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ABSTRACT 
 
Iron is an essential element in the hemoglobin (Hb), which carry oxygen into the tissues. A shortage 
of iron causes not only anemia but also disturbances in children’s development. Furthermore, iron 
overload and high iron stores have been associated with a variety of diseases such as 
hemochromatosis, Type II diabetes mellitus, gestational diabetes mellitus, gestational hypertension 
and increased risk of acute myocardial infarction. Erythropoietin (EPO) is the principal hormonal 
stimulator of red blood cell (RBC) production, and EPO synthesis is stimulated in a response to 
tissue hypoxia. 

Laboratory measurements of iron status include both RBC indices reflecting the hematological 
iron compartment, and biochemical measurements reflecting the store and transferring iron 
compartments. The development of flow cytometric technique has produced more accurate cell 
indices reflecting the Hb content of RBCs and reticulocytes. 

In the present series of studies, the aims were to investigate the diagnostic markers of iron 
status, especially the parameters reflecting the features of RBC and reticulocytes, in a cross-sectional 
population of pregnant women at term and their newborn infants (n = 220). Additionally, a new 
quantitative flow cytometric method for transferrin receptor (TfR) expression on reticulocytes 
(reflecting the iron requirement of cells) was developed and tested in a selectively chosen patient 
group (n = 46). The relationships between markers of hypoxia (EPO and pH), RBC and reticulocyte 
indices, and serum iron status measurements were also investigated. 

On the basis of these studies, cell indices reflecting lower amounts of cellular Hb are the most 
practical way to evaluate iron deficiency in pregnant women at term, and they have the highest 
potential diagnostic accuracy. In cord blood, both accelerated erythropoiesis and the magnitude of 
iron stores contribute to the RBC and reticulocyte indices, thus impairing their value as specific 
indicators of iron deficiency. TfR expression on reticulocytes can be measured using a quantitative 
flow cytometric method, and it was shown that in patients with increased demand for iron, TfR 
expression is higher on reticulocytes than in controls. While the state of anemia is a contributor to 
the reduced oxygen-carrying capacity, the decreased amount of cellular Hb was also associated with 
suboptimal tissue oxygenation (higher EPO concentration and lower pH level) in pregnant women 
and in cord blood at birth. 

These studies show that parameters reflecting the properties of the cells in the hematological 
iron compartment can be used as diagnostic markers for iron deficiency, using techniques that are 
available in modern hematological cell counters. More clinical studies are needed to confirm these 
findings but it seems possible that the RBC and reticulocyte indices may allow us to move from 
screening iron deficiency by Hb to more sensitive and rapid indicators of iron deficiency. 
 
National Library of Medicine Classification: QV 183, WQ 252, WH 150, WH 155, WH 400 
Medical Subject Headings: Anemia, Iron-Deficiency; Biological Markers/blood; Blood Cell 
Count/methods; Case-Control Studies; Erythrocytes; Erythropoiesis; Female; Fetal Blood; Flow 
Cytometry/methods; Hemoglobins; Humans; Infant, Newborn; Iron/blood; Iron/metabolism; 
Pregnancy; Receptors, Transferrin; Reticulocytes; Transferrin 
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TIIVISTELMÄ 
 
Punasolujen hemoglobiinissa oleva rauta on elintärkeä alkuaine, sillä happi kulkeutuu siihen sitoutu-
neena kudoksiin. Raudanpuute voi aiheuttaa mm. anemiaa ja häiriöitä lapsen normaaliin kasvuun. 
Toisaalta liiallinen rautamäärä ja suuret rautavarastot on yhdistetty lukuisiin sairauksiin, kuten he-
mokromatoosiin, tyypin II diabetekseen, raskauden aikaiseen diabetekseen, raskauden aikaiseen 
verenpaineen nousuun ja kohonneeseen akuutin sydäninfarktin riskiin. Erytropoietiini (EPO) on 
pääasiallinen punasolujen muodostusta säätelevä hormoni, jonka tuotanto lisääntyy kudosten hapen-
puutteessa. 

Elimistön rautatasapainoa voidaan arvioida monien laboratoriotutkimusten avulla. Soluindek-
sit kuvastavat punasolumuodostuksessa käytettävän raudan määrää. Seerumista mitattavat bioke-
mialliset tutkimukset kuvastavat mm. rautavarastoja (ferritiini) ja raudankuljetusta (transferriini). 
Virtaussytometrisen tekniikan kehittyminen on mahdollistanut entistä tarkemman solujen ominai-
suuksien mittaamisen. Uudemmat soluindeksit kuvaavat solujen sisältämän hemoglobiinin määrää ja 
niiden on todettu olevan raudanpuutteisen punasolutuotannon osoittajia. 

Tämän tutkimuksen tavoitteena oli tutkia rautatasapainon diagnostisia mittareita ja erityisesti 
parametreja, jotka kuvastavat punasolujen ja niiden esiasteiden, retikulosyyttien, ominaisuuksia. 
Tutkimusaineistona olivat synnyttämään tulleilta naisilta ja heidän vastasyntyneiden lastensa napa-
laskimosta otetut verinäytteet (n = 220). Tässä tutkimuksessa tutkittiin lisäksi hapenpuutetta osoitta-
vien laboratoriotutkimusten [EPO pitoisuuden ja pH tason (n = 67 napalaskimomittausta)] ja rautata-
sapainoa kuvaavien laboratoriotutkimusten, ja erityisesti punasolu- ja retikulosyytti-indeksien välistä 
yhteyttä. Tutkimuksessa kehitettiin myös uusi virtaussytometrinen menetelmä retikulosyyttien pin-
nalla olevien transferriinireseptorien (TfR) (TfR kuvaa solujen raudan tarvetta) määrän arvioimi-
seksi. Menetelmää tutkittiin valikoidulla potilasaineistolla (n = 46) ja kontrollihenkilöillä (n = 12). 

Näiden tutkimusten perusteella alentunutta solujen hemoglobiinisisältöä heijastavilla soluin-
dekseillä on suurin diagnostinen tarkkuus synnyttämään tulleiden naisten raudanpuutteen osoittami-
sessa. Vastasyntyneen napaverestä mitattuihin punasolu- ja retikulosyytti-indekseihin vaikuttavat 
sekä kiihtynyt punasolutuotanto että elimistössä olevan raudan määrä, joten punasolu- ja retikulo-
syytti-indeksejä ei voida käyttää spesifisenä raudanpuutteen osoittajana. Anemia vähentää hapen 
kuljetuskapasiteettia, mutta näiden tutkimusten perusteella myös vähentynyt solujen hemoglobiini-
pitoisuus oli yhteydessä alentuneeseen kudosten hapettumiseen (korkeampi EPO pitoisuus, mata-
lampi pH taso) synnyttämään tulleiden naisten näytteissä ja heidän lapsiltaan otetuissa napaveri-
näytteissä. Retikulosyyttien solupinnan TfR:n määrän mittaaminen on mahdollista kvantitatiivisen 
virtaussytometrian avulla. Potilailla, joilla oli lisääntynyt raudantarve, havaittiin retikulosyyttien 
pinnalla olevan enemmän TfR:ja kuin kontrollihenkilöillä.  

Solujen ominaisuuksia kuvastavia parametreja voidaan käyttää raudanpuutteen diagnostisina 
mittareina. Tekniikat ovat nykyään käytössä moderneissa solulaskijoissa. Kliinisiä tutkimuksia tar-
vitaan lisää varmistamaan näitä löydöksiä, mutta näyttäisi siltä, että punasolu- ja retikulosyytti-in-
deksit mahdollistavat katseen kääntämisen raudanpuutteen seulonnassa pelkästä hemoglobiinin mit-
taamisesta herkempiin ja nopeampiin raudanpuutteen osoittajiin. 
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1. INTRODUCTION 
 

Iron is an essential element in hemoglobin (Hb) in red blood cells (RBC), which carry 

oxygen into the tissues. A shortage of iron causes not only anemia but also detrimental 

disturbances in children’s development (Tamura et al, 2002). On the other hand, an 

excess of iron has toxic effects due to the induction of oxidative stress, which may be of 

clinical significance in patients who have hemochromatosis or frequent transfusions 

(Parkkila, 2000). Furthermore, iron overload and large iron stores have been associated 

with Type II diabetes mellitus, gestational diabetes mellitus, gestational hypertension 

and increased risk of acute myocardial infarction (Tuomainen et al, 1998; Fernández-

Real et al, 2002). 

Since iron homeostasis plays a crucial role in human life, iron deficiency or iron 

overload need accurate laboratory analyses already before diseases become manifest. 

Clinical practice needs simple, straightforward, and cost-effective methods for 

confirming diagnoses. Conventional laboratory measurements of iron status include 

both red cell indices reflecting hematological iron compartment and a panel of 

biochemical measurements, such as serum iron, transferrin, ferritin and transferrin 

receptor (TfR) reflecting storage and transport iron compartments, and availability of 

iron (Guyatt et al, 1992; Punnonen et al, 1997; Brugnara, 2000; Thomas et al, 2002). 

Conventionally used iron status measurements have limitations that may diminish their 

diagnostic value. In particular, it is challenging to assess the iron status of pregnant 

women who have ongoing pregnancy specific alterations such as hemodilution and 

mobilization of iron stores. The development of flow cytometric techniques has allowed 

the reporting of novel cellular indices along with traditional indices (Brugnara, 2000). 

These indices reflect more accurately the features of RBCs and reticulocytes, and they 

have been established to be indicators of iron deficient erythropoiesis. 

Erythropoietin (EPO) is the principal hormonal stimulator of erythropoiesis, and 

EPO synthesis is stimulated as a response to tissue hypoxia (Egrie et al, 1985). In severe 

hypoxia, EPO production increases in a few hours in order to sustain a sufficient 

amount of Hb in blood circulation as well as to protect the brain and other tissues. EPO 
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concentrations have also been shown to be associated with iron status parameters 

(Milman et al, 1997). 

In the present series of studies, the primary aim was to determine the diagnostic 

tests of iron status including both the serum markers and the RBC and reticulocyte 

indices in pregnant women and in cord blood at birth. The second aim was to evaluate 

the associations between iron status measurements and EPO concentration in these 

subjects. Furthermore, the association with umbilical vein blood pH and iron status 

measurements was evaluated in a subgroup consisting of newborn infants with clinical 

indications for pH measurement. The third aim was to develop the flow cytometric 

method for quantitative assessment of TfR expression on reticulocytes. 
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2. REVIEW OF THE LITERATURE 

2.1. Body iron distribution and systemic iron homeostasis 

Iron (Fe) is vital for all cells in the human body. It is especially needed in hemoglobin 

(Hb) in red blood cells (RBC), as well as in the myoglobin of muscles and in many 

cellular enzymes. A systemic homeostasis of iron is under continuously changing 

balance occurring in many locations of the human body (FIGURE 1). The total amount 

of iron in the human body is about 3.5–4 g in women and 4–5 g in men. The functional 

iron compartment (80 %) consists of the iron in the hematological compartment (RBCs, 

erythroid precursors) (app. 2 800 mg, 65 %), in myoglobin (app. 400 mg, 10 %) and in 

enzymes (app. 200 mg, 5 %) (Wick et al, 2000). 

Approximately 1–2 mg iron ions per day is absorbed in the upper duodenum 

(FIGURE 1) (Wick et al, 2000). In general, the absorption can be increased when the 

need for iron increases (Whittager et al, 1991; Conrad et al, 2002). From the apical side 

of the intestinal cells, iron bounds to circulating transferrin that delivers two iron ions 

via the bloodstream to tissues. Circulating transferrin-iron complex constitutes the 

transport iron compartment, which contains a minor part of the body’s total iron reserve 

(2–6 mg) (FIGURE 1). Usually, serum iron is bound to transferrin, but if iron-binding 

capacity is fully saturated, non-transferrin bound iron can be found in serum. The free 

iron is rapidly eliminated from blood circulation to cells. 

Approximately 25 mg of iron is transmitted daily into the hematological 

compartment for the utilization of iron into the Hb of developing RBCs in 

erythropoiesis (FIGURE 1). Similarly, a total of 25 mg iron per day is released from 

RBCs after decomposition and obtained by macrophages of the reticuloendothelial 

system in the spleen (minor amounts also in liver or in bone marrow). Thereafter iron 

can be reutilized or it is transferred to the storage compartment. The total stored iron 

compartment (20 %) contains the iron that is stored as forms of ferritin and hemosiderin 

molecules in deposits of macrophages of reticuloendothelial cells (app. 400 mg), in 

bone marrow or in the spleen, and in hepatocytes (app. 400 mg) in liver (FIGURE 1). 

Furthermore, about 125 mg of iron is located in erythroid cells of bone marrow. The 

human body is unable to excrete iron actively, but iron is lost during menstruation or in 
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other hemorrhages. Minor amounts of iron (1–2 mg per day) are excreted via feces, by 

desquamation and by perspiration. 
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restoring after
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FIGURE 1 Schematic presentation of systemic iron homeostasis in the human body 
containing storage, transport and hematological iron compartments. Grey areas represent 
the active iron. 
 

2.2. Iron uptake into the cells by transferrin receptor 

Transferrin receptor (TfR) is a dimeric cell surface protein (molecular mass 190 kDa) 

involved in the internalisation of iron into the cells (Kohgo et al, 1986; Ward, 1987; 

Shih et al, 1990). The expression of TfR has been found in all proliferating cells and 

tissues needing iron, e.g. reticulocytes, activated lymphocytes, monocytes, 

macrophages, skin, liver, pancreas, pituitary, testis and placenta, as well as in malignant 
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cells (Jandl et al, 1963; Gatter et al, 1983). The cell surface expression of TfR is by far 

most abundant in proliferating erythroid precursors requiring the greatest amounts of 

iron (Kohgo et al, 1987), the goal being to sustain constant Hb synthesis. The 

expression of TfR is maintained during all stages of the maturing erythroid cells until 

the latest phase, achieving the stage of reticulocytes (Loken et al, 1987; Okumura et al, 

1992; Sposi et al, 2000). Importantly, the more immature the reticulocytes are, the 

stronger is the TfR expression on the cell surface (Loken et al, 1987; Serke et al, 1992). 
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FIGURE 2 Schematic presentation of transferrin receptor (TfR) and cellular iron uptake. A 
Transferrin-iron complex binds into the TfR, B which transport the complex into the cells. 
C A small truncated fragment of TfR is exocytosed into the plasma in which the 
concentration of soluble TfR can be measured. D If sufficient iron is not available for cells, 
abundant amounts of TfR are synthesized on the cell surface. 
 
Transferrin-iron complex binds into TfR (FIGURE 2 A), which transports the 

complex from extracellular space into the cells by endocytosis (FIGURE 2 B). 

Thereafter a small truncated fragment of intact TfR is shed out into the blood circulation 
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in soluble form (FIGURE 2 C) (Shih et al, 1990). Circulating soluble TfR (sTfR) is 

bound into a complex with transferrin with a 2:2 molar ratio in non-iron deficient 

individuals, but with a 2:1 molar ratio when transferrin saturation (TfSat) is decreased 

(Kato et al, 2002). If cellular iron supply is reduced and demand is not satisfied, 

abundant amounts of TfR are synthesized onto the cell surface (FIGURE 2 D) 

(Louache et al, 1984; Ward, 1987; Kohgo et al, 1987; Huebers et al, 1990; Kuiper-

Kramer et al, 1997). Thereby, the level of circulating sTfR is increased both in iron 

deficiency [pure iron deficiency or functional iron deficiency (described later)] and in 

conditions in which erythropoietic mass is increased (Kuiper-Kramer et al, 1998b; 

Ervasti et al, 2004). 

Cellular iron uptake is tightly regulated. Primarily, it has been shown in a cell 

culture study that when iron is restricted, expression of TfR is increased on the cells, but 

in the conditions of excess iron the amount of TfR on cells is decreased (Louache et al, 

1984; Ward, 1987). Accordingly, TfR expression is highly upregulated by 

erythropoietin (EPO) via activation of iron-responsive elements (IREs) (Weiss et al, 

1997; Sposi et al, 2000). Moreover, hypoxia increases TfR expression when hypoxia-

inducible factor 1 (HIF-1) binds to the promoter of TfR (Tacchini et al, 1999). In 

addition, hypoxia stabilizes post-transcriptionally TfR mRNA via iron regulatory 

proteins (IRPs) (Weiss et al, 1997; Tacchini et al, 1999; Sposi et al, 2000). Of the 

growth factors, at least insulin-like, epidermal and platelet derived growth factors 

increase the expression of TfR on the cell surface of fibroblasts (Davis et al, 1986). 

 

2.3. Erythropoiesis, reticulocytes and erythrocytes 

Erythrocytes i.e. RBCs are essential for all living animals. Their prime function is to 

carry oxygen into the tissues via blood circulation. As described earlier, novel RBCs are 

produced continuously in the bone marrow, whereas the oldest ones are decomposed in 

the macrophages of the spleen or in the liver. In a steady state, approximately 2 x 1011 

RBCs are matured daily in the whole developing process lasting about 5–7 days. An 

adult has approximately five litres of blood containing 5 x 1012 RBCs per litre. 
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2.3.1. Erythropoiesis in bone marrow 

Erythropoiesis means the production of RBCs. In adults as well as in children the RBC 

production occurs mainly in the bone marrow. In fetuses, erythropoiesis occurs in the 

first trimester in a primitive form in the yolk sac, and thereafter subsequently in a 

definitive form in the liver until it shifts during the second trimester to the bone marrow 

(Palis et al, 1998; Dame et al, 2000). 

