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ABSTRACT 
 
Heart rate (HR) is one of most easily measured exercise test variables. Although easily measured, the HR 
reflects a complex, integrated physiologic response: autonomic tone, central and peripheral reflexes, 
hormonal influences, and factors intrinsic to the heart are all important. During the last two decades 
exercise test derived HR variables have raised wide interest as prognostic markers of mortality and 
cardiac events both in asymptomatic persons and in patients with cardiovascular disease (CVD). The 
results of properly controlled studies suggest a possible bimodal relationship of HR to prognosis, in which 
both high HR at low workload and inappropriately low HR at maximal or near maximal workload are 
associated with adverse prognosis. 
Workload achieved at HR of 100 beats/min (WL100) and HR increase from 40% to 100% of maximal 
work capacity (HR40-100) were assessed using a maximal, symptom-limited exercise test on an 
electrically braked cycle ergometer. The complete data on exercise test variables was available for 1679 
men in a population based sample of men. During the follow-up of eleven years, deaths were ascertained 
by linkage to the National Death Registry, and the classification of acute myocardial infarctions was 
carried out according to the multinational MONICA project protocol. 
A new variable, HR40-100, quantifying an inappropriately low HR at maximal or near maximal workload 
was at least as strong a predictor of outcome as previously established related variables. A one standard 
deviation (SD) decrement in HR40-100 (13 beats/min) was related to an increased risk of all-cause death 
(relative risk, RR 1.3, 95% confidence interval, CI 1.1 to 1.6) and acute myocardial infarction (RR 1.3, 
95% CI 1.1-1.6) in men without coronary heart disease (CHD) at baseline after adjustment for age, 
cardiovascular risk factors and exercise test variables. After exclusion of men whose test was possibly 
terminated prematurely because of submaximal effort, symptoms, or findings which could be interpreted 
to indicate latent CHD, a low HR40-100 still was an independent predictor of outcome. A one SD 
decrement in WL100 was related to an increased risk of CVD death (RR 1.7, 95% CI 1.3-2.4) and all-cause 
death (RR 1.7, 95% CI 1.3-2.2) in men without CHD at baseline and in men with known or suspected 
CHD at baseline after adjusting for risk factors, respectively. The exclusion of men who had an outcome 
event during the first two years of follow-up did not affect the results. A low WL100 was associated with a 
high resting HR and a low maximal oxygen uptake, but in survival analyses a low WL100 still provided 
additional prognostic information beyond these variables. 
A blunted HR increase during the maximal exercise test is associated with an increased risk of death and 
adverse cardiac events in men without CHD at baseline. The association is particularly strong when the 
HR increase during the latter half of the test is considered. On the other hand, a low workload achieved at 
a submaximal HR of 100 beats/min predicts CVD and CHD mortality in men without CHD and all-cause 
death in men with known or suspected CHD. Contrary to previous interpretations, an exaggerated HR 
response at a low workload seems to indicate an increased risk by itself instead of being only a surrogate 
marker of a low cardiorespiratory fitness. The findings of the current thesis support the hypothesis that a 
bimodal relationship exists between HR and prognosis in which both an exaggerated HR response at 
submaximal workload and a blunted HR response at maximal or near maximal workload are associated 
with an adverse prognosis. In the current study sample several exercise test variables predict outcomes 
independent of each other and conventional risk factors. This emphasizes the importance of measuring 
several variables at submaximal and maximal workload and during recovery phase to maximize the 
prognostic yield obtained from the exercise test. 
 
National Library of Medicine Classification: WG 141.5.F9, WG 300 
Medical Subject Headings: Cardiovascular Diseases/epidemiology; Cardiovascular Diseases/mortality; 
Coronary Artery Disease; Exercise Test; Finland; Follow-Up Studies; Heart rate; Men; Myocardial 
Infarction; Risk Factor 
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TIIVISTELMÄ 
 
Sydämen sykintätaajuus, syke, on eräs helpoimmin mitattavista kuormituskoemuuttujista. Näennäisestä 
yksinkertaisuudestaan huolimatta mitattu syke on monimutkaisen säätelyn lopputulos, jossa autonomisen 
hermoston reflekseillä, hormonaalisilla tekijöillä ja sydämessä itsessään vaikuttavilla tekijöillä on 
kullakin oma osuutensa. Edeltäneiden kahden vuosikymmenen aikana kuormituskokeenaikaisen sykkeen 
on lukuisissa tutkimuksissa havaittu olevan yhteydessä kuolleisuuteen ja sydän- ja 
verisuonitautitapahtumiin sekä oireettomilla tutkittavilla että sydän- ja verisuonitautipotilailla. 
Tutkimusten perusteella sykkeen ja ennusteen yhteys on mahdollisesti kaksijakoinen niin, että sekä 
korostunut sykkeen nousu kevyessä kuormituksessa että toisaalta heikentynyt sykkeen nousu 
maksimikuormituksessa ovat yhteydessä huonoon ennusteeseen. 
Tässä itä-suomalaisessa väestöpohjaisessa seurantatutkimuksessa tehtiin maksimaalinen kuormituskoe 
1679 miehelle. Kuormituskokeessa määritettiin työmäärä, jonka tutkittava saavutti ennen sykkeen 
kohoamista yli 100 lyöntiä/min, ja sykkeen nousu välillä 40-100% tutkittavan maksimaalisesta 
suorituskyvystä. Tutkimuksessa selvitettiin näiden kahden sykemuuttujan ennusteellista merkitystä. 
Seurattavat päätetapahtumat 11 vuoden seuranta-aikana olivat kokonaiskuolleisuus, kuolleisuus 
sepelvaltimotautiin ja muihin sydän- ja verisuonisairauksiiin, sekä akuutti sydäninfarkti. Nämä 
päätetapahtumat luokiteltiin hyödyntäen sairaalapoistotietoja ja valtakunnallisen kuolinsyyrekisterin 
tietoja.    
Tutkimuksen keskeisinä löydöksinä todettiin, että heikentynyt sykkeen nousu välillä 40-100% tutkittavan 
maksimaalisesta suorituskyvystä ennustaa ennenaikaisen kuoleman ja akuutin sydäninfarktin riskiä 
miehillä, joilla ei ollut sepelvaltimotautia seurannan alkaessa. Tämä uusi heikentynyttä sykkeen nousua 
maksimikuormituksessa kuvaava muuttuja oli vähintään yhtä voimakas ennustaja kuin aikaisemmissa 
tutkimuksissa käytetyt vastaavaa ilmiötä kuvaavat muuttujat. Tämä tutkimus osoitti toisaalta sen, että 
matala saavutettu työmäärä ennen sykkeen kohoamista yli 100 lyöntiä/min ennustaa sydän- ja 
verisuonitautikuoleman riskiä miehillä, joilla ei ollut sepelvaltimotautia seurannan alkaessa. Sama 
muuttuja ennusti ennenaikaisen kuoleman riskiä myös miehillä, joilla oli todettu tai epäilty 
sepelvaltimotauti seurannan alkaessa. Matala työmäärä ennen sykkeen kohoamista yli 100 lyöntiä/min oli 
yhteydessä korkeaan leposykkeeseen ja huonoon kardiorespiratoriseen kuntoon, mutta elinaika-
analyyseissä sen havaittiin kuitenkin tuovan ylimääräistä ennustearvoa näiden kahden ennestään tunnetun 
vaaratekijän lisänä. Kokonaisuutena tulokset tukevat hypoteesia, että sekä korostunut sykkeen nousu 
kevyessä kuormituksessa että heikentynyt sykkeen nousu maksimikuormituksessa ovat yhteydessä 
huonoon ennusteeseen. 
Tämä väestötutkimus vahvistaa kliinisen kuormituskokeen merkitystä arvioitaessa myöhempien 
sydäntapahtumien ja enneaikaisen kuoleman vaaraa, sillä usealla kuormituskoemuuttujalla havaittiin 
olevan ennusteellista lisäarvoa perinteisiin vaaratekijöihin nähden. Tutkitut sykemuuttujat ennustivat 
päätetapahtumia sekä sepelvaltimotautia sairastamattomilla miehillä että sitä sairastavaksi todetuilla tai 
epäillyillä miehillä. Koska syke on eräs helpoimmin mitattavista kuormituskoemuuttujista, sykevasteen 
arviointi sekä kevyessä että maksimaalisessa kuormituksessa kannattaa ottaa huomioon arvioitaessa 
tutkittavan ennustetta kuormituskoetulosten perusteella. 
 
 
Yleinen suomalainen asiasanasto: sydän- ja verisuonitaudit, epidemiologia; sydän- ja verisuonitaudit, 
riskitekijät; syke; sydäninfarkti, miehet, Suomi 



  



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“A man’s nature and way of life are his fate, 

and that which he calls his fate is but his disposition.” 

 

 Menander (342-291 B.C.) 
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ICD International Classification of Diseases 
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1. INTRODUCTION 

 

Coronary heart disease (CHD) is the leading cause of death in the developed world (1) 

and may become the leading cause of death in the entire world (2). Although the 

incidence of CHD has been decreasing over the last two decades, the prevalence is 

expected to increase given the growing elderly population (3-5). It is important to 

implement cost-effective strategies that direct the appropriate individuals to the optimal 

risk reduction procedures through risk prediction (4-6). There is a growing awareness of 

the need to apply statistical techniques to develop evidence-based scores for better 

decision making (7). The goal of risk prediction through statistical methods is to 

provide a logical estimate as to the likelihood of the occurrence of important deleterious 

clinical events (3-5). The most important outcome is death, but the future risk of 

nonfatal clinical outcomes is also an important element of risk evaluation (3-5). Based 

on the worldwide epidemiological experience, the evaluation of cardiovascular risk is 

based on four time-honoured classical cardiovascular disease (CVD) risk factors: age, 

serum cholesterol, resting systolic blood pressure and smoking status (8).  

Exercise testing is not recommended in low-risk asymptomatic subjects due to both 

lacking evidence of its value and because false positive exercise electrocardiograms 

(ECGs) are common (9). However, the real issue is not to identify CHD, but to predict 

outcome (10). Because of this, increasing attention has been focused on the exercise test 

as a prognostic, as opposed to diagnostic, modality (11,12). It is well known that several 

exercise test indices in addition to ECG findings, such as exercise capacity (9,13), heart 

rate (HR) (14,15) and blood pressure (BP) responses (16) to exercise, are strong 

predictors of CVD events.  

Exercise is the body’s most common physiologic stress, and it places major demands 

on the cardiovascular system (17). The exercise test provides a precise and powerful 

noninvasive tool that permits the study of the regulation of the cardiovascular system 

under rigorously controlled and highly reproducible conditions, which include the full 

range of its functional capacity (18). The adaptations that occur during an exercise test 

allow the body to increase its resting metabolic rate up to 20 times, during which time 

cardiac output may increase as much as six times (17,19). The obvious advantage to the 
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researcher is that more is learned about how a system operates when it is forced to 

perform than when it is idle (18). Acute exercise can elicit cardiovascular abnormalities 

that are not evident at rest, and it can be used to determine the adequacy of 

cardiovascular function (19). 

Heart rate is one of the most easily measured exercise test variables. Although easily 

measured, the HR reflects a complex, integrated physiologic response: autonomic tone, 

central and peripheral reflexes, hormonal influences, and factors intrinsic to the heart 

are all important (20-22). Recently, the changes in HR during and after exercise have 

emerged as powerful measures of risk for future CVD event in their own right (23). An 

interesting fact from the viewpoint of basic exercise physiology is that the mechanisms 

mediating the association of exercise HR variables and an increased risk of outcomes 

are largely unknown (24-26).  

Office-based assessment of conventional risk factor burden is necessary, but may not 

accurately estimate risk of future CVD events (27). There is a need for easily available 

non-invasive methods to detect individuals with an increased risk of CVD events who 

would probably benefit most from preventive measures (28). The main aim of the 

current study is identify variables derived from exercise test HR which might serve as 

useful predictors for future CVD events and possibly provide additional prognostic 

information to conventional risk factors in a population-based sample of middle-aged 

men.  

  



 21 
 

2. REVIEW OF LITERATURE 

 

2.1 Sinoatrial node  

 

The normal heart beat starts in the sinoatrial (SA) node (20,21,29). The normal HR is 

determined by the firing frequency of SA node (20,21,29). The SA node is a small, 

flattened, ellipsoid strip of specialized cardiac muscle and associated fibroelastic 

connective tissue about 3 mm wide, 15 mm long, and 1 mm thick (29-31). It contains 

clusters of cells, poor in contractile filaments, where the automatic activity resides 

mostly in the pacemaker or P cells (32). Near the periphery of the SA node lie also 

another group of cells which are called as transitional cells (33). The SA node is located 

in the superior lateral wall of the right atrium immediately below and slightly lateral to 

the opening of the superior vena cava, near the superior end of the sulcus terminalis 

(20,29,34). Its primary source of blood is from the SA nodal artery, which originates 

from the right coronary artery in about 60% of humans (29,35,36). 

The normal cardiac impulses starts at the SA node, passes through the atrial tissue 

through preferential internodal tracts to the atrioventricular (AV) node where it slows, 

and then continues down the His-Purkinje system to the ventricular myocardium, where 

the wave of depolarization terminates when there is no further tissue to depolarize 

(20,31,37). Further conduction occurs only after a new impulse is formed in the SA 

node (38). 

Many cardiac cells, especially the cells of the heart’s specialized conducting system, 

have the capability of self excitation, a process that can cause automatic rhythmical 

discharge and conduction (39). The resting potential of a typical cardiac cell is -80 to -

90 millivolts (mV) (38,39). When it is depolarized to a certain threshold level (threshold 

potential), an action potential is produced as a result of a complex series of ionic shifts 

(37-39). The appearance of the action potential of SA nodal cells is different from that 

of the typical myocyte (38,39). The normal resting potential of these cells is higher (-55 

to -60 mV), and the spontaneous diastolic depolarization is much more pronounced (38-

40). The slope of the diastolic depolarization determines the rate at which a cell will 
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spontaneously depolarize (automaticy) until it reaches the threshold potential, thus 

generating an action potential that is then propagated to surrounding cells (38,39,41).  

The spontaneous cyclic depolarization of primary pacemaker cells in the SA node 

that establish intrinsic HR arises from the unique time-dependent characteristics of a 

variety of depolarizing and hyperpolarizing currents (37,39,42). The ionic basis of SA 

node pacemaker activity is such that action potential configuration is determined mainly 

by outward hyperpolarizing K+ current, IK, and two depolarizing inward currents, ICa 

and If, that are carried primarily by Ca2+ and Na+, respectively (37,40,43). At the 

termination of one SA node action potential, the membrane voltage does not stabilize to 

a negative level but slowly creeps up with an approximately constant slope, until it 

reaches the threshold for a new SA node action potential (39,44). The gradual 

membrane depolarization has been attributed to an overall diminution in the net 

conductance of hyperpolarizing K+ currents and a constant background inward current 

caused by the spontaneous inward movement along the concentration gradient for Na+ 

ions (37,45,46). A major role, however, in the generation and control of the diastolic 

depolarization is played by a prominent increase in the inward depolarizing current If 

(37,39,46). An initial membrane depolarization leads to the activation of a transient (T-

type) Ca2+ current (ICa,T) which results in Ca2+ influx into a confined subsarcolemmal 

space between the sarcolemma and sarcoplasmic reticulum, and [Ca2+] in the 

subsarcolemmal space begins to increase (37,42). This triggers the focal release of Ca2+ 

(sparks) from sarcoplasmic reticulum Ca2+ release channels, further increasing [Ca2+] in 

the space (37). This in turn leads to the activation of forward Na+-Ca2+ exchange (INCX) 

and further membrane depolarization toward a threshold potential (37). Since the 

stoichiometry of the exchange is three Na+ for one Ca2+, the current is electrogenic and 

mediates a net inward current, INaCa (37,42). The interrelated actions of ICa,T, 

sarcoplasmic reticulum Ca2+ initiates, and INaCa creates a positive feedback loop that 

culminates in a progressive membrane depolarization to the threshold potential (37). 

Once threshold is achieved, an L-type inward Ca2+ current (ICa,L) rapidly activates, and 

an action potential is triggered (42,43,47). 
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The SA node usually has the fastest diastolic depolarization and thus functions as the 

normal pacemaker of the heart (20,21,29). If the SA node fails, the AV node has the 

next fastest pacemaker rate (approximately 40-60 beats/min) (21,38,39). 

 

2.2 Cardiac innervation 

 

The normal myocardium is richly innervated by the autonomic nervous system (31,48). 

The heart is supplied by autonomic nerve fibers from superficial and deep cardiac 

plexuses from which three major cardiac nerves project into the heart (35,49). These 

nerve networks lie between the bifurcation of the trachea and the ascending aorta, and 

superior to the bifurcation of the pulmonary artery (35). The parasympathetic supply is 

from preganglionic cardiac branches of the vagus nerves (21,50,51). The cell bodies of 

the parasympathetic postganglionic fibers constitute intrinsic ganglia in the vicinity of 

SA and AV nodes (20,48,50). The postganglionic parasympathetic fibers innervate 

primarily the atria. There are a few projections to the ventricles, however, and there is 

increasing evidence to show that the vagal nerves innervate the ventricular myocardium 

as well (48,52,53). The cell bodies of cardiac afferent vagal neurons are contained 

within the nodose ganglia inferior to the jugular foramen (35,50,54). The central fibers 

of these bipolar neurons continue to ascend in the vagus to enter the brain stem 

(35,50,54). 

Both pre- and postganglionic cardiac parasympathetic fibers release acetylcholine as 

neurotransmitter (48,50,51). The effects of acetylcholine on the heart are mediated by 

muscarinic M2-receptors, but the neural transmission between pre- and postganglionic 

fibers of both the sympathetic and parasympathetic systems is mediated by nicotinic 

NN-receptors (35,50,51). Once acetylcholine has been secreted, it persists in the tissue 

for a few seconds. Thereafter, most is split into acetate and choline by the enzyme 

acetylcholinesterase (48,55).  

The sympathetic supply is from postganglionic cardiac sympathetic fibers (20,21,51). 

The cell bodies of pre- and postganglionic fibers are located in the intermediolateral cell 

columns of the lateral horns of the superior five or six thoracic segments of the spinal 

cord, and in the cervical and superior thoracic paravertebral ganglia of the sympathetic 



 24 
 

trunks, respectively (20,21,51). Sympathetic nerve terminals are located throughout the 

atria and ventricles (20,21,56). The cardiac afferent sympathetic neurons have their cell 

bodies in the C6-T6 dorsal root ganglia, and they enter the dorsal horn of the spinal cord 

(35,50,57). They synapse on cells in the outer part of the dorsal horn, the axons of the 

second-order neurons immediately decussate and ascend through the spinothalamic tract 

to reach the thalamus (50,57).    

Pre- and postganglionic cardiac sympathetic fibers release acetylcholine and 

noradrenaline as neurotransmitters, respectively (20,50,51). In addition to innervation 

directly from sympathetic nerve endings, the sympathetic nervous system may have an 

effect indirectly by stimulating the adrenal medulla to secrete adrenaline and 

noradrenaline into the circulating blood (50,51,58). These two hormones can further 

bind to adrenergic receptors in the heart (50,51,58). The effects of noradrenaline and 

adrenaline on the heart are mediated by α1-, β1- and β2-adrenergic receptors (50,51,58). 

β1 is the most abundant subtype of adrenergic receptor in the heart, representing 

approximately 75% of total (20,51,58). Noradrenaline excites mainly α-receptors, but 

also excites the β-receptors to a lesser extent (39,59). Adrenaline excites both types of 

receptors approximately eqally (39,59). Noradrenaline is removed from the secretory 

site in three ways: (i) reuptake into the adrenergic nerve endings (accounting for 

removal of 50%-80% of the secreted noradrenaline); (ii) diffusion away into the 

surrounding body fluids; and (iii) destruction by enzymes (32,48,55).  

The latency of the response of the SA node to vagal stimulation is very short 

(18,21,48). After a single stimulus, the maximum response has been reported to occur 

within only 400 milliseconds (18,48,60). Thus, vagal stimulation results in a peak 

response either in the first or in the second beat after its onset (21,48). On the other 

hand, following the onset of sympathetic stimulation, there is a latent period of up to 5 

seconds. This is followed by a progressive increase in HR, which reaches a steady level 

in 20 to 30 seconds (18,21,48). Both parasympathetic and sympathetic preganglionic 

fibers are myelinated, whereas postganglionic fibers do not have a myelin sheath 

(50,61). The fact that parasympathetic postganglionic fibers are clearly shorter than 

sympathetic postganglionic fibers partly explains the slower cardiac responses to 
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sympathetic stimuli than to parasympathetic stimuli, because the neural transmission is 

faster in myelinated fibers (39). 

The HR is determined from the ECG as the reciprocal of the time interval between 

two successive R peaks (which reflect depolarization of ventricles) and expressed as 

beats/minute (17,20). The intrinsic HR, in the absence of any neurohumoral influence, 

is about 100 to 120 beats/min and declines with age (21,62,63). Without neurohumoral 

influence maximal HR at peak exercise is 18-24% lower than with intact neurohumoral 

influence (63,64). In the intact, unblocked individual, the HR at any time represents the 

net effect of the vagal (parasympathetic) and the sympathetic nerves, which play a key 

role in the regulation of the HR by modulating the intrinsic pacemaker activity of the 

heart (19,36,65). In resting conditions, both autonomic divisions are thought to be 

tonically active with the vagal effects dominant (20,36,51). In normal adults at rest, the 

HR is about 70 to 85 beats/min and the normal range is 60 to 100 beats/min (29,65,66). 

SA and AV nodes are the most densely innervated regions of the heart and are most 

affected by changes in autonomic tone, allowing for neural regulation of the HR 

(37,48). There is some asymmetry in the distribution of autonomic fibers to the heart, 

and the SA node is predominantly innervated by fibers from the right side (21,29,67). 

Weak to moderate vagal stimulation will slow the HR often to as little as one-half 

normal (39,48). Strong vagal stimulation of the heart can stop the heartbeat for a few 

seconds, but then the heart usually “escapes” and beats at a rate of 20 to 40 beats/min 

thereafter, paced by a pacemaker elsewhere than in the SA node (21,36,39). Increased 

vagal input into the SA node results in the release of acetylcholine from nerve endings 

in the SA node and the released acetylcholine binds to muscarinic receptors (37,39,48). 

Acetylcholine can directly activate a specific class of K+ channels (KACh) in SA node 

cells, which produces a hyperpolarizing current that opposes the effects of depolarizing 

currents during diastole (37,42,48). Also, the release of acetylcholine slows HR by 

suppressing membrane-bound adenylate cyclase activity via a G-protein-coupled M2-

adenylate cyclase mechanism (see next paragraphs) (42,46,47). The former mechanism 

is more prominent at higher levels of vagal activation and explains acetylcholine-

mediated action potential hyperpolarization (37,42). The latter mechanism occurs at 

lower levels of vagal activation and provides a conceptual explanation for a reduction in 
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the rate of diastolic depolarization without prominent membrane hyperpolarization 

(37,42). Besides these mechanisms vagal activation may affect diastolic depolarization 

by inducing an upward shift in action potential threshold (37). The net effect of these 

three mechanisms is to prolong the time required for diastolic depolarization to proceed 

to an action potential threshold (37).  

An increase in sympathetic activity forms the principal method of increasing HR 

above the intrinsic level generated by the SA node to the maximal levels achieved 

(21,68,69). Strong sympathetic stimulation can increase the HR in adult humans to 180 

to 200 beats/min (39,70). Sympathetic stimulation, either directly from sympathetic 

nerve endings in the heart (noradrenaline) or indirectly by means of circulating 

adrenaline, accelerates the pacemaker activity of SA node cells (46,47,56). This 

manifests itself as a marked increase in the rate of diastolic depolarization and an 

increase in the amplitude of the pacemaker action potential (37,43).  

The increase in the rate of diastolic depolarization results from cyclic adenosine 

monophosphate-mediated enhanced intracellular Ca2+ handling and from an increase in 

the magnitude of If (42,46,47). The binding of sympathetic neurotransmitter to β-

adrenergic receptor leads to the G-protein-mediated activation of a membrane-bound 

adenylate cyclase, the formation of cyclic adenosine monophosphate, and subsequent 

activation of a cyclic adenosine monophosphate-dependent protein kinase A (42,46,47). 

The active catalytic subunits of protein kinase A phosphorylates sarcoplasmic reticulum 

Ca2+ pumps and sarcoplasmic reticulum Ca2+ release channels leading to enhanced 

sarcoplasmic reticulum Ca2+ loading as well as increased  Ca2+ sparks frequency (37). 

These events culminate in a faster increase in [Ca2+] in the subsarcolemmal space and a 

more robust activation of a depolarizing INCX (37). On the other hand, the channels 

mediating If are activated by cyclic adenosine monophosphate through the direct 

binding, and not by protein kinase A-mediated phosphorylation (46,47). The net effect 

of these cyclic adenosine monophosphate-mediated processes is a shortening of 

diastolic depolarization and an increase in HR (42,46,47). Still one possible β-

adrenergic-mediated mechanism involves stimulation of Na+-K+-pump activity (32). 

The consequent hyperpolarization changes the pacemaker potential in early diastole into 
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the zone required for activity of the If current, so that less time is required to activate 

this current to initiate the following diastolic depolarization (32). 

 

2.3 Regulation of heart rate by central nervous system 

 

All levels of the central nervous system contribute to the regulation of cardiovascular 

activities, but the main cardiovascular regulating centers are located in the brain stem 

(20,29,48). Located bilaterally mainly in the reticular substance of the medulla and 

lower third of the pons is an area called the vasomotor center (35,39). The center 

transmits parasympathetic impulses through the vagus nerves to the heart and 

sympathetic impulses through the spinal cord and peripheral sympathetic nerves to the 

heart and blood vessels of the body (39,48). From the viewpoint of cardiovascular 

control the most important parts of the vasomotor center are the nucleus tractus 

solitarius, the ventrolateral medulla, the dorsal motor nucleus and the nucleus ambiguus 

(71). The nucleus tractus solitarius, which lies in the posterolateral portions of the 

medulla and lower pons, receives sensory nerve signals from thoracic and abdominal 

organs mostly via vagus nerves and from the carotid sinuses via the glossopharyngeal 

nerves (56,72,73). The output signals from the nucleus tractus solitarius controls the 

activities of those areas in the vasomotor center, which in turn regulate the descending 

parasympathetic and sympathetic output (72-74). Widespread areas of the higher 

nervous centers can either excite or inhibit the vasomotor center (56,67,75). The more 

lateral and superior portions of the reticular substance cause excitation, whereas the 

more medial and inferior portions cause inhibition (39). The hypothalamus can exert 

either powerful excitatory or inhibitory effects on the vasomotor center: the 

posterolateral portions cause mainly excitation, whereas the anterior part can cause mild 

excitation or inhibition, depending on the precise part of the anterior hypothalamus 

stimulated (39,75,76). Of various parts of the cerebral cortex, anterior temporal lobe, the 

orbital areas of the frontal cortex, the anterior part of the cingulate gyrus, the amygdala, 

the septum and the hippocampus can all either excite or inhibit the vasomotor center, 

depending on the precise portion of these areas that is stimulated and on the intensity of 

the stimulus (39,76). 
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The parasympathetic efferent preganglionic neurons are located for the most part in 

the nucleus ambiguus of the medulla. Lesser numbers are located in the dorsal motor 

nucleus and the regions in between these two medullary nuclei (20,77,78). 

Parasympathetic activity to the SA node originates from the central nervous system 

rather than from peripheral ganglia (76), and severing of the preganglionic fibers, 

leaving only postganglionic innervation intact, releases the heart from parasympathetic 

inhibition (79). Preganglionic cardiac vagal fibers are tonically active, with a firing 

pattern that is pulse synchronous and most active during expiration and reduced during 

inspiration (respiratory sinus arrhythmia) (71,79). The cardiac vagal neurons in the 

nucleus ambiguus, however, do not display any pacemaker-like activity such as 

repetitive or phasic depolarizations or action potentials, but in the absence of synaptic 

activity those neurons are normally silent (71,80). Synaptic input to cardiac vagal 

neurons are therefore important in maintaining normal heart rate and cardiac function 

(79). A major pathway to the nucleus ambiguus originates from the nucleus tractus 

solitarius, and electrophysiological experiments demonstrate that the pathway is 

glutamergic (52,81,82). It is still unknown whether the nucleus tractus solitarius 

neurons relays sensory information project directly to cardiac vagal neurons, or whether 

there are synapses within the nucleus tractus solitarius before the sensory information is 

ultimately communicated to cardiac vagal neurons (71,79). Cardiac vagal neurons also 

have excitatory input from cholinergic nicotinic neurons, which are possibly involved in 

the respiratory sinus arrhythmia (79), and from dopaminergic neurons, which induce 

bradycardia via activation of D2-receptors (83).  

The ventrolateral medulla consists of rostral (rVLM) and caudal (cVLM) parts. A 

population of rVLM neurons (premotor neurons) project onto the interomediolateral cell 

column of the spine and constitute the main and final integration center in the brainstem 

for generating the sympathetic outflow to cardiovascular effector organs (71,72,84). 

Under normal conditions rVLM transmits signals continuously to the sympathetic 

preganglionic fibers in interomediolateral cell column via glutamergic transmission 

(39,71,84). This tonic sympatho-excitatory activity of rVLM is, however, continuously 

inhibited by gamma-aminobutyric acid-mediated transmission from cVML (71,72,84). 

cVML in turn receives tonic glutamergic excitatory input from the nucleus tractus 



 29 
 

solitarius (71,72). Hence the tonic sympatho-excitatory transmission from rVLM to 

sympathetic preganglionic fibers is modulated by the degree of inhibitory drive from 

cVLM neurons, which in turn are under the control of the nucleus tractus solitarius 

(71,72,84).  

 

2.4 Factors modulating heart rate response to neural stimulation 

 

A complex interaction between sympathetic and vagal activity may be more important 

in the modulation of the HR than either branch alone (29). Postganglionic sympathetic 

and vagal fibers often lie side by side in the walls of the heart (48,85). Therefore, the 

neurotransmitters and neuromodulators released from nerve fibers of one autonomic 

division can influence the release of transmitters from the nerve endings of the other 

division (48,86). When both divisions of the autonomic nervous system are stimulated 

simultaneously, the resultant cardiac effect is often different from the algebraic sum of 

the individual responses obtained by stimulating the nerves from the two divisions 

separately (48,87). A prominent feature of such cardiac autonomic interactions is that 

the vagal effects tend to predominate over the sympathetic effects with respect to the 

control of HR (accentuated antagonism) (48,79,87). Two major mechanisms have been 

suggested to explain the antagonist effects of vagal stimulation on sympathetically 

induced responses (48,79,87). The first is a presynaptic mechanism, in which 

acetylcholine reduces the amount of noradrenaline released from sympathetic nerve 

terminals (48,79,88). The second is a postsynaptic mechanism, in which acetylcholine 

reduces the magnitude of the response to a given adrenergic stimulus (48,79,87). This 

second mechanism presumably involves inhibitory Gi-protein-dependent inhibition of 

cyclic adenosine monophosphate synthesis (79,89).  

On the other hand, intense sympathetic stimulation attenuates the chronotropic 

responses to vagal stimulation in the case when sympathetic stimulation antecedes vagal 

stimulation (90). This profound inhibition of vagal efficacy by antecedent sympathetic 

activity is believed to be mediated by the release of a specific neuromodulator, 

neuropeptide Y, from the sympathetic nerve endings (91). Neuropeptide Y inhibits 

acetylcholine release from vagal nerve endings (90). Additionally, catecholamines can 
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reduce the release acetylcholine by binding to α-adrenergic receptors in the presynaptic 

region of the parasympathetic nerve fibers (69). Finally, a high concentration of 

noradrenaline released into the synaptic cleft by a sympathetic postganglionic fiber may 

limit the subsequent release of further noradrenaline through binding to α2-receptors on 

the presynaptic nerve terminal (a negative feedback mechanism) (20,69).   

Opioids modulate parasympathetic control of HR via receptors in the SA node (92), 

prejunctionally on vagal nerve terminals (93), or within nearby parasympathetic ganglia 

(93) resulting in attenuation of vagally mediated bradycardia. Angiotensin II exerts 

inhibitory effect upon the cardiac vagal nerves (94) while having a facilitatory effect on 

the sympathetic ganglia (18,95,96). Nitric oxide facilitates parasympathetic control of 

HR by increasing central (97) and peripheral (98-100) vagal neuronal activity. 

Additionally, nitric oxide might have an inhibitory effect on sympathetic control of HR 

(101). Vasopressin (or antidiuretic hormone), although having the vasonstrictor action 

in vascular system, can increase cardiac vagal activity to some extent (102).    

Besides the pre- and postsynaptic interactions described above, processing probably 

occurs within the intrinsic cardiac nervous system, which involves afferent neurones, 

local interconnecting neurones as well as both parasympathetic and sympathetic efferent 

postganglionic neurones (78). Intrinsic cardiac ganglionic interactions represent the 

organ component of the hierarchy of intrathoracic nested feedback control loops, which 

provide rapid and appropriate reflex coordination of efferent autonomic outflow to the 

heart (78). 

The chronotropic response of the SA node to a fixed neuronal stimulus can vary as a 

result of the change in receptors number and activity (32,58). The number of receptors 

per unit area of the SA node sarcolemma (the receptor density) is not fixed, but can rise 

or fall in response to certain physiological or pathophysiological circumstances, 

processes called up- and downregulation (32,58). For example, in congestive heart 

failure there is a chronic high-level exposure to catecholamines, which causes a 

reduction in the number of β1-receptors, whereas β2-receptor density remains constant 

(32,103,104). The second form of the changed response is uncoupling, which refers to a 

state of the receptor where there is no loss in density, but functional activity is 

diminished (58,103). The underlying molecular mechanisms of uncoupling are the 
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increased levels of inhibitory Gi-proteins, leading to a reduced ratio of Gs/Gi and an 

impaired Gs-mediated coupling between the β-receptor and adenylate cyclase (103,104). 

The third form of the changed response is a change in receptor affinity (32). For 

example, β-agonist catecholamines induce or stabilize a high affinity form of the β-

adrenergic receptor, which is specific for agonists and binds antagonists rather weakly 

(32).  

The chronotropic response of the SA node to neural stimulation also involves genetic 

variation, which is still poorly understoood (105-107). The Arg389Gly (108,109) and 

Ser49Gly (58) polymorphisms of the β1-adrenergic receptor are associated with 

difference in HR at rest, but this has not been a consistent finding, however (110). 

During exercise there is no difference between Arg389Gly genotypes (111-113). The 

gene GNAS1 encodes α-subunit of the stimulatory G-protein that couples β1-adrenergic 

receptor with the adenylyl cyclase (106). The T393C polymorphism of GNAS1 

modulates HR response when values at rest, maximal exercise and recovery are 

considered together (106). The Arg16Gly polymorphism of the β2-adrenergic receptor is 

associated with difference in HR at rest (107,114), but during low or high intensity 

exercise the difference in HR does not persist between genotypes (107). The rs324640 

polymorphism of the muscarinic M2-receptor gene is associated with a difference in HR 

recovery after exercise, but maximal HR is not different between the genotypes (105).   

 

2.5 Mechanisms controlling heart rate  

 

Although easily measured, the HR reflects a complex, integrated physiologic response: 

autonomic tone, central and peripheral reflexes, hormonal influences, and factors 

intrinsic to the heart are all important (Figure 1) (20-22). Some reflexes may increase 

HR through a decrease in vagal tone, an increase in sympathetic activity, or both, 

whereas others exert the opposite effects (21,22). In the intact human cardiovascular 

system several reflexes and control mechanisms operate simultaneously, and the 

interactions are quite complex (21,22).  

  The relative importance of neural control mechanisms in determining the 

cardiovascular response to exercise is dependent upon the type of exercise (static or 
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dynamic), the intensity of the exercise, the time after the onset of exercise (immediate, 

steady state, exhaustion, etc.), and the effectiveness of blood flow to meet the increased 

metabolic needs of the contracting muscle (22,115). Control mechanisms for the 

cardiovascular response during exercise are somewhat redundant, rather than additive, 

and they impinge on the same regulatory neurons in the vasomotor center of medulla, 

and, possibly, other sites, where integration of afferent information occurs (115,116). 

Besides neurally mediated reflexes, some humoral factors, such as cortisol, glucagon, 

growth hormone and thyroxine may play a minor role in modifying the control of HR 

(20,29,55).  
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Figure 1. The overview of mechanisms influencing heart rate. See text for the more detailed discussion 

about the effects mediated by each individual mechanism.  

 

2.5.1 Arterial baroreceptors and cardiopulmonary low-pressure baroreceptors 

The function of the arterial baroreceptors is to maintain a normal BP (117-119). The 

arterial baroreceptors include carotid and aortic baroreceptors, which are spray-type 

nerve endings located in the walls of the large arteries (29,50,119). Carotid receptors lie 

in the wall of the internal carotid artery on either side (21,29,120). Each send impulses 
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centrally in the sinus nerve (of Hering), a branch of the glossopharyngeal nerve 

(50,120,121). Aortic arch receptors on the left lie within the aortic arch, but those on the 

right lie at the origin of the right subclavian artery and in the adjacent regions of the 

brachiocephalic artery (29,120,122). From the aortic receptors, activity travels centrally 

in small vagal branches (50,120,121). The nerve endings in the carotid sinus and aortic 

arch are activated by expansion of the arterial wall when BP is increased, and this 

stretching result in increases in discharge frequency in their afferent nerves (arterial 

baroreflex) (118,119,122).  

Afferent nerves transmit the baroreceptor activity to the nucleus tractus solitarius, 

which modulates autonomic outflow to buffer the rise in pressure (21,29,119). 

Conversely, a fall in BP reduces baroreceptor discharge and trigger adjustments that 

oppose the hypotension (21,118,119). The baroreceptors respond much more to a 

rapidly changing pulsatile pressure than to a stationary pressure (39,69). In dogs, arterial 

rheoreceptors that respond to increased blood flow by sensitizing the function of 

baroreceptors have been identified in the carotid sinus (123). The existence of 

rheoreceptors in humans is not known.       

Because mean arterial BP equals cardiac output times total peripheral resistance, the 

nucleus tractus solitarius can induce changes in BP by affecting either cardiac output, 

total peripheral resistance, or both via modulation of neural output (18,118,124). In 

response to a hypertensive stimulus, there is a rapid decrease in HR due to increased 

vagal discharge to the heart (18,121,125). In hypotensive stimulus there is an initial 

rapid increase in HR with withdrawal of vagal tone, followed by a slower rise in HR 

due to increased sympathetic discharge (18,121,125). The increase in total peripheral 

resistance (vasoconstriction) plays a major role in response to a hypotensive stimulus. In 

contrast, a decrease in HR is more important in response to a hypertensive stimulus 

(18,125). At rest roughly one third of the changes in arterial BP during carotid 

baroreceptor stimulation are due to changes in HR and two-thirds are dependent on 

alterations in total peripheral resistance, but the corresponding estimate for the overall 

baroreflex (carotid and aortic parts combined) is not known (126). Previously it was 

assumed that aortic baroreceptors operates over a higher range of arterial pressures than 

carotid receptors (21,39,127), but more recent studies have shown that both 
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baroreceptor populations operate over the same range of pressures (128). The estimated 

contribution of carotid baroreflex to overall baroreflex control is from 30% to 50 % 

(128,129). Aortic and carotid baroreceptors summate in their reflex effects (21,125). 

Because the relationship between total baroreceptor input and response is sigmoid, the 

type of summation (linear, inhibitory or facilitatory) depends critically on the size of the 

stimulus and the magnitude of the step in pressure to the baroreceptors (21,125,130). 

The fact that during exercise BP and HR rise linearly with increases in work rate, 

whereas at rest the corresponding increases would induce powerful opposing reflexes 

through the baroreflex has puzzled physiologists for over a century (131,132). The 

current view is that the arterial baroreflex is reset in direct relation to the intensity of 

dynamic exercise without a change in sensitivity of the reflex (133-135). The resetting 

moves the baroreflex set point to the higher BP level so that baroreflex does not oppose 

the rising arterial BP but even actively tries to elevate BP (via further vagal withdrawal 

and/or sympathetic excitation to the heart and/or sympathetically mediated 

vasoconstriction) until the new set point is achieved (136-138). During exercise changes 

in arterial BP during carotid baroreceptor stimulation are mostly due to changes in total 

peripheral resistance so that only at light workload HR contributes to changes in BP 

(138,139). The central command is probably the primary regulator of baroreflex 

resetting during exercise (138,140,141). The muscle chemoreflex is also able to reset 

baroreflex, but in normal dynamic exercise it acts more as a modulator of central 

command-induced resetting (138,141,142). 

Cardiopulmonary low-pressure baroreceptors monitor blood volume by sensing 

changes in the filling pressure of the chambers of the heart and pulmonary arteries and 

veins, as well as changes in cardiac contractility and afterload (18,143,144). Increases in 

these stimuli activate mechanically sensitive receptors in these structures, stimulating 

vagal afferent fibers that signal the nucleus tractus solitarius to inhibit sympathetic 

nervous system activity (18,124,144). The latter results in systemic vasodilatation and a 

reduction in total peripheral resistance, but physiological changes in cardiopulmonary 

low-pressure receptor activity cause little if any change in HR (18,124,144). When 

central venous pressure is normal, cardiopulmonary low-pressure baroreceptors 

tonically inhibit vasoconstriction induced by arterial baroreflex (18,144,145). 
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The cardiopulmonary low-pressure baroreceptors are not reset by the central nervous 

system during exercise, but they continuously inhibit arterial baroreceptor-induced 

vasoconstriction (18,118,144). If this tonic inhibition is eliminated by lower body 

negative pressure during exercise at a fixed workload, mean arterial BP and HR do not 

change, but total peripheral resistance increases and stroke volume decreases (146). 

Likewise, cardiopulmonary low-pressure baroreceptors inhibit the muscle metaboreflex-

mediated vasoconstriction during dynamic exercise (147).  

 

2.5.2 Central command and peripheral afferents  

Central command is the term for motor command signals originating from subthalamic 

neurons involved in locomotion which is believed to be a primary stimulus mediating 

the autonomic nervous system adjustments to exercise (118,148,149). These signals 

activate separately both somatomotor and cardiovascular control systems at the onset of 

exercise (115,149,150). Activation is in direct proportion to the number of motor units 

required to maintain a given force of contraction (18,143,150). The magnitude of a 

central command- mediated cardiovascular response during exercise can be independent 

of force production (e.g. imagined exercise) and dictated more by an individual’s 

perception of effort (18,116,151). Central command increases HR, cardiac output, and 

also BP immediately at the onset of exercise by rapid vagal withdrawal, but command 

signals have a minimal effect on the sympathetic nervous system-mediated 

vasoconstriction (116,150,152). Because both locomotor and cardiovascular responses, 

much like the responses to exercise, can be induced by either electrical or chemical 

stimulation of cells in hypothalamic locomotor region and in mesencephalic locomotor 

region, the current view is that these two neuroanatomical areas are strongly involved in 

the central command (115,116,152). Both these areas have connections with the 

vasomotor center in medulla, which enables them to influence cardiovascular control 

(18,116,152).  

Originally it was thought that the central command acts as a pure feed-forward 

control mechanism (18,143). The close relationship of the central command with the 

number of motor units recruited and with the perception of effort suggests an important 

role for feedback from exercising muscles (18,124,153). Brain mapping studies have 
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showed that two regions of the cerebral cortex, the insular cortex and the medial 

prefrontal cortex, may function to interpret feedback signals from active muscles and 

elicit appropriate autonomic adjustments via connections to the vasomotor center (153).  

The muscle chemoreflex is elicited from chemosensitive group III and IV afferent 

fibers in the muscle whenever muscle blood flow falls below the critical level needed to 

maintain adequate oxygen transport to the muscle (148,150,154). Release of hydrogen 

from the working muscles might signal the onset of the reflex, it may actually stimulate 

not chemically sensitive afferents but rather the conversion of monoprotonated 

phosphate to its diprotonated form (143,155). Excitatory action potentials from muscle 

sensory afferents project to the brain via synaptic transmissions in the dorsal root of the 

spinal cord (115,124,154). This exerts effects on the vasomotor center in medulla 

(primarily cVLM and rVLM), which in turn inhibit vagal and/or stimulate sympathetic 

preganglionic neurons, thus producing efferent autonomic nervous system responses to 

the heart and arterial vasculature (115,124,154). The muscle chemoreflex has a distinct 

threshold, and in mild exercise this reflex is not tonically active (18,143,150). As the 

severity of exercise increases to moderate, the margin for any blood flow error 

decreases and the reflex is tonically active (18,143). The baroreflex normally buffers the 

muscle chemoreflex by limiting chemoreflex-induced peