirus 
(Baculoviridae) 

Liver 
Airway 
epithelia 

Non-toxic 
Apical surface 

preference 

(Kang et al., 2005) 
(Sinn et al., 2005) 
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Despite enhancing the transduction efficiency, pseudotyping often provides a wide host range and 
lacks sufficient target cell specificity. Therefore other strategies have been sought, based the 
modification of envelope glycoproteins genetically or by using  bispecific adaptor-molecules. 
 Genetic and adaptor-based targeting of retro- and lentiviruses. Retargeting based on 
genetic modification of the glycoproteins was first tested with retroviral vectors (Russell et al., 1993). 
Efforts to target retroviral vectors have concentrated largely on engineering the natural retroviral 
envelope proteins such as the ecotropic murine leukemia virus MLV protein. Several strategies have 
been taken to produce targeted envelope proteins. For direct targeting by host range extension, 
envelope glycoproteins are modified to incorporate heterologous proteins or ligands. This can be 
achieved by replacing the natural receptor-binding domain of SU protein with the targeting molecule. 
A wide range of receptors have been targeted this way but most of the derivatives were unable to 
trigger the subsequent fusion leading to low gene transfer efficiency (Benedict et al., 1999; Zhao et 
al., 1999a). Therefore, another approach was developed which consisted of leaving the native 
receptor binding domain intact while conferring the SU protein with an additional binding moiety, 
called “tethering”. On this basis, the insertion of collagen-binding ligand into the SU of amphotropic 
MuLV was shown to enhance retrovirus binding and tranduction of human endothelial cells in vitro 
(Hall et al., 1997; Hall et al., 2000; Liu et al., 2000). Moreover, these vectors could localise gene 
delivery to sites of balloon-injured carotid arteries and in the angiogenic tumor vasculature in human 
cancer xenografts in nude mice (Gordon et al., 2001a; Gordon et al., 2001b). 
 Two strategies have been developed for targeting retroviral vectors by host-range restriction; 
inverse targeting and protease targeting. Inverse targeting involves the selective inhibition of 
infectivity on cells expressing the targeted receptor, whereas protease targeting selectively reactivates 
the inhibition imposed by inverse targeting. Several ligands displayed at the N-terminus of retroviral 
envelope glycoproteins have been shown to inhibit infectivity on cells expressing the targeted 
receptor. A well-studied example of this comes from amphotropic vectors displaying epidermal 
growth factor (EGF) which are sequestered on EGF receptor-positive (EGFR) cells through 
redirection to lysosomal degradation but remain fully infectious on EGFR-negative cells (Cosset et 
al., 1995). Similar receptor-mediated sequestration has been observed for vectors displaying stem cell 
factor (Fielding et al., 1998; Fielding et al., 2000), insulin-like growth factor (Chadwick et al., 1999; 
Fielding et al., 2000) and CD33 (Zhao et al., 1999a). Alternatively, the sequestration can be 
dismantled by separating the ligand and the virus envelope protein by the recognition site for a cell-
surface specific protease. For example, the EGF-displaying retroviruses carrying a matrix-
metalloproteinase (MMP) cleavage site could preferentially infect EGFR-positive MMP-rich target 
cells in vitro and in vivo (Peng et al., 1997; Peng et al., 1999). Similarly, protease targeting has been 
achieved by the display of single-chain variable fragment (scFv) directed against carcinoembryonic 
antigen and c-Met receptor frequently overexpressed on tumor cells (Chowdhury et al., 2004; Solly et 
al., 2005).   
 Since the retroviral Env requires interaction with their native receptor to activate fusion 
activity, binding to artificial target molecule does not activate the fusion step. Therefore most of the 
direct or indirect targeting strategies have suffered from low titer and/or specificity (Verhoeyen and 
Cosset, 2004). Ideally, binding and fusion functions can be broken into two separate molecules. The 
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key to the method is choosing a viral glycoprotein that mediates fusion in response to low pH and a 
cellular receptor that is efficiently endocytosed after antibody binding. In this regard, a binding-
defective mutant of hemagglutinin of influenza A was coexpressed with a binding-competent but 
fusion-defective MLV Env containing Flt-3 targeting ligand resulting in enhanced entry into Flt-3-
expressing cells (Lin et al., 2001). Similarly, the Sindbis virus envelope protein E2 responsible for 
cell binding was engineered to replace the receptor binding region with the Fc binding domain of 
protein A (ZZ domain) (Morizono et al., 2001). When E2 was coexpressed with the E1 fusion protein 
on the retroviral and lentiviral surface and conjugated to targeting antibody, successful retargeting to 
mouse metastatic melanoma and prostate cancer bone metastases was achieved after intravenous 
injection (Morizono and Chen, 2005; Morizono et al., 2005; Pariente et al., 2007). Futhermore, 
coexpression of E2 binding-mutant, E1 and a chimeric anti-CD20 antibody with the human 
membrane-bound IgG constant region demonstrated a strictly targeted transduction of CD20-positive 
cells in vitro and in vivo (Yang et al., 2006).  
 Adapter-based concept of virus targeting consists of the formation of a ‘molecular bridge’ 
between the vector and a cell surface receptor constitutes. One such approach has been described for 
the Env protein of avian leukosis virus (ALV) that combine the EGF targeting domain with the 
extracellular domain of the ALV receptor (Snitkovsky and Young, 1998; Snitkovsky et al., 2000). 
Thus this bifunctional bridge proteins binds virions to specific cell surface molecules and the receptor 
moiety triggers the normal fusion process. Other cell surface receptors targeted this way include the 
vascular endothelial growth factor and heregulin receptor (Snitkovsky and Young, 2002; Snitkovsky 
et al., 2001).  
 Genetic targeting of baculoviruses. Surface modification of baculovirus particles has been 
demonstrated by epitope insertions into the baculovirus glycoprotein gp64. Extensive mutagenesis 
revealed permissive insertion sites to be located between amino acid positions 274 and 283, whereas 
N-terminal fusions resulted in weaker epitope display. In this regard, successful peptide-display has 
been achieved with the biotin mimic streptagII, the ELDKWA peptide of the gp41 of HIV-1 and the 
RGD-motif (Ernst et al., 2000; Ernst et al., 2006; Spenger et al., 2002). A recent study also 
demonstrated the utility of the Gp64 peptide display for the targeting of lentiviral vectors, using a 
peptide derived from the hepatitis B virus PreS1 protein, with known affinity for hepatocytes 
(Markusic et al., 2007).  
 Most of the studies aiming at altering the baculovirus tropism have consisted of the fusion of 
heterologous proteins and ligand-binding moieties to an extra copy of the gp64 gene (Boublik et al., 
1995). Using this strategy, Mottershead and colleagues constructed vectors displaying either 
functional scFv or a synthetic IgG binding domain (ZZ domain) of protein A (Mottershead et al., 
2000). Specific binding to target cells was achieved although no enhancement of viral entry or gene 
transfer was observed (Ojala et al., 2001). In fact, only few studies based on the N-terminal fusions of 
gp64 have resulted in enhanced transduction efficiency including the display of RGD-peptide and 
avidin (Matilainen et al., 2006; Raty et al., 2004). This could be partly due to the fact that gp64-based 
fusion constructs must compete for space with the wild type gp64 leading to low level of 
incorporation of gp64-fusions on baculovirus surface (Boublik et al., 1995). On this basis, 
improvements in the expression of synthetic IgG binding domains on the baculovirus surface was 
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achieved by fusing the ZZ sequence to VSV-G membrane anchor which successfully incorporated 
into virions (Ojala et al., 2004). Similarly, tumor homing peptides were displayed on the baculovirus 
surface resulting in vectors with significantly improved binding and transgene delivery to human 
carcinoma cells (Makela et al., 2006). 
 
2.3.1.1 Vesicular stomatitis virus G protein 
 
All rhabdoviruses encode a membrane glycoprotein of about 500 amino acids. Approximately 1200 
VSV glycoprotein molecules are organized into 400 trimeric spikes anchored in the viral envelope 
(Doms et al., 1987; Kreis and Lodish, 1986). The VSV-G protein is a type I membrane glycoprotein 
synthesized as a precursor of 511 amino acids (Indiana), which is cleaved from its 16 amino acid 
signal sequence after insertion into the endoplasmic reticulum (ER) (Lingappa et al., 1978). Most of 
the amino acids are exposed on the virion surface, while 20 hydrophobic amino acids span the 
membrane and 29-amino acid cytoplasmic domain extends into the virion (Figure 9). There are two 
N-linked glycosylation sites on the extracellular domain and a single molecule of palmitate on the 
cytoplasmic domain (Rose et al., 1984; Schmidt and Schlesinger, 1979). The absence of glycosylation 
sites leads to formation of large disulfide bonded aggregates (Doms et al., 1988; Machamer and Rose, 
1988), whereas the function of palmitate is not known (Whitt and Rose, 1991). 
 

 
Figure 9. Schematic presentation of the vesicular stomatitis virus glycoprotein illustrating the 
functional domains [(Whitt and Rose, 1991) with modification]. 
 
 Roles of all three domains of the VSV-G protein have been analyzed by mutagenesis (Figure 
9). Mutations in the extracellular domain prevent correct folding, which leads to failed transport and 
aggregation in the ER before trimerization of monomers (Doms et al., 1988). Mutations in the 
transmembrane domain have similar effects, whereas mutations in the cytoplasmic domain do not 
seem to affect the folding of the extracellular domain (Doms et al., 1988). However, mutations in the 
cytoplasmic domain reduce the transport rate of VSV-G protein from the ER (Rose and Bergmann, 
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1983). This led to the discovery of transport signals (tyrosine based and di-acidic motifs) in the 
cytoplasmic tail responsible of promoting G protein export from the ER (Sevier et al., 2000).  
 The VSV host range extends from nearly all mammals to insects, suggesting that the receptor 
for this virus is a widely distributed molecule. Binding to phospholipids seems to be important for 
rhabdovirus infection since phospholipids from cellular membranes inhibit attachment and infection 
of rabies virus and VSV (Conti et al., 1988; Mastromarino et al., 1987; Schlegel et al., 1982). Further 
studies have led to the conclusion that the receptor for VSV-G is a ubiquitous membrane lipid, 
phosphatidylserine (PS) (Carneiro et al., 2002; Schlegel et al., 1983). The PS-binding site of the 
VSV-G protein has since been mapped to a p2-like peptide (residues 134 to 161) containing 
contiguous heptad repeats followed by a short segment containing positively charged amino acids 
(Carneiro et al., 2003; Coll, 1997). Positive charges in this segment might participate in electrostatic 
interactions with the negatively charged phospholipid PS during membrane recognition.  
 Unlike most viral glycoproteins, VSV-G protein has no obvious region in the amino acid 
sequence responsible for fusion activity (i.e. fusion peptide). Mutational analysis has indicated that 
amino acids between 118 and 139 could be the putative fusion domain (Li et al., 1993; Whitt et al., 
1991; Zhang and Ghosh, 1994). Furthermore, recent studies have proposed that the PS-binding region 
of VSV-G (residues 134 to 161) is not only involved in membrane recognition but is also of crucial 
for membrane fusion probably through the protonation of its His residues (Carneiro et al., 2006; 
Carneiro et al., 2006).  Another region of G protein, encompassing residues 395 to 418 has been 
identified as a segment that affects the fusogenic activity of the protein by influencing the low-pH-
induced conformational changes (Li et al., 1993; Shokralla et al., 1998). In addition, it has also been 
shown that not only the ectodomain but also the membrane anchoring domain is required for VSV 
fusion activity (Cleverley and Lenard, 1998; Odell et al., 1997). Moreover, Jeetendra et al provided 
evidence that membrane-proximal stem region of VSV-G protein ectodomain (GS i.e. G stem), 
together with transmembrane and cytoplasmic domains can potentiate the membrane fusion activity 
when coexpressed with heterologous viral fusion proteins (Jeetendra et al., 2002). The G-stem was 
shown to be able to mediate binding of the VSV to target membranes in a manner similar to wild-type 
VSV. This could bring two membranes in close proximity to induce lipid mixing and initiate the 
fusion reaction. It was determined that only 14 amino acids of the GS were sufficient to induce 
hemifusion. A more recent study further elucidated the role of membrane proximal region of protein 
G showing that the membrane proximal region is not essential for G protein oligomerization, 
transport to the cell surface, or incorporation into virus particles but it is essential for acid-induced 
membrane fusion activity and virus infectivity (Jeetendra et al., 2003). Altogether these results 
suggested that in the case of VSV-G glycoprotein, the fusogenic activity may involve several 
spatially separated regions in the extracellular domain of the protein (Figure 9). 
    Early models of VSV assembly postulated the importance of interaction between VSV-G 
protein and ribonucleoprotein core (Metsikko and Simons, 1986). This conclusion was based on the 
evidence showing that G proteins with truncated cytoplasmic tails were not efficiently incorporated to 
the virions (Whitt et al., 1989) and that addition of cytoplasmic tails to heterologous viral 
glycoproteins was sufficient for their incorporation into virus particles (Owens and Rose, 1993). 
However, VSV-G protein is not needed for virus budding although it does enhance it (Knipe et al., 
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1977; Mebatsion et al., 1996; Schnell et al., 1997; Takada et al., 1997).  In fact addition of G protein 
cytoplasmic tail to heterologous proteins does not increase virus budding or glycoprotein 
incorporation (Kahn et al., 1999; Schnell et al., 1996) and G proteins with truncated or chimeric 
cytoplasmic tails produce infectious VSV (Schnell et al., 1998). These results support the idea that 
small cytoplasmic tail of VSV-G is important for VSV budding but no specific amino acid sequence 
is required. Identification of the budding domain in the membrane-proximal region of the G 
ectodomain supports this idea (Robison and Whitt, 2000). The report demonstrated a generation of 
series of recombinant VSVs, which expressed chimeric glycoproteins having truncated stem 
sequences. The recombinant viruses having 12 or more membrane-proximal residues, including 
transmembrane and cytoplasmic tail domains, produced near-wild-type levels of virus particles. 
   
 
2.3.2 Targeted capsid viruses  
 
 The targeting of capsid viruses, adenoviruses and AAV, is generally more straightforward due 
to the lack of non-specific interaction mediated by the host-derived lipid membrane. This makes the 
rational design of targeted capsid vectors easier but requires detailed knowledge about the capsid 
structure and factors vital for its integrity and functionality. Two distinct approaches have been 
employed to transductionally target Ad and AAV vectors: adapter molecule-based targeting and 
targeting achieved via structural manipulation of the capsid by genetic means. 

Adaptor-based targeting of adenoviruses. Adaptor proteins used to target capsid viruses 
include bi-specific antibodies, chemical conjugates between antibody fragments (Fab) and cell-
selective ligands, Fab-cell specific antibody conjugates, Fab-peptide ligand conjugates and 
recombinant fusion proteins that incorporate Fabs and peptide ligands (Waehler et al., 2007). The first 
in vitro demonstration of Ad targeting via the adapter method used a bispecific conjugate of 
neutralizing Fab chemically linked to folate (Douglas et al., 1996). The results showed that Fab 
fragment alone blocked 99% of the wild type adenoviral infection but the folate restored the 
infectivity in folate receptor expressing cells. This technology was also applied to re-target adenoviral 
gene delivery to Kaposi’s sarcoma cells via Fab conjugated to fibroblast growth factor (Goldman et 
al., 1997). Importantly, this targeting system also reduced hepatic toxicity and resulted in increased 
survival in a melanoma xenograft mouse model (Gu et al., 1999). Other Fab–ligand conjugates 
targeted against epidermal growth factor (EGF), epithelial cell adhesion molecule, tumor-associated 
glycoprotein-67, and CD40 have been employed in a similar manner with promising results (Haisma 
et al., 1999; Hakkarainen et al., 2003; Heideman et al., 2001; Kelly et al., 2000; Miller et al., 1998; 
Tillman et al., 1999). Further testing of lung targeting adapters such as anti-knob Fab chemically 
conjugated to a monoclonal antibody against angiotensin-converting enzyme or sCAR fused to a 
single-chain antibody directed against carcinoembryonic antigen provided evidence on the feasibility 
of this approach in vivo (Li et al., 2007; Reynolds et al., 2000). In both cases the reporter transgene 
expression was significantly increased compared to the untargeted vector while liver transduction was 
reduced.  
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Adaptor-based targeting of AAVs. The feasibility to target AAV-2 using adaptor molecules 
was shown by Bartlett et al (Bartlett et al., 1999). They generated a bispecific antibody molecule by a 
chemical crosslink of the Fab arms of the monoclonal antibodies against integrin  and AAV-2 capsid. 
This targeting vector successfully transduced cells positive for the targeting receptor, whereas the 
transduction of receptor-negative cells was reduced by 90%.  
 Pseudotyping. Two basic strategies have been employed for genetic tropism modification of 
the capsid vectors: pseudotyping and ligand incorporation into the capsid proteins. Pseudotyping has 
mainly been achieved by substituting some or all coat proteins with homologous proteins of other 
serotypes, called serotype switching or serotype chimerism (Choi et al., 2005; Stone and Lieber, 
2006). Such functional incorporation of the viral attachment protein into a protein capsid instead of a 
lipid bilayer poses a challenge. The tropisms of various Ad and AAV serotypes are presented in 
Tables 3 and 4.  
 