The pluripotent stem cell in the bone marrow is the primary cell starting 

erythropoiesis, dividing either to myeloid or lymphoid lineages. Erythroid cells are 

developed in the myeloid lineage. The earliest erythroid progenitors are the so-called 

burst forming unit (BFU) and colony forming unit (CFU) erythroid cells (Loken et al, 

1987). The earliest morphologically recognisable erythroid cells are proerythroblasts, 

which are followed by early erythroblasts, intermediate erythroblasts, late erythroblasts 

and reticulocytes, and eventually mature erythrocytes (FIGURE 3). 

a) Proerythroblast b) Early erythroblast c) Intermediate erythroblast

f) Erythrocyte e) Reticulocyte d) Late erythroblast  
FIGURE 3 Schematic presentation of red blood cell production. 

 

During the maturation of erythrocytes, developing cells are able to divide until the 

stage of erythroblasts, and their cellular volume decreases simultaneously. The prime 

focus of erythrocyte development is synthesizing sufficient amounts of Hb at all cell 

stages up to the reticulocyte. Hb (molecular weight of 68 kDa) consists of four 

polypeptide globin chains, each of which has a heme with protoporphyrin component 

and one iron atom in the pocket (Wick et al, 2000). Iron plays a key role in transferring 
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the oxygen from the lungs into tissues via blood circulation, because oxygen binds into 

the iron atom in Hb molecule. Another function of Hb is to act as an oxygen and acid-

base buffer in blood. 

If any part of the construction equipment of Hb are not sufficiently available, 

developing erythroid cells cannot synthesize normal amounts of Hb, thus causing 

anemia. Each synthesized gram of Hb needs 3.5 mg of elemental iron. The uptake of 

iron into the erythroid cells is mediated via TfR. The expression of TfR on the 

maturating erythroid cells is initiated during the early stages of red blood cell 

production (Loken et al, 1987; Okumura et al, 1992; Sposi et al, 2000). When iron is 

restricted in the synthesis of heme, zinc can replace the iron. In that case, elevated 

concentrations of erythrocyte zinc protoporphyrin (ZnPP) can be detected (Blumberg et 

al, 1977). 

In human adults, Hb chains are usually α2 and β2 chains, forming HbA. During 

fetal life, when erythropoiesis is involved in the bone marrow and in the liver, most Hb, 

called fetal Hb (HbF), is composed of γ2 and α2 chains (Dame et al, 2000). The affinity 

of oxygen binding is higher in HbF than in HbA, due to the higher diphosphoglycerate 

binding in HbA, which disturbs the binding of oxygen. This enhances the oxygen 

transport from mother through the placenta into the fetal blood circulation. 

 

2.3.2. Reticulocytes and mature erythrocytes in blood circulation 

Reticulocytes are the youngest immature cells from the erythroid cell lineage that have 

already entered from bone marrow into the peripherial blood stream. Reticulocytes are 

round-shaped cells which are larger (mean diameter 8.5 µm, mean volume 112 fL) than 

erythrocytes (d'Onofrio et al, 1995). They still contain ribonucleic acid (RNA) residue 

in their nucleus and they have cell surface structures on their membranes (Loken et al, 

1987). Reticulocytes stay in the blood circulation from 1 to 2 days before maturating to 

erythrocytes. During the maturation of reticulocytes, their cell organelles disappear 

progressively, the residual nuclei are extruded out from the cell and the size of the cells 

decreases (Loken et al, 1987; d'Onofrio et al, 1995). Mature erythrocytes are anucleated 

biconcave cells, with a mean volume of 90 fL and mean diameter of 8 µm in human 
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adults. Normal RBCs contains 30 pg of Hb, which is about 90 % of their dry weight. 

The life cycle of erythrocytes lasts about 120 days. 

 

2.3.3. Erythropoietin induces the production of erythrocytes 

A glycoprotein hormone, EPO (30.4 kDa molecular weight in human), is the most 

important hormone regulator of erythropoiesis (Egrie et al, 1985). The main function of 

EPO is to maintain an adequate Hb level in peripheral blood in order to keep the tissues 

in normoxic condition. EPO stimulates the proliferation and differentiation of erythroid 

progenitor cells in bone marrow and inhibits the apoptosis of erythroid progenitors 

(Jelkmann, 1992; Dame et al, 2000). Tissue hypoxia (both acute and chronic) is a key 

reason for increased EPO production. In the background of tissue hypoxia can be low 

oxygen-carrying capacity (decreased blood Hb concentration or RBC mass), decreased 

arterial pO2, low O2 affinity and reduced blood flow (Eckardt et al, 1989; Jelkmann, 

1992). Hence, the level of EPO concentration has an inverse correlation with the degree 

of anemia as well as the mass of RBCs (Beguin et al, 1993; Cazzola et al, 1998). 

EPO is produced in the kidneys of human adults, and also in fetal liver in the first 

and second trimesters (Dame et al, 2000). Placental EPO production has also been 

demonstrated in fetal sheep during hypoxia (Davis et al, 2003). EPO is not stored in 

tissues, so its serum concentration reflects the synthesis and elimination. In adults, EPO 

stimulation occurs in 1–2 hours in response to hypobaric hypoxia (dependent on the 

severity of hypoxic condition) (Eckardt et al, 1989). However, in nearly term fetal 

sheep, it has been demonstrated that hypoxemia induced by nitric oxide increases EPO 

production within three hours (Widness et al, 1986). The half-life of EPO has been 

demonstrated to be about five hours after hypobaric hypoxia in human adults (Eckardt 

et al, 1989), whereas in newborns it has been shown to be shorter at least after 

preeclamptic gestation and in polycythemic infants (3.7 and 2.6 hours, respectively) 

(Ruth et al, 1990). 

The oxygen sensing molecular pathway of EPO production is principally mediated 

via hypoxia inducible factors (HIF) containing α and β subunits (Jelkmann, 2004; Lee et 

al, 2004). HIF-1 α induces EPO production, since in normoxic conditions HIF-1 α is 
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rapidly degraded enzymatically, whereas in hypoxic conditions degradation does not 

occur, which leads to the increased EPO levels (Lee et al, 2004). Moreover, HIF-1 α 

mediated hypoxia ensures the iron transport to erythroid cells, since the HIF-1 α also 

participates in the encoding of transferrin and TfR genes (Rolfs et al, 1997; Tacchini et 

al, 1999). This has also been shown in a study on erythroleukemic cells, as EPO was 

proved to induce the level of TfR mRNA (Weiss et al, 1997). 

At least in sheep and monkeys at term, EPO does not penetrate the placenta and 

therefore maternal and newborn EPO reflect their own concentrations (Widness et al, 

1995). Newborn EPO concentration has been shown to correlate with gestational age 

(Eckardt et al, 1990; Moya et al, 1993; Jazayeri et al, 1996), but there are also studies 

showing contradictory results (Forestier et al, 1991; Maier et al, 1993; Milman et al, 

1996). Importantly, both serum and amniotic fluid EPO concentrations are related to 

prolonged fetal hypoxia present in e.g. maternal diabetes, hypertension, preeclampsia or 

Rh-immunization (Voutilainen et al, 1989; Maier et al, 1993; Teramo et al, 2004a; 

Teramo et al, 2004b). Vaginal birth, as an acute distress for newborns, causes higher 

EPO levels in newborns than does elective Caesarean section (Widness et al, 1984), but 

there is also a study showing that vaginal delivery does not increase active 

erythropoietin (Halevi et al, 1992). Nevertheless, EPO levels decrease after birth if 

hypoxic stimulus disappears (Ruth et al, 1990). Serum and amniotic fluid EPO 

concentration has been found to have strong inverse significant correlations with pO2, 

pH and base excess (BE) in normal-sized infants, in infants of diabetic pregnancies as 

well as in samples drawn from cord blood at elective Caesarean section (Rollins et al, 

1993; Jazayeri et al, 1996; Teramo et al, 2004a). However, no correlation has been 

found between the Hb and EPO levels in cord blood specimens of healthy term 

newborns (Rollins et al, 1993; Fahnenstich et al, 1996), which might be partly due to 

the higher affinity of oxygen in the HbF than HbA (Caro et al, 1982). 

Maternal EPO concentration is elevated in the presence of bleeding, multiple 

gestations and preeclampsia (Goldstein et al, 2000), and it has been shown that maternal 

EPO concentration rises progressively during pregnancy (with and without iron 

supplements) (Cotes et al, 1983; Riikonen et al, 1994; Milman et al, 1997; McMullin et 

al, 2003). The EPO concentration in pregnant women has also been shown to be closely 
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related to iron status parameters, such as serum iron, serum ferritin, total iron binding 

capacity (TIBC), TfR and reticulocyte count at different time spans during gestation 

(Beguin et al, 1991; Milman et al, 1994; Milman et al, 1997; McMullin et al, 2003). 

EPO also has nonhematopoietic roles as it protects progenitor cells in multiple 

organ systems (brain, gastro-intestinal tract, vasculary system, heart), preventing 

apoptosis and stimulating proliferation of endothelial cells together with vascular 

endothelial growth factor (VEGF) (Sakanaka et al, 1998; Sirén et al, 2001; Cerami et al, 

2002; Yu et al, 2002; Marti, 2004). Additionally, EPO has been shown in animal 

models to have a role in fetal brain development (Yu et al, 2002). On the other hand, 

fetuses who have had complicated or uncomplicated pregnancies are at risk for impaired 

neurodevelopmental outcome when EPO levels reflecting fetal hypoxemia are increased 

(Ruth et al, 1988). 

 

2.3.4. Steroid hormones involved in the erythrocyte production 

Along with EPO, androgens are stimulative regulators of erythropoiesis in the long run. 

They have been shown to increase erythropoietic activity, thereby increasing 

reticulocyte count and blood Hb concentration (Shahidi, 1973). Such progression in 

growth and hormonal activity occurs after puberty and it explains the higher blood Hb 

concentration in adult males in comparison with adult females. Androgens have direct 

and indirect mechanisms in increasing erythropoiesis by accumulating directly the 

numbers of RBCs and indirectly by increasing the EPO concentration (Shahidi, 1973). 

Therefore, androgens have been used in the treatment of certain types of anemia. 

Additionally, athletes have tried to attain higher Hb levels by substance abuse of 

androgen-anabolic steroids (Hartgens et al, 2004). Nevertheless, improved endurance 

performance has not been able to be demonstrated by the abuse of steroids, although the 

aerobic capacity of strength athletes has been shown to improve (Hartgens et al, 2004). 
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2.4. Anemia and iron deficiency 

2.4.1. Definition and classification of anemias as the basis for differential 

diagnosis 

Anemia is defined as a Hb content under the lower reference limit at the level of 120 

g/L for women and 130 g/L for men (WHO, 2001; Beutler et al, 2006). The most 

widely used definition of anemia is the recommendation of the World Health 

Organization (WHO) (TABLE 1) (WHO, 2001). In recent years, the main public 

laboratories in the Nordic countries have been involved in a project called the Nordic 

Reference Interval Project (NORIP) to unify the reference values of the most commonly 

used laboratory measurements in adults (Nordin et al, 2004; Rustad et al, 2004). 

According to the NORIP, the reference values of Hb were 117–155 g/L and 134–167 

g/L for women and men, respectively, and these are the values used at Kuopio 

University Hospital. However, no reference limits for infants and children were 

produced by the NORIP. They are commonly based on a widely used reference 

textbook, Hematology of Infancy and Childhood (TABLE 1) (Nathan et al, 1993). 

 
TABLE 1 Reference intervals of hemoglobin and hematocrit by World Health Organization (WHO) 
and in the book Hematology of Infancy and Childhood (Nathan & Oski, 1993). 

WHO         Hematology of Infancy and Childhood 
 Lower limit    

 Hb  Hematocrit   Hb, g/L 

Age or gender group g/L 
 

mmol/L* L/L 
 

Age or gender group 
Lower 
limit 

Upper 
limit 

Children 6 months to 59 
months  110  6.83 0.33  0–1 days 145 225 

Children 5–11 years 115  7.13 0.34  2–7 days 135 215 

Children 12–14 years 120  7.45 0.36  8–14 days 125 205 
Non-pregnant women 
(above 15 years of age) 120  7.45 0.36  15–29 days 100 180 

Pregnant women 110  6.83 0.33  1–2 months 90 130 
Men (above 15 years of 
age) 130  8.07 0.39  3–5 months 95 135 

* Conventional conversion factors: 100 g hemoglobin = 6.2 mmol hemoglobin = 0.30 L/L hematocrit. 
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Hitherto, Wintrobe’s anemia classification introduced in 1932 has been the prime 

guide for categorizing anemias (Wintrobe, 1932). These categories are based on the size 

of RBCs, which divides anemias into micro-, normo-, and macrocytic diseases. This 

categorization enables the appropriate differential diagnosis of anemias. The main 

causes of microcytic anemias are iron deficiency, sideroblastic anemias and 

thalassemias. Normocytic anemias are commonly consequences of chronic diseases, 

hemolytic anemias, bleeding or bone marrow infiltration, and rarely are caused by mild 

iron deficiency. Macrocytic anemias are caused by megaloblastic diseases (e.g. 

myelodysplastic syndromes, folate or B12-vitamin deficiency), large-scale alcohol 

consumption, liver diseases, hemolytic (with reticulocytosis) or aplastic anemias. 

 

2.4.2. Iron deficiency and iron deficiency anemia 

Iron deficiency is a major nutritional defect worldwide. When iron homeostasis is in a 

negative balance or if the need for iron increases, there is a risk for iron deficiency 

anemia. This develops when iron is not adequately available for RBC production and 

the red cells produced cannot obtain sufficient building materials for normal Hb 

synthesis. Therefore, RBCs are hypochromic and microcytic in iron deficiency anemia. 

While anemia is the most conspicuous manifestation of iron deficiency, iron deficiency 

can have detrimental influences especially on growing children. Indeed, iron is vital for 

normal brain development and myelination of nervous cells (Yu et al, 2002; Lozoff et 

al, 2006). Additionally, there is increasing evidence that iron deficiency and iron 

deficiency anemia in infants, children and in juvenile rhesus monkeys, and low iron 

stores in cord blood, are associated with impaired neurologic outcome, cognitive as well 

as mental and psychomotor development, and behavioral changes (reduced inhibitory 

response) (Grantham-McGregor et al, 2001; Tamura et al, 2002; Golub et al, 2007). 

All living cells need iron so the iron demand increases during growth periods 

(infancy, childhood, puberty) and during pregnancy, and there can be a discrepancy 

between supply and demand. In adulthood, the main reasons for iron deficiency are 

increased loss via hemorrhage: e.g. menstruation during reproductive years in women, 
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gastro-intestinal bleeding, surgical operations or regular blood donation. Sometimes, 

absorption of iron from the intestine is restricted (gastrectomy, malabsorption). 

 

2.4.3. Concepts of subclinical and functional iron deficiency 

Iron balance can be divided into a number of categories. It can be in a steady state in 

which the cycle of iron is adequately available where it is needed in the body. In that 

state iron absorption is restricted by cellular mechanisms, and normally iron stores 

cannot be overfilled, because of controlled absorption (Conrad et al, 2002). However, in 

certain diseases, e.g. hemochromatosis, iron absorption mechanisms are interrupted and 

iron accumulates in the body. Moreover, in a negative phase of iron homeostasis, the 

stored iron is primarily utilized for RBC production. Before manifested anemia, the 

depletion of the storage iron compartment is asymptomatic and in a latent state, which is 

also termed subclinical iron deficiency. 

Functional iron deficiency is a special form of disturbance in iron homeostasis in 

which the release of iron from the stores for increased RBC production is not sufficient 

to satisfy the demand (Ervasti et al, 2004). Functional iron deficiency is common in 

patients receiving EPO substitution treatment (accelerated erythropoiesis), and a 

shortage of iron has been shown to diminish the response to treatment (Brugnara et al, 

1993; Brugnara et al, 1994a; Schaefer et al, 1999). 

 

2.5. Effects of iron overload 

Elevated body iron constitutes a disease entity, including diseases with genetic 

transformations such as hemochromatosis, and iron overload because of RBC 

transfusions. There are two specific forms of iron overload. In patients who have 

frequent blood transfusions or intravenous iron therapy, iron accumulates mainly in 

macrophages, after which excess iron is loaded into parenchymal cells (Papanikolau et 

al, 2005; Siah et al, 2005; Batts, 2007). On the other hand, in patients with 

hemochromatosis, iron overload is a cause of abnormal iron absorption. A majority of 

hemochromatosis patients have a missense mutation C282Y altering an HFE protein 
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(Parkkila, 2000). HFE proteins are major histocompatibility–complex class I proteins, 

which are involved in the regulation of iron absorption. In patients with 

hemochromatosis, serum iron binding capacity is overwhelmed and excess of iron is 

rapidly eliminated into the parenchymal cells (mainly in the liver and heart). 

Free iron has adverse effects because it has an ability to form free radicals that 

may increase oxidative damage (Tuomainen et al, 2007; Schümann et al, 2007). As the 

underlying mechanism, labile iron mediates the catalysing of hydroxyl and organic 

radicals, for example (Fenton and Heber-Weiss-reactions) (Papanikolau et al, 2005; 

Schümann et al, 2007). This may be a reason for the finding that large iron stores 

measured by ferritin levels are connected with impaired glucose regulation (type II 

diabetes mellitus), gestational diabetes mellitus or increased risk of acute myocardial 

infarction (Tuomainen et al, 1998; Jiang et al, 2004; Scholl, 2005; Chen et al, 2006; 

Bencaiova et al, 2007).  

 

2.6. Anemia and iron status during pregnancy  

2.6.1. Prevalence of anemia during pregnancy 

There is a high prevalence of anemia during pregnancy in developing and developed 

countries (van den Broek, 1998a; van den Broek et al, 2000; WHO, 2001). It is 

estimated that approximately 52 % of pregnant women in developing and 25 % in 

developed countries are anemic (WHO, 2001). The main reason for decreased Hb levels 

during pregnancy is physiological expansion of plasma volume, which can increase 

nearly 50 % compared with the volume in non-pregnant women. This hemodilution 

begins in the first and second trimesters and allows better blood circulation for the 

placenta, thereby ensuring the well-being of the fetus (Steer et al, 1995). Hemodilution 

occurs individually and reaches its maximum at gestational weeks 24–32. Thereafter, by 

the time of delivery, blood Hb concentration is increased to near the level of non-

pregnant women. This increase during the third trimester is a consequence of 

accelerated erythropoiesis, which increases the number of RBCs by approximately 25 

%. According to the recommendation of the WHO, the lower reference limit for Hb in 
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pregnant women is 110 g/L, and the limit for severe anemia is 70 g/L (WHO, 2001; 

WHO, 2006). A recent study on reference intervals for hematological variables in 

Danish pregnant women suggests as lower limits for Hb concentration 105 g/L, 108 g/L 

and 118 g/L at 18 weeks, 39 weeks and at 8 postpartum weeks, respectively (Milman et 

al, 2007). 

A depletion of iron as well as other nutritional shortages may also be in the 

background of anemia during pregnancy, but worldwide the most common reasons 

(especially in developing countries) are parasitic infections, chronic inflammations, 

socio-economic status and hemoglobinopathies (van den Broek, 1998a; van den Broek 

et al, 2000; Rush, 2000; Milman et al, 2007). There are no trustworthy statistics on iron 

deficient pregnant women in developing countries, since the prevalence of iron 

deficiency in those countries has only been estimated indirectly via the prevalence of 

anemia during pregnancy (WHO, 2001). However, since slightly reduced Hb values can 

be due to physiological hemodilution, iron deficiency is not the ultimate explanation for 

lowered Hb and there is a need to simultaneously examine primary reasons. Studies in 

developed countries, such as Denmark, suggest that a shortage of iron is common in 

women during their fertile years: about 42 %, 13 % and 7 % of 18–30 year women were 

found to have serum ferritin level ≤ 32 µg/L, < 16 µg/L and < 13 µg/L, respectively 

(Milman et al, 1998). Furthermore, in a population of 30–40 year old women, ferritin 

was > 30 µg/L, 15–30 µg/L and < 15 µg/L in 60.1 %, 22.7 % and 17.2 % of all women, 

respectively (Milman et al, 1992). 

 

2.6.2. Iron homeostasis during pregnancy 

Maternal iron requirement per day is increased during pregnancy on average from three- 

to seven-fold (from 1 mg to 3–7.5 mg elementary iron) because of the demands of the 

growing fetus and placenta (FIGURE 4) (Milman et al, 1999; Baker, 2000; Bothwell, 

2000; Wick et al, 2000). In addition, the accelerated erythropoiesis in pregnant women 

especially in the third trimester (Choi et al, 2001a) and the blood loss at delivery 

increase the demand for iron (FIGURE 4). On the other hand, iron is conserved in 

pregnant women, as menstruation does not occur. During pregnancy, maternal bone 
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marrow iron stores are mobilized in order to satisfy the increased demand (Svanberg et 

al, 1975), and simultaneously the absorption of iron in the small intestine increases 

(FIGURE 4) (Svanberg et al, 1975; Whittager et al, 1991; Conrad et al, 2002). The net 

requirement of iron during pregnancy has been calculated to be 500–790 mg (Milman et 

al, 1999; Beaton, 2000; Bothwell, 2000). 

 

Absorption of iron
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FIGURE 4 Schematic presentation of iron homeostasis during pregnancy. Iron is 
prioritized for the fetus and placenta by increasing the absorption of iron in the mother’s 
intestine and by mobilizing iron from the store compartment. Furthermore, especially 
during 3rd trimester of pregnancy, iron is mobilized in order to satisfy the need for increased 
erythropoiesis of pregnant women. 
 

After delivery, a large amount of the iron that had been utilized from iron stores in 

the increased maternal RBC mass during pregnancy is restored if blood loss and the 

fetus have not exhausted utilized maternal iron. RBC and reticulocyte cellular Hb 
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content has been shown to be normal in the postpartum period (until 42 days) in a study 

population consisting of non-anemic mothers (Richter et al, 1999). While postpartum 

iron supplementation in iron deficient women has been shown to increase iron stores 

and reduce iron-deficient erythropoiesis in 12 weeks (Krafft et al, 2005), it also occurs 

apparently physiologically without iron supplements, as 50 % of pregnant women with 

absent bone marrow iron stores have replenished them during two post-partum months 

(Svanberg et al, 1975). 
 
 

2.6.3. Risks of iron deficiency during pregnancy 

Many studies have been published on the effects of maternal anemia or iron deficiency 

on the health of pregnant women and pregnancy outcome (Xiong et al, 2000; Rush, 

2000). However, no consensus view has emerged. It is commonly proposed that anemia 

plays a major role in maternal mortality, but this view has been criticized in a study 

reviewing investigations to date (Rush, 2000). The review concluded that only severe 

anemia has been found to be associated with increased maternal mortality. However the 

main cause of severe anemia is not iron deficiency, but the aforementioned other causes. 

On the other hand, in a meta-analysis concerning maternal anemia, early pregnancy 

anemia has been shown to increase the risk of preterm birth, but during late pregnancy 

the risk was inverse and statistically not significant (Xiong et al, 2000). However, in 

that analysis many studies were excluded because of variable definitions of anemia and 

because of incomplete data (Xiong et al, 2000). 

 

2.6.4. Advantages and disadvantages of iron supplementation treatment 

during pregnancy 

Daily dietary iron intake is not always sufficient even in developed countries. 

Recommendations on the real need or routine versus selective iron supplementation 

during pregnancy vary, because there is no consensus about the benefits and 

disadvantages of supplementation for both the mother and her offspring, or for a 

growing child (Taylor et al, 1982; Scholl et al, 1992; Allen, 1997; Milman et al, 1999; 
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Allen, 2000; Bothwell, 2000; Leinonen et al, 2001; Cogswell et al, 2003; Milman, 

2006; Rioux et al, 2007; Schümann et al, 2007; Reveiz et al, 2007). It is difficult to 

provide uniform recommendations, because various variables are investigated in studies 

concerning the advantages and disadvantages of iron supplementation, e.g. optimal Hb 

or iron stores, outcome of pregnancy, the amount of supplemented iron, and using 

selective or routine supplementation (Reveiz et al, 2007). Additionally, mothers in both 

developing and developed countries have been studied, and the population often 

consists only of hospitalized mothers (Rush, 2000). In Finland, iron supplementation 

during pregnancy is not routinely recommended for all pregnant women (Leinonen et 

al, 2001); in clinical practice the decision about supplementation is usually based 

simply on a Hb value measured in maternity care units. 

To generalize, in countries with a high prevalence of anemia, pregnant women 

receiving iron supplementation deliver significantly heavier newborns than women 

receiving placebo, and consistently, low birth weight newborns are less common in 

women with iron supplementation than in women receiving placebo (Rioux et al, 2007). 

Furthermore, a low dose iron supplement (30 mg/day) lasting from enrollment (before 

20 weeks, mean app. 11 weeks) until 28 weeks of pregnancy, after which the amount of 

iron supplements were determined by ferritin or Hb, improved birth weight even in 

initially non-anemic women with normal iron status (defined as ferritin ≤ 20 µg/L) in 

comparison with placebo-treated women in those weeks (Cogswell et al, 2003). 

Nevertheless, there is clear evidence of adverse effects of iron supplementation 

during pregnancy (see also Chapter 2.5.) (Rioux et al, 2007; Schümann et al, 2007). 

Iron supplementation treatment during pregnancy may lead to maternal 

hemoconcentration and increase lipid peroxidation and oxidative stress (Casanueva et 

al, 2003; Schümann et al, 2007). Furthermore, high Hb level is associated with lower 

birth weight and shorter duration of pregnancy (Steer et al, 1995) as well as with 

increased incidence of gestational hypertension, preeclampsia, low birth weight and low 

Apgar scores (Rioux et al, 2007; Ziaei et al, 2007). A recent randomized controlled trial 

reported that in groups of pregnant women with Hb above 132 g/L receiving a routine 

(50 mg/d) dose of iron versus placebo supplementation (initiated at the early stage of the 

second trimester), the prevalences of maternal hypertension and small for gestational 
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age (SGA) (determined as 10th percentile of birth weight) were higher than in a group 

with iron supplementation (Ziaei et al, 2007). Furthermore, high maternal ferritin 

indicating high iron stores has been associated with low birth weight of the infant, and 

especially with asymmetric growth retardation of the fetus (Goldenberg et al, 1996; Hou 

et al, 2000; Lao et al, 2000), but opposite findings indicating no association between 

maternal iron status and infant’s birth weight have also been published (Jaime-Perez et 

al, 2005). In a 7-year follow-up study after routine or selective iron supplementation in 

women during pregnancy no significant differences were found in either mortality or 

morbidity of mothers and their infants, except a serious finding of more frequent 

hospitalization of infants because of convulsions, in a routinely supplemented group 

(Hemminki et al, 1995). 

 

2.7. Iron status of newborn infants 

Iron deficiency was a major cause of anemia in children in the 1960s in Finland 

(Järvinen et al, 1960). However, since then the nutritional status of Finnish women and 

children has improved. The total iron requirement during gestation consists of the 

requirements of pregnant women and of the fetus. The availability of iron depends on 

the amount of iron stores in pregnant women and the ability to absorb the iron in the 

intestine (Svanberg et al, 1975; Conrad et al, 2002; O'Brien et al, 2003). The total 

amount of fetal iron uptake is approximately 200–300 mg depending on the size of the 

newborn at term (2500–3500 g) (Milman et al, 1999). There is also reported that the 

larger the infant and placenta are, the more deprived the maternal iron status is (Ervasti 

et al, 2008c). 

During intrauterine life, most of the iron is used in fetal RBC production and after 

the demand is satisfied, iron is stored as ferritin. The amount of iron stored is increased 

concomitantly with gestational age (Siddappa et al, 2007) and the highest Hb 

concentration in childhood is found at birth. Because fetal RBCs containing HbF are 

destroyed more rapidly than other forms of Hb, Hb concentration falls during the first 

weeks of life. Thereafter, released iron from decomposed RBCs is mainly stored (Rios 

et al, 1975). That is why, delayed cord clamping is used to prevent iron deficiency in 
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preterm infants and in newborns in developing countries (Rabe et al, 2004; Chaparro et 

al, 2006). 

The fetus receives iron from the mother across the placenta by an active process in 

which iron-transferrin complex bound to TfR is endocytosized from the maternal side 

into the syncytiotrophoblast cell, from where the iron is transferred through the cell into 

the fetal blood circulation (Wada et al, 1979; Srai et al, 2002; Rao et al, 2002; McArdle 

et al, 2003). This transport system collapses only in severe iron deficiency anemia in 

pregnant women, and it is usually sufficient to ensure fetal needs, as demonstrated by 

the ability to ensure iron flux by augmenting cellular expression of iron transport 

proteins in the placenta (Gambling et al, 2003). Therefore, subclinical maternal iron 

deficiency [measured by zinc protoporphyrin (ZnPP)] does not influence fetal iron 

supply (Harthoorn-Lasthuizen et al, 2001). 

The regulation of maternal-fetal iron efflux is still only partly understood. During 

fetal life the acquisition of iron is greatest during the rapid growth phase during the third 

trimester, and in preterm newborns (Rao et al, 2002; Bradley et al, 2004). Iron 

accumulation in the placenta in the third trimester has also been reported (Bradley et al, 

2004). Hepcidin, a small (25-amino acid) antimicrobial peptide hormone, which plays a 

significant role in iron homeostasis, may also be involved in maternal-fetal trans-

placental iron passage. Although the exact role of hepcidin in trans-placental iron 

passage has not yet been elucidated, at least embryonic hepcidin transgene expression 

has been shown to be associated with down-regulation of placental mRNA TfR (Martin 

et al, 2004). Generally, hepcidin inhibits the iron release (negative feedback) from 

macrophages and hepatocytes and blocks the iron influx into enterocytes (Ganz, 2006). 

Hepcidin level is up-regulated in inflammation and iron overload (Nicolas et al, 2002). 

It has also been reported that maternal prohepcidin (a prohormone of hepcidin) at term 

correlates highly significantly with cord blood prohepcidin at birth, although 

prohepcidin levels have not been reported to be significantly associated with iron status 

measurements (Ervasti et al, 2008b). Additionally, cord blood pro-hepcidin levels at 

birth have been shown to correlate with the weight of the placenta (Ervasti et al, 2008b). 

Severe maternal iron deficiency, maternal hypertension with intrauterine growth 

restriction and maternal diabetes mellitus have been shown to be associated with lower 
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iron status of newborns (Chockalingam et al, 1987; Rao et al, 2002; Lott et al, 2005; 

Verner et al, 2007). There is evidence that fetal iron requirements can regulate the 

absorption of iron in the intestine of pregnant women (O'Brien et al, 2003). In this case, 

the fetus does not receive absorbed iron from the maternal intestine when maternal iron 

stores are adequate (O'Brien et al, 2003). It has also been shown in iron deficient 

pregnant rats that placental iron transport proteins can be up-regulated to minimize fetal 

anemia (Gambling et al, 2003). The transportation of iron through the placenta is 

usually sufficient to meet the needs of the fetus except in case of severe maternal iron 

deficiency (Rios et al, 1975; Choi et al, 2000b). Thus, the fetus has a parasitic role, 

exhausting the iron reserves of the mother. 

Iron is needed in erythroid cells as well as in the developing brain. Therefore, it is 

reasonable to suppose that iron deficiency may have adverse effects on the child’s 

development. There is increasing evidence that low iron status at birth and iron 

deficiency in childhood are associated with impaired cognitive and behavioral 

development in childhood (Lozoff et al, 1991; Grantham-McGregor et al, 2001; Tamura 

et al, 2002; Lozoff et al, 2006). For this reason, it is important to assure the iron 

requirement of fetuses. A four-year follow-up study on the effects of a low dose (20 

mg/d) iron supplementation during pregnancy found that it did not influence the 

intelligence quotient in childhood (Zhou et al, 2006). However, the incidence of 

abnormal behavioral total score results were higher in the iron- than in the placebo-

supplemented groups (Zhou et al, 2006). Furthermore, in a recent study on rhesus 

monkeys, iron deprivation before birth was reported to be associated with behavioral 

changes (reduced inhibitory response) (Golub et al, 2007). 

 

2.8. Laboratory diagnosis of iron deficiency 

Different phases and compartments in iron homeostasis provide a challenge for clinical 

laboratory measurements (FIGURE 5). Bone marrow iron staining has been considered 

as the gold standard for iron status measurement. However, it does not reflect accurately 

continuous nuanced overlaps of iron balance. Furthermore, invasive examinations are 

not appropriate for screening the iron status in patients. Iron status measurements 
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involve different body compartments, which can be analysed using serum or plasma 

measurements. Moreover, the Hb content of RBCs reflect hematological aspects of iron 

homeostasis. While cellular indices reflect iron availability for Hb synthesis of 

erythropoiesis, biochemical markers reflect circulating iron bound to transferrin (TfSat), 

iron availability for erythropoiesis (TfR) and iron stores (ferritin). Although there are a 

variety of iron status measurements, some of them are neither specific nor sensitive, and 

some have some interfering factors (Borel et al, 1991; Guyatt et al, 1992; Withold et al, 

1994). 

 

2.8.1. Biochemical iron status measurements 

Serum iron and transferrin contents play in a central role in the exchange of iron 

homeostasis as they reflect the compartment of circulating iron in serum (FIGURE 5). 

Transferrin and iron have short-term fluctuations as they are dependent on dietary 

intake, diurnal variation, time of day, iron requirement, and iron release from bone 

marrow, the reticuloendothelial system or the liver (Borel et al, 1991). Most of the 

serum iron is bound to transferrin, and about 30–40 % of transferrin is normally 

saturated. Transferrin, with a 79.6 kDa molecular weight, has a variety of isoforms (20 

are currently known). Half the transferrin is distributed in serum and the other half 

extravascularly (Aisen et al, 1980). The stimulation of transferrin synthesis in the liver 

is dependent on iron availability and the demands of the tissues. Transferrin is also 

regarded as a marker of nutritional status in the human body (Chockalingam et al, 

1987). Serum iron and transferrin can be combined in calculating 

the saturated amount of iron in transferrin, as TfSat (Beilby et al, 1992; Kasvosve et al, 

2002). TfSat reflects the iron circulating in serum that can be delivered to the tissues. 

Before the availability of transferrin analyses, TIBC was measured; it reflects the 

amount of iron ions that are needed to saturate transferrin (Tsung et al, 1975). 
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FIGURE 5 Laboratory measurements that reflect different compartments of systemic iron 
homeostasis. 
 

Ferritin is a macromolecule with a molecular weight of 440 kDa, which has a 

large amount of iron ions in its core, covered by a protein shell (Aisen et al, 1980). 

Ferritin can be synthesized in all cells, but the liver and spleen have specialized 

metabolic pathways for storing a large amount of iron. Ferritin has a variety of isoforms 

that are found in the liver, spleen, bone marrow, placenta, heart and tumors (Bradley et 

al, 2004). Ferritin reflects strictly the compartment of stored iron in the human body 

(FIGURE 5). About 1 µg/L of ferritin circulating in serum is equivalent to 8–10 mg of 

stored iron (Walters et al, 1973). A low ferritin level is a precise and powerful 

diagnostic tool to indicate iron deficiency (Guyatt et al, 1992). However, ferritin as an 

acute phase protein is also increased in inflammatory and liver diseases, where ferritin 
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levels of 20 to 70 µg/L can be inaccurate in excluding iron deficiency (Guyatt et al, 

1992; Punnonen et al, 1997; Suominen et al, 1998). 

A soluble truncated form of intact TfR (molecular weight of 85 kDa) can be 

measured in serum (Ward, 1987; Shih et al, 1990; Cook et al, 1993) and it reflects the 

amount of TfR that is found on the cell surface (Shih et al, 1990). TfR is found on all 

cells, and the main regulator of its synthesis is the availability of iron (Gatter et al, 

1983; Louache et al, 1984). sTfR levels increase immediately when the ferritin level is 

below 12 μg/L in adults (Suominen et al, 1998) and below 9 μg/L in children (Choi et 

al, 2003). The most abundant amount of TfR is found in the erythroid precurcors in the 

bone marrow (Kohgo et al, 1987), and therefore the sTfR concentration is also 

dependent on the mass of erythropoiesis (Ward, 1987; Huebers et al, 1990). The most 

useful feature of sTfR, as a diagnostic tool in iron deficiency, is that it does not act as an 

acute phase protein (Ward, 1987; Punnonen et al, 1994; Punnonen et al, 1997), and thus 

it distinguishes iron deficiency anemia from the anemia of chronic diseases. sTfR can 

also be elevated because of subclinical (Suominen et al, 1998) or functional iron 

deficiency (Ervasti et al, 2004). One problem in using sTfR is a lack of standardization 

and the absence of a reference method (Thomas et al, 2002; Kolbe-Busch et al, 2002). 

For the assessment of iron status, ferritin and sTfR are combined in many 

formulas in order to take into account both the availability of iron for erythropoiesis and 

the available iron stores (Punnonen et al, 1997; Thomas et al, 2002). The most 

commonly used formula is to calculate the TfR-F Index by dividing the sTfR 

concentration by the logarithmic transformation of the ferritin concentration. The TfR-F 

Index has also been shown to be an accurate index in distinguishing the anemia of 

chronic disease from iron deficiency anemia (Punnonen et al, 1997), and in detecting 

iron deficiency in its subclinical phase (Suominen et al, 1998; Thomas et al, 2002) and 

in newborn infants (Sweet et al, 2001). 

  

2.8.2. Blood count: from hemoglobin to red blood cell indices 

While the analytical development of automated cell counters was remarkable during the 

1980s and 1990s, analysing cell morphology by microscope is still the basis and 
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reference method for examining diseases of the blood cells. Hb concentration, initially 

as a measurement of the oxygen-carrying capacity, was analysed using a colorimetric 

method already in 1878, although in those days there were misleading errors because of 

standards (Farr, 1978). In 1901, the reliability of the colorimetric assay was improved 

by the modification of a more stable standard (Farr, 1978). 

In the history of red cell analyses, the major steps in the classification of anemia 

were taken in 1932, when Wintrobe published the classification based on the size of the 

RBCs that is still in use (Wintrobe, 1932). In addition to chamber counting by 

microscope as a measurement of anemia, Wintrobe presented the macrohematocrit (at 

first called packed red cell volume) that was analysed by spinning the blood samples 

using centrifuges (Bain, 2002). In the early 1960s, the spectrophotometric 

cyanmethemoglobin method was introduced for Hb measurements (Savage, 1993). The 

standardization of Hb measurement begun in 1963 (Zwart et al, 1996). 

The development of impedance cell counters in the late 1940s was an important 

phase in the history of cell analysers (Bain, 2002). The first models of analysers were 

already based on the flow of cells drifting in the solution and passing the aperture. 

Later, cell counters using optic methods were developed (Mohandas et al, 1986). 

Nowadays, the basic blood count consists of the number of leukocytes, RBCs and 

platelets, in addition to Hb, hematocrit (HCT), reticulocyte count, and RBC indices 

(TABLE 2). In the past, all the cell indices were conventionally derived from Hb, the 

RBC count and hematocrit. Mean cell Hb concentration (MCHC) and mean cell Hb 

(MCH) are still the counted parameters that reflect the Hb contents of the RBCs. Mean 

cell volume (MCV) and its distribution curve (red cell distribution width, RDW) was a 

single direct red cell parameter for a long time (England et al, 1974).  

In cell analyzers, reticulocytes can be identified by a fluorescent dye labeling the 

RNA residue of the cells. Importantly, the size and Hb content of reticulocytes can be 

analyzed in the same way as RBCs. The amount of fluorescently labeled RNA inside 

the cells has traditionally been used as a method to calculate the number of reticulocytes 

measured by either flow cytometers (FCM) or hematological analyzers. Moreover, 

reticulocytes can be divided into subsets on the basis of the amount of fluorescent dye 

bound to their RNA residue (Serke et al, 1992; Choi et al, 2001b). 



43 
 
  

TABLE 2 Abbreviations, explanations, methods and formulas for the conventional and novel red 
blood cell and reticulocyte indices currently available in automated hematological systems. 
Abbreviation Unit Explanation Method or formula 
Hb g/L Hemoglobin Cyanmethemoglobin analysis 

(standardized) 
HCT L/L Hematocrit (RBC x MCV) / 10 
RBC 1 x 1012 

cells/L 
Red blood cell count Number of RBCs 

Retic or 
%Retic 

1 x 109 
cells/L 
or % 

Absolute amount or 
percentage of reticulocytes 

Reticulocyte dyes 

MCV or 
MCVr 

fL Mean cell volume of mature 
red blood cells or 
reticulocytes 

Mean of the cell volume for the mature 
RBC or reticulocyte population, 
respectively 

RDW % Red cell distribution width 100 x (SD of MCV / MCV) 
MCH pg Mean cell hemoglobin Calculated mean cell Hb using the 

formula (Hb / RBC) x 10 
MCHC g/L Mean cell hemoglobin 

concentration 
Calculated mean cell Hb concentration 
using the formula [Hb / (RBC x MCV)] 
x 1000 

CHCMm or 
CHCMr 

g/L Cellular hemoglobin 
concentration mean in mature 
red blood cells or 
reticulocytes 

Mean of the cellular Hb concentration 
for the mature RBC or reticulocyte 
population, respectively 

CHm or CHr pg Cellular hemoglobin of 
mature red blood cells or 
reticulocytes 

Mean of the cell Hb mass for the RBC 
or reticulocyte population, respectively 

%HYPOm or 
%HYPOr 

% Percentage of hypochromic 
mature red blood cells or 
reticulocytes 

Percentage of mature RBC or 
reticulocyte population with Hb 
concentration less than 280 g/L 

%HYPERm 
or %HYPERr 

% Percentage of hyperchromic 
mature red blood cells or 
reticulocytes 

Percentage of mature RBC or 
reticulocyte population with Hb 
concentration higher than 410 g/L 

%MICROm 
or %MICROr 

% Percentage of microcytic 
mature red blood cells or 
reticulocytes 

Percentage of mature RBC or 
reticulocyte population with mean cell 
volume less than 60 fL 

%MACROm 
or 
%MACROr 

% Percentage of macrocytic 
mature red blood cells or 
reticulocytes 

Percentage of mature RBC or 
reticulocyte population with mean cell 
volume higher than 120 fL 

IRF-H, IRF-
M+H 

% Immature reticulocyte 
fraction high, and immature 
reticulocyte fraction medium 
+ high 

Percentages of the immature reticulocyte 
fractions derived from the scattergram of 
reticulocytes 

RBC-He or 
RET-He 

Arbitrary 
unit 

Red blood cell or reticulocyte 
hemoglobin equivalent 

Hb content of RBCs or reticulocytes 
quantitated by the arbitrary unit 

 
 

2.8.3. Basic principles of automated cell counters 

Analysis of cells drifting in medium is a technique used in modern hematological 

analysers. Impedance analyzers utilize the poor conductiveness of the cells as they 



44 
 
  

cause an increasing impedance pulse when they bypass the orifice in the conductive 

solution. Each bypassing cell causes one pulse according to their cell volume, and an 

oscilloscope detects this pulse. Whereas impedance analysers measure the electricity of 

the flowing cells, optical analysers detect the scatters shed out by each cell flowing 

through the laser light. In photo-optical detectors, the light scattering instruments detect 

the laser reflection that is passed by particles (FIGURE 6) (Mohandas et al, 1986). 
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FIGURE 6 Schematic presentation of the principle of an optical cell counter. Light 
scattering instruments detect via photo-optical detectors the laser reflection that is passed by 
particles. (Modified from Instructions of ADVIA 120, by kind permission of Siemens, 
Health Care Diagnostics, Tarrytown, NY, USA). 
 

Low- and high-angle detectors are used in optical analysers, by means of which 

the size and intracellular Hb content of the individual particles scatter the laser light, 

which is recorded. Each dot in the scattergram indicates a cell whose position is based 

on its size and internal composition (forward light scatter reflects the size of the cells 
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and side light scatter reflects the composition) (FIGURE 7 A). FIGURE 7 B shows the 

linear cell scattergram of normal RBCs with a volume of 60–120 fl and Hb 

concentration of 280–410 g/L. 

FCMs are used nowadays as basic equipment in the differential diagnosis of 

malignant hematological diseases. In the most sophisticated FCMs, between 1 and 3 

lasers are used. Basically, forward and side scatters allow the evaluation of the size and 

granularity of the flowing cells. In addition, cell surface structures can be detected using 

monoclonal antibodies labeled by different fluorochromes. Normal cells express certain 

antigens, and thus the erroneous antigen expression on the cells classifies the disease. 

The permeabilization of cells is used to dye intracellular organelles. The emitted 

fluorescence signals of each cell passing the aperture in sheath fluid are detected using 

photo-optical detectors. 
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FIGURE 7 A Example of an optical cell counter that is able to record the size and 
complexity of the individual particles using low- and high-angle scatters. B Scatter plot of 
red blood cells. X-axis indicates hemoglobin concentration cut-offs for normochromic cells. 
Y-axis indicates volume range of normocytic cells. (Modified from Instructions of ADVIA 
120, by kind permission of Siemens, Health Care Diagnostics, Tarrytown, NY, USA). 
 
 
Basically, in FCM analyses the number of antigen positive cells is counted as a 

percentage of the total number of cells. However, the development of quantitative FCM 

methods has enabled the evaluation of the amount of antigen expression. Fluorescence 
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intensity calibrators are used in quantitative methods (Serke et al, 1998; Lenkei et al, 

1998). Currently, there are three different calibration techniques available in the 

quantitative assessment of cell surface antigen expression (Serke et al, 1998). In 

quantitative FCM analyses the saturated amounts of fluorescent dye are used for 

calibrating beads and cells, after which the amount of antigen expression on cells can be 

calculated as units of antibody binding capacity (ABC) or molecules of equivalent 

surface fluorochrome (MESF). Antibody binding capacity (ABC) reflects the number of 

antibodies bound on the cells, which is equal to cellular antigen binding sites (Serke et 

al, 1998; Lenkei et al, 1998). Different fluorochromes of a single monoclonal antibody 

may yield different numbers of cellular binding sites (Serke et al, 1998; Lenkei et al, 

1998). When using quantitative FCM, separate titration measurements are needed for 

fluorescent ligands on cells and on calibration beads, because they are different binding 

sites (Serke et al, 1998). 

 

2.8.4. Use of red blood cell indices in the diagnosis of iron deficiency 

MCV has been widely used for decades in the differential diagnosis of anemias, which 

has been a basis for categorizing the anemias (Wintrobe, 1932). Iron deficiency causes 

typically hypochromic and microcytic RBCs, since normal amounts of Hb cannot be 

synthesized. Hypochromacy has been demonstrated to develop before microcytosis in 

recently phlebotomized individuals with mild iron deficiency (Patton et al, 1991). An 

incipient iron deficiency can be also normocytic, because the development of 

microcytosis is a slow process and MCV reflects the whole RBC population during the 

previous 120 days. A measurement of ZnPP (using a hematofluorometer) is another 

index reflecting insufficient availability of iron in erythropoietic cells, because in iron 

deficiency elevated amounts of zinc replaces the iron ion needed for the heme molecule 

(Blumberg et al, 1977; Harthoorn-Lasthuizen et al, 1998). 

The introduction of light scattering methods has made possible a more strict and 

sensitive evaluation of RBCs. Novel red cell indices have been established as indicators 

of iron availability for Hb synthesis of erythropoiesis as they reflect the amounts of Hb 

inside the red cells and the percentage of hypochromic red cells (Mohandas et al, 1986; 
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Brugnara et al, 1993; d'Onofrio et al, 1995; Brugnara, 1998; Brugnara, 2000; Mast et al, 

2002; Kotisaari et al, 2002; Franck et al, 2004; Thomas et al, 2005; David et al, 2006). 

The percentage of hypochromic RBCs (%HYPOm) has been used to monitor functional 

iron deficiency in patients treated with recombinant human EPO (rHuEPO) (Braun et al, 

1997; Bovy et al, 1999; Schaefer et al, 1999). Additionally, cellular Hb in reticulocytes 

(CHr) has been shown to be a useful tool to check the availability of iron when attaining 

the target HCT or Hb level in patients with chronic kidney disease, myeloma or 

lymphoma during rHuEPO treatment (Fishbane et al, 2001; Kaneko et al, 2003; 

Katodritou et al, 2007). In particular, it has been proposed that CHr is useful in the 

evaluation and screening of iron status in healthy infants (9- to 12-month-old), children 

(mean age 2.9 ± 2.0), adolescents and pre-menopausal women, and in a canine model 

(Brugnara et al, 1999; Ullrich et al, 2005; Stoffman et al, 2005; Fry et al, 2006; Luo et 

al, 2007). Additionally, red cell and reticulocyte indices have been shown to provide a 

simple way to screen the iron status in blood donors (Radtke et al, 2005). The 

documentation of blood doping has also been performed using cell indices such as CHr 

and RDW in order to demonstrate abnormal hematological profiles, e.g. in elite cross-

country skiers (Stray-Gundersen et al, 2003). Although CHr and %HYPOm can be 

determined by only one brand of hematological analyzer (Siemens), other cell counter 

manufacturers (Sysmex, Abbott, Beckman Coulter) have also provided alternative 

indices of RBC and reticulocyte features which can be used in a comparable manner in 

the assessment of iron deficient states. Reticulocyte and RBC Hb equivalents (RetHe, 

RBCHe) (TABLE 2) correlate highly with CHr and cellular Hb in RBCs (CHm), 

respectively (Briggs et al, 2001; Franck et al, 2004; Thomas et al, 2005; Canals et al, 

2005; David et al, 2006; Brugnara et al, 2006). 

By measuring RBC and reticulocyte populations, the different time spans of iron 

homeostasis can be assessed, since the time spans of CHr and %HYPOm are different. 

Reticulocytes stay in the blood circulation for only 1–2 days before maturing, so their 

features are rapidly affected by changes in the availability of iron for Hb synthesis of 

erythroid bone marrow. In contrast, RBC indices reflect iron status for a longer period 

of time, since their life span is about 120 days. In young iron-deficient females, the 

response of iron supplementation treatment has been shown to be evident in 7 days on 
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CHr or percentage of hypochromic reticulocytes (%HYPOr) (Kotisaari et al, 2003). 

Similarly, in hemodialyzed patients receiving frequent EPO treatment, the response of 

reticulocyte indices to simultaneous intravenous iron therapy occurs in a few days 

(Brugnara et al, 1994b; Fishbane et al, 2001). Moreover, %HYPOm has been shown to 

decrease significantly within two weeks during iron supplementation of 200 mg per day 

(Kotisaari et al, 2003) as well as in 12 weeks during the postpartum period with 

supplements of 80 mg per day (Krafft et al, 2005). Nowadays, at least %HYPOm is 

recommended for clinical use in patients receiving rHuEPO treatment during frequent 

dialysis (Schaefer et al, 1999).  

However, cellular indices have some limitations in specificity, which is a 

consequence of other hematological conditions such as thalassemias (d'Onofrio et al, 

1992). This is because thalassemia patients have impaired globin synthesis due to 

abnormal hereditary features which cause their erythropoiesis to produce microcytic 

RBCs with low cellular Hb. However, the differential diagnosis between thalassemias 

and microcytic anemias can also be done by novel indices of cell counters by 

calculating the ratio between the microcytic and hypochromic red cells (d'Onofrio et al, 

1992). 

The question whether the acute phase response contributes to red cell indices 

(especially to reticulocyte indices) has also been raised. A slight decrease in reticulocyte 

Hb content may occur, although the differentiating of iron deficiency anemia and 

anemia of chronic disease might also be done using reticulocyte indices under 

inflammatory conditions (Canals et al, 2005). The biological background for the 

changes in the reticulocyte indices is that during acute phase responses iron is blocked 

inside the macrophages, which may decrease iron availability for Hb synthesis. 

However, no studies on this topic have been published. 

 

2.9. Common problems in clinical practice of iron status measurements in 

pregnant women and newborn infants 

The iron status measurements currently used are not reliable indicators of iron status 

during pregnancy. Hb is not an accurate indicator of iron status, especially during 
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pregnancy, since hemodilution causes a substantial decrease in Hb level during the 

second and third trimester. Even so, Hb is used in Finland as an indicator for iron 

supplementation during pregnancy. 

In the background of decreased Hb level there may also be iron deficiency. 

However, iron status cannot be evaluated accurately during pregnancy using current 

markers. Similarly to Hb, ferritin concentration decreases during pregnancy, because of 

hemodilution and the subsequent decrease in iron stores, which are utilized for the needs 

of the fetus, placenta and increased maternal erythropoiesis (Svanberg et al, 1975; 

Scholl et al, 1992; Milman et al, 1999). Because sTfR is dependent on the availability 

of iron and the amount of erythropoietic tissue, the concentrations are increased during 

the later stages of pregnancy (Choi et al, 2000a). Transferrin concentration and TIBC 

are also raised during pregnancy (Morgan, 1961). Of the conventional RBC indices, 

MCV is increased during pregnancy, possibly due to the contribution of high numbers 

of reticulocytes, which are larger than mature RBCs (Chanarin et al, 1977; Milman et 

al, 2007). 

 In newborn infants, all laboratory measurements show great variation. This is also 

found in iron status measurements, and there is also a large variation in red cell indices 

in cord blood at birth. Therefore, it is hard to set the cut-off limits for abnormal results 

for the measurements used. Ferritin is the most commonly used indicator of iron status 

in newborns, and cut-off limits of 60–100 µg/L have been suggested (Rao et al, 2002; 

Siddappa et al, 2007). Some investigators have also suggested the use of sTfR or the 

TfR-F Index (Rusia et al, 1995; Kuiper-Kramer et al, 1998a; Sweet et al, 2001); 

however, this has been critized because of the influence of increased erythropoietic 

mass and the day-to-day variation in sTfR in the early days. 

 

2.10. Summary of the literature: what is known and what remains to be 

discovered? 

Iron is essential for life, whereas an excess of iron is toxic. Iron deficiency is easy to 

treat, in contrast to iron overload. Moreover, the adverse effects of iron deficiency can 

cause permanent severe damage to the child’s cognitive development, for example, 
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which could be prevented by early identification. The evaluation of iron status using 

serum iron status measurements is not satisfactory in pregnant women and newborns. 

Systemic iron homeostasis during pregnancy is in a delicate balance in order to sustain 

the availability of iron in fetus and for accelerated RBC production in pregnant women. 

 Our current knowledge of the effects on obstetric outcome of anemia and iron 

deficiency in pregnant women is based only on findings of studies using traditional 

methods such as Hb and serum iron status measurements, although these measurements 

show pregnancy specific alterations. Additionally, they are used to evaluate possible 

advantages of iron supplementation during pregnancy. Since pregnancy-specific 

alterations cannot be controlled, the conclusions of the available studies vary. 

 Iron status can be evaluated using several laboratory analyses involved in the 

transport, storage and hematological compartments. The different gradations and 

physiological changes in iron homeostasis hamper the use of available measurements. 

The development of cell counters has made it possible to address new concepts on the 

evaluation of iron status using the indices reflecting the Hb content of RBCs and 

reticulocytes. These indices have been shown to be extremely valuable in screening 

early changes in the availability of iron in various populations. 

 EPO synthesis is dependent on tissue oxygenation, which depends on the oxygen-

carrying capacity, oxygen affinity, arterial pO2 and tissue blood flow. The oxygen-

carrying capacity depends on the Hb content and RBC mass. However, the relationship 

between EPO and the quality of RBCs has not yet been fully investigated. 

 As for serum iron status measurements, the concentration of sTfR depends on both 

the availability of iron and accelerated erythropoiesis. Currently, quantitative FCM 

measurement allows the assessment of the amount of cell surface receptors. While 

reticulocytes are newly formed red cells reflecting the status of bone marrows, the 

quantitation of reticulocyte TfR expression would reflect the iron availability for 

erythropoiesis. Thus, the impact of erythropoiesis on sTfR may be avoided. 
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3. AIMS OF THE STUDY 

 

These studies were carried out in order to determine the iron status parameters which 

reflect the features of RBCs and reticulocytes and the association of red cell indices 

with EPO concentration. The study settings were a cross-sectional population of 

pregnant women and their newborn infants at term in the Pohjois-Savo health care 

district, in central Finland, and selected patient samples with different gradations of iron 

status. The specific aims of the studies were as follows: 

 

- To screen the iron status and to test the usefulness and diagnostic accuracy of 

iron status measurements in pregnant women at term using both serum and 

cellular iron status markers. (I) 

 

- To determine the usefulness of cellular iron status measurements in diagnosing 

iron deficiency in newborn infants and to define the reference intervals of iron 

status measurements in cord blood specimens at birth. (II) 

 

- To discover the associations between serum EPO concentration, pH level and, 

RBC and reticulocyte indices (reflecting cellular Hb contents) in pregnant 

women at term and in cord blood at birth. (III, IV) 

 

- To develop a quantitative FCM analysis for TfR expression on reticulocytes in 

order to use TfR expression as a measure of iron requirement without having the 

rate of erythropoiesis as an interfering factor. (V) 
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4. SUBJECTS AND METHODS 

4.1. Study designs 

4.1.1. Studies on the diagnostic markers of iron status in pregnant women 

and in their newborn infants (I, II) 

The aims of these cross-sectional studies were to screen the iron status in an unselective 

study population consisting of pregnant women at term and in newborn infants at birth 

using serum measurements and RBC and reticulocyte indices. The usefulness of the cell 

indices as indicators of iron deficiency was compared with that of serum iron status 

measurements in pregnant women and in their newborn infants. The collected data were 

also used to define the diagnostic efficiency by means of a receiver operating 

characteristic (ROC) curve and area under the ROC curve (AUC) analyses (I). TfSat 

was used as an a priori reference test for iron deficiency in pregnant women (I). The 

clinical performance of cell indices was also compared with that of the currently used 

combination of iron status measurements during pregnancy (Hb, MCV, ferritin) (I). In 

newborn infants, the associations between cellular and serum iron status measurements 

were analysed (II). Additionally, the reference values were determined in cord blood at 

birth of non-anemic newborn infants (II). 

 

4.1.2. Studies on the associations between red blood cell indices and serum 

erythropoietin concentration (III, IV) 

These studies were undertaken to investigate the influence of cellular iron deficiency on 

the EPO concentration in order to advance the knowledge of associations between the 

cellular and serum iron status measurements and EPO concentration. The association 

between iron status measurements and EPO concentrations was primarily studied in 

pregnant women at term (III).  

Additionally, in a secondary study on newborn infants, the aim was to investigate 

the associations between serum EPO concentration, and RBC and reticulocyte indices as 

well as between serum iron status measurements (IV). Cellular and serum iron status 



53 
 
  

measurements were also investigated in three groups of potentially asphyxiated 

children: “no signs of clinical asphyxia” (umbilical vein cord blood pH not controlled), 

normal pH (> 7.15) and low pH (≤ 7.15) in order to examine the association between the 

red cell indices and pH level (IV). The population consisted of the same pregnant 

women and newborn infants investigated in studies I and II. 

 

4.1.3. Developing the flow cytometric method for transferrin receptor 

expression on reticulocytes (V) 

In this study, an FCM analysis of TfR expression on reticulocytes was developed in 

order to assess the iron need of erythropoietic tissue at the cellular level. The patient 

samples used in this study were selectively chosen by red cell index results indicating 

iron deficiency. A quantitative FCM analysis was performed to calculate the ABCs of 

TfR (CD71) expression on reticulocytes. The amounts of TfR positive reticulocytes as 

percentages of all reticulocytes [thiazole orange (TO) positive events] were also 

recorded. The results of the quantitative FCM method were compared with those of 

cellular and serum iron status measurements. 

 

4.2. Study subjects 

4.2.1. Pregnant women (I, III) and newborn infants (II, IV) 

The ethics committee of the Pohjois-Savo Health Care District approved the study. A 

total of 220 pregnant women and their newborn infants, all of ethnic Finnish 

background, were enrolled during a 10-month period in 2004–2005 at the Kuopio 

University Hospital. Informed consent forms had been signed by the pregnant women 

before delivery. The number of the subjects in the individual studies varied, since 

adequate amounts were not obtained for each analysis in the samples for some of the 

subjects, or the gestation was not at term (< 37 weeks). Furthermore, two women with 

twins were excluded.  

The main outcome laboratory measurements were the complete blood count 

including novel RBC and reticulocyte indices, such as %HYPOm, %HYPOr, CHm and 
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CHr (TABLE 2) before delivery in pregnant women and in cord blood at birth. The 

serum iron status of the pregnant women and of cord blood were evaluated for iron, 

transferrin, ferritin and sTfR. TfSat was calculated using the formula [S-Iron (μmol/L) x 

0.038]/S-Transferrin (g/L)*100. In addition, the TfR-F Index (sTfR/LogFerritin) was 

calculated. Serum EPO and high sensitivity C-reactive protein (hsCRP) concentrations 

were also measured in pregnant women and in cord blood at birth. 

Data on maternal characteristics and pregnancy outcome were collected from the 

birth register of Kuopio University Hospital. These data included the number of 

previous pregnancies, parity, smoking during pregnancy, pregnancy complications, 

mode of delivery, gestational age, newborn gender, birth weight and length, placental 

weight, and Apgar scores at one and five minutes of age. Hb levels in different 

trimesters were also collected from the register. Most of the Hb results were obtained 

from the women’s maternity cards. Iron supplementation had not been recommended 

for all the pregnant women during the course of their pregnancy, but they were asked 

whether they had used iron supplementation or iron-containing multivitamin tablets at 

any time during the pregnancy. 

A total of 67 newborn infants had umbilical vein blood pH measurements at birth. 

In these newborn infants, the umbilical vein blood pH results was controlled after cord 

clamping. 

 

4.2.2. Subjects in the flow cytometric study (V) 

The ethics committee of the Pohjois-Savo Health Care District approved the study. The 

studied blood count samples (n = 46) had been drawn in 2005 and in 2007 for clinical 

purposes from patients treated at Kuopio University Hospital. The samples were 

selected on the basis of blood count and advanced cell indices. Twelve healthy 

volunteers served as controls. The whole population consisted of 22 men and 36 

women. There were a variety reasons for the basic blood count analyses: surgical 

procedures (n = 13), hematological malignancies (n = 3), solid tumors (n = 7), 

cardiovascular diseases (n = 5), kidney failure (n = 3), polycytemia vera (n = 1), and 

other micellaneous diseases (n = 14). The patient groups were divided retrospectively 
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according to their iron status based on their %HYPOm, %HYPOr, ferritin and TfR-F 

Index. Of the 46 patients, 24 were assigned to the functional iron deficiency (FID) 

group, while the combined FID and iron deficiency (FID + ID) group consisted of 10 

patients, and the other 12 patients were assigned to the group with “replete iron status”.  

 

4.3. Laboratory methods 

4.3.1. Blood count and red blood cell indices (I-V) 

Blood counts were analysed on an ADVIA 120 Hematology System (Siemens, Health 

Care Diagnostics, Tarrytown, NY, USA). Analysis of Hb concentration as a main part 

of the basic blood count was performed on the ADVIA 120 analyzer using the 

standardized cyanmethemoglobin measurement (Zwart et al, 1996) with a slightly 

modified application by colorimeter at 546 nm wavelength. All Hb variants were 

determined with this analysis. Of the red cell indices, Hb, RBC count, HCT, the 

percentage of reticulocytes (%Retic), MCV, MCVr, MCH, MCHC, CHm, CHr, 

%HYPOm, %HYPOr and high immature reticulocyte fraction (IRF-H) were recorded. 

The advanced red cell indices of the ADVIA 120 System were directly measured 

based on a cell-by-cell analysis using a single laser for counting and sizing the cells 

(Mohandas et al, 1986). The volume and Hb concentration of isovolumetrically sphered 

red cells were analyzed using the forward and side light scatters that were measurered 

on photo-optical detectors at a low (2–3˚) and a high (5–15˚) angle, respectively. 

Therefore, MCV as well as CH reflecting the mean of the red cell Hb concentration for 

the red cell population were directly measured parameters on cell-by-cell analysis. 

MCH and MCHC were derived from the Hb, RBC count and MCV. 

The analysis of reticulocytes on the ADVIA 120 System was based on the staining 

of reticulocyte RNA using a non-fluorescent nucleic acid dye Oxazine 750 (Siemens, 

Health Care Diagnostics, Tarrytown, NY, USA) after which they were detected by light 

scattering. As with RBC indices, reticulocyte features can be analyzed with the size and 

Hb content. In addition, the maturation of reticulocytes can be staged as having low, 

medium or high RNA-staining intensity (Brugnara, 1998). 
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TABLE 2 shows the explanations, methods and formulas of the indices that were 

measured by the ADVIA 120 Hematology System. The scatterplot of the RBC 

population shows the size (y-axis) and Hb content (x-axis) of the cells (FIGURE 7). 

The normal limits for the red cell populations were set to contain Hb of 280–410 g/L 

and to be in the size range of 60–120 fL. The red cells that disperse to the area where 

Hb content is below 280 g/L were defined as hypochromic, and the red cells that were 

small for size (< 60 fL) were defined as microcytic. MCV and CH are the means of the 

size and Hb content of cell-by-cell measured cell population histograms. 

From the methodological point of view, novel red cell indices are time sensitive, 

i.e. they are stable for only 12 h after sampling (Brugnara, 2000). In these series, the 

samples were sent to the laboratory immediately after collection via pneumatic mail, 

and the cell counter analyses were performed with routine samples as usual within six 

hours of sampling. 

 

4.3.2. Serum (I-IV) and plasma (V) iron status measurements 

Concentrations of ferritin, EPO and high sensitivity C-reactive protein (hsCRP) were 

measured using an automated Immulite2000-analyzer (IEMA) (Diagnostic Products 

Corporation, Los Angeles, CA, USA). Serum iron was measured with a Konelab 60i 

unit (Thermo Fisher Scientific, Vantaa, Finland). Serum transferrin was analyzed using 

an Immage analyzer (Beckman Coulter Inc., Fullerton, CA, USA). Serum or plasma 

sTfR was measured using an automated immunoturbidometric IDeA TfR-IT assay 

(Orion Diagnostica, Espoo, Finland) with a Konelab 60i unit (Thermo Fisher Scientific, 

Vantaa, Finland) (Suominen et al, 1997; Punnonen et al, 2000). The umbilical vein 

blood pH levels were analyzed using Rapidlab 1265 (Siemens, Health Care Diagnostics, 

Tarrytown, NY, USA). 
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4.4. Quantitative flow cytometric method for transferrin receptor expression on 

reticulocytes (V) 

The development of quantitative FCM methods has enabled the evaluation of the 

amount of cellular antigen expression by quantification of fluorescence intensity 

calibrators. The QuantumTM Simply Cellular® (QSC mouse antibody binding standards, 

Bangs Laboratories Inc., IN, USA) assay is designed for detecting direct 

immunofluorescence obtained from labeled antibodies bound on the bead surface 

including blank and four bead standards for known amounts of antibody binding sites. 

This is done producing a calibration curve to compare the analysed cell populations 

with the curve. ABC reflects the number of antibodies bound on the cells, which is 

equal to the number of cellular antigen binding sites (Serke et al, 1998; Lenkei et al, 

1998). 

Venous blood samples were collected in EDTA tubes (VacutainerTM, Becton 

Dickinson Vacutainer Systems, Plymouth, UK) for the analysis of TfR expression on 

reticulocytes. A total of 50 μl blood or 25 μl of each QSC standard with 50 μl phosphate 

buffered saline (PBS) (Isoton® II diluent, Coulter Corporation, Miami, FL, USA) was 

incubated with 30 μl of CD71-PE monoclonal antibody (mAb) (mouse anti-human-

CD71-PE, clone M-A712, BD-Pharmingen, San Diego, CA, USA) for 20 minutes in the 

dark at room temperature, after which the beads and samples were washed twice with 3 

ml PBS (centrifugation 300 g, 5 min, room temperature). The beads were resuspended 

in 1.0 ml PBS and kept in the dark before analysis. For thiazole orange (TO) labeling, 5 

μl of CD71-PE-labeled cells was pipetted into new separate tubes, after which 1.0 ml 

PBS and 1.0 ml TO-FITC solution (Retic-COUNT reagent, BD Biosciences, San Jose, 

CA, USA) were added and the cells were incubated for a further 30 minutes in the dark 

at room temperature. 

At least 1 000 events from blank and 4 000 events from standard beads, and at 

least 200 000 cells from blood samples were acquired using the same flow cytometer 

[Coulter Epics XL MCL FCM (Coulter Corporation, Miami, FL, USA)] and the same 

settings. EXPO32 ADC software [XL 4 color and Analysis (build 219.1), Coulter 

Corporation, Miami, FL, USA] was used for data acquisition and analysis. Blood 

samples were gated in order to obtain peripheral erythroid cells (gate A), and 
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reticulocytes (gate B, TO positive events) (FIGURE 8). Another gate (gate C) was 

created to evaluate the amount of TfR positive reticulocytes as percentages of all 

reticulocytes (%TfR+Ret). Platelets were excluded (gate P). The median channel values 

of the gated CD71-PE positive reticulocytes were compared with the calibration curve 

based on QSC beads to calculate the ABC values of cell samples using QuickCal 

software (version 2.3, Bangs Laboratories Inc., IN, USA). After the FCM analyses, the 

EDTA-samples were finally centrifuged and plasma was separated and stored frozen at 

–20 oC. 

 

 

 

 

 

 

 
FIGURE 8 Gating strategy in flow cytometric analysis for reticulocytes. Gate A was 
produced to detect the peripheral red blood cells. Gate B comprised the thiazole orange 
(TO) positive cells, indicating reticulocytes. The TO positive cells with transferrin receptor 
(CD71) on the cell surface were included in gate C. Gate P excluded platelets from the 
analyses. 
 

The stability of the samples for TfR expression was tested on three samples 

immediately after sampling, and at one, two, four, 24 and 28 hours after storing both at 

room temperature and at + 4 °C. In addition, the stability of the stained samples was 

analysed immediately and after storing for one, two, three and four hours at room 

temperature, and for one, two and three hours storing at + 4 °C. The intra-assay CV% 

was computed from the results of three different samples that were analysed eight times. 

The day-to-day variation was analysed between the three days in one individual without 

signs of iron deficiency. 
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4.5. Statistical analyses (I–V) 

The median and interquartile range (IQR) were calculated. The normality of the 

laboratory variables was analyzed by means of the Kolmorogov-Smirnov test with the 

Lilliefors significance correction. The Mann-Whitney U test was used to determine the 

significances of the differences between the means of continuing variables. The 

significance of differences for categorical variables was calculated with the Chi-Square 

test with Yate’s correction. 

For the pregnant women, primary cut-offs for iron status measurements were 

selected on the basis of the reference limits used for clinical interpretation in our 

laboratory for non-pregnant women (I) (Kotisaari et al, 2003; Nordin et al, 2004; 

Rustad et al, 2004). The reference intervals for the TfR-F Index were calculated from a 

study population consisting of healthy volunteers (unpublished data). TfSat was used as 

an a priori reference test of iron deficiency, since TfSat is in the centre of iron 

homeostasis, as it reflects the overlap of absorbed iron, iron released from red cell 

destruction, iron bypass from the liver and the transfer of iron to the bone marrow or 

other tissues (I). The efficiency of red cell indices (I) in detecting iron deficiency was 

evaluated using ROC curve analysis including AUCs and likelihood ratios (LR) (Boyd, 

1997). Furthermore, sensitivities and specificities at the optimal cut-off point (maximum 

point of efficiency curve with a minimal false negative, and false positive results) were 

derivated (I). 

Reference intervals for cord blood at birth (II) were calculated by the non-

parametric direct method with use of the 2.5 % and 97.5 % reference limits in non-

anemic newborn infants. 

Pearson or Spearman correlations were used to evaluate the associations between 

the variables (I–V). Subgroups were based on the quartiles or on the different disease 

categories (III–V). One-way ANOVA with the significances of Bonferroni (III) or 

Tukey (V), or Kruskall-Wallis tests (IV) were used to calculate the differences between 

the groups. For independent variables, multivariate stepwise linear regression analyses 

were performed (III).  

Statistical significance was defined as p < 0.05. Microsoft Excel 2000 for 

Windows (Microsoft Office, Microsoft Corp., Redmond, WA, USA) and SPSS 11.5 for 
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Windows (SPSS Inc., Chicago, ILL, USA) were used as statistical software. The figures 

were produced with the GraphPad Prism 4.0 for Windows (GraphPad Software Inc., 

San Diego, CA, USA) and with Microsoft Excel 2000. For calculating reference 

intervals, GraphRoc for Windows, Version 2.0 (GraphROC, developed by V. Kairisto 

and A. Poola) was used (Kairisto et al, 1995). 
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5. RESULTS 

5.1. Screening of iron deficiency in pregnant women and newborn infants (I, II) 

In study I there were 202 pregnant women who had results of Hb, %HYPOm, 

%HYPOr, CHr, sTfR, TfSat and ferritin, with the exception of four pregnant women 

who did not have TfSat results. Of these women, 31 (16 %) were classified as iron 

deficient based on TfSat according to the definition (TfSat ≤ 11 %). Anemia was rare (7 

%, n = 14) among pregnant women at term, but much more frequent when the entire 

pregnancy was taken into account: 3 during the first, 45 during the second and 31 during 

the third trimesters. FIGURE 9 A shows a trend of mean Hb level of pregnant women 

during pregnancy. Low ferritin results (≤ 12 µg/L) were found in 38 % of the pregnant 

women, and sTfR was elevated in 8 %. Cellular iron deficiency was found at term in 17, 

21 and 13 pregnant women judged by %HYPOm, %HYPOr and CHr, respectively 

(FIGURE 9 B). 

Not all the women who had anemia or who had a single serum marker indicating 

iron deficiency had a low CHr or an increased %HYPOm (TABLE 3). If the iron 

deficiency diagnosis was based on CHr, all the woman had lowered ferritin. However, a 

low ferritin result was found in a number of the women without signs of decreased Hb 

content in RBCs or reticulocytes (TABLE 3). 

A total of 199 newborn infants were studied. Although many newborn infants were 

anemic (n = 38), only nine had iron deficiency as defined by a TfSat level less than 30 

% (Nathan et al, 1993). Ferritin was low (< 60 µg/L) in 13 newborn infants. Among the 

anemic newborn infants only one had low ferritin (34 μg/L), and another one had low 

TfSat (24 %). Therefore, in the study population there were only two newborn infants 

with iron deficiency anemia. 
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FIGURE 9 A Trend of hemoglobin results during pregnancy from the women’s maternity 
cards and from measured blood count before delivery. B The percentages of pregnant women 
classified as iron deficient on the basis of a single marker of iron status. 
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TABLE 3 The comparison of CHr and %HYPOm with other iron status 
markers in diagnosing iron deficiency in 202 pregnant women at term. 

 

                                CHr 

  
 
  

 

  
CHr ≤ 28.8 pg  

(n = 13)  CHr > 28.8 pg  
(n = 189) 

     
Hb ≤ 110 g/L  5 (38.5 %)  9 (4.8 %) 
MCV ≤ 82 fL  9 (69.2 %)  8 (4.2 %) 
%HYPOm ≥ 3.4 %  8 (61.5 %)  9 (4.8 %) 
%HYPOr ≥ 43.5 %  12 (92.3 %)  9 (4.8 %) 
Ferritin ≤ 12 µg/L  13 (100 %)  61 (32.3 %) 
sTfR ≥ 2.4 mg/L  5 (38.5 %)  11 (5.8 %) 

 

                          %HYPOm 

  
 

 
 

  
%HYPOm ≥ 3.4 % 

(n = 17)  
%HYPOm < 3.4 %  

(n = 185) 
     

Hb ≤ 110 g/L  6 (35.3 %)  8 (4.3 %) 
MCV ≤ 82 fL  9 (52.9 %)  8 (4.3 %) 
CHr ≤ 28.8 pg  8 (47.1 %)  5 (2.7 %) 
%HYPOr ≥ 43.5 %  11 (64.7 %)  10 (5.4 %) 
Ferritin ≤ 12 µg/L  13 (76.5 %)  61 (33.0 %) 
sTfR ≥ 2.4 mg/L  4 (23.5 %)  12 (6.5 %) 
                                                                                             

5.2. The features of red cell indices in pregnant women and in newborn infants (I, 

II) 

The means and medians of RBC and reticulocyte indices of the pregnant women at term 

and of the non-pregnant controls were within the reference limits for non-pregnant 

women (TABLE 4). The percentage of reticulocytes was the only index that was near to 

the upper reference limit in the pregnant women. Additionally, in this population of 

pregnant women at term, cellular indices (%HYPOm, %HYPOr and CHr) did not show 

remarkable signs of iron deficiency and their descriptives were similar to those of non-

pregnant women (TABLE 4). 
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During the last weeks before labor most pregnant women had adequate amounts 

of iron for Hb synthesis since they did not have iron deficient reticulocytes or iron 

deficient erythrocytes at term. Furthermore, in most of the women studied (93 %), the 

CHr/CHm ratio was above 1.00 (mean ± SD, 1.07 ± 0.05), which suggests stable 

ongoing erythropoiesis (Brugnara, 1998). FIGURE 10 shows examples of scatter plots 

of RBC populations in pregnant women with normal %HYPOm and with highly 

increased (16.7 %) %HYPOm. 
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FIGURE 10 The upper columns show the scatter plots of red blood cells in a pregnant 
woman (A) and in a newborn infant (B) without iron deficiency. The lower columns show 
the scatter plots of red blood cells in a pregnant woman (C) and in a newborn infant (D) 
with iron deficiency. 
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In newborn infants, RBC and reticulocyte indices have their own distinctive 

features: the normal variation of the individual RBC population is wider than in 

pregnant women or non-pregnant adults (FIGURE 10) (Brugnara, 2000). The RBC 

populations in newborns’ contain a considerable amount of red cells that are macro- or 

microcytic, so, RDW is large. Mean CH of RBC and reticulocyte populations are also 

higher in cord blood at birth than later in life (Brugnara, 2000). If the main RBC 

population is located near the lower x-axis or on the left side in a scattergram 

(hypochromic site), indicating iron deficiency in adults (FIGURE 10), a similar 

location is also evident in iron-deficient newborns. However, newborn infants without 

iron deficiency typically also have a great amount of hypochromic RBCs, which is 

associated with an increase in macrocytic red cells. Consequently, in many cord blood 

samples, macrocytic RBCs contain less Hb (showing a shift to the left in a scatter gram 

in cells of high volume) (FIGURE 10). MCH, mean cell volume of reticulocytes 

(MCVr), RDW and the absolute reticulocyte count of newborn infant are larger than 

later in life (Brugnara, 2000). On the other hand, there are no marked shifts in the values 

of cellular Hb contents or in the cellular volumes, because the means of the histograms 

remain relatively stable. Generally, however, the mean cell volume is higher in cord 

blood than in adults (FIGURE 10). 

The reference ranges of the red cell indices and serum iron status measurements in 

cord blood are shown in TABLE 5. Along with the large variation evident in the cell 

population of individual cord blood samples, a wide variation in red cell indices was 

observed. There were no statistically significant gender differences in the serum iron 

markers or in the cellular indices (Mann-Whitney U test). 

 

5.3. Diagnostic accuracy of red blood cell indices in diagnosing iron deficiency in 

pregnant women at term (I) 

The diagnostic accuracy of RBC and the reticulocyte indices were calculated using 

TfSat as an a priori reference test with a cut-off value of ≤ 11 %. In ROC and AUC 

analyses, advanced red cell indices provided remarkably high AUCs: %HYPOr 0.80, 

CHr 0.79 and %HYPOm 0.75. Additionally, ferritin alone and in combined with the 
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TfR (TfR-F Index) provided high AUCs (0.77 and 0.75, respectively), but their 

likelihood ratios were low (study I, Table 3). TfSat (≤ 11 %) was also used as a 

reference test when calculating the optimal cut-off levels (maximum point of efficiency 

curve) for the other iron status measurements such as Hb, MCV and ferritin. The 

optimal cut-off levels were for Hb ≤ 122 g/L, MCV ≤ 87 fL and ferritin ≤ 11 μg/L. 

When using the combination of Hb, MCV and ferritin (with these calculated cut-off 

points) as a reference test, the AUCs for individual RBC or reticulocyte indices were 

high: CHr 0.95, %HYPOm 0.96, %HYPOr 0.96 (study I, Table 4).  Since only a few 

iron-deficient anemic pregnant women were identified, the presentation of diagnostic 

accuracies was not considered meaningful, and the same was true for the iron-deficient 

newborn infants. 

 
TABLE 5 Results of iron status measurements in 199 newborns infants at term. Reference 
intervals in cord blood at birth (2.5 % and 97.5 % reference limits) for iron status 
measurements are calculated for 163 non-anemic (Hb > 146 g/L) newborn infants. 
 
Variable Mean SD Median 

Reference 
intervals     

Blood count and cellular indices       
 Hb (g/L) 159 15 160 146 - 189 
 HCT (L/L) 0.49 0.05 0.49 0.44 - 0.58 
 MCV (fL) 109 4 109 102 - 118 
 MCVr (fL) 124 6 124 115 - 136 
 MCH (pg) 35 1 35 33 - 38 
 MCHC (g/L) 325 10 325 306 - 342 
 %Retic (%) 4.0 0.8 3.9 2.6 - 5.4 
 IRF-H (%) 24.1 7.8 23.2 10.2 - 40.0 
 CHm (pg) 34.9 1.3 34.8 32.5 - 37.2 
 CHr (pg) 35.6 1.3 35.5 33.1 - 38.6 
 %HYPOm (%) 3.0 3.0 2.1 0.4 - 9.9 
  %HYPOr (%) 42.0 15.6 40.7 18.3 - 76.8 
Serum measurements      
 sTfR (mg/L) 2.0 0.7 1.9 1.2 - 4.0 
 Ferritin (µg/L) 198 137 166 45 - 636 
 TfR-F Index 0.95 0.43 0.87 0.49 - 2.1 
 Iron (µmol/L) 27.4 7.7 27.0 12.2 - 42.1 
 Transferrin (g/L) 2.0 0.4 1.9 1.2 - 2.9 
  TfSat (%) 55 19 54 21 - 111 

Abbreviations are explained in TABLE 2. 
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5.4. Correlations between serum and cellular iron status measurements in 

pregnant women and newborn infants (I, II) 

The correlation matrix of the serum and cellular iron status measurements in the 

pregnant women is presented in TABLE 6 (I). A similar matrix for newborn infants is 

shown in study II (Table 3). In the women, the correlations between the CH and HYPO 

indices were highly significant, whereas in newborn infants they were not. In the 

women, Hb correlated more tightly with cellular indices (%HYPOm, %HYPOr) than 

with serum iron status markers (ferritin, iron, TfSat). Moreover, the correlation between 

Hb and transferrin as well as sTfR was not significant in the women. The results were 

opposite in newborn infants, where Hb correlated significantly with sTfR but not with 

%HYPOm, %HYPOr, CHm and CHr (II). 

 

5.5. Association between serum erythropoietin concentration and cellular indices 

(III, IV) 

Cellular iron status indices correlated significantly with serum EPO in the pregnant 

women and in cord blood at birth (III, IV). The most significant correlations were found 

between the EPO concentration and %HYPOr (r = 0.57, p < 0.001), %HYPOm (r = 

0.52, p < 0.001) and CHr (r = - 0.45, p < 0.001) in the women, and between EPO and 

%HYPOr (r = 0.56, p < 0.001), MCVr (r = 0.50, p < 0.001) and %HYPOm (r = 0.45, p 

< 0.001) in cord blood. Furthermore, serum iron status measurements correlated 

significantly with serum EPO concentrations in the women (sTfR r = 0.26, p < 0.001; 

ferritin r = - 0.32, p < 0.001; transferrin r = 0.14, p = 0.046) and in cord blood (sTfR r = 

0.42, p < 0.001; iron r = - 0.28, p < 0.001; transferrin r = 0.31, p < 0.001; TfSat r = - 

0.44, p < 0.001) (III, IV). Similarly, in the quartile analyses, significantly higher 

%HYPOm and %HYPOr values were found in the highest EPO concentration quartiles 

of the women, and of cord blood, than in the lowest EPO concentration quartiles 

(FIGURE 11). 
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FIGURE 11 Box-plots of %HYPOm and %HYPOr in the quartile groups of erythropoietin 
(EPO) concentration of pregnant women and cord blood at birth. 

 

5.6. Association between pH and cellular indices in cord blood at birth (IV) 

In FIGURE 12, box-plots of the Hb, MCHC, %HYPOm and %HYPOr results are 

shown in the groups of newborn infants with no signs of clinical asphyxia (n = 126, pH 

not analysed), normal pH (> 7.15, n = 51) and low pH (≤ 7.15, n = 16). Newborn infants 

with low umbilical vein blood pH had significantly higher %HYPOm, %HYPOr, and 

IRF-H, and lower MCHC than newborn infants with normal pH. In addition, their EPO 

levels were higher, as were sTfR and the TfR-F Index (study IV, Table 4). The 

correlations between pH level, serum and cellular iron status measurements are shown 

in Table 3 in study IV. 
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FIGURE 12 Box-plots of Hb, MCHC, %HYPOm and %HYPOr in the groups of newborn 
infants without clinical signs of asphyxia (no pH measurements, n = 126), with normal pH 
(> 7.15, n = 51) and with low pH (≤ 7.15, n = 16). 

 

5.7. Quantitative flow cytometric method for transferrin receptor expression on 

reticulocytes (V) 

The quantitative expression of the TfR on reticulocytes was measurable by FCM (V). 

The stability of TfR expression on reticulocytes in EDTA samples was excellent, as the 

ABC of TfR expression of three samples remained stable for up to 28 hours (CV% 2.6–

3.0 %) when the samples were stored at room temperature or at + 4 °C (unpublished 

data). However, after the samples were stained, the median of TfR expression increased 

progressively (unpublished data), which is why the samples should be analysed 

immediately after incubation in TO-dye. Intra-assay variability (CV%) ranged from 4.2 

% to 12.4 % for ABC of TfR expression, and from 2.4 % to 10.6 % for %TfR+Ret (V). 

The day-to-day variation was calculated between the three days in one individual, and 
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the CV% ranged from 3.3 % to 8.7 % for ABC of TfR expression and from 3.3 % to 

22.8 % for %TfR+Ret (V). 

The Spearman correlation coefficient between ABC and %TfR+Ret was highly 

significant, being 0.96 (p < 0.001) (TABLE 7). ABC and %TfR+Ret correlated 

significantly especially with the reticulocyte indices, but also with Hb, HCT and RBC 

indices (TABLE 7). There were no significant correlations between serum sTfR or 

ferritin, and ABC or %TfR+Ret (TABLE 7). In addition, there was no correlation 

between absolute amounts of reticulocytes and ABC or %TfR+Ret, although %Retic 

correlated significantly with ABC and %TfR+Ret. This may be partly due to iron-

deficient patients having higher %Retic. 

Low ABC levels and a low %TfR+Ret were seen especially in the control group 

without iron deficiency. The patients who were categorized by their iron status into the 

FID or FID+ID groups had significantly higher ABC values than controls or patients 

with replete iron status (TABLE 8). Moreover, patients in the iron deficient groups had 

higher %TfR+Rets (TABLE 8). 
 
TABLE 7 Spearman correlations between antibody binding capacity (ABC), percentage of transferrin 
receptor positive reticulocytes (%TfR+Ret) and serum and cellular iron status measurements in 58 
subjects. 
  ABC  %TfR+Ret  Reticulocyte count  %Reticulocytes 

Hb   - 0.528**  - 0.554**  - 0.410**  - 0.500** 

Hct  - 0.528**  - 0.540**  - 0.414**  - 0.514** 

IRF-H  0.652**  0.682**  0.500**  0.632** 

MCV  - 0.167  - 0.149  0.414**  0.354** 

CHm  - 0.353**  - 0.344**  0.306*  0.181 

CHr  - 0.602**  - 0.596**  0.055  - 0.022 

%HYPOm  0.598**  0.578**  0.094  0.271* 

%HYPOr  0.718**  0.746**  0.204  0.369** 

sTfR  0.246  0.258  - 0.099  0.026 

Ferritin  0.189  0.227  0.305*  0.307* 

TfR-F Index  0.052  0.047  - 0.243  - 0.167 

ABC    0.956**  0.188  0.362** 

%TfR+Ret      0.214  0.366** 

Reticulocyte count           0.932** 

Two-tailed correlation is significant at the ** 0.01 and * 0.05 level. 
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TABLE 8 Antibody binding capacity (ABC) and percentage of transferrin receptor positive reticulocytes 
(%TfR+Ret) in 58 subjects in control, replete, functional iron deficiency or functional iron deficiency + 
iron deficiency groups. 
 Controls Replete FID FID + ID 

  (n = 12) (n = 12) (n = 24) (n = 10) 

ABC (gate B) 663 ± 110 897 ± 329 1763 ± 922** 1441 ± 727*

%TfR+Ret (%) 17.9 ± 6.2 22.9 ± 8.9 40.1 ± 9.8** 36.1 ± 9.8**

Difference between the controls and the patient groups (one-Way-ANOVA with Tukey) is significant at 
the **0.01 and *0.05 level. 
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6. DISCUSSION 

The basic goal of clinical laboratories is to serve clinical practice and help clinicians to 

make diagnoses, to monitor patients, or to make treatment decisions by developing the 

most appropriate, simple, straightforward, and cost-effective methods. The goal can be 

reached by developing more accurate tests, using the applications of modern medical 

laboratory sciences. 

Since iron homeostasis plays a crucial role in human life, both iron deficiency and 

iron overload need accurate measurement already before diseases become manifest. 

There are many laboratory tests for the evaluation of iron balance, some of which are 

quite sensitive and specific markers in clinical settings. However, they are inaccurate 

and unable to reflect accurately the dynamic process and different phases of iron 

homeostasis with particular patient groups (e.g. pregnant women, children) and in some 

conditions (e.g. increased erythropoiesis). Since most of the iron is in Hb molecules of 

RBCs, and the appropriate laboratory technique is available, there is increasing interest 

in evaluating iron status at the cellular level. In the present studies, the parameters 

reflecting cellular iron status were investigated in pregnant women and their newborn 

infants. The correlations between the iron status measurements and EPO concentration 

were also studied in these populations. 

Additionally, as a result of the development of quantitative FCM, new methods 

have been introduced to measure the amount of antigen expression on the cell surface. 

This was investigated by measuring TfR expression on the surface of reticulocytes in 

order to analyse the cellular need for iron in selectively chosen hospital patients with 

different stages of iron status. 

 

6.1. Validity of the results: strengths and weaknesses of the studies 

In studies I–IV on pregnant women and their newborn infants, the subjects were 

recruited unselectively at Kuopio University Hospital, which covers the area of the 

Pohjois-Savo Health Care District (population about 150 000). In this area, the 

deliveries are concentrated in one major hospital, with approximately 2 400 deliveries 
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per year. The pregnant women were recruited consecutively during working hours from 

the women who were admitted to the hospital for delivery and who were willing to 

participate in the study, which investigated both pregnant women and cord blood at 

birth. Only a minority of the pregnant women were recruited from the ward before 

delivery. An unselective approach like this provides an appropriate representative 

population for screening and cross-sectional comparison of the subjects, and also makes 

it possible to establish reference values for laboratory tests, which was one purpose in 

the present studies. In these studies (I–IV), only a few subjects (2–10 %) were excluded 

from particular sets of data analysis because some of the laboratory test results were 

missing. Two pregnant women were excluded because they gave birth to twins, and four 

were excluded because their babies’ gestational age was less than full-term (< 37 

weeks). Therefore, excluding subjects did not affect the validity of the results. When 

evaluating iron status using the RBC and reticulocyte indices, we should take into 

account the possibility that thalassemias may be an interfering factor (d'Onofrio et al, 

1992). However, since these studies (I–V) involved only a population with an ethnic 

Finnish background living in the Pohjois-Savo area, we can assume that it did not 

contain thalassemia patients, as the thalassemias are so rare in the Finnish population. 

The iron status of pregnant women (I–IV) was determined only at term. However, 

since measurement at the time of delivery reflects the final balance of iron distribution 

between the mother and fetus, we expected to find considerable differences in the iron 

status of the pregnant women, which, in turn, could have provided good population 

estimates for possible differences between various parameters. However, this collection 

protocol does not provide results for evaluating iron status during pregnancy, and 

therefore further studies are warranted to evaluate the usefulness of RBC and 

reticulocyte indices during the course of pregnancy. 

A weakness of the studies I–IV is that it was not possible to adjust the amounts of 

supplemented iron taken by the subjects. The data on iron supplementation were 

obtained only at the time of delivery, after consent forms had been signed. Therefore, 

the iron medication taken by subjects may have influenced the iron status in both the 

pregnant women and their newborn infants. It may be assumed that providing iron 

medication reduces the likelihood of finding iron-deficient subjects and improves the 
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iron status of the subjects. In any case, these studies were not performed in order to 

evaluate the benefits or disadvantages of iron supplementation on pregnancy outcome, 

pregnant women or newborn infants. Again, on the basis of these results, only the final 

balance of iron homeostasis between the mother and the fetus can be estimated. 

Study IV investigated the relationship between EPO and cord blood pH results 

and iron status. A weakness in this study was that pH results were not available for all 

newborn infants because pH measurements were done only if a newborn had had 

clinical indications for pH measurements. This is why statistical comparisons between 

the newborn infants with or without clinical signs of asphyxia could not be performed. 

Consequently, only the descriptives of the iron status analyses in newborn infants with 

incomplete pH data were presented. 

In study V, in which the quantitative FCM analysis for evaluating the iron need of 

developing erythroid cells was developed, the use of a selective study population was 

the most appropriate in order to achieve samples in different stages of iron status. The 

samples were chosen on the basis of cell counter indices, which have been shown to 

reflect different phases of iron-deficient erythropoiesis. 

 

6.2. Screening the iron status: from hemoglobin to red blood cell indices 

The basic blood count, including the number of leucocytes, erythrocytes and 

thrombocytes, and Hb concentration, is one of the main laboratory tests in clinical 

medicine. Although Hb concentration is of great value in judging and monitoring 

anemia, the current techniques give more accurate measurements to evaluate cellular Hb 

(Mohandas et al, 1986). The main clinical interest in the RBC and reticulocyte indices 

has been their use in distinguishing between different anemias on the basis of the size of 

the red cells (Wintrobe, 1932). The main purpose of the new RBC and reticulocyte 

indices has been the monitoring of iron status in patients receiving rHuEPO treatment 

(Fishbane et al, 2001; Katodritou et al, 2007).  
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TABLE 9 Studies on diagnostic accuracy using cellular indices as markers of iron deficiency or iron-
deficiency anemia. 
Study Patients Diagnostic criteria Variable AUC 

CHr 0.78 Brugnara et al, 1999 210 children (mean ± 
age, 2.9 ± 2.0) 

TfSat < 20 % 
Ferritin 0.57 

Mast et al, 2002 MCV 0.505 or 0.570 (in 
patients with 
MCV > 100 fL) 

 

78 patients undergoing 
bone marrow 
examination 

Lack of iron in bone 
marrow 

CHr 0.642 or 0.735 (in 
patients with 
MCV > 100 fL 

      Ferritin 0.660 or 0.690 (in 
patients with 
MCV > 100 fL) 

CHr 0.86 Kotisaari et al, 2002 34 anemic female 
students 

sTfR ≥ 2.4 mg/L 
CHm 0.88 

   %HYPOr 0.90 
     %HYPOm 0.98 
 sTfR ≥ 2.4 mg/L %HYPOm 0.77 
  

95 anemic hospitalized 
patients   %HYPOr 0.67 

TfSat < 10 % Hb 0.73 Ullrich et al, 2005 202 infant (9–12 months 
old)   CHr 0.85 

Hb 0.7350 Radtke et al, 2005 1142 blood donors *Log TfR/Ferritin ≥ 
2.5 CHr 0.8301 

  CHm 0.8493 
  %HYPOm 0.8331 
  %HYPOr 0.8263 

*Note that ferritin is 
included in the ID 
diagnosis (Log 
TfR/Ferritin)      *Ferritin 0.9777 

7 dogs TfSat < 28 % MCV 0.748 
  MCHC 0.654 
  CHr 0.881 

Fry and Kirk 2006 

   %HYPOr 0.841 
  MCV 0.852 
  

TIBC > 365 µg/dL 
MCHC 0.653 

   CHr 0.899 
      %HYPOr 0.945 

TfSat ≤ 11 % MCV 0.63 Ervasti et al, 2007 198 pregnant women at 
term  CHr 0.79 

   %HYPOm 0.75 
      %HYPOr 0.80 

Hb 0.827 Luo et al, 2007 
MCV 0.817 

 

Ferritin ≤ 14 µg/L 
and Hb ≥ 110 g/L 

CHr 0.892 
 

172 premenopausal  
women 

Hb 0.900 
  

Ferritin ≤ 14 µg/L 
and Hb ≤ 110 g/L MCV 0.886 

     CHr 0.928 
 

On the basis of several studies, RBC and reticulocyte indices offer the possibility 

to diagnose, monitor and screen the iron balance. RBC and reticulocyte indices reflect 

iron status at the cellular level, so they are dependent on the relationship between iron 
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The lack of an appropriate gold standard has been a problem in evaluating the 

diagnostic accuracies of iron status markers. In some cases, bone marrow iron staining 

has been used as the gold standard. The accuracy of RBC indices from bone marrow 

samples was assessed in only one of the studies in TABLE 9 (Mast et al, 2002). 

However, since bone marrow sampling is invasive, it is inappropriate in many clinical 

situations and especially for screening purposes. Using bone marrow examination, it is 

also impossible to assess accurately the amount of iron stores, and only rough stages can 

be graded.  

 

6.3. Advantages and disadvantages of red blood cell indices in the evaluation of 

iron status 

While Hb alone has been used as a parameter for screening the iron status for decades, it 

is now possible to estimate the changes in the Hb content of RBCs and reticulocytes. 

Tools (mechanic, electronic and optic) to measure cell indices are available and the 

development of cell counters concentrates on the handling of data and on the 

development of the software. An important benefit of advanced RBC and reticulocyte 

indices is the rapid real-time monitoring of the changes in erythropoiesis, as the indices 

can be measured in RBC and reticulocyte populations. This facilitates the detection of 

iron deficiency already in the subclinical phase before manifested anemia. Moreover, 

supply and demand in bone marrow. When insufficient iron is available, more RBCs 

containing less Hb are produced. The novel red cell indices have been proved to be 

more accurate than Hb and ferritin in screening iron status (TABLE 9) (Brugnara et al, 

1999; Mast et al, 2002; Kotisaari et al, 2002; Ullrich et al, 2005; Radtke et al, 2005; Fry 

et al, 2006; Luo et al, 2007; Ervasti et al, 2007a). Although in these studies the 

diagnostic criteria of iron deficiency vary or are combined with anemia, the AUCs of 

novel cellular indices exceed those of ferritin or Hb as well as conventional RBC 

indices such as MCV or MCHC. If iron-deficiency anemia was evaluated in these 

studies, the RBC and reticulocyte indices provided greater AUCs in comparison with 

the evaluation of iron deficiency alone. This may be due to the more severe stage of iron 

deficiency in the former (TABLE 9). 
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the cell indices are cost-effective in clinical practice, because the results can be printed 

out along with the data included in the basic blood count without any need for other 

reagents (Brugnara et al, 1999; Ullrich et al, 2005; Radtke et al, 2005). However, it 

should be kept in mind that by using the RBC and reticulocyte indices, the assessment 

of iron availability for erythropoiesis in cellular compartment can be performed, but that 

is not a measure of the total amount of iron in the body. 

The major disadvantage of the use of novel red cell indices has been for a long 

time the fact that only one modern cell counter manufacturer has provided and patented 

the method of the indices (Mohandas et al, 1986). However, several cell counter 

manufacturers have now developed the corresponding indices (Franck et al, 2004; 

Thomas et al, 2005; David et al, 2006; Brugnara et al, 2006), which have been shown to 

accurately reflect iron-deficient erythropoiesis. 

According to one study (Mast et al, 2002), the presence of variable numbers of 

macrocytic RBCs may hamper the use of the RBC and reticulocyte indices in accurately 

diagnosing iron status. Actually, this phenomenon of increased RBC volume has also 

been documented in patients undergoing cardiac surgery who are receiving rHuEPO 

treatment, and in newborn infants (study II), who typically have accelerated 

erythropoiesis (Sowade et al, 1998; Ervasti et al, 2007b). Thus, this may be due to 

increased amounts of reticulocytes rather than the impact of MCV itself. This might be 

one component contributing to the great variation in decision limits for %HYPO (3.7–

10 %) that have been suggested for the assessment of iron status in patients with chronic 

kidney disease who are receiving regular rHuEPO treatment (Fishbane et al, 2001; 

Kaneko et al, 2003). This phenomenon might also be a reason for the impaired response 

of %HYPOm to intravenous iron treatment in patients who need increasing rHuEPO 

doses, even though the correct Hb level has been attained (Sunder-Plassmann et al, 

1997). 

If sufficient iron is not available for Hb synthesis, the progression of iron 

deficiency causes changes in all iron compartments (Suominen et al, 1998). Basically, 

in pure progressive iron deficiency, an inadequate supply of iron to the erythroid 

precursors in bone marrow results in decreased Hb content in new RBCs. There are so 

far no studies determining the limit for ferritin concentration which defines the level 
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when iron-deficient reticulocytes are developed. A schematic presentation (FIGURE 

13) of the progression of iron deficiency shows that progressively decreasing iron stores 

are not able to provide sufficient iron into the whole developing erythroid mass. 

Simultaneously, reduced Hb synthesis can be observed in the RBCs that are found in the 

blood circulation. However, blood Hb concentration may remain for a while within the 

reference limits even if the iron stores are fully depleted (FIGURE 13). 

 

FULLY DEPLETED IRON STORES

IRON STORES

%HYPOm

TfR

Hb

Ferritin
CHr

 
FIGURE 13 Schematic presentation of the development of iron deficiency when iron stores 
are being exhausted. Before the iron stores are fully depleted, cells containing reduced 
amounts of hemoglobin are produced and this is reflected by decreased cellular hemoglobin 
content in reticulocytes (CHr) and more hypochromic red blood cells (%HYPOm). 
Hemoglobin concentration may remain for a while within the reference limits even if the 
iron stores are fully depleted. 

 

6.4. The use of red blood cell and reticulocyte indices, and the serum iron status 

measurements in pregnant women at term 

The clinical performance of the current markers of iron status is far from perfect during 

pregnancy. Nevertheless, too often the current clinical routine in Finland is to assess the 

iron status of pregnant women by merely measuring Hb using a simple bedside device 

as a rapid screening marker in maternity care units. On the basis of study I, the new 
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RBC and reticulocyte indices were the most accurate diagnostic markers of iron status 

in pregnant women at term, which is consistent with findings of earlier studies with 

other populations (Mast et al, 1998; Brugnara et al, 1999; Kotisaari et al, 2002; Ullrich 

et al, 2005; Radtke et al, 2005; Fry et al, 2006; Luo et al, 2007). Before cell indices are 

used in the course of pregnancy, further studies are needed to evaluate their usefulness 

in monitoring the iron availability for erythropoiesis in the course of pregnancy. 

While the need for iron increases during pregnancy, the accuracy of iron status 

measurements falls. In addition to diurnal and day-to-day variations, there are also 

pregnancy-specific alterations in serum proteins and Hb concentration during pregnancy 

(Borel et al, 1991; Scholl et al, 1992; Allen, 1997; Choi et al, 2000a; Milman et al, 

2007). Maternal iron stores are mobilized from bone marrow stores because of the need 

for iron in, for example, the maternal and fetal RBCs (Svanberg et al, 1975), which 

reduces the total ferritin concentration in pregnant women during gestation (Milman et 

al, 1999). However, as with the decreased Hb due to hemodilution during pregnancy, 

this is also an apparent reason for decreased serum iron status measurement (iron, 

ferritin) (Bentley, 1985; Milman et al, 1999). Therefore, the specificity of low ferritin in 

reflecting depleting iron stores also falls during pregnancy. These alterations have been 

shown to be evident in pregnant women with or without iron supplementation 

(Svanberg et al, 1975; Milman et al, 1995). In pregnant women, the transferrin 

concentration in serum typically increases without evidence of iron deficiency, so 

transferrin saturation decreases. Hence, measuring the changes in cellular Hb content 

provides a significant improvement in the evaluation of iron status in pregnant women, 

because the iron is mobilized from the stores to Hb synthesis in the RBC. Additionally, 

since iron is accumulated in the fetus at the expence of the mother, we can assume that 

maternal iron status is too low if maternal RBCs have insufficient amounts of iron and 

hypochromic cells are formed. Therefore, evaluating the features of the largest 

compartment (hematological) of iron status may be an accurate tool in evaluating the 

iron status of pregnant women.  

Moreover, the RBC volume increases usually in the course of pregnancy, and 

MCV is increased by about 4 fL (Chanarin et al, 1977; Milman et al, 2007). This is 

assumed to be a consequence of the increased number of reticulocytes in late pregnancy 
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(Chanarin et al, 1977; Milman et al, 2007). MCV is also a markedly late marker of iron 

deficiency, so it is not a reliable measure of iron deficiency during pregnancy especially 

if the normal lower cut-off limit (82 fL) is used.  

Only a few studies have investigated the new RBC and reticulocyte indices in 

pregnant women or during the postpartum period. %HYPOm has been shown to reflect 

iron status during rHuEPO and iron supplementation in the course of pregnancy 

(Breymann, 2002). Moreover, postpartum oral iron supplementation (of dose 80 mg) 

has been shown to reduce the %HYPOm with iron (Krafft et al, 2005). It has also been 

reported that on the basis of cellular Hb content, there was no evidence of postpartum 

(up to day 42) iron deficiency (Richter et al, 1999). Importantly, %HYPOm has been 

reported not to be affected by inflammatory response at term of pregnancy (Krafft et al, 

2003). 

It has been reported that ferritin was the most useful laboratory measurement of 

iron status during pregnancy in severely anemic pregnant Malawi women (van den 

Broek et al, 1998b). However, although ferritin concentration decreases significantly 

during pregnancy, the duration of pregnancy was not adjusted in that study.  Moreover, 

bone marrow iron could have been redistributed to meet the need for increased amounts 

of RBCs in these women, which might be the basis for decreased iron stores, but not the 

whole iron content of the body. A valuable suggestion regarding the use of ferritin in 

obstetrics is that the need for iron supplementation during pregnancy should be analysed 

in early pregnancy, when iron stores are not yet mobilized (Milman et al, 1995; Milman 

et al, 2006). 

Some investigators suggest that sTfR reflects iron status also during pregnancy 

and the improvement of iron status by iron supplementation, and hence it is a useful 

marker of iron status (Carriaga et al, 1991; Åkesson et al, 1998; Rusia et al, 1999). 

However, it has also been shown that sTfR is elevated with increasing gestation 

concomitantly with increased erythropoiesis but without evidence of iron deficiency 

(Beguin et al, 1991; Åkesson et al, 1998; Choi et al, 2000a; Choi et al, 2001a). In study 

I, the diagnostic accuracy of sTfR was very low in comparison with that of RBC and 

reticulocyte indices, ferritin or Hb. Additionally, it has been speculated that maternal 

sTfR might be partly produced in the placenta (Carriaga et al, 1991). 
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6.5. Limitations of iron status markers in newborn infants 

There is no appropriate iron status measurement for newborn infants. Ferritin is the 

most widely used marker of iron status in newborns, and a value below 60 µg/L may 

reflect low iron status (Rao et al, 2007). Physiologically, fetuses accumulate iron from 

the maternal side throughout pregnancy and the most abundant amounts of iron are 

stored during the third trimester (Siddappa et al, 2007). Iron is transferred to the bone 

marrow in fetuses, in order to fulfil the demand for accelerated erythropoiesis, after 

which iron is stored as ferritin. The longer the pregnancy lasts, the larger the iron store 

in the fetus will be (Rao et al, 2007). Consequently, there is wide variation in newborn 

ferritin values. 

The use of sTfR concentration as the only iron status marker in the newborn 

period has been questioned, although some studies claim that sTfR or TfR-F Index may 

be useful markers of iron status in newborns (Rusia et al, 1995; Kuiper-Kramer et al, 

1998a; Sweet et al, 2001). sTfR cannot be considered only as an indicator of iron 

requirements for erythropoiesis in newborns (Rusia et al, 1995; Choi et al, 2003), since 

changes in the rate of erythropoiesis may significantly contribute to the serum 

concentrations of sTfR (Carpani et al, 1996; Kuiper-Kramer et al, 1998a; Sweet et al, 

2001). Furthermore, the usefulness of sTfR as an iron status marker in newborns may 

also be impaired by significant day-to-day variations in sTfR concentration during the 

first days of life (Kuiper-Kramer et al, 1998a). 

In study II, %HYPOm and %HYPOr correlated with TfSat. However, in newborn 

infants hypochromacy indices were also positively correlated with the size of the RBCs 

and reticulocytes (MCV and MCVr). The rate of fetal erythropoiesis is accelerated 

towards term, and there is a marked release of reticulocytes and young erythrocytes, 

containing less Hb, into the blood stream (Palis et al, 1998), which in turn is reflected as 

high IRF-H (Ervasti et al, 2007b). However, mean CHr and CHm were quite stable and 

no significant correlations between CHr, CHm and serum iron status measurements 

were found in newborn infants. 

In study V, the quantitative FCM measurement of the cellular iron need was 

developed. Since we only presented the assay in the study, further studies are needed to 

establish its clinical usefulness. The purpose of this method was to assess iron need 
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even if the rate of erythropoiesis is accelerated (Ervasti et al, 2004). Measuring TfR 

expression on reticulocytes might help in the evaluation of the iron need in newborn 

infants, because they have physiologically highly accelerated erythropoiesis, and 

accumulate primarily their iron in the developing erythrocytes. This method might also 

provide an opportunity to reduce the sample volume, which is important during the 

early weeks of life in premature newborns. 

 

6.6. Transferrin receptor expression as a marker of iron demand in reticulocytes 

Although serum sTfR concentration is a remarkably good indicator of the availability of 

iron, it is also increased when the number of erythropoietic cells in bone marrow is 

increased (they contain the most abundant numbers of TfR in the body) (Punnonen et al, 

1997; Kuiper-Kramer et al, 1998b; Ervasti et al, 2004). The quantitative flow 

cytometric analysis for TfR expression on reticulocytes was developed (study V) in 

order to analyse the iron requirement at the cellular level in newly-formed erythroid 

cells. Using this method, the contribution of erythropoietic mass to the observed 

increase in plasma sTfR level may be eliminated (Ervasti et al, 2004). While the 

measurement of TfR expression was feasible, the day-to-day variation as well as the 

inter- and intra-variable variations were remarkably low. The stability of the samples for 

up to 28 hours advocates the use of quantitative FCM analysis (study V). However, the 

stability of TO dye limits the assay, but it should be taken into consideration when 

analysing the samples.  

Similarly to %HYPOr and CHr, TfR expression on reticulocytes also reflects a 

real-time requirement for iron. The ABC level or the %TfR+Rets correlated significantly 

with the cellular iron status indices, which can also be assumed to be related to the need 

for iron in erythroid cells. No correlations between sTfR and TfR expression were 

found, which can be due to the fact that the plasma sTfR concentration is also dependent 

on the whole mass of erythropoietic tissue. 

A challenge for this FCM TfR expression measurement might be the rarity of 

reticulocytes in proportion to the total amount of the RBCs in the blood samples, as well 

as the rate of the biological process in erythroid marrow. However, no correlations 
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between the ABC values or the %TfR+Rets and the reticulocyte count were found. 

Therefore, the mass of erythropoiesis seems not to be a major determinant of the 

%TfR+Rets or the ABC values. Moreover, a uniform rise in TfR expression in all 

maturation stages of reticulocytes was found in iron-deficient patients. Thus, the 

maturation stage of reticulocytes is not the only cause of high TfR expression: the 

availability of iron is also a cause of high TfR expression (Serke et al, 1993; Kuiper-

Kramer et al, 1998b). The results of study V are consistent with those of previous 

studies that have shown increased TfR expression in iron-deficient conditions (Kuiper-

Kramer et al, 1997; Kuiper-Kramer et al, 1998b). This method needs to be evaluated in 

clinical studies, especially in patients with accelerated erythropoiesis and in patients 

who are at risk for functional iron deficiency, such as in patients undergoing rHuEPO 

treatment. 

 

6.7. Iron-deficient cells may impair oxygenation 

Tissue oxygenation is dependent on the oxygen-carrying capacity, arterial pO2, O2 

affinity and the blood flow in tissues. The oxygen-carrying capacity in turn depends on 

the cardiac output and blood oxygen content (Hb saturation and concentration). Hypoxia 

can be caused by low cardiac output, hypoxemia (low arterial pO2) and low blood Hb 

content (Brouillette et al, 1997). Perinatal asphyxia is a condition in which placental gas 

exchange is inadequate, and fetal metabolism changes from aerobic to anaerobic, which 

leads to metabolic acidosis and lower pH levels. The pH level is higher in umbilical 

cord vein than in umbilical arteries (Brouillette et al, 1997). Perinatal asphyxia causes 

many problems (mortality and morbidity in newborns and neurological disturbances in 

later life), but umbilical artery pH level predicts poorly perinatal brain damage (Ruth et 

al, 1988). When the fetus suffers from tissue hypoxia, the serum EPO concentration 

increases, which is why fetuses with chronic hypoxia (e.g. diabetes mellitus, 

preeclampsia or growth retardation) have increased serum and amniotic fluid EPO 

concentrations (Teramo et al, 2004a). Hence, increased serum and amniotic fluid EPO 

concentrations can be used as markers of chronic and subchronic fetal hypoxia (Teramo 

et al, 2004a; Teramo et al, 2004b; Teramo, 2006). 
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When tissue oxygenation is inadequate, EPO synthesis is stimulated, which in turn 

accelerates erythropoiesis, leading to an increase in the number of erythrocytes, and the 

production of them consumes iron reserves (FIGURE 14). It has been shown that 

infants of diabetic mothers have suffered from chronic hypoxia causing a redistribution 

of body iron, and this is reflected by the changes in the serum markers of iron status 

(decreased ferritin, elevated ZnPP and increased TIBC) (Georgieff et al, 1990). 

Importantly, it is characteristic of stillborn fetuses who have died of chronic hypoxia 

(e.g. diabetes mellitus) that their iron stores have been fully depleted (Petry et al, 1992). 

Increased amounts of RBC ZnPP reflecting impaired iron availability for erythropoiesis 

have also been found to be associated with high EPO levels in newborn infants (Lott et 

al, 2005). Additionally, iron status has been shown to be connected with high EPO 

levels in pregnant women (Milman et al, 1997; McMullin et al, 2003). 

 

 

Enhanced 
erythropoiesis

Consumption of iron stores

O2 carrying 
capacity

 TISSUE OXYGENATION

pO2 pH
EPO

Iron deficient 
erythrocytes

 
FIGURE 14 Schematic presentation of the association of tissue hypoxia with iron 
metabolism. Tissue hypoxia causes an increased EPO concentration. In conditions where 
metabolism is anaerobic, pH levels decrease. Increased EPO concentration stimulates 
erythropoiesis in order to get the maximal amounts of erythrocytes to improve oxygenation. 
Increased erythropoiesis consumes body iron reserves and if the iron reserves are depleted, 
cells containing less hemoglobin develop. If the cells have less hemoglobin, they may have 
impaired oxygen-carrying capacity and the tissue hypoxia increases. 
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If insufficient iron is available, RBCs will become hypochromic because of the 

low Hb content (FIGURE 14). Consequently, hypochromic RBCs may not carry 

sufficient oxygen to the tissues, which may result in more severe tissue hypoxia 

(FIGURE 14). This was suggested in studies III and IV, in which the oxygen-carrying 

capacity appeared to be impaired when high amounts of hypochromic cells containing 

less Hb were present (FIGURE 14). Thereafter, tissue oxygenation may decrease and 

induce stimulation of EPO production. 

There were no significant correlations between hypoxia markers (EPO and pH) 

and iron stores (ferritin), and RBC count or blood Hb concentration (IV). However, of 

the cellular indices, %HYPOm, %HYPOr, MCHC and MCV correlated with the serum 

EPO concentrations and pH levels of the cord blood at birth (IV). Additionally, the 

correlation between serum EPO concentration, and sTfR and TfSat was significant in 

cord blood at birth (IV). This could be explained by the changes in Hb content of RBC 

and reticulocytes influencing the oxygenation of tissues even if the fetal blood Hb 

concentration is regarded as normal. Hence, along with RBC mass (Beguin et al, 1993; 

Cazzola et al, 1998), the quality of the RBCs may have influenced the oxygen carrying 

capacity (studies III and IV). However, in this study setting, it was not possible to 

evaluate precisely which was the first step, placental insufficiency or simply the reduced 

availability of iron at the same time. 

EPO concentration is also known to increase due to the distress at delivery 

(Widness et al, 1984). This was also found in study IV, since newborn infants who were 

born by emergency section or by vaginal delivery had significantly higher EPO 

concentration than newborn infants with elective section. 

 

6.8. Conclusions and future research 

Ferritin, a marker of the stored iron compartment, reflects the reserve of body iron 

(FIGURE 15). Transferrin and TfSat reflect iron transferred in the serum (FIGURE 

15), and they have diurnal variation and many interfering factors. The RBCs reflecting 

the hematological iron compartment contain a significant amount (65 %) of the whole 

iron content of the body (FIGURE 15). Using currently available RBC and reticulocyte 
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indices, it is possible to measure the whole Hb concentration and the quality of the cells 

(size and Hb content) (FIGURE 15). Additionally, the cellular iron availability of 

reticulocytes (%TfR+Ret), which reflect the state of erythropoiesis, can now also be 

measured (FIGURE 15). When more clinical studies have been made, indices reflecting 

the features of cells might offer a way to move from screening iron deficiency by Hb to 

more sensitive and rapid indicators of iron deficiency. 

 

 

  
 
 
 
 
 
 
 
 
 



89 
 
  

 

FI
G

U
R

E
 1

5 
Sc

he
m

at
ic

 p
re

se
nt

at
io

n 
of

 c
ur

re
nt

ly
 a

va
ila

bl
e 

iro
n 

st
at

us
 m

ea
su

re
m

en
ts

 re
fle

ct
in

g 
th

e 
di

ff
er

en
t c

om
pa

rtm
en

ts
 o

f s
ys

te
m

ic
 

iro
n 

ho
m

eo
st

as
is

. W
hi

le
 ir

on
 st

at
us

 c
an

 b
e 

m
ea

su
re

d 
by

 se
ru

m
 m

ar
ke

rs
, c

el
lu

la
r f

ea
tu

re
s a

re
 a

pp
ro

pr
ia

te
 to

ol
s f

or
 e

va
lu

at
in

g 
th

e 
H

b 
co

nt
en

ts
 a

nd
 th

e 
ne

ed
 fo

r i
ro

n.
 

ST
O

R
A

G
E

 IR
O

N
  

 

C
O

M
PA

R
T

M
E

N
T

 



90 
 
  

7. CONCLUSIONS 
 

RBC and reticulocyte indices are the most practical way to evaluate iron deficiency in 

pregnant women, at least at term. Advanced RBC and reticulocyte indices, such as CHr 

and %HYPOm, are available on automated cell analysers and they allow a simple and 

precise estimation of iron status. 

 

In newborn infants, both accelerated erythropoiesis and the magnitude of iron stores 

contributes to the RBC and reticulocyte indices, thus impairing the value of RBC and 

reticulocyte indices as specific indicators of iron deficiency. In cord blood at birth, 

reference values of iron status measurements show wide variations in both serum and 

cellular iron markers. 

 

While the state of anemia is a major contributor of oxygen-carrying capacity, the 

decreased amount of cellular Hb may also be associated with suboptimal tissue 

oxygenation based on alterations of the indicators of hypoxic conditions (EPO and pH) 

in pregnant women at term and in their newborn infants. 

 

TfR expression on reticulocytes can be quantified using the FCM method. High 

expression of TfR is found in patients with iron deficiency or functional iron deficiency, 

but not in controls or patients with adequate iron stores. Thus, reticulocytes with high 

TfR expression reflect a high demand for iron in RBC production. 

 

Indices reflecting the features of the RBCs and reticulocytes are available as diagnostic 

markers of iron status in modern laboratory cell analysers. More clinical studies might 

provide a way to move from screening iron deficiency by Hb to more sensitive and 

rapid indicators of iron deficiency. 
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