Table 3. Comparison of the cellular receptors and tropism of the alternative adenovirus serotypes in 
comparison to Ad5 (* knob exchange only, **Ad2-based). 

Ad  
serotype 

Primary 
receptor 

Secondary 
receptor 

Tropism References 

Ad2 CAR HS   
Ad3 CD80, CD86 CD46 ovarian* and squamous 

cancer*, glioma*, B 
cells*, vascular SMCs 

(Kanerva et al., 2002a; 
Kawakami et al., 2003; 

Ulasov et al., 2007;  
Von Seggern et al., 2000) 

Ad5 CAR MHC-1 α2, 
VCAM-1, HS 

  

Ad7 CD80, CD86 CD46   
Ad8 sialic acid    

Ad11 CD46  HSCs and immature 
DCs, endothelial cells, 

prostatic cancer and 
laryngeal cancer  

(Mei et al., 2004;  
Stecher et al., 2001;  

Stone and Lieber, 2006; 
Zhang et al., 2003) 

Ad14 CD46    
Ad16 CD46  synovial tissues, 

vascular endothelial 
cells, and SMCs, 

chondrocytes, cancer 
stem cells 

(Goossens et al., 2001; 
Havenga et al., 2001; 
Havenga et al., 2002;  

Skog et al., 2007) 

Ad17   human airway 
epithelia** neurons** 

(Chillon et al., 1999; Zabner 
et al., 1999)   

Ad19 sialic acid    
Ad21 CD46    
Ad35 CD46  HSC (CD34+), DCs, 

melanocytes, follicle 
dermal papilla cells, 

cancer 

(Havenga et al., 2002; Ni et 
al., 2006;Rea et al., 2001; 

Shayakhmetov et al., 2000;  
Yotnda et al., 2001) 

Ad37 sialic acid  HSC (CD34+) (Mei et al., 2004) 
Ad50 CD46  HSC, myoblasts, cancer (Havenga et al., 2002) 
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Altered vector tropism has been reported by substitution of the Ad5 fiber protein into that of 
Ad3, Ad7, Ad11, Ad16, Ad17, Ad35 and others (Chillon et al., 1999; Gall et al., 1996; Goossens et 
al., 2001; Havenga et al., 2001; Mizuguchi and Hayakawa, 2002; Rea et al., 2001; Shayakhmetov et 
al., 2000; Stecher et al., 2001; Stevenson et al., 1997; Zabner et al., 1999). Moreover, pseudotyping of 
Ad has been achieved by replacing the fiber knob domain from that of another serotype (serotype 
chimerism). This kind of Ad5/3 vector has proven useful for retargeting Ad5 to low-CAR primary 
ovarian carsinoma cells in vitro and in vivo (Kanerva et al., 2002a; Kanerva et al., 2002b). 
Furthermore, recent data from combination treatment with oncolytic Ad5/3 and chemotherapy has 
shown convincing preclinical efficacy in orthotopic model for advanced ovarian cancer(Raki et al., 
2005; Raki et al., 2007). An important advantage of fiber-pseudotyped Ad vectors is the reduced the 
innate immune response following systemic delivery (Schoggins et al., 2005). 

Similarly, studies using vectors from alternative AAV serotypes such as AAV-1, AAV-3, 
AAV-4, AAV-5, AAV-6, AAV-7, AAV-8 and AAV-9 have shown different potency and tropism 
(Davidson et al., 2000; Gao et al., 2006; Halbert et al., 2001; Handa et al., 2000; Seiler et al., 2006; 
Vandendriessche et al., 2007; Xiao et al., 1999; Zabner et al., 2000; Zhong et al., 2006). Also mosaic 
capsid AAVs composed of a mixture of viral capsids from different serotypes have been used to 
combine the advantages of parental serotypes (Rabinowitz et al., 2004; Xiao et al., 1999). 

 
Table 4. Comparison of the cellular receptors and tropism of the alternative AAV serotypes in 
relation to AAV-2. 

  

AAV  
serotype 

Primary 
receptor 

Secondary 
receptor 

Tropism References 

AAV-1 N-linked 
sialic acid 

 skeletal muscle, HSC (Xiao et al., 1999;  
Zhong et al., 2006) 

AAV-2 HSPG FGFR1,integ
rin αvβ5, 
HGFR 

CNS (Davidson et al., 2000) 

AAV-3 HSPG FGFR1 HSC, 
megacaryocytes 

(Handa et al., 2000) 

AAV-4 O-linked 
sialic acid 

PDGF 
receptor 

airway epithelia, 
CNS, retinal 

pigmented epithelium 

(Davidson et al., 2000; 
 Halbert et al., 2001;  
Rolling et al., 2006) 

AAV-5 N-linked 
sialic acid 

 airway epithelia, 
CNS 

(Davidson et al., 2000;  
Zabner et al., 2000) 

AAV-6 N-linked 
sialic acid 

 airway epithelia (Seiler et al., 2006;  
Xiao et al., 1999) 

AAV-7   liver,  
skeletal muscle 

(Gao et al., 2002;  
Gao et al., 2006) 

AAV-8 LamR  liver,  
skeletal muscle 

(Gao et al., 2002;  
Gao et al., 2006;  

Vandendriessche et al., 2007) 
AAV-9   lung, liver,  

cardiac muscle 
(Inagaki et al., 2006; 

Vandendriessche et al., 2007) 
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Genetic targeting of adenoviruses. To date, modification of the Ad fiber protein has been 
the most common approach used to genetically alter adenoviral tropism. Two approaches have been 
used for this purpose: addition of foreign peptides to the HI loop or C-terminus of the fiber knob 
(Figure 8) or design of knobless viruses. Expanded tropism has been reported for Ad vectors with C-
terminal integrin-binding RGD motifs and polylysine ligands whereas other peptide ligands were 
ineffective in this context due to steric hindrance (Wickham et al., 1997). Consequently the HI-loop, 
tolerating insertions up to 100 amino acids with minimal negative effects on virion integrity, became 
the preferential site for ligand incorporation (Belousova et al., 2002).Dmitriev et al. introduced an 
integrin-binding RGD peptide into the HI-loop, resulting in vector with enhanced gene delivery to 
ovarian cancer cell lines and primary tumors (Dmitriev et al., 1998; Hemminki et al., 2001; 
Hemminki et al., 2002). Recent studies have demonstrated the high potential of this vector for the 
treatment of ovarian cancer in murine ovarian cancer models (Mahasreshti et al., 2006).  Other 
targeting peptides inserted in the HI loop of the fiber included ones having high affinity for vascular 
endothelial cells, cancer cells, transferrin receptor and vascular smooth muscle cells (Nicklin et al., 
2000; Nicklin et al., 2003; Work et al., 2004; Xia et al., 2000).   

Another approach to achieve CAR-independent tropism consisted of ablating the fiber and/or 
knob domain (Figure 8), hereby the fiber is re-trimerized by an alternative trimerization motif such as 
T4 fibritin protein (Krasnykh et al., 2001). A de-knobbing strategy was employed by Magnussen et 
al. wherein an RGD motif was utilized to achieve selective infection of integrin-expressing cell lines 
in vitro (Magnusson et al., 2001). In another approach the entire fiber was replaced with T4 fibritin 
fused with a trimeric CD40 ligand (Belousova et al., 2003).  Notably, this vector provided CD40-
specific gene delivery in vivo following systemic delivery (Izumi et al., 2005) 

In addition to fiber modifications, capsid protein hexon as well as minor capsid protein 
polypeptide IX have been used as platforms for incorporation of targeting peptides (Figure 8). They 
are both attractive locales for peptide ligand incorporation due to their surface exposure and 
abundance (240 hexon/80 pIX homotrimers per virion). Vigne et al. exploited hexon hypervariable 
region 5 as a site for incorporation of an integrin-binding RGD motif, demonstrating an enhanced, 
fiber independent transduction to low-CAR vascular smooth muscle cells (Vigne et al., 1999). The C-
terminus of pIX has been used to insert poly-lysine, FLAG and RGD motifs, resulting in augmented, 
CAR-independent gene transfer (Dmitriev et al., 2002; Vellinga et al., 2004).  

Genetic targeting of AAVs. The first attempts to alter the tropism of AAV-2 genetically was 
based on the insertion of scFv or receptor-specific ligands at the N-terminus of VP proteins. Although 
successful targeting was achieved using CD34 scFv, serpin receptor ligand, human luteinizing 
hormone peptide, it was of low efficiency and virus titers were affected (Shi et al., 2001; Wu et al., 
2000; Yang et al., 1998). The more successful demonstration of genetic capsid modifications were 
achieved by inserting targeting peptides in different sites inside VP1, VP2 and VP3 sequences 
determined by sequence alignment between AAV-2 and other parvoviruses or systematic insertional 
mutagenesis. Peptides specific for integrin receptors, endothelial cells, atherosclerotic plaques and 
tumors have been employed for targeting of AAV-2 with promising results (Grifman et al., 2001; 
Nicklin et al., 2001; Shi and Bartlett, 2003; White et al., 2007).  
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Combination of genetic and adaptor-based targeting of Ads and AAVs. Also more 
general targeting systems have been developed for Ad- and AAV-vectors embodying elements of 
both genetic modification and adapter-based targeting. These studies incorporated the IgG domain of 
Staphylococcus aureus protein A on viral capsids enabling these vectors to form stable complexes 
with a wide variety of targeting molecules containing the Fc region of Ig. Genetic incorporation of 
this ZZ domain on VP3 on AAV-2 vectors led to specific transduction of distinct human 
hematopoietic cell lines using targeting antibodies against CD29, c-kit receptor, and CXCR4 (Ried et 
al., 2002). Similarly, other research groups incorporated the protein A domain into the fiber C-
terminus or HI-loop of Ad vectors (Henning et al., 2005; Korokhov et al., 2003; Volpers et al., 2003). 
The results demonstrated a successful targeting and activation of dendritic cells via an Fc-single-
chain antibody directed against CD40 (Korokhov et al., 2005). In addition, this system was used to 
target ovarian cancer cells via an antibody directed against mesothelin, as well as the pulmonary 
endothelium in a rat model in vitro (Balyasnikova et al., 2005; Breidenbach et al., 2005). Despite the 
flexibility of this system for the screening of numerous targeting antibodies, these systems still face 
some issues regarding the stability of the virus-adaptor complex in vivo and the fact that polyclonal 
Igs in the bloodstream might replace the targeting molecule. 

 
 
2.3.3 Targeting non-viral vectors  
 
The intrinsic properties of cationic lipoplexes and polyplexes complicate their systemic 
administration. For some applications the positive charge can be harnessed to target sites of increased 
vascular growth such as tumors, but for most applications this unspecific interaction leads to 
unwanted accumulation in the lung tissue associated with toxicity (Kircheis et al., 1999). Similarly, 
the size of the carrier can limit organ access and modulate biodistribution at the cellular level. Thus 
for successful targeting, these intrinsic properties of non-viral vectors need to be minimized. In this 
regard, the hydrophilic polymer polyethylene glycol (PEG) has been used to shield lipoplexes 
(Hofland et al., 2002; Monck et al., 2000) and polyplexes (Blessing et al., 2001; Ogris et al., 1999; 
Wolschek et al., 2002). PEG-shielding reduced gene transfer efficiency of complexes, but the 
efficiency was at least partly restored by incorporation of targeting ligands. Other approaches have 
used the serum protein transferrin to create negatively charged liposomes (Simoes et al., 1998) or to 
mask the positive charge of PEI-DNA complexes (Kircheis et al., 2001).  
 Specific targeting of the shielded non-viral vectors has most often taken advantage of natural 
ligand-receptor interactions. On this basis, systemic targeting of tumors was demonstrated using the 
folic acid receptor (Hofland et al., 2002; Jeong et al., 2005a), transferrin receptor (Bartlett et al., 
2007; Hildebrandt et al., 2003; Kircheis et al., 1999; Xu et al., 1999) or EGFR (Wolschek et al., 2002) 
as a target. However, a potential drawback of endogenous targeting ligands is the presence of 
circulating ligands and binding to soluble receptors and receptors in nontarget tissue. Antibodies or 
antibody fragments might help to avoid some of these problems. As an example, antibodies have been 
used to target pancreas islet beta cells (Jeong et al., 2005b), human ovarian carcinoma cells (Merdan 
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et al., 2003), breast cancer cells (Germershaus et al., 2006) and glioma cells (Zhang et al., 2002), even 
though the in vivo data is still limited. 
 Despite these proof-of-principle studies, the transduction efficiencies of non-viral vectors 
remain low compared to viral vectors and particle shielding often adds to this problem. On this 
account, design of synthetic virus-like systems, combining the natural mechanisms exploited by 
viruses for membrane binding, endosomal escape and navigation through the nuclear pore, could 
improve the targeting potential of non-viral vector systems in the future (Wagner, 2004; Walker et al., 
2005). 
 
 
2.3.4 Avidin and streptavidin- biotin technology 
 
Chicken avidin and bacterial streptavidin are widely used tools in the field of life sciences due to their 
strong specific affinity for biotin (Kd ~1013-1015 M-1) and ability to bind 4 biotins per (strept)avidin 
molecule. There is no interaction between the carboxy-containing side chain of biotin and avidin, 
which allows the modification of both counterparts (Bayer and Wilchek, 1994): Biotin can be 
modified chemically and attached to a wide variety of probes and binders, whereas avidin can be 
derivatised with other molecular probes or reporter groups of different types, without interfering with 
their interaction together. Together these features form the crux of (strept)avidin-biotin technology.  
 
2.3.4.1 Avidin and streptavidin 
 
Avidin is found in oviparous vertebrates including various birds, reptiles and amphibia, but no 
analogous protein has been detected in mammalian species (Elo, 1980). Chicken avidin, isolated from 
the hen egg white, and streptavidin, secreted by several species of Streptomyces, are functionally 
(Green, 1975; Green, 1990) and structurally (Livnah et al., 1993; Weber et al., 1989) analogous 
proteins. The main biological function of (strept)avidin is to bind biotin, vital enzymatic cofactor also 
known as vitamin H (Green, 1990). Both proteins form tetrameric complexes of approximately 60 
kDa in which each subunit can bind one molecule of biotin with extremely high affinity (Kd ~1013-
1015 M-1). This interaction is primarily thought to represent a natural defence mechanism against 
biotin requiring microbes (Board and Fuller, 1974; Elo et al., 1980) but also additional roles have 
been suggested for avidin (Elo and Korpela, 1984; Zerega et al., 2001). In addition to their 
exceptional ligand binding characteristics, avidin and streptavidin are exceptionally stable against 
high concentrations of denaturing agents, proteases, wide range of pH and temperature (Green, 1990).  
 Despite similarities, avidin and streptavidin differ in their primary amino acid sequence (41 % 
similarity), glycosylation, pI (Green, 1990), immunological reactivity and pharmacokinetics. Each 
avidin monomer has a single oligosaccharide moiety whereas streptavidin is devoid of sugars. Avidin 
is a basic protein with a high isoelectric point (pI) 10.5 whereas streptavidin has a mildly acidic 
isoelectric point (pI) of ~6. Owing to these dissimilarities, streptavidin has the advantage of lower 
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nonspecific binding to lectin-like- and negatively charged molecules than avidin. This has been 
further shown to affect the pharmacokinetics of these proteins with avidin eliciting a shorter plasma 
half-life compared to streptavidin (Marshall et al., 1995; Rosebrough and Hartley, 1996; Rosebrough, 
1993; Schechter et al., 1990). The glycosylation is responsible for avidin’s tendency to accumulate in 
the liver, whereas its accumulation in the kidneys is mainly due to high pI (Yao et al., 1999). 
Streptavidin shows accumulation to kidneys (Schechter et al., 1990). Both proteins are immunogenic 
(Knox et al., 2000; Subramanian and Adiga, 1997; Weiden and Breitz, 2001) 
   
2.3.4.2 Modified avidins 
 
Streptavidin was hoped to eliminate the non-specific backround binding to extraneous material 
accounted with avidin due to high pI and the presence of oligosaccharide moiety. However, 
streptavidin has been found to interact in biotin-independent manner with the integrins and related 
cell surface receptors (Alon et al., 1990). To overcome these problems, and thus to improve the 
immunological and pharmacokinetic properties of (strept)avidin, a plethora of studies have focused 
on developing novel chemically and genetically engineered forms of avidin and streptavidin (Figure 
10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Engineering approaches used to modify the structural and functional properties of 
(strept)avidin (Laitinen et al., 2006). 
 
 Early attempts to reduce the charge of avidin consisted of formylation (Guesdon et al., 1979), 
acetylation (Kaplan et al., 1983) or succinylation (Finn et al., 1984) via covalent attachment to the 
available lysines of avidin. However, this blocked free amino groups which are often used in 
preparing avidin-conjugates. 
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 The modification of avidin via arginines resolved the problem by leaving lysines available for 
subsequent interaction. Commercialized neutral avidin derivatives prepared this manner include 
ExtrAvidin (Sigma-Aldrich, St. Louis, MO, USA), NeutraLite Avidin (Belovo Chemicals, Bastogne, 
Belgium) and NeutrAvidin (Pierce, Rockford, IL, USA). Marttila et al, have further reported the 
construction of series of avidin charge mutants with pIs ranging from 4.7 to 9.4 by site-directed 
mutagenesis replacing arginines and lysines with neutral or acidic amino acids (Marttila et al., 1998). 
These mutants showed reduction of non-specific binding, while retaining their thermal stability and 
the ability to tightly bind biotin. 
 To further reduce the non-specific interaction with extraneous macromolecules, the 
oligosaccharide moiety of avidin can be removed chemically or enzymatically (Bayer and Wilchek, 
1994). Enzymatic deglycosylation was used to develop NeutraLite Avidin, which consequently lacks 
the carbohydrates, exhibits neutral pI and bears free lysines for potential attachment of probes. In a 
more recent study Marttila et al produced an avidin mutant lacking the oligosaccharide moiety by 
genetic means. They combined this sugarless mutant with the avidin charge mutant (pI 4.7) to further 
improve the non-specific binding characteristics of avidin (Marttila et al., 2000). 
 Although most of the applications of (strept)avidin-biotin technology are based on the 
particularly high affinity between (strept)avidin and biotin, mutants with reduced affinity and 
reversible binding would be of great value for affinity-based separation of biotinylated molecules. To 
this end, two types of modifications have been extensively studied: binding-site mutants and interface 
mutants (Laitinen et al., 2006). To date, numerous binding-site mutants from streptavidin and avidin 
have been created with affinities for biotin ranging from near wild-type to 6 orders of magnitude 
weaker values (Chilkoti et al., 1995; Klumb et al., 1998; Marttila et al., 2003; Sano and Cantor, 
1995). 
 Modification of the interfaces of (strept)avidin monomers has additionally provided solutions 
to aggregation problems due to the cross-linking by tetravalent (strept)avidin. Laitinen et al 
demonstrated the production of dimeric (Laitinen et al., 1999) and monomeric biotin-binding forms 
which are tetramerized upon biotin binding (Laitinen et al., 2001) or remain in the monomeric state 
(Laitinen et al., 2003). The affinity for biotin binding was decreased to Kd ~ 10-8 M in the case of 
dimeric avidin and to Kd ~10-7 M for monomeric avidin known to remain as a monomer upon biotin 
binding. Following these studies, monomeric forms of streptavidin have been developed (Qureshi et 
al., 2001; Wu and Wong, 2005) 
 Avidin has been further engineered for improved characteristics and this work continues to 
widen the field of applicability of avidin-biotin system. For example recent work by Kulomaa and co-
workers has demonstrated the production of dual-and single-chain avidins or avidins with dual-
affinity (Hytonen et al., 2005; Nordlund et al., 2004; Nordlund et al., 2005). In another case, Howarth 
et al contructed a streptavidin which binds biotin in monovalent fashion while retaining its high 
affinity (Howarth et al., 2006). 
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2.3.4.3 Biotin and biotinylation 
 
Biotin is a small (244 Da) water-soluble vitamin H synthetized by bacteria, yeasts, molds, algae and 
some plants, but required by all forms of life (Mock, 1996). Biotin has been shown to play an 
essential role in regulating gene expression in E.coli and in mammalian cells (Cronan, 1989; 
Rodriguez-Melendez and Zempleni, 2003). Moreover, in mammalians more than 2000 biotin-
dependent genes have been identified and biotinylation of histones plays an essential role in cell 
proliferation, gene silencing and cellular response to DNA damage (Zempleni, 2005). 
 Biotin is bound to cellular carboxylases and decarboxylases, which catalyze the transfer of 
CO2 to and between metabolites in gluconeogenesis, lipogenesis, amino acid degradation and energy 
transduction (Knowles, 1989; Samols et al., 1988). The attachment of biotin to the ε-amino group of a 
specific lysine moiety in carboxylases is catalyzed by biotin protein ligase in an ATP-dependent 
reaction (Figure 11) (Otsuka and Abelson, 1978). The number of biotinated carboxylases varies from 
species to species: In E.coli, the bacterial biotin ligase BirA biotinylates only one protein called 
acetyl-CoA carboxylase whereas in mammalian cells acetylCoA- carboxylase, methyl crotonyt-CoA 
carboxylase, propionyl-CoA carboxylase and puryvate carboxylase are biotinylated (Cronan, 1990).  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. The biotin protein ligase reaction. In the first step, biotin protein ligase catalyses the attack 
of an oxygen atom of the biotin carboxylate on phosphate of ATP to form biotinoyl-AMP. Next, the 
nucleophilic ε-amino group of the lysine on apo-form of the biotin acceptor domain attacks the 
carbon atom on  biotinoyl-AMP thus forming an amide bond between biotin and biotin accepting 
domain (Chapman-Smith and Cronan, 1999). 
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 Biotinylation of proteins is an attractive alternative to epitope tagging due to the strong 
(strept)avidin-biotin interaction. While a wide range of chemical biotinylation techniques exist, they 
are limited by the fact that chemical biotinylation are not site-specific, require prior purification of the 
substrate and can lead to inactivation of the target protein (Stolz et al., 1998). Given the difficulties in 
chemical biotinylation, many efforts are now devoted to developing systems exploiting the natures 
own biotinylation machinery. Early studies using this approach took advantage of the 1.3S subunit of 
Propioni bacterium shermanii transcarboxylase (PSTCD) which is naturally biotinylated at lysine 89 
(Cronan, 1990). The expression of PSTCD fusion protein led to its enzymatic biotinylation in E.coli 
and Saccharomyces cerevisiae. Later on, this approach has been expanded to mammalian cells and 
animals (Parrott and Barry, 2000; Parrott and Barry, 2001). Isolation of new shorter biotin acceptor 
peptide (BAP) substrates (ca. 13-20 residues) for BirA have further increased the appeal of this 
system for purification applications (Duffy et al., 1998; Schatz, 1993). Metabolically biotinylated 
gene therapy vectors will be discussed in the next chapter.  
 
 
2.3.4.4 (Strept)avidin-biotin technology in gene therapy 
 
The specific characteristics of avidin have been shown to be of great advantage in drug targeting: The 
high positive charge of avidin augments the efficiency of cellular uptake of biotin-coated particles 
(Pardridge and Boado, 1991), whereas incubation of bioconjugated avidin with biotinylated cell lines 
results in rapid surface attachment and endocytosis with efficiencies approaching 100% (Wojda et al., 
1999). In addition, (strept)avidin has been demonstrated to accumulate into specific tissues 
(Rosebrough and Hartley, 1996; Rosebrough, 1993; Schechter et al., 1990), especially to tumors in 
vivo (Yao et al., 1998). Consequently, avidin alone can enable some targeting of gene therapy vectors 
to specific tissues, while tissue-specificity can be altered by biochemical modification of the protein. 
 The strong avidin-biotin interaction can be used to develop targeted therapies by the 
biotinylation of ligands or tissues in vivo (De La Fuente et al., 1997; Hoya et al., 2001; Singh et al., 
2005). Several studies have shown promising results using monoclonal antibodies in targeting of 
biotinylated therapeutic or diagnostic compounds via avidin in experimental animals (Corti et al., 
1998; Guttinger et al., 2000; Wu and Pardridge, 1999). One such approach, called pretargeted 
radioimmunotherapy, separates the administration of the monoclonal antibodies from that of a low-
molecular-weight radionuclide ligand. This multistep (2 or 3 steps) approach has shown to improve 
tumor: normal tissue radiation dose ratios since the targeting molecule administered first is not 
radiolabeled. Subsequent administration of (strept)avidin removes the excess circulating antibodies or 
binds to tumor cells preparing them to receive radiolabelled biotin. This strategy has already been 
followed in clinical trials for the treatment of malignant glioma demontstrating impeding of cancer 
progression without significant toxicity (Grana et al., 2002; Paganelli et al., 1999; Paganelli et al., 
2001; Paganelli et al., 2006). Other similar studies are being conducted for the treatment of colon 
cancer, B-cell lymphoma and gastrointestinal malignancies (Forero et al., 2004; Knox et al., 2000; 
Linden et al., 2005; Shen et al., 2005).   
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 Another potential approach for targeting tumors or tissues is to introduce recombinant-avidin 
gene into specific tissues by local gene transfer which consequently can sequester and concentrate 
considerable amounts of therapeutic biotin conjugates in vitro and in vivo (Lehtolainen et al., 2002a; 
Lehtolainen et al., 2003; Walker et al., 1996) 
 In addition, (strept)avidin-biotin technology can be adapted to improve vector targeting 
(Waehler et al., 2007). It provides substantial advantage over other adaptor systems by assuring 
sufficient stability of the vector-adaptor complex even under physiological conditions (Pereboeva et 
al., 2007). Early studies with retroviruses used streptavidin-bound antibodies specific for both viral 
and cell membrane epitopes provided the proof-of-principle even though only low transduction 
efficiencies were attained (Etienne-Julan et al., 1992; Roux et al., 1989). Since that, the (strept)avidin-
biotin-based targeting has followed two different approaches depicted in figure 12. Firstly, gene 
therapy vectors can be biotinylated either chemically or metabolically, while bringing the biotinylated 
targeting molecule in conjunction to avidin (Barry et al., 2003). First studies by Smith and collegues 
were performed with a chemically biotinylated adenovirus vector. They demonstrated successfull 
vector targeting to hematopoetic cells through an avidin bridge carrying biotinylated c-Kit receptor 
ligand, resulting up to 2400-fold increase in reporter gene expression (Smith et al., 1999). Later on, 
chemically biotinylated retrovirus, AAV and vaccinia virus have been created, all of which exhibited 
significantly increased transduction of target cells (Ponnazhagan et al., 2002; Purow and Staveley-
O'Carroll, 2005; Zhong et al., 2001).  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. The principle of (strept)avidin-biotin technology in vector targeting. The vector can either 
carry avidin or biotin on its surface. This allows attachment of biotinylated or avidinylated targeting 
molecules (binders; e.g. cell surface ligands, antibodies). 
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 However, chemical biotinylation often leads to non-specific labelling, inactivation of target 
proteins and require prior purification of the virus. Therefore, metabolic biotinylation, achieved 
directly in living cells, is considered a more promising approach (Cronan, 1990). A number of studies 
have shown that metabolic biotinylation provides an efficient means to target gene therapy vectors 
such as adenovirus (Campos and Barry, 2006; Campos et al., 2004; Maguire et al., 2006; Parrott et 
al., 2003) and AAV (Arnold et al., 2006; Stachler and Bartlett, 2006). A recent report by Pereboeva 
and coworkers also provided evidence on the applicability of metabolically biotinylated adenovirus 
vectors for in vivo retargeting (Pereboeva et al., 2007). Owing to the large availability of 
(strept)avidin-biotin-based purification methods, metabolical biotinylation of gene therapy vectors 
has also been applied for virus concentration (Arnold et al., 2006; Campos and Barry, 2006; Chan et 
al., 2005; Nesbeth et al., 2006; Stachler and Bartlett, 2006).  
 An opposite targeting approach consists of avidin displaying vectors (Figure 12). To this end, 
chemically avidinylated PEI-vectors (Wojda and Miller, 2000) and adenoviruses (Park et al., 2008) 
together with genetically engineered avidin displaying baculoviruses have been described (Raty et al., 
2004). In the latter study, Räty and collegues expressed an avidin-gp64 fusion protein on the 
baculovirus surface thus providing binding sites to biotinylated targeting ligands (Raty et al., 2004). 
This 2-step system is easier to control than the 3-step process using the avidin-bridge between desired 
biotinylated molecules and offers better valence for covering since all four biotin-binding sites are 
available for biotinylated ligands. Avidin displaying baculovirus showed a 5-fold increase in 
transduction efficiency of rat glioma cells and a 26-fold increase in rabbit aortic smooth muscle cells 
compared to wild-type virus without major cytotoxicity. Enhanced transduction was also observed 
with biotinylated cells and biotinylated EGF enabled targeting to EGFR expressing cells. In addition, 
the use of biotinylated paramagnetic particles allowed magnetic targeting.  
 In addition to providing great potential for therapeutic purposes, the avidin-biotin technology 
has also been exploited for in vivo imaging purposes. The pretargeted radioimmunotherapy for cancer 
treatment described above, has been widely applied for simultaneous radioimmunoimaging (Cauchon 
et al., 2007; Hama et al., 2007; Li et al., 2005; Sharkey et al., 2005). Furthermore, conjugation of 
baculovirus vector to biotinylated iron oxide particles or radionuclides has enabled imaging of the 
viral particle biodistribution by magnetic resonance imaging and single photon emission computed 
tomography in vivo (Raty et al., 2006; Raty et al., 2007). Similarly, cells expressing metabolically 
biotinylated cell-surface receptors can be visualized with labeled streptavidin moieties (Tannous et 
al., 2006). 
 

2.4 Detection of viral particles and gene expression  

 
Molecular imaging techniques are defined as the visual characterization and quantification of 
biological processes at the cellular and subcellular levels within a living organism. The three main 
methodologies developed for noninvasive in vivo imaging include optical imaging, magnetic 
resonance imaging (MRI) and nuclear imaging [single photon emission tomography (SPECT), and 
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positron emission tomography (PET)]. Each of these technologies has its own advantages and 
drawbacks as listed in Table 5.  
 Current imaging methods in gene therapy can be divided into biodistribution and reporter 
gene imaging. Reporter gene imaging visualizes the transgene expression whereas biodistribution 
demonstrates the vector location throughout the body. It is often desirable to obtain images with both 
imaging modalities to obtain conclusive data on the safety and efficacy of gene therapy.  
   
Table 5. Characteristics of different imaging modalities [Modified from (Massoud and Gambhir, 
2003)].  
Imaging 

technique  
Electro-
magnetic 
radiation 

Spatial 
reso-
lution 

Temporal 
resolution 

Sensiti-
vity 

Advantages Disadvantages 

Fluores-
cence 

imaging 

visible 
light or 
near-

infrared 

2-3 mm seconds to 
minutes 

10-9- 
10-12 M 

High 
sensitivity, low 

cost 

relatively low 
resolution, imaging 

depth  <1 cm 

Biolumi-
nescence 
imaging 

visible 
light 

3-5 mm seconds to 
minutes 

10-15- 
10-17 M 

High 
sensitivity, 

quick, low cost, 
high 

throughput 

low resolution, 2D 
imaging only, imaging 

depth 1-2 mm 

PET high-
energy γ-

rays 

1-2 mm 10 sec - 
minutes 

10-11- 
10-12 M 

sensitive, 
isotopes can 

substitute 
natural atoms 

PET cyclotron or 
generator needed, 

relatively low 
resolution, radiation  

SPECT lower-
energy γ-

rays 

1-2 mm minutes 10-10- 
10-11 M 

many probes 
available, 

simultaneous 
multiple probe 

imaging  

relatively low 
resolution, radiation  

MRI radiowaves 25-
100µm 

minutes - 
hours 

10-3- 
10-5 M 

high resolution, 
combines 

morphological 
and functional 

imaging 

relatively low 
sensitivity, long scan 

and posprocessing 
time 

 
2.4.1 Optical imaging 
 
Optical imaging is a modality that is cost-effective, rapid, easy to use, and can be readily applied to 
studying transductional efficiency of gene therapy vectors in vivo. Optical methods can be divided 
into fluorescence- and bioluminescence-based reporter gene systems. A number of fluorescence 
reporter genes eg. different variants of the Aqueorea Victoria green fluorescent protein (GFP) 
(Contag et al., 2000; Ellenberg et al., 1999; Falk and Lauf, 2001; Hadjantonakis and Nagy, 2001) and 
red fluorescent proteins from Discosoma species (dsRed1 and dsRed2) (Campbell et al., 2002; 
Mathieu and El-Battari, 2003) have been described and applied in optical imaging of tumors and 



 48 

metastases (Bharali et al., 2005; Bouvet et al., 2002; Yang et al., 2000). However, bioluminescence 
reporter imaging currently remains more sensitive for whole-body imaging: the most commonly used 
are the Firefly and Renilla luciferase genes (Choy et al., 2003; Gross and Piwnica-Worms, 2005; 
Wilson and Hastings, 1998; Yu et al., 2003). Expression of luciferase has been specifically used to 
image the growth kinetics of transformed tumor cells (Liang et al., 2004; Rehemtulla et al., 2002) and 
to monitor viral gene delivery (Berraondo et al., 2006) and replication (Yamamoto et al., 2006).  
 
 
2.4.2 PET/SPECT  
 
Nuclear imaging is based on the administration and detection of decaying radioisotopes. The decay of 
a radioisotope emits a positron or gamma ray which produces detectable two (positron emission 
tomography, PET) or single high-energy photons (single photon emission tomography, SPECT).   
 PET is based on the use of contrast agents (tracers) including radioisotopes 11C, 13N, 15O, 18F 
64Cu, 68Ga, 76Br and 94mTc (Massoud and Gambhir, 2003). Positrons emitted by the tracers are 
annihilated in tissue by collision with an electron. It results in an emission of two high-energy 
photons detected by PET detector array. The sensitivity of PET is relatively high, in the range of 10-

11-10-12 M (Mandl et al., 2002). PET provides a spatial resolution of 1-2 mm enabling small animal 
micro-PET applications.   
 SPECT is similar to PET, but acquires information on the concentration of gamma emitting 
radionucleotides like 111In, 133Xe, 99mTc 123I, 125I, and 131I (Rosenthal et al., 1995). These heavy 
isotopes have longer decay times than PET contrast agents and are more readily available (Mandl et 
al., 2002). However, SPECT tracers can also be taken up by other areas than their target area and 
simultaneous imaging by computer tomography (CT) may be required (Labbe, 2003). SPECT is at 
least a log order less sensitive than PET even though the spatial resolution is near the same (Massoud 
and Gambhir, 2003). 
 Direct labeling of virus particles allows the systemic distribution of the virus to be detected by 
nuclear imaging. Labeling herpes simplex viruses with 111In enabled to trace the organ distribution of 
the viruses after intravenous administration (Schellingerhout et al., 1998). The same group also 
performed mass distribution studies of HSV vectors in an experimental brain tumor model to evaluate 
and compare different delivery modalities (Schellingerhout et al., 2000). Imaging techniques for other 
viral vectors have also been developed based on iodination (Frost, 1977; Markwell and Fox, 1978; 
Montelaro and Rueckert, 1975; Moore et al., 1974) and the biotin-avidin system (Skulstad et al., 
1995). In several of these studies, however, the viral labeling was reported to affect the infectivity of 
the vectors. Recently, a less detrimental approach, based on the display of avidin on the baculovirus 
surface, was introduced (Raty et al., 2007). The avidin-display enabled baculovirus labeling with 
99mTc-polylys-ser-DTPA-biotin, and visualization of viral biodistribution and kinetics after various 
administration routes. 
 Reporter genes for nuclear imaging can encode for intracellular enzymes, extracellular or 
intracellular receptors or cell membrane transporters capable of irreversibly binding or transporting a 
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radiolabeled or paramagnetic probe. Wild-type HSV1 thymidine kinase (tk) (Tjuvajev et al., 1998) 
and its mutant version HSV-sr39tk (Gambhir et al., 2000), are the most commonly used enzyme-
based marker genes in transductional imaging. Unlike human thymidine kinases, these enzymes have 
less substrate specificity and can selectively phosphorylate a wide range of compounds. Imaging of 
TK expression is based on the use of iodinated or fluorinated acycloguanosines (eg, ganciclovir ; 
penciclovir; 18F -labeled 9-[4-fluoro-(hydroxymethyl)butyl]guanine (Gambhir et al., 1999; Jacobs et 
al., 2001; Namavari et al., 2000) as well as thymidine analogues (eg, 2'-fluoro-2'-deoxy-1-beta-D-
arabinofuranosyl-5-iodouracil, 2'-18F-fluoro-5-ethyl-1-beta-D-arabinofuranosyl-uracil) (Buursma et 
al., 2006; Yaghoubi et al., 2001). When HSV-TK is present in the cells, the substrates become 
phosphorylated and thus trapped. Cellular retention of radioactivity indicates the transfection and this 
has been widely used to monitor the gene therapy of cancer (Blasberg and Tjuvajev, 1999; Deng et 
al., 2006; Tseng et al., 2006; Yaghoubi et al., 2005). Alternative enzyme-based reporter systems are 
xanthine-phophoribotransferase (Doubrovin et al., 2003) and cytosine deaminase (Haberkorn et al., 
1996). 
 Use of extracellular receptors or cell membrane transporters as reporter genes eliminates the 
need for the probe to penetrate into a cell. The human dopamine receptor is an example of such 
reporter gene (hD2R). hD2R expression is largely limited to the striatal-nigral system of the brain, 
which makes it a good candidate for transductional imaging. hD2R expressing cells and tissues can be 
imaged through the accumulation of an established probe, 18F fluoroethyl spiperone (MacLaren et al., 
1999). Somatostatin receptor subtype II is another receptor-based reporter gene, which has a naturally 
limited expression to carcinoid tumors (Rogers et al., 1999; Rogers et al., 2000). Both receptors can 
be imaged simultaneously with HSV-tk providing a platform for indirect imaging of therapeutic gene 
expression (Chen et al., 2004; Verwijnen et al., 2004).  
 Human sodium iodine symporter (hNIS), iodine-transporter in thyroid follicular cells, 
provides an opportunity to image with both PET (124I-iodine) and gamma camera (123I-iodine or 
99mTc-pertechnetate) (Haberkorn et al., 2001). hNIS has been used for imaging adenovirus 
biodistribution and gene therapy (Dwyer et al., 2006; Groot-Wassink et al., 2002; Lee et al., 2004; 
Yang et al., 2004). More recently it has been suggested as a potential candidate for monitoring 
cardiac gene therapy (Miyagawa et al., 2005a; Miyagawa et al., 2005b). Another transporter-based 
reporter system, norepinephrine transporter, has been utilized to image transduced tumors (Altmann 
et al., 2003; Buursma et al., 2005). 
 
 
2.4.3 MRI 
 
Magnetic resonance imaging has the advantage of high spatial resolution (10-100µm) but the natural 
insensitivity for label detection requires robust amplification techniques. MRI is based on the 
detection of molecules that possess the property of nuclear spin, which align themselves when 
exposed to magnetic field. Following a radiofrequency pulse, the nuclear spins return to their baseline 
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orientation with a relaxation time corresponding to their physicochemical environment which can be 
measured (Massoud and Gambhir, 2003).  
 Contrast agents used in MRI can be divided into two categories which modify either T1 or T2 
relaxation time constants, proton density or nuclear polarization to attain improved sensitivity. T1 
contrast agents produce a positive signal enhancement on MRI images and are usually based on 
paramagnetic ions or stable free radical molecules (Potter, 2002). T2 contrast agents, on the other 
hand, decrease the signal in T2 weighted MRI seen as the darkening of image. T2 contrast agents are 
generally based on ferromagnetic of superparamagnetic nanoparticles. These particles can differ in 
their core size, coating thickness and coating material, all of which affect their biodistribution (Wang 
et al., 2001). 
 Most current transductional MRI strategies are based on coupling a reporter transgene with a 
specific probe. Initially, enzyme-based reporters were applied to monitor the changes in phosphor 
metabolism by arginine and creatine kinases (Koretsky et al., 1990; Walter et al., 2000) and fluorine 
metabolism by the enzyme activity of cytosine deaminase (Stegman et al., 1999) and β-galactosidase 
(Louie, 2006). Also approaches based on targeting the contrast agent to the cell surface using 
appropriate ligands have been developed. For example, after overexpression of inflammatory 
adhesion molecule or non-endogenous H2K(k) antigen, antibodies against these molecules 
conjugated to a superparamagnetic iron oxide particle, generated strong negative contrast (Bulte et al., 
1998; So et al., 2005).  

The most common reporter genes for MRI are based on proteins involved in iron metabolism, 
such as tyrosinase, transferrin receptor and ferritin. All cells use iron and they attain it from the 
circulating blood where it is bound to transferrin. Transferrin receptors throughout the body engulf 
and internalize both the protein and the iron attached to it. Once inside, the cell transfers the iron to 
ferritin, the internal iron storage molecule. Both these proteins can thus be used as reporter genes for 
MRI. Transferrin receptor overexpression can be probed with superparamagnetic agents (Moore et 
al., 2001; Weissleder et al., 2000) whereas ferritin is itself made superparamagnetic by the cell 
eliminating the need for an exogenous contrast agent (Genove et al., 2005). Ferritin is a ubiquitous 
intracellular iron storage protein that consists of 24 subunits of the heavy (H) and light (L) type 
(Arosio and Levi, 2002). This multi-subunit protein is capable of containing as many as 4,500 atoms 
of iron within a hydrous ferric oxide core. The H and L subunits have different functional specificity: 
the L-chain enhances the stability of the iron core while the H-chain has a metal-binding site which 
confers ferroxidase activity (Fe2+ oxidation to Fe3+) to the protein and accelerates iron incorporation 
(Levi et al., 1993; Levi et al., 1994). To date, ferritin expression has enabled the imaging of 
adenovirus transduction in mouse brain (Genove et al., 2005), and detection of transcriptional 
regulation of gene expression in glioma tumor models (Cohen et al., 2005) and transgenic animals 
(Cohen et al., 2007). The third approach for detecting transgenes by MRI relying on cellular 
accumulation of iron takes advantage of tyrosinase gene expression which leads to the production of 
metal-binding metabolite, melanin (Weissleder et al., 1997).  
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3. AIMS 

 
The general objective of this study was to improve the efficiency, targetability and safety of baculo- 
and lentiviral vectors in order to extend the applicability of these viruses in the field gene therapy. A 
special emphasis was put on the development of generally applicable strategies for virus targeting, 
purification and non-invasive imaging based on avidin-biotin technology.  
 
 
 
 
More specifically, the aims of this study were: 
 
 
(I) To study if the VSV-GED could enhance the transduction efficiency of baculovirus vectors when 
coexpressed with gp64. 
 
(II) To develop metabolically biotinylated baculovirus vectors by displaying a biotin acceptor peptide 
(BAP) fused either to different sites in the baculovirus glycoprotein gp64 or VSV-GED and to 
evaluate the utility of these vectors for virus targeting and purification applications. 
 
(III) To create targetable lentivirus vectors displaying (strept)avidin-VSV-GED fusion proteins and 
to assess the utility of these vectors for in vivo imaging of virus particle biodistribution and 
transduction using SPECT/CT and MRI. 
 
(IV) To analyze the transcription and expression of baculoviral immediate early genes in human cells 
and to examine the interactions between viral components and subnuclear structures after viral 
transduction. 
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4. MATERIALS AND METHODS 

4.1 Methods 

 
Table 6. Methods used in the studies. 
 
Method Desription Study 

No. 
DNA cloning Vector design and construction I- IV 

Baculovirus production I,II,IV 
I,II,IV Virus concentration: Ultracentrifugation 

                                  Magnetic capture II 

Production of baculovirus 
vectors 

Baculovirus titering: End-point dilution I,II,IV 
Lentivirus production III 
Virus concentration: Ultracentrifugation III 

Production of lentivirus 
vectors 

Lentivirus titering:    p24 ELISA 
                                 Flow cytometry 

III 
III 

SDS-PAGE and Immunoblotting I, II Characterization of 
baculovirus vectors ELISA II 

SDS-PAGE and Immunoblotting III Characterization of lentivirus 
vectors ELISA III 

I, II  
I, II 

Transduction             β-galactosidase staining          
efficiency:                 Luminescent β-galactosidase assay 
                                  Flow cytometry             III 
Immunofluorescence labeling, confocal microscopy IV 
Cell targeting with ligands and antibodies II,III 
Magnetic targeting II 
Cytotoxicity assay I 
Endocytosis blocking I 
Syncutium formation assay I 
Magnetic resonance imaging III 

In vitro experiments 

RNA extraction, RT-PCR III, IV 
Stereotactic injections to rat brain  I, III 
Intramuscular injections to rabbit hind limb  I 
Magnetic resonance imaging III 

In vivo experiments 

SPECT/CT imaging III 
β-galactosidase staining I, III 
Antibody staining  III 

Histochemical analyzes 

Iron staining III 
Mean SD I- IV 
Unpaired t test  I- IV 

Statistical methods 

ANOVA II,III 
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4.2 Plasmids and DNA oligomers 

 
The plasmids used to generate the recombinant baculo- and lentiviruses are summarized in Table 7. 
The DNA oligomers used in cloning and sequencing are listed in Table 8, whereas the individual 
cloning steps are described more thoroughly in the original publications.  
 
Table 7. Plasmids used in studies I-IV. 
 
Plasmid Reference Description Study 
pFastBac-1 Invitrogen, Carlsbad, CA, USA Backbone for baculovirus constructs  I, II 
pBacSurf-1 Novagen, Madison, WI, USA Source of gp64 II 
Baavi (Raty et al., 2004) Source of avidin and LacZ III 
PFD27 (Laitinen et al., 2003) Source of monomeric avidin III 
pGEM-
streptavidin 

M. Kulomaa, University of 
Tampere, Finland 

Source of streptavidin III 

pDONR201 Invitrogen, Carlsbad, CA, USA Intermediate cloning of BirA II 
pCMV-VSVG T. Friedmann, UCSD, La Jolla, 

CA, USA 
Source of VSV-G,  
Lentivirus production 

I II,  
III 

pRSV-Rev Tronolab, Lausanne, 
Switzerland 

Lentivirus production III 

pMDLg/pRRE Tronolab, Lausanne, 
Switzerland 

Lentivirus production III 

pLV-GFP (Makinen et al., 2006) Lentivirus production, transfer vector III 
pENTR™221-
Ferritin 

RZPD German Resource Center 
for Genome Research, Berlin , 
Germany 

Source of ferritin III 

pBOB-CAG I. Verma, Salk Institute, La 
Jolla, CA, USA 

Lentivirus production, transfer vector 
backbone 

III 

H2B-EYFP J. Langowski, German Cancer 
Research Center, Heidelberg, 
Germany 

Detection of human histone protein 
H2B expression 

IV 

pEGFP-sp100 G. Dellaire, The hospital for 
Sick Children, Toronto, Canada 

Detection of promyelocytic nuclear 
bodies 

IV 

EGFP-PAB2 M. Carmo-Fonseca (Intituto de 
Medica Molecular, Lisbon, 
Portugal 

Detection of nuclear speckles IV 

NPM-EGFP M. Laiho, University of 
Helsinki, Finland 

Detection of nucleophosmin IV 
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Table 8. DNA oligomers used in the studies. 

 

Sequence Desription Usage Study  
GGGGTGATACTGGGCTATCCAA VSV-GED  5’forward Cloning I,II 
AGATCTTTACTTTCCAAGTCGGTTCA VSV-GED  3’reverse Cloning I,II 
GGAAGTTCACCATAGTTTTTCCAC VSV-G 5’forward Cloning I 
GAAGGAGATAACATGAGATCT 
AAGGATAACACCGTGCCACTG 

BirA 5’forward Cloning II 

TTTAGTGATGGTGATGGTGA 
TGTTTTTCTGCACTACGCAGGG 

BirA 3’reverse Cloning II 

GATCCGTAAGCGCTATTGTTTTATATGTGCTTT
TGGCGGCGGCGGCGCATTCTGCCTTTGCGA 

Gp64 signal sequence 
linker 

Cloning II 

GATCTCGCAAAGGCAGAATGCGCCGCCGCCG
CCAAAAGCACATATAAAACAATAGCGCTTAG 

Gp64 signal sequence 
linker 

Cloning II 

GTTCATGCCATTCAATTTTTTGTGCTT 
CAAAGATATCATTCAGGCCCTGCA 

BAP linker Cloning II 

GGGCCTGAATGATATCTTTGAAGCAC 
AAAAAATTGAATGGCATGAACTGCA 

BAP linker Cloning II 

GGTACCCCCGGGCGGAGCACTGC Gp64 5’forward Cloning II 
ATAACCCGGGTCTTTAATATTGTCTATTACGG Gp64  3’reverse Cloning II 
CTTGGCTCTAACGTTGTGGCGTTCATGCCATT
CAATTTTTTGTGCTTCAAAGATATCATTCAGG
CCCCAAGTGGGCGGCCGCTTC 

BAP + compatible ends 
to gp64 site 283, 3’ 
reverse 

Cloning II 

AATGATAACCATCTCGCA 5’forw. pPolh-cassette Sequenc. I,II 
GGATGAAGTGGTTCGCATCC 3’rev. pPolh-cassette Sequenc. I,II 
GCAACGTGCTGGTCTGTGTGC 5’forw. CMV-cassette Sequenc. III 
CACACCAGCCACCACCTTCTG  3’rev. CMV-cassette Sequenc. III 
GGAACATGCTGAGAAACTGATGAAG 5’frw.human/rat ferritin RT-PCR III 
CACAGTCTGGTTTCTTGATATCCTGA 3’rev. human ferritin RT-PCR III 
CACGGTCAGGTTTCTTTATATCCTGC 3’rev. rat ferritin RT-PCR III 
TTAACGCGTCGTACACCAGCG 5’forw. ie-1 RT-PCR IV 
TTATAATAACTTAAATAGTCGTTGGG 3’rev. ie-1 RT-PCR IV 
ATGAGTCGCCAAATCAACGC 5’forw. ie-2 RT-PCR IV 
GGCTTCGGGAGATGTTGTAAAG 3’rev. ie-2 RT-PCR  IV 
TCCGACTTGGGCAAATGG 5’forw. lef-3 RT-PCR IV 
GATTGAAATCCGCACATAGCTTT 3’rev. lef-3 RT-PCR IV 
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4.3 Vectors 
 
The characteristics of the recombinant vectors developed in the studies are listed in Table 9 and Table 
10.   
 
 
Table 9. Baculoviral vectors constructed in studies I-IV. 
 
Baculoviral vectors  
(pseudotype) 

Promoter-
transgene 

Surface Modification Study  

VSV-GED CMV-LacZ Transmembrane anchor of VSV-G I 
VSV-G CMV-LacZ VSV-G I 
BAP-VSV-GED CMV-LacZ BAP fused to VSV-GED II 
BAP-N-gp64 CMV-LacZ BAP fused to N-terminus of gp64  II 
BAP-283-gp64 CMV-LacZ BAP inserted at aa. position 283 of gp64  II 
BAP-283+N-gp64 CMV-LacZ BAP fused to N-terminus and to site 283 of 

gp64   
II 

 
 
Table 10. Lentiviral vectors constructed in studies I-IV. 
 
Lentiviral vectors 
(pseudotype) 

Promoter-
transgene 

Surface Modification Refe-
rence 

Gp64 hPGK-GFP Baculovirus envelope glycoprotein, gp64 III 
AVD/Gp64 hPGK-GFP Avidin fused to VSV-GED,  coexpressed 

with gp64 
III 

SA/Gp64 hPGK-GFP/ 
CAG-Ferritin/ 
CAG-LacZ 

Streptavidin fused to VSV-GED, 
coexpressed with gp64 

III 

MONO/Gp64 hPGK-GFP Monomeric avidin fused to VSV-GED, 
coexpressed with gp64 

III 
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4.4 Antibodies and ligands 

 
Table 11. Antibodies used in immunoblotting, immunofluorescence and targeting experiments.  
(* Conjugated to biotin) 
Antibody Source Descripition Study  
Anti-gp64 mAb Insight Biotechnology, Webley, 

UK 
Gp64 detection I, II 

Anti-vp39 pAb Loy Volkman, University of 
California, Berkeley, USA 

Vp39 detection I, IV 

Anti-avidin pAb (Laitinen et al., 2002) Avidin detection III 
Anti-streptavidin pAb (Bayer et al., 1986) Streptavidin detection III 
Anti-VSVG pAb Bethyl Laboratories Inc., 

Montgomery, TX, USA 
VSV-GED detection I- III 

Streptavidin-HRP Vector laboratories, Burlingame, 
CA, USA 

Biotin detection II 

Anti-lamin  Novocastra Laboratories Ltd, 
Newcastle, UK 

Nuclear membrane detection IV 

Anti-TfR mAb* Ancell Corporation, Bayport, 
MN, USA  

Targeting to transferrin 
receptor 

II, III 

Cetuximab mAb* Merck, Darmstadt, Germany Targeting to EGFR receptor II, III 
Anti-CD46 mAb* Exbio, Prague, Czech Republic Targeting to CD46 receptor II, III 
Transferrin* Molecular Probes, Invitrogen,  

Carlsbad, CA, USA 
Targeting to transferrin 
receptor 

II, III 

EGF* Molecular Probes, Invitrogen, 
Carlsbad, CA, USA 

Targeting to EGFR receptor III 

Anti-Ferritin rH02 Paolo Arosio, University of 
Brescia, Milan, Italy 

Detection of human heavy 
chain ferritin 

III 

Anti-IE-2 Knebel-Mörsdorf,Max-Planck-
Institute for Neurological 
Research, Germany 

Baculovirus immediate early 
protein 2 detection 

IV 

Anti-GFP Molecular Probes, Invitrogen, 
Carlsbad, CA, USA 

Green fluorescent protein 
detection 

IV 

Anti-SC-35 Abcam, Cambridge, UK Marker for nuclear speckles IV 
Anti-PML Abcam, Cambridge, UK Promyelotic leukaemia 

protein detection 
IV 

Anti-p80 A.Lamond, University of Dundee, 
Scotland, UK 

Marker for Cajal bodies IV 

Anti-rabbit IgG AP Bio-Rad, Richmond, CA, USA Detection of rabbit antibodies I-III 
Anti-rabbit IgG-HRP Sigma-Aldrich,St Louis,MO,USA Detection of rabbit antibodies IV 
Anti-rabbit IgG-alexa 
488 

Molecular Probes, Invitrogen, 
Carlsbad, CA, USA 

Detection of rabbit antibodies IV 

Anti-rabbit IgG-alexa 
555 

Molecular Probes, Invitrogen, 
Carlsbad, CA, USA 

Detection of rabbit antibodies IV 

Anti-mouse IgG AP Bio-Rad, Richmond, CA, USA Detection of mouse Abs I-III 
Anti-mouse IgG-HRP Silenus Laboratories, 

Hawthorn, Australia 
Detection of mouse Abs II, III 

Anti-mouse IgG-alexa 
555 

Molecular Probes, Invitrogen, 
Carlsbad, CA, USA 

Detection of mouse 
antibodies 

IV 
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4.5 Cell lines 

 
Cell lines used for in vitro studies are presented in Table 12. All the mammalian cell lines were 
grown in +37 ºC under 5% CO2 in their recommended medium, whereas Sf9-insect cells were grown 
in +28 ºC. All the cell culture protocols are described with more detail in the cited articles. 
 
 
Table 12. Cell lines used in studies I-IV. 
 
Cell line Source Description Study  
293 ATCC: CRL-1573 Fetal human kidney cell line IV 
293T ATCC: CRL-11268 Fetal human kidney cell line I, III 
A549 ATCC: CCL-185 Human lung adenocarcinoma III 
D54 (Bigner et al., 1981) Human glioblastoma III 
BT4C (Laerum et al., 1977; 

Sandmair et al., 1999) 
Rat glioma cell line I- III 

EAHY-926 University of North-
Carolina, Department of 
Pathology, NC, USA 

Hybridoma of human airway 
epithelium and human umbilical 
vein endothelial cells 

I 

HeLa ATCC: CCL-2 Human cervical carcinoma I, III 
HepG2 ATCC: HB-8065 Human hepatocarcinoma I- IV 
Sf9 Invitrogen, Carlsbad, CA, 

USA 
Spodoptera frugiperda IPLB-Sf-
21-AE cells 

I, II, IV 

SKOV-3 ATCC: HTB-77 Human ovarian carcinoma I- III 
U118MG ATCC: HTB-15 Human glioblastoma III 

 

4.6 In vivo experiments 

 
Table 13. Animals used in the studies and the treatments they received. 
 
Animal n Virus Dose Admin. 

route 
Sacri-
fice 

Study  

BDIX female rat 10 VSV-GED/Ctrl 
baculovirus 

20 µl  
(2x108 pfu/ml)

Intra-
cranial 

d4 I 

New Zealand white 
female rabbit 

3 VSV-GED/Ctrl 
baculovirus  

 10 x 50 µl 
(1x109 pfu/ml)

Intra-
muscular 

d6 I 

Wistar male rat 22 SA/Gp64- 
lentivirus 

15 µl  
(2 x108 pg/ml) 

Intra-
cranial 

d5-d63 III 
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The rats were anestetized with fentanyl-fluanisone-midazolam (Study I) or ketamine-medetomine 
(Study III). For intracranial injections, the virus was injected with Hamilton syringe and a 27-gaude 
needle into the right lateral ventricle with the following coordinates: 1.0 mm caudal to bregma, 1.5 
mm right to sutura sagittalis, and depth of 3-3.5 mm using stereotaxic apparatus (Figure 13).   
 The New Zealand white rabbits were anestetized with ketamine-metetomidine before the 
baculovirus vectors were injected in a volume of 50 µl into M. semimembranosus by 10 injections 
(Figure 14). All the performed studies were approved by the Animal Care and Use Committee of 
University of Kuopio. 

 
Figure 13. The rat brain showing the stereotaxic coordinates for virus injections in studies I and III 
(gray dot) [modified from (Paxinos and Watson, 1986)].  
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Figure 14. Lateral view of the muscles of a rabbit thigh. The virus injections were done to musculus 
semimembranosus.[(www.hundezeitung.de/Ana11-Dateien/image004.jpg) with modification] 
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5. RESULTS AND DISCUSSION 

5.1 VSV-GED-displaying baculovirus for improved gene delivery (I) 

 
Baculoviruses are gaining popularity as potential vectors for gene transfer technology. Despite many 
promising aspects, some limitations regarding the efficacy and specificity of these vectors have 
slowed their widespread use. Although AcMNPV can enter to almost any cell from any origin, they 
are unable to reach the nucleus of many of these cells (Kukkonen et al., 2003; Volkman and 
Goldsmith, 1983). This might be due to the inability of the virus to escape from endosomes (Barsoum 
et al., 1997; Park et al., 2001) or blockage of the transport or entry into the nucleus (Kukkonen et al., 
2003; van Loo et al., 2001). To enhance the escape of the baculovirus vectors from endosomes, a 
novel vector displaying a truncated form of VSV-G was designed.  
 
5.1.1 Generation and characterization of VSV-GED pseudotyped virus 
 
To improve the efficacy of baculovirus vectors as a gene delivery tool, we developed surface-
modified baculovirus displaying a truncated form of vesicular stomatitis virus G protein, (VSV-G). 
The truncated VSV-G construct contained an AcMNPV polyhedrin promoter, gp64 signal peptide, 21 
amino acids from the C terminus of the VSV-G EctoDomain (positions 442 to 463), and the predicted 
TM domain and CTD of VSV-G (VSV-GED; I/Fig. 1).  

The incorporation of VSV-GED into the virions was studied by immunoblotting using a 
VSV-G antibody that recognizes 15 carboxy-terminal amino acids of the VSV-G cytoplasmic tail. 
Bands positive for the VSV-G antibody, representing mainly monomeric (8.6 kDa) and trimeric 
forms (Robison and Whitt, 2000) of VSV-GED were identified (I/Fig.2). Results demonstrate that 
VSV-GED can be efficiently incorporated into the virions, in a manner similar to VSV-GED fusion 
proteins (Chapple and Jones, 2002; Makela et al., 2006; Ojala et al., 2004). A striking characteristic 
of VSV-G membrane anchor based fusions is their ability to incorporate also on the lateral virion 
surfaces (Chapple and Jones, 2002; Ojala et al., 2004), which is not possible with gp64-fusions 
(Boublik et al., 1995). This feature, together with the small size of VSV-GED, might contribute to the 
high-level of incorporation into the viral particles.  

VSV-G is routinely used to pseudotype retroviruses, lentiviruses and baculoviruses (Cronin et 
al., 2005; Makela and Oker-Blom, 2006; Sandrin et al., 2003). Despite its wide application, there are 
also drawbacks limiting the production and use of VSV-G pseudotyped vectors. The most well-
known problem is the cytotoxicity of VSV-G in packaging cell lines (Burns et al., 1993). In insect 
cell culture VSV-G causes large cell-cell fusions [I/Fig. 5b; (Park et al., 2001)], thus reducing the 
virus yields. In addition, incorporation of VSV-G into the viral envelope increases vector toxicity 
(Facciabene et al., 2004; Park et al., 2000; Watson et al., 2002). To study the effects of VSV-GED 
expression on the baculovirus production, we determined the ratio of the total particle number (TP) 
versus the number of infectious virus particles (IP) by immunoblotting. An equal amount of plaque 
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forming units (PFUs) was probed with gp64 and vp39 antibodies, revealing a similar TP/IP ratio 
between the control virus and the VSV-GED virus (I/Fig. 2). In line with this, the titers of VSV-GED 
virus stocks were repeatedly high (after 300 x concentration, a typical titer was 2.5 x 1010 PFU/ml), 
suggesting no adverse effects on the viral replication associated with the expression of VSV-GED. To 
evaluate the cytotoxicity of VSV-GED vectors, we performed an MTT assay to measure cellular 
proliferation after viral transduction. No cytotoxicity caused by the VSV-GED or the control virus 
was detected (I/Table 1). Altogether, these results suggest that VSV-GED-display circumvents the 
problems associated with the production and cytotoxicity of VSV-G pseudotyped vectors.  
 
5.1.2 Improved transduction efficiency and serum stability in vitro 
 
To study if VSV-GED had an effect on the gp64-mediated gene delivery, the transduction efficiency 
of HeLa, SKOV-3, BT4C, HepG2, 293T and EAHY cells was determined by using CMV promoter-
driven β-galactosidase as the reporter gene. The gene delivery efficiency of VSV-GED virus was 
compared to the non-surface-modified control virus using multiplicity of infection (MOI) ranging 
from 10 to 5000. The transduction efficiencies were assessed by counting the percentage of β-
galactosidase positive cells (I/Fig. 3a) and by measuring the β-galactosidase enzyme activity from the 
cell lysates (I/Fig. 3b) 48 hours post-transduction. VSV-GED resulted in significant increase in gene 
transfer efficiency in all the cell lines except EAHY, where only negligible gene expression was 
detected (data not shown). The most notable increase in the transduction efficiency of VSV-GED was 
observed in BT4C cells transduced at MOI 10, where a 13-fold increase in the percentage of 
transduced cells was achieved corresponding to an almost 40-fold increase in β-galactosidase enzyme 
activity (I/Fig. 3). In other cell lines, the β-galactosidase enzyme activity was enhanced by 2-15-fold. 
In most cells, the highest increase in transduction efficiency was seen at low MOIs, indicating 
saturation of the virus uptake pathway with increasing MOIs (I/Fig. 4). In HepG2 cells, however, no 
saturation was detected even at MOI 1000, a phenomenon possibly characteristic to cell lines highly 
susceptible to baculovirus-mediated gene delivery. Taken together, VSV-GED was able to enhance 
the transduction of numerous cell lines, except the human endothelial cell line EAHY. This could be 
explained by a theory that transduction of EAHY cells is blocked at a stage after ensodomal release, 
during cytoplasmic trafficking or nuclear import (Kukkonen et al., 2003), whereas in other cell lines 
the escape from the endosomes is the limiting step for transduction (Barsoum et al., 1997; Park et al., 
2001). 
  VSV-G pseudotyping being the most widely adopted strategy to enhance baculovirus 
transduction; we next wanted to set the positive characteristics of VSV-G against those of VSV-GED. 
Since VSV-G baculovirus has also been reported to exhibit an enhanced ability to transduce 
mammalian cells, we first compared the transduction efficiency of these two vectors. The β-
galactosidase enzyme activities measured from the transduced BT4C, 293T and HeLa cells (MOI 
200) showed no significant differences between the viruses (Figure 15, unpublished results). This 
implies that VSV-GED functions in a manner similar to VSV-G in enhancing the gene delivery 
efficiency of baculovirus vectors. 
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Figure 15. Comparison of the transduction efficiencies of VSV-GED and VSV-G displaying 
baculoviruses in BT4C, 293T and HeLa cells measured by the β-galactosidase enzyme activity 48 
hours p.t. No significant differences were detected between the viruses (n=3; Means ± SD). 
 
 

Another advantage of the VSVG-modified baculovirus is suggested to be its greater resistance 
to animal serum inactivation compared to the unmodified control baculovirus (Tani et al., 2003). 
Barsoum et al. hypothesized that VSV-G pseudotyped baculovirus conferred resistance to 
complement, imparting the ability to perform gene transduction into mouse hepatocytes following tail 
vein injection (Barsoum et al., 1997). Pieroni et al. demonstrated increased gene delivery into mouse 
quadriceps after direct intramuscular injection of VSVG-modified baculovirus, partially bypassing 
the complement system (Pieroni et al., 2001). To test if the VSV-GED pseudotyping could confer 
protection from the complement response, we incubated baculoviruses with either untreated or heat-
inactivated serum from mouse and rabbit (Figure 16, unpublished results). Residual infectivity was 
determined following inoculation into HepG2 cells. Significant reduction in LacZ expression 
following the control virus transduction was observed after incubation with serum representing 4-8 % 
residual infectivity. More moderate reductions in infectivity were observed following the VSV-G and 
VSV-GED virus transductions and the residual infectivities were 4-5-fold higher compared to the 
control virus. These results suggest that, similarly to VSV-G, VSV-GED exhibits resistance to 
complement inactivation, thereby enabling more efficient gene delivery also in vivo. In conclusion, 
the display of VSV-GED seems to circumvent the problems associated with the use of VSV-G, while 
retaining high transduction capacity and resistance to serum inactivation. 
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Figure 16. Survival of baculovirus variants determined as the percentage of β-galactosidase levels 
resulting from vector preincubation with untreated compared with heat-treated sera. The survival 
percentages were compared to the control virus using the unpaired t test with a two-tailed P value, 
*P<0.05 (n=3; Means ± SD). 
 
5.1.3 Improved transduction efficiency in vivo 
 
To examine the ability of the VSV-GED baculovirus to mediate more efficient gene transduction in 
vivo, we injected VSV-GED and the control virus directly into the right ventricle of the rat brain. β-
galactosidase expression was examined 4 days after injection. In line with the previous results, the 
control virus injection led to β-galactosidase expression in cuboidal epithelial cells of the choroids 
plexus, in endothelial cells of the microvessels and in the subarachnoidal space [I/Fig. 7a and 7b; 
(Lehtolainen et al., 2002b)]. In addition to this expected transduction pattern the VSV-GED virus 
showed a strong marker gene expression also in the epithelial lining of the lateral ventricles, epithelial 
lining of the cerebral aqueduct and subarachnoidal membrane (I/Fig. 7c-7f). The observed change in 
the tropism of VSV-GED vector resembles that of VSV-G pseudotyped lentiviruses (Watson et al., 
2005), confirming the in vitro results. 

We also inoculated VSV-GED and control virus into the rabbit semimembranosus muscle 
(Figure 13). Interestingly, while the control virus expression was mainly observed in non-muscle 
cells, for example pericytes, the VSV-GED virus showed an enhanced transduction of muscle cells 
(Figure 17). However, only modest transduction efficiency was detected. This could be due to the 
exposure of the viruses to the complement system or rabbit skeletal muscle being a poor target for 
baculovirus-mediated gene delivery.  

Altogether, it seems that VSV-GED possesses a similar transduction pattern as the full-length 
VSV-G in vitro and in vivo and VSV-GED pseudotyping provides thus a simple means to increase the 
baculovirus transduction efficiency. 
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Figure 17. Gene delivery efficiency of VSV-GED virus or control baculovirus after direct injection 
to rabbit M. semimembranosus. The average amount of β-galactosidase expressing muscle cells was 
counted from 15-20 muscle sections from each animal (n=3; Means ± SD). 
 
 
5.1.4 Mechanism of action of VSV-GED 
 
Previous studies with truncated forms of VSV-G have shown the role of membrane proximal stem 
domain in mediating efficient VSV budding with only 12 or more stem region residues together with 
the TM and CTD domains being sufficient for the production of near wild type levels of virus 
particles (Robison and Whitt, 2000). A recent report by Zhou and Blissard, demonstrated that the 
expression of VSV G-stem construct was able to rescue the budding deficient phenotype of gp64-null 
baculovirus thus resulting in an efficient production of virions (Zhou and Blissard, 2008). Another 
study by Jeetendra et al, revealed that 14 or more membrane proximal residues (G-stem; I/Fig. 1) can 
potentiate the membrane fusion activities of several heterologous viral glycoproteins, such as simian 
virus F protein, HIV-1 envelope proteins, when coexpressed (Jeetendra et al., 2002). The mechanism 
for this action was explained by the ability of VSV-G ectodomain to induce the formation of a 
hemifusion diaphragm, thus to reduce the energy barrier for membrane fusion. These results suggest 
that VSV-GED might potentiate the fusion activity of gp64 on the baculoviral membrane. To further 
study this hypothesis, we performed a series of experiments to examine the viral fusion process.  
 To study if VSV-GED could relieve the normal low-pH activation step required for gp64-
mediated membrane fusion as in the context of wild-type VSV-G, we determined the pH requirement 
for viral membrane fusion by a syncytium formation assay (I/Fig. 5). Wild-type baculovirus and 
VSV-G pseudotyped baculoviruses were used as controls. In line with the previous studies, a pH ≤ 
5.5 was required to induce the gp64-mediated fusion, whereas the expression of VSV-G resulted in 
large syncytia formation in the pH 6.2 of the insect cell medium (I/Fig. 5b and 5c) (Blissard and 
Wenz, 1992; Carneiro et al., 2001; White et al., 1981). VSV-GED mediated infection resulted in 



 65 

significant syncytia formation at pH under 5.5 (I/Fig 5f), indicating that VSV-GED does not relieve 
the requirement for gp64 to attain a low-pH trigger to obtain fusion-competent conformation.  
 To study the efficiency of endosomal release of VSV-GED pseudotyped baculovirus 
compared to the wild-type virus, monensin and increasing concentrations of ammonium chloride 
were used to prevent endosomal acidification. Treatment of BT4C and HepG2 cells with monensin 
prevented the transduction by the control virus whereas the gene delivery of VSV-GED was partly 
retained (Figure 18; unpublished results). A progressive decrease in transduction efficiency was 
observed with increasing concentrations of ammonium chloride for both viruses (I/Fig. 6). The 
transgene delivery by both viruses was completely abolished at 8 mM ammonium chloride, as 
expected for viruses sharing the same pH for fusion.  
 Altogether these results suggest that the VSV-GED augments baculovirus transduction by 
enhancing endosomal escape although the pH requirement for fusion remains unaltered. Proposed 
model for the fusion potentiation by VSV-GED is depicted in Figure 19 (Jeetendra et al., 2002). The 
pathway II of this model suggests that the VSV-GED –mediated membrane destabilization can cause 
outer leaflet mixing, which might result in the establishment of a hydrophobic environment leading to 
conformational changes in the fusion protein. In line with this hypothesis, synthetic peptides 
corresponding to the transmembrane domain of VSV-GED have been shown to promote PEG-
mediated fusion of liposomes by enhancing the rate of formation of the initial lipid-mixed fusion 
intermediate and its subsequent conversion into a stable fusion pore (Dennison et al., 2002). 
 

 
 
Figure 18. Effect of monensin treatment (0.5 µM) on baculovirus transduction efficiency 
(unpublished results) cells transduced with LacZ control virus (a) and VSV-GED virus (b)  
at MOI 200. 
 
 



 66 

Figure 19. Model for fusion potentiation of heterologous viral glycoptoteins by VSV-GED (Jeetendra 
et al., 2002). (A) Two separate membranes before the initiation of fusion. (B) Fusion protein and 
VSV-GED or VSV-GED alone binds to the cell membrane. (C) In pathway I, VSV-GED establishes 
multiple sites of contact with the cell membrane leading to tighter binding which subsequently 
triggers the exposure of the fusion peptide in the fusion protein. (D) In pathway II, the VSV-GED 
mediated membrane destabilization causes lipid mixing which results in the establishment of a 
hydrophobic environment that drives conformational changes in the fusion protein and thus leads to 
the formation of a hemifusion diaphragm. (E-F) Formation of the fusion pore leading to the 
completion of the fusion reaction. 
 

Alternatively, the transduction-enhancing activity of VSV-GED could be entirely or partly 
due its ability to bind membranes in a manner similar to wild-type VSV-G leading to tighter binding 
to the membranes (Jeetendra et al., 2002; Ojala et al., 2004). This may be sufficient to trigger 
conformational changes in the fusion protein resulting in the formation of hemifusion diaphragm 
(Figure 19, pathway I) (Jeetendra et al., 2002). According to the latest knowledge the binding of 
VSV-G to the cell membrane is mediated by electrostatic interactions with the negatively charged 
phospholipid phosphatidylserine through a positively charged p2-like peptide (Carneiro et al., 2003; 
Coll, 1997). However, p2-like peptide is located between residues 134 and 161 and is thus deleted 
from VSV-GED. Despite this, the in vitro and in vivo transduction experiments indicated that VSV-
GED virus possesses a tropism similar to VSV-G virus, suggesting that additional interactions 
between VSV-G and the cell membrane may exist. In the aggregate, both theories support the idea 
that VSV-GED reduces the energy barrier required to trigger the membrane fusion. In order to 
elucidate the exact molecular mechanisms responsible for the enhanced transduction potential of 
VSV-GED, additional experiments are needed. 

In conclusion, VSV-GED pseudotyping is an efficient means to enhance baculovirus-
mediated gene transfer into mammalian cells in vitro and in vivo while offering several advantages 
over VSV-G pseudotyping. This strategy might also be applied to other vectors. 
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5.2 Targeting of metabolically biotinylated baculoviruses (II) 
 
Limitations regarding the efficacy and specificity of baculovirus-mediated transduction have slowed 
their widespread application. In this study we tested the utility of metabolical biotinylation of 
baculovirus for vector targeting. Given the exceptional affinity of (strept)avidin-biotin interactions 
(Kd~1013- 1015 M-1), this system qualifies for in vivo application where the stability of the vector-
targeting molecule is of utmost importance.  
 
 
5.2.1 Biotin display on the surface of baculoviruses 
 
To produce recombinant baculoviruses displaying biotin, the biotin acceptor peptide (BAP) was 
cloned either to different sites in the gp64 or to the N-terminus of VSV-GED (II/Fig. 1). In gp64-
based constructs the BAP was either inserted after the signal sequence (BAP-N-gp64), at amino-acid 
position 283 (BAP-283-gp64) or both (BAP-283+N-gp64) (II/Fig. 1B). Given that BAP is not a 
substrate for enzymatic biotinylation in Spodoptera frugiperda (Sf9) cells (Duffy et al., 1998) and 
that the biotinylation of the secreted proteins does not naturally occur (Parrott and Barry, 2001), an 
Escherichia coli biotin holoenzyme synthetase, BirA, with gp64 signal sequence was coexpressed 
from baculovirus genome during the production of recombinant viruses to place its activity within the 
ER lumen where gp64 and VSV-GED are synthesized.  
 To verify the expression of the biotin on the surface of baculovirus particles, an equivalent 
number of PFUs of the gradient purified viruses were subjected to western blot analysis with anti-
gp64, anti-VSV-G or streptavidin-HRP. Incorporation of gp64 protein was detected in all the virions, 
confirming efficient production of viruses (II/Fig. 2A). The amount of gp64 was similar to that of 
control virus, indicating a normal ratio of total particle number versus infectious virus particles 
(TP/IP). Expression of BAP-VSV-GED (10 kDa) was identified with VSV-G antibodies, confirming 
successful incorporation (II/Fig. 2B). The incorporation of biotin was detected in all BAP-displaying 
virus samples using streptavidin-HRP (II/Fig. 2C). Of BAP-gp64 viruses, BAP-283-gp64 showed the 
highest level of biotin incorporation, BAP-N-gp64 the lowest, whereas BAP-283+N-gp64 settled 
between the two. As expected, no biotin was detected in the control virus sample.  
 To assess the availability of biotin for streptavidin binding in solution and thus to assure of 
the accessibility of biotin for conjugation applications, a competition ELISA was performed. Binding 
of the biotinylated baculoviruses (1.5 x 109 PFUs) on streptavidin coated plates was inhibited by 
increasing concentrations of free streptavidin and the amount of virus bound was detected with gp64 
antibody. BAP-283-gp64 showed the highest binding to streptavidin and in the absence of free 
streptavidin the difference was 10-, 4- and 1.5-fold compared to BAP-VSV-GED, BAP-N-gp64 and 
BAP-283+N-gp64 viruses, respectively (II/Fig. 3). Of note, however, the ELISA underestimates the 
binding of BAP-VSV-GED since the bound virus is probed with gp64 antibody thus leading to 
increase of signal for BAP-gp64 vectors expressing two copies of gp64. Complete inhibition by 
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streptavidin was observed at 1µg/ml concentration of streptavidin. No obvious binding of the control 
virus to ELISA plates was observed.   
 Together these experiments verify the incorporation of biotin on the surface of baculovirus 
vectors but also highlight the role of peptide insertion site in determining the efficiency of biotin 
display. These results are in line with a previous report where 283-site was described for the 
successful surface display of peptides ranging from 6 to 23 amino acids (Spenger et al., 2002). In the 
same study it was shown that the N-terminal insertions lead to weaker peptide display. It is 
hypothesized that hetero-oligomer formation is the basis of N-terminal fusion protein incorporation 
into virions, this being responsible for the low level of target protein display (Boublik et al., 1995). 
On this basis, the incorporation of peptides at site 283 is suggested to allow incorporation through 
homo-oligomerization of the fusion proteins thus allowing more efficient display (Spenger et al., 
2002).   
 To investigate the effects of BAP and biotin incorporation on the efficiency of baculovirus-
mediated transduction, the gene delivery efficiency to HepG2, BT4C and SKOV-3 cells was studied 
using MOI 200. The transduction efficiency was assessed by measuring the β-galactosidase enzyme 
activity from the cell lysates 48h post-transduction (II/Fig. 4).  As shown in Fig. 4, the BAP-VSV-
GED transduced HepG2 and SKOV-3 cells with a similar efficiency to control virus, whereas a 4-fold 
increase in gene delivery efficiency to BT4C cells was detected. Interestingly, gene delivery by BAP-
N-gp64 led to levels of β-galactosidase that were 5-, 6- and 100-fold lower in SKOV3, BT4C, and 
HepG2 cells, respectively, than those of the unmodified control virus.  The most interesting finding 
was that transduction by BAP-283-gp64 and BAP-283+N-gp64 resulted in enhanced transduction 
efficiency in all the cell lines tested. BAP-283-gp64 showed 6 - 13- fold enhancement in transduction 
whereas for BAP-283+N-gp64 an increase of 12 - 25-fold was observed. Correlating with our results, 
previous reports have shown that N-terminal insertions to gp64 can in some cases affect the 
functionality of the vector (Huser et al., 2001; Riikonen et al., 2005; Spenger et al., 2002). We 
hypothesize that hetero-oligomerization of BAP-N-gp64 protein with the native gp64 impairs the 
assembly of stable gp64 trimers into multiprotein aggregates required for membrane fusion 
(Markovic et al., 1998; Guibinga et al., 2008) thus leading to poor transduction. On the other hand, 
the enhanced transduction efficiency by BAP-283-gp64 and BAP-283+N-gp64 viruses implies that 
the fusion proteins on these vectors could act as functional second copies of the gp64 thus eliciting a 
positive effect on the transduction efficiency as has been proposed for baculoviruses displaying an 
extra copy of wild-type gp64 (Tani et al., 2001). However, without further studies we cannot rule out 
the role of biotin or conformational changes caused by BAP insertion in increasing viral transduction. 
 BAP-VSV-GED should not affect the functionality of the gp64 since no hetero-
oligomerization with gp64 occurs and this was confirmed by the transduction experiments. In the 
study I we showed that VSV-GED alone is able to augment the transduction efficiency of baculovirus 
vector probably by potentiating the membrane fusion activity of baculovirus envelope protein gp64. 
However, VSV-GED fusions do not necessarily share this feature (Chapple and Jones, 2002; Ojala et 
al., 2004). Indeed, no significant differences were seen in the transduction efficiencies in HepG2 and 
SKOV3 cells although some increase was seen in BT4C cells.  
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 5.2.2 Vector retargeting by biotinylated ligands and antibodies in vitro 
 
To determine whether we could redirect the baculoviral tropism, we tested biotinylated ligands and 
antibodies selectively binding to transferrin-, epidermal growth factor- and CD46- receptors 
expressed at high levels on tumor cells (BT4C, SKOV3). No increase of β-galactosidase expression 
was observed as a result of BAP-VSV-GED and BAP-N-gp64 retargeting to the receptors (II/Fig. 5). 
This may be due to less efficient biotin display subsequently reducing the extent of ligand binding. 
The tropism mediated by the wild-type gp64 can thus be predominant in these constructs.  
 The targeted transduction of BAP-283-gp64 by conjugation of targeting molecules through 
streptavidin-biotin linker resulted in 15 - 40 % enhancement of transduction efficiency whereas for 
BAP-283+N-gp64 an increase of 30 - 60 % was attained (II/Fig. 5). This most probably resulted from 
the augmentation of virus binding to the target cell membrane since it was achieved after very short 
(15 min) exposure of the cells to the virus. In line with this, specific receptor-mediated binding (Kd ~ 
10-7-10-11) and especially streptavidin-biotin binding (Kd = 2.5 x 10-13) have been shown to be faster 
than the attachment via multiple, low affinity bonds (Kd ~ 10-4-10-6) responsible for the binding of 
gp64 on the mammalian cell surface (Chilkoti and Stayton, 1995; Duisit et al., 1999; Tani et al., 
2001). At present, however, the domains of gp64 involved in cell binding have not been elucidated 
(Duisit et al., 1999; Tani et al., 2001). The successful targeting of BAP-283-gp64 and BAP-283+N-
gp64 led us to speculate that site 283 might be at the proximity of one such determinant, allowing 
redirection of the viral tropism when conjugated to targeting moieties. This is supported by recent 
reports suggesting that insertion of a hepatitis B peptide and RGD-motif at amino acid positions 278 
and 283, respectively, of the single copy of gp64 alters the domains involved in cell recognition and 
uptake (Markusic et al., 2007; Riikonen et al., 2005). To further enhance the specificity of viral 
binding, it might be beneficial to generate baculoviruses lacking the wild-type gp64. 
 Interestingly, the retargeting capacity of BAP-283-gp64 and BAP-283+N-gp64 was 
significantly lower compared to retargeted biotinylated adenovirus that showed 80-300-fold increase 
in reporter gene expression (Parrott et al., 2003). This might be due to the background binding 
mediated by the wild-type gp64 or other viral membrane proteins, whereas the tropism of adenovirus 
vectors is more strictly dependent on the initial recognition of coxsackie- and adenovirus receptor 
(CAR) on cells (Bergelson et al., 1997). However, differences in the used targeting protocols and in 
the sensitivity of the reporter gene assays, prevents further comparison. Nevertheless, targeting of this 
vector together with its overall increase in transduction efficiency has several advantages over non-
targetable unmodified vectors. 
   
5.2.3 Magnetic targeting  
 
In addition to conjugate-based targeting, the gene delivery location can be controlled spatially by the 
use of magnetic force. Magnetic targeting has already been used to target biotinylated retro- and 
adenoviruses (Campos et al., 2004; Hughes et al., 2001; Pandori et al., 2002). In order to examine the 
magnetic targeting of biotinylated baculoviruses, we conjugated the viruses to streptavidin conjugated 
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paramagnetic particles (SA-PMP) and transduced monolayer BT4C cells (II/Fig. 7). The results 
demonstrated successful guidance of PMP-conjugated metabolically biotinylated baculoviruses with 
local magnetic field indicating that magnetofection could become a choice for local gene delivery in 
vivo (Scherer et al., 2002). In addition, the PMP-conjugated vector was able to potentiate the gene 
delivery efficiency of metabolically biotinylated baculovirus vectors compared to sucrose gradient 
purified virus (II/Fig. 6C). This could be explained by the rapid settling vector-PMP complexes onto 
target cells, promotion of additional virus-cell interactions or enhanced endocytosis, as has been 
proposed for other vectors (Chan et al., 2005; Hughes et al., 2001; Pandori et al., 2002; Scherer et al., 
2002). Indeed, due to their higher density, vector-particle complexes may allow safer local gene 
delivery by resisting the forces of diffusion in solutions (Pandori et al., 2002). In addition to physical 
targeting, these virus-PMP complexes can also be, by virtue of free binding sites on streptavidin, 
conjugated to targeting molecules and this way be directed to any cell, tissue or tumor in the body 
providing that the tissue specific markers have been identified (Gupta et al., 2007). Finally, PMPs or 
PMP-conjugated radionuclides can also be traced in vivo to allow imaging of vector biodistribution 
(Raty et al., 2006; Raty et al., 2007). 
 

5.3 Purification of metabolically biotinylated baculoviruses (II) 

 
For gene therapy studies and future clinical need, a simple and efficient purification method for 
baculovirus is also necessary. Conventional purification techniques for baculovirus involves a series 
of sucrose gradient ultracentrifugation steps, which is tedious, time-consuming and limited by the 
small volume capacity and loss of viral activity due to hydrodynamic stress and aggregation of viral 
particles (Barsoum, 1999; O’Reilly et al., 1994). More simple, effective and scalable methods based 
on chromatography have been developed for baculovirus purification and are represented in Table 14. 
One of the objectives of this work was to develop a novel method for baculovirus purification based 
on magnetic particle-dependent capture of biotinylated baculoviruses. 
 Since biotin was incorporated and displayed on the viral surface, we used streptavidin 
conjugated paramagnetic particles for baculovirus purification. The efficiency of the method for 200-
fold concentration of baculoviral stocks was evaluated by processing 10 ml of secondary viral 
preparations (Table 14). The collected PMP-virus pellet was washed and resuspended in 50µl of PBS. 
The total virus recoveries after end-point dilution titering were 30-100- fold higher compared to the 
starting preparation, demonstrating 15-50 % virus recovery, respectively (II/Fig. 6A).  
 To test the functionality of the vector after PMP-purification we transduced HepG2 cells with 
equal volumes of the starting preparation and the concentrated virus (II/Fig. 6B). PMP-conjugated 
BAP-VSV-GED showed 200-fold increase in β-galactosidase expression upon transduction 
corresponding to the concentration factor. For BAP-N-gp64 the resultant gene delivery efficiency was 
only 20-fold, suggesting some loss of the transduction efficiency. This might be due to the overall 
decrease in transduction efficiency by BAP-N-gp64 virus (II/Fig. 4). The most surprising finding was 
that transduction by BAP-283-gp64 and BAP-283+N-gp64 resulted in 400-900- fold increase in β-
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galactosidase expression, respectively, as compared to the crude supernatant. As these vectors had 
showed the lowest recovery in infectious virus amounts (15-20%) after PMP-concentration, we 
hypothesized that the end-point dilution underestimates the actual titer by being unable to separate 
between one virus particle and one PMP-vector complex which could bind several virions. To put our 
theory to the test, we determined the residual titers from the viral supernatant after PMP-based 
capture and indeed, the results showed that 50-80% of the viruses were recovered by concentration. 
  To examine the purity of the viral preparations, the SDS-PAGE profile of the concentrated 
virus-PMP was compared to the original crude supernatant and to the sucrose gradient purified 
viruses using silver staining (II/Fig. 6D). On contrary to the crude supernatant, only the major bands 
of budded AcMNPV were present in the PMP- and gradient ultracentrigugation- purified virus 
samples, indicating highly purified virus (Volkman, 1983). The two major bands corresponded to the 
baculovirus major envelope protein gp64 and the major capsid protein vp39 as confirmed by 
immunoblotting (data not shown). The identities of the other minor proteins of 45, 54 and 89 kDa are 
not clear but all these proteins have been observed in previous studies from the purified AcMNPV 
(Braunagel and Summers, 1994; O'Reilly and Miller, 1988; Tani et al., 2001). 
  To summarize, biotin display was demonstrated to allow ready one-step purification and 
concentration of baculovirus. This method could become a powerful alternative for chromatography-
based methods as the virus enrichment and recovery was altogether more effective (Table 14). The 
suitability of this approach for large-scale manufacturing of viral stocks is currently under 
investigation. Also, alternative magnetic particle-based concentration methods are being explored for 
applications where the irreversible attachment of baculoviruses to PMPs is not feasible.  
 
 
Table 14. Comparison of the virus enrichment and final recoveries obtained in our study to 
baculovirus chromatography-based purification methods.  
 
Purification 
method 

Start. 
volume  

Start. 
titer   

Conc. 
volume 

Conc. titer  Vol. 
Conc 

Recovery 
(% IP*) 

Reference 

PMP- based 
purification 

10 ml 2-5x108 
PFU/ml 

50 µl 1-3x1010 
PFU/ml 

200 x 50-80 % Article II 

Cation exchange 
chromatography 

40 ml 1.4x108 

PFU/ml 
0,6 ml 6 x109 

PFU/ml 
66 x 65 % (Barsoum, 1999) 

Cation exchange 
chromatography 

40 ml 2 x 108 
PFU/ml 

2 x 0.5 
ml 

6 x 109 
PFU/ml 

40 x 78 % (Wu et al., 2007) 

Size exclusion 
chromatography 

1350 
ml 

3 x 107 

PFU/ml  
9 ml 1 x 109 

PFU/ml  
150 x 24 % (Transfiguracion 

et al., 2007) 
Metal affinity 
chromatography 

100 ml  3 ml  33 x 2-3 % (Hu et al., 2003) 

*Percent infectious particles 
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5.4 (Strept)avidin-displaying lentiviruses for vector targeting (III) 

 
One of the problems limiting the efficiency of lentiviral gene therapy is the lack of specificity in viral 
particle binding. More selective gene delivery would reduce the viral dose and consequently decrease 
the vector related side effects and ease clinical applications. In this study we describe the 
development of a flexible lentiviral vector platform for virus targeting based on (strept)avidin-
display.    
 
5.4.1 (Strept)avidin-VSV-GED incorporation on lentivirus surface 
 
To develop lentivirus vectors with targetable gene delivery, we designed novel gp64- pseudotyped 
vectors coexpressing avidin or streptavidin fused to the transmembrane anchor of VSV-G on the virus 
envelope. Separation of the targeting moiety and the envelope protein was hoped to leave the fusion 
protein intact for endosomal escape thus avoiding the common problem of decrease in virus 
infectivity by the modified envelope proteins (Martin et al., 1999; Zhao et al., 1999b). By transient 
transfection of five plasmids, we produced lentiviral vectors that efficiently incorporated gp64 and 
(strept)avidin fusion proteins into virus particles (III/Fig. 1). As the viral amounts were normalized by 
p24 antigen levels the SA/GP64 virions showed a higher level of fusion protein incorporation. Results 
of the titering and quantification of the p24 gag protein demonstrated no major differences in the 
infectivities of GP64 and AVD/GP64 lentiviruses, indicating a normal ratio of total particle number 
versus infectious virus particles (TP/IP) (III/Fig. 2a and b). Little decrease in the infectivity of 
SA/GP64 was detected which might be due to high level of streptavidin-VSV-GED incorporation. 
Optimization of the transfection conditions could help to avoid this. Nevertheless, we conclude that 
no major adverse effects were associated on (strept)avidin display on lentivirus surface. 
 In line with the previous studies, SA/GP64 and AVD/GP64 were able to transduce a variety 
of cell types (BT4C, HeLa, HepG2, SKOV-3, D54, A549, U118MG; III/Fig. 2b and 4), indicating 
that these viruses share the wide cell tropism of gp64-pseudotyped viruses (Kumar et al., 2003; 
Schauber et al., 2004). However, the transduction of HeLa cells was several-fold lower compared to 
the results by Kumar et al (Kumar et al., 2003). This discrepancy is most likely due to differences in 
the old HeLa cell lines between the labs and to variation in the method of titering (Hughes et al., 
2007).  
 Next we wanted to assess if the (strept)avidin displaying lentiviruses were able to bind biotin 
and thereby assure of the ability of the virions to bind molecular conjugates. Increasing amount of 
viruses were allowed to attach to the biotin coated ELISA plates and the binding of the virus was 
detected by gp64 antibody. Results showed that AVD/GP64 and SA/GP64 viruses bound to ELISA 
plates in a dose-dependent manner but the extent of binding was markedly 3-times higher for 
SA/GP64 as measured from the slopes (III/ Fig. 3). This is in line with the western blot results 
demonstrating more efficient display of streptavidin-VSV-GED compared to avidin-VSV-GED. 
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GP64 control virus showed some unspecific binding to ELISA plates which was, however, 
significantly weaker compared to AVD/GP64 and SA/GP64.  
  During this study, alternative vectors displaying streptavidin/avidin-VSV-GED 
together with VSV-G or avidin fused to the N-terminus of gp64 were also created (data not shown). 
In both cases, however, efficient (stept)avidin display was not achieved without compromising virus 
infectivity. In the former case, this might be due to heteromerization of streptavidin/avidin-VSV-GED 
fusion with the wild type VSV-G molecules leading to display of nonfunctional VSV-G molecules. 
The low infectivity of N-terminal gp64-fusions is likely explained by similar mechanisms as 
discussed for baculoviruses in study II.  
  

 
5.4.2 Vector retargeting to tumor cells in vitro 
 
To redirect the specificity of infection of SA/GP64 and AVD/GP64, we used biotinylated ligands and 
antibodies selectively targeting receptors expressed at high levels on tumor cells.  The efficiency of 
cell targeting was analyzed with BT4C, D54, SKOV-3, HepG2, A549 and U118MG cells by EGFP 
expression (III/Fig. 4). Biotinylated targeting molecules were incubated with the cells followed by 
washes and addition of pseudotyped viral particles for 15 minutes.  The short virus incubation time 
was used to favor ligand specific binding events mediated by the high affinity streptavidin-biotin 
interaction. Targeting to transferrin receptor overexpressed on BT4C and D54 glioma cells led to 20-
30% enhancement in transduction efficiency of AVD/GP64 whereas an increase of 50-60% was 
achieved with SA/GP64 (III/Fig. 4a). Redirection to EGFR led at best to 40% and 100% increase in 
percentage of EGFP-positive cells by AVD/GP64 and SA/GP64, respectively (III/Fig. 4b). The most 
successful retargeting was achieved to CD46 receptor-overexpressing U118MG cells as 2-3-fold 
increase in transduction efficiency was attained with (strept)avidin displaying viruses (III/Fig. 4c). 
The more efficient targeting of SA/GP64 was probably due to its more efficient biotin binding 
capacity but it has also been shown that biotin conjugates bind more stably to streptavidin than to 
avidin (Pazy et al., 2002). It remains to be studied if an optimization of the transfection conditions 
could further increase the level of avidin-VSV-GED display thus enhancing the retargeting capacity 
of AVD/GP64. No increase in EGFP expression was observed when the non-biotinylated targeting 
molecules were used. Targeting of GP64 control virus did not confer enhanced transduction of the 
cell lines.  
 Altogether, the results demonstrate that target cell-specific transduction of SA/GP64 and 
AVD/GP64 can be increased by the use of biotinylated ligands and antibodies in vitro. It remains to 
be studied if precomplexed virus-ligand/Ab particles could favor faster and more efficient binding 
and internalization of the retargeted vector translating to more prominent transduction efficiencies. In 
addition, we need to consider the fact that SA/GP64 and AVD/GP64 still exhibit a similar host range 
to GP64 which limits the targeting efficiency. For applications aiming at transduction of liver, lung, 
skin or endothelium the presence of wild-type gp64 poses no problem but to achieve more stringent 
targeting this matter should be addressed (Schauber et al., 2004). In order to overcome this problem, 
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we could attempt to remove or greatly reduce the natural binding activity of gp64, without disturbing 
the fusion, by mutagenesis. Alternatively, pseudotyping with other binding-defective mutants, such as 
hemagglutinin (HA) of influenza A (Lin et al., 2001) and Sindbis virus (Morizono and Chen, 2005; 
Morizono et al., 2001; Yang et al., 2006) envelope proteins, could be considered. 
 The approach described here for specific targeting of cells by lentiviral vector transduction 
overcomes many of the limitations of previous targeting strategies. The preparation of targeting 
vector is not limited by the introduction of modifications into the envelope proteins (VSV-G, gp64) 
that might result in substantial decreases in infectivity. This strategy could be applicable to other 
viruses e.g. to murine retroviral vectors. Finally, the approach described here should in theory be 
generally applicable to any cell surface molecule for which there are specific reagents that bind.  
 

5.5 Imaging of streptavidin-displaying lentivirus (III) 

 
One of the current limitations of preclinical trials in gene therapy is the difficulty in detecting virus 
location and gene expression upon administration of the delivery vector. Ideally, this detection should 
be noninvasive and repeatable over time to provide information about the location and magnitude of 
gene expression. In this study, we took advantage of (strept)avidin-display and MRI reporter gene, 
ferritin, to achieve non-invasive multi-modality imaging of virus biodistribution and transduction in 
vivo.  
 
5.5.1 SPECT/CT imaging of virus biodistribution 
 
In vivo imaging techniques have the potential to provide critical information about the safety and 
kinetics of viral administration. Compared to the traditional immunological and histological methods, 
non-invasive imaging methods can follow virus localization with anatomical accuracy in real-time. 
Consequently, these techniques are crucial for elucidation of the specificity of new targeted vectors. 
In this regard, SPECT imaging has been previously utilized to measure changes in the liver tropism of 
adenovirus knob domain (Awasthi et al., 2004; Zinn et al., 1998), to image the biodistribution of 
herpes simplex viruses (Schellingerhout et al., 1998; Schellingerhout et al., 2000) and baculoviruses 
(Raty et al., 2007). 
 In this study, we examined the biodistribution of SA/GP64 lentivirus in rats following 
injection into rat corpus callosum. This was achieved by radiolabeling SA/GP64 lentivirus with 111In 
labeled biotin-poly-Lys-DTPA and imaging the biodistribution with a dual modality SPECT/CT 
during three days after injection. Results from the day two when planar and 3D images were 
performed are shown in III/Fig. 6. In most of the virus injected rats the concentration of 111Indium 
was observed solely in the brain, indicating no viral leakage (III/Fig. 6a and 6d). This was further 
confirmed by RT-PCR, showing no transgene expression in the tissues which show lentivirus 
accumulation after systemic administration i.e. liver and spleen (data not shown) (Pan et al., 2002). 
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However, a signal from one rat, showing leakage to the circulation during the injection, was also seen 
in the abdominal area (III/Fig. 6b and 6e). Interestingly, no transgene expression was detected from 
the liver or the spleen of this rat either, suggesting a specific tropism of the labeled virus to the 
peritoneum. As expected, the small molecular weight 111In labeled biotin-poly-Lys-DTPA alone 
showed an accumulation to the brain followed by elimination through the kidneys and bladder 
(III/Fig. 6c and 6f).  
 In conclusion, the SPECT/CT imaging provides an efficient means to measure specific 
targeting of streptavidin-displaying lentivirus vectors for gene therapy applications. Furthermore, the 
translation of this methodology into clinical applications should be feasible. 
 
5.5.2 MRI imaging of viral gene delivery 
 
In addition to the knowledge about virus biodistribution, the information of the transgene expression 
is vital for the success of gene therapy. To achieve this, we generated SA/GP64 virus encoding the 
human heavy chain ferritin (hHF) cDNA. The underlying principle of visualizing ferritin expression 
on MRI is that this iron storage protein has a superparamagnetic core which disrupts the magnetic 
field and produces a lower (darker) signal on T2 weighted images (Drayer et al., 1986). As the 
transduced cells attain iron from the blood transferrin and subsequently transfer it to ferritin, no 
external contrast agents are needed. To date, ferritin has been utilized in gene therapy to image 
adenovirus-mediated gene delivery to rat brain (Genove et al., 2005) and to detect transcriptional 
regulation of gene expression in glioma tumors (Cohen et al., 2005) and in transgenic animals (Cohen 
et al., 2007).  
 To investigate the efficiency of iron accumulation after SA/GP64-hHF virus transduction, we 
conducted in vitro studies using a HepG2 cell line. At 48 h post-transduction, the pelleted cells were 
analyzed by MRI (III/ Fig. 5). Transduced cells grown in their normal growth medium showed little 
increase in the relaxation rate R2 (=1/T2) compared to the control cells. Incubation of the cells in the 
iron supplemented medium (ferric ammonium citrate) resulted in 2-fold increase in the R2 of the 
virus transduced cells compared to the control, indicating that ferritin-transduced cells have an 
enhanced iron loading capacity (III/Fig. 5). These results are in line with a previous study, showing 
that the increased iron storage capacity can only be filled under iron supplemented conditions in vitro 
(Genove et al., 2005).  
 To evaluate the potential of ferritin expression for the imaging of lentivirus-mediated gene 
delivery, we injected SA/GP64-hHF to the corpus callosum of the rat brain. To monitor the transgene 
expression, the animals underwent MRI scans at 4.7 T at days 3, 14, 28, 52 and 63 after SA/GP64-
ferritin injection. Using gradient echo contrast, T2*-shortening was noted at the inoculation site, 
demonstrating a stable transduction of the target area by SA/GP64 lentivirus (III/Fig. 7a). As 
expected, the signal loss became more notable at later time points indicative of the increase in the 
cell’s ability to store iron. Some negative contrast was also detected in the needle track (data not 
shown). Control animals receiving 111In labeled biotin-poly-Lys-DTPA alone or SA/GP64-LacZ 
showed minor signal loss at the injection site at day 3 (III/Fig. 7b and c). This, however, resolved 



 76 

before later measurements and was attributed to small hemorrhage caused by injection (Bradley, 
1994). Histology and immunohistochemistry validated the MRI results showing transduction along 
the needle track, in the corpus callosum and in choroid plexus (III/Fig. 8). In concordance to the 
previous studies performed with baculovirus the transgene expression was also detected the cuboidal 
epithelial cells of the choroid plexus cells suggests that GP64 pseudotyped retain the same tropism 
(Lehtolainen et al., 2002b). However, the transduction of corpus callosum has not been seen with 
baculovirus. This may be explained by the differences in the membrane composition of these vectors. 
Nevertheless, these results provide evidence of the potential applicability of Gp64-pseudotyped 
lentivirus vectors as gene delivery vehicles for the treatment of CNS disorders. 

The molecular imaging technology presented in this study can provide unique information 
about the success of virus administration and the resulting transduction efficiency. Further 
development of bicistronic vectors leading to coexpression of the therapeutic gene and ferritin may 
enable long-term monitoring of the status of therapeutic gene expression.  Moreover, several reports 
have indicated that H subunit of ferritin may protect cells from the oxidative effects of iron (Cozzi et 
al., 2000; Epsztejn et al., 1999; Orino et al., 2001). In humans, oxidative cell and tissue damage has 
been linked to carcinogenesis, neurodegenerative disorders, autoimmune diseases, and 
atherosclerosis, among others (Berg and Youdim, 2006; Chau, 2000; Ong and Halliwell, 2004; Valko 
et al., 2006). Thus, the ferritin gene itself may have some therapeutic potential which should be taken 
into account when developing new therapies.  

 

5.6 Characterization of baculovirus transduction in mammalian cells (IV) 
 
The fact that the baculovirus AcMNPV is used as a vector for many gene therapy studies makes 
research of the effects of viral transduction on the cellular machinery a high priority. In this study we 
investigated the expression profile of baculoviral genes in mammalian cells and the virus-induced 
alterations in the nuclear organization. 
 
5.6.1 Baculovirus-mediated immediate early gene expression  
 
In general, it appears that baculoviruses are able to enter a phylogenetically broad range of insect 
cells but the expression of baculovirus genes appears to be blocked at an early gene expression stage 
during or after viral DNA replication (Morris and Miller, 1993). Similarly, AcMNPV can enter a 
myriad of vertebrate cells but appear to be unable to reach the nucleus of these cells, a notable 
exception being mammalian hepatocytes and osteosarcoma cells (Kukkonen et al., 2003; Song et al., 
2003; Volkman and Goldsmith, 1983). In this work, we show that in HepG2 and 293 cells the virions 
accumulate in the nucleus as early as 4 hours p.t reaching the maximum at 8 hours p.t (IV/Fig. 1A-
1C). In line with the previous reports, we also demonstrate that the nuclear entry of baculovirus is not 
dependent upon the disintegration of the nuclear membrane i.e. upon cell division (IV/Fig. 1D and 
1E) (Lee et al., 2007; van Loo et al., 2001). 
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 Recently, it was demonstrated that AcMNPV is able to transcribe at least few viral early genes 
in mammalian cells which are implicated in viral replication, namely ie-0, ie-1, pe-38, gp64, p35 and 
p6.9 (Fujita et al., 2006; Kitajima et al., 2006). Of these the ie-1 is the only gene essential for viral 
replication encoding the principal early transregulator protein IE-1 (Kool et al., 1994; Lu and Miller, 
1995). DNA microarray analysis has also suggested the transcription of another essential gene, lef-3, 
and a stimulatory ie-2 gene but this has not been confirmed by RT-PCR studies (Fujita et al., 2006). 
IE-2 protein stimulates the expression of ie-1 (Yoo and Guarino, 1994) and pe-38 (Lu and Carstens, 
1993) whereas LEF-3 is a single-strand binding protein which improves the strand displacement 
ability of viral DNA polymerase (Hang et al., 1995; McDougal and Guarino, 1999).  
 In this study, we investigated the transcription of ie-1 and ie-2 in human HepG2 and 293 
cells. Quantitative RT-PCR showed that both genes were expressed in a time-dependent manner, 
transcription starting at 4 h p.t and increasing at the last time point studied i.e. 48 h p.t. (IV/Fig 2A 
and 2B, data not shown at 48h). Both genes were expressed at higher levels in HepG2 cells than in 
293 cells (IV/Fig. 2C), probably due to the differences in the transduction efficiency (data not 
shown). Furthermore, we demonstrated the expression of IE-2 protein first appearing at 4 h p.t. and 
continuing up to 48 h p.t. (IV/Fig. 3). In additional experiments, the transcription of lef-3 was also 
confirmed (Figure 20; unpublished results). Since IE-1, IE-2 and LEF-3 are found colocalized at viral 
replication sites in the nucleus of infected insect cells (Mainz et al., 2002; Okano et al., 1999), further 
studies regarding the localization of these proteins in baculovirus-transduced mammalian cells would 
be of great interest.  

 
Figure 20. Transcription of baculoviral lef-3 gene measured by quantitative RT-PCR. (A) Relative 
gene expression values of control and transduced HepG2 cells 4-24 h p.t. (B) Comparison of the 
relative lef-3 expression in transduced HepG2 and 293 cells at 24h p.t.  
 
 Taken together, these results confirm that AcMNPV is capable of expressing some viral genes 
in mammalian cells at the transcriptional and translational level. This is somewhat not surprising 
since the immediate early and delayed-early genes are transcribed by host RNA polymerase II, 
transcription mechanism of which is highly conserved among eukaryotes (Kornberg, 1999). The 
transcription initiation site in mammalian cells, however, may differ from the early viral transcription 
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site as demonstrated for pe-38 and p6.9, even though the transcription of ie-0, ie-1 and gp64 is shown 
to be initiated at the same site as in Sf9 cells (Fujita et al., 2006). Thus, the host RNA polymerase II 
and associated transcription factors dictate the outcome of early viral transcription in different 
species. On the contrary, late and very late genes are transcribed by viral RNA polymerase and thus it 
is unlikely that a late viral promoter would be activated in human cells.  
 
5.6.2 Baculovirus induced nuclear reorganization  
 
 All viruses have to interact with the cell nucleus consisting of different nuclear bodies (NBs) 
including cajal bodies, the nucleolus, perinucleolar and perichromatin regions, nuclear speckles and 
promyelotic nuclear bodies (PML NBs) (Zimber et al., 2004). In this work we investigated the 
interaction of baculovirus with PML NBs, Cajal bodies, nuclear speckles and chromatin after 
transduction of mammalian HepG2 and 293 cells. 
 PML NBs are distinct subnuclear structures which appear as dense spherical particles, 0.3 to 
0.5 µm in diameter, that are tightly associated with the nuclear matrix (Hodges et al., 1998). Although 
a number of proteins seem to transiently localize to PML NBs, two nuclear body antigens, PML and 
Sp100, are considered to build the framework of these structures (Sternsdorf et al., 1997). PML-NBs 
have been suggested to participate in transcriptional regulation, DNA damage response, regulation of 
apoptosis, senescence and neoangiogenesis (Bernardi and Pandolfi, 2007). The integrity of PML NBs 
is compromised in certain human diseases, including leukemia and neurodegenerative disorders but 
also during infection by a number of DNA viruses such as adenovirus (Carvalho et al., 1995; Doucas 
et al., 1996), herpes simplex virus (Everett and Maul, 1994; Everett et al., 1995), and cytomegalovirus 
(Ahn and Hayward, 1997; Kelly et al., 1995). Indeed, it appears to be a general tendency for DNA 
viruses to establish replication centers on the periphery of the PML NBs and first evidence of 
AcMNPV replication center association at close proximity of human PMLs has been provided by 
transient transfection experiments (Mainz et al., 2002). To address this issue in baculovirus 
transduced mammalian cells, we measured the colocalization of baculovirus with PML proteins and 
sp100 at 6h p.t. (IV/Fig. 4A and 5A). Consistent with the previous results, the virus foci was situated 
at the close proximity of PML NBs but no significant colocalization was detected at 6-24 h p.t. (data 
not shown) (Mainz et al., 2002). However, following viral transduction the size of PML NBs was 
increased by almost 2-fold together with an overall decrease in the number of PML NBs per cell (IV/ 
Fig. 4B and 4C). This may be a result of virus-induced cellular response or rearrangement of these 
structures into virus transcription or disassembly sites. 
 An increased size of PML NBs has previously been shown to be involved in cell cycle, 
cellular stress and virus induced interferon response (IFN) (Buonamici et al., 2005; Djavani et al., 
2001). PML NBs together with nucleophosmin are likely to play an important role, perhaps as sensors 
for cellular stress, during the DNA damage response (Dellaire and Bazett-Jones, 2004; Gjerset, 
2006a; Wu and Yung, 2002). Several studies suggest that they function by regulating p53 stability 
(Coutts and La Thangue, 2005). Interestingly, the translocation of NPM from the nucleolus to 
nucleoplasm is indicative of cellular stress (Gjerset, 2006b). To determine the effects of baculovirus 
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transduction on cellular stress response, we monitored the localization of NPM-EGFP at 6-24 h p.t. 
No translocation of NPM was detected even at MOIs 1000-2000 (unpublished data), suggesting no 
evidence of the cytopathic effects in AcMNPV transduced cells.  However, it remains to be studied if 
the reorganization of PML NBs was induced by IFN response as baculoviruses are shown to stimulate 
the expression of IFN-α/β in vitro and in vivo (Abe et al., 2005; Gronowski et al., 1999). 
 Many viruses have also been found to interact with cajal bodies (CBs) and nuclear speckles; 
T-cell leukemia virus accumulated into nuclear speckles, whereas influenza virus alters their nuclear 
localization and adenoviral infection leads to the disruption of CBs. To address this matter in 
baculovirus transduced cells, we monitored the distribution of nuclear speckles markers (PAB2-EGFP 
and SC-35 Ab) and CB marker (p80coilin Ab) in relation to baculoviral capsids at 6 to 24 h p.t 
(IV/Fig. 5B-5C). Together, these data showed that baculovirus virions do not associate with nuclear 
speckles and CBs. 
 Condensation, marginalization or dispersion of the chromatin, increase of the nucleoli and 
disruption of the nuclear lamina, has all been observed during infection of viruses. Similarly, 
baculovirus AcMNPV has been shown to disperse host cell chromatin of insect cells during infection. 
Here, we used chromatin label Drag5™ and human histone plasmid H2B-EYFP to study changes in 
host cell chromatin in HepG2 and 293 cells. In control cells the chromatin was detected around the 
periphery of the nuclear lamina and nucleoli (IV/Fig. 6A). In transduced cells, the chromatin label 
showed a more dispersed pattern resulting in less detectable lining of the nuclear lamina and 
nucleolus (IV/Fig. 6B). Similar results were obtained from aphidicolin synchronized G1/S-phase 
arrested cells (unpublished data). The altered chromatin distribution increased significantly over time 
(24-48 h p.t.) and with increasing viral load (MOI 200-1000) (IV/Fig. 6C). The effect of labeling of 
baculovirus genomes with Drag5™ in transduced cells was ruled out by flow cytometry studies 
which showed no difference in the chromatin fluorescence intensities in cells transduced at MOIs 
ranging from 10-1000. We also noticed that the peripheral heterochromatin lining the nucleoli was 
dispersed gradually during transduction, effect being more evident at higher MOIs (IV/Fig. 6D). 
These results were confirmed by monitoring changes in H2B-EYFP distribution which was 
significantly altered (IV/Fig. 7). Taken together, these results demonstrate that baculovirus virions or 
the products of early viral genes are able to induce alteration in the distribution of host cell chromatin. 
This chromatin remodeling may be mediated by viral interactions with nuclear actin, actin-related 
proteins or other histone-modifying factors but more work is required before this issue can be 
clarified (Chen and Shen, 2007; Lachner and Jenuwein, 2002; Simpson-Holley et al., 2005; Volkman, 
2007). 
 Baculoviruses have been in contact with humans since the emergence of species and there is 
no evidence that baculoviruses influence human health in any manner. The data provided here 
suggests that baculoviruses can induce viral gene expression and nuclear alterations in mammalian 
cells. Whether the expression of baculoviral proteins could induce immune responses or other 
physiological changes requires further investigation.  
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6. SUMMARY AND CONCLUSIONS 

 
On the basis of the presented thesis studies, the following conclusions can be made. 
 

1. VSV-GED pseudotyping augments baculovirus transduction in vitro and in vivo probably by 
reducing the energy barrier required to trigger the membrane fusion. In addition, VSV-GED 
display confers enhanced serum stability and offers several advantages over VSV-G 
pseudotyping such as low cytotoxicity. 

 
2. Metabolic biotinylation of baculovirus membrane proteins allows viral targeting by an easy 

exchange of surface molecules while enabling efficient capture, purification and 
concentration of baculovirus vectors. Significant differences in the extent of biotin 
incorporation and transduction efficiencies were revealed with respect to the site of biotin 
acceptor peptide on the envelope proteins; most efficient display was achieved by 
incorporation of BAP at site 283 on gp64 as this is suggested to allow incorporation through 
homo-oligomerization of the fusion proteins.  

 
3. Targetable gp64-pseudotyped lentivirus vectors were developed by displaying streptavidin or 

avidin fused to VSV-GED on the virus envelope. This strategy allows ligand- and antibody-
mediated targeting of lentivirus to several tumor cell lines in vitro. Furthermore, streptavidin 
displaying lentivirus carrying a ferritin reporter gene enabled long-term non-invasive imaging 
of virus biodistribution and gene delivery by SPECT/CT and MRI. This study also provided 
pioneering information about the transduction pattern of gp64-pseudotyped lentiviruses in the 
central nervous system.  

 
4. Baculovirus nuclear entry into mammalian cells was shown to be followed by the 

transcription of early viral genes ie-1, ie-2 and lef-3. Moreover, the transduction was 
demonstrated to affect the size and number of PML bodies, which are often implicated in 
replication and transcription of viruses. Another effect was manifested by the remodeling of 
the peripheral host chromatin into disperse patterns. To address the safety issues of employing 
baculoviruses in gene therapy, expression of baculovirus endogenous genes and virus induced 
nuclear alterations, further studies are needed.  

 
These results encourage further studies in characterization of the enhanced transduction capacity of 
VSV-GED and targeting potential of biotinylated baculoviruses and (strept)avidin-displaying 
lentiviruses in vivo. Also the use of streptavidin display for noninvasive imaging should allow the 
monitoring of virus biodistribution and gene delivery in the context of a therapeutic regimen.  Finally, 
we provided significant new knowledge about the effects of baculovirus-mediated gene delivery in 
mammalian cells which poses new challenges for the future engineering of baculovirus vectors.  
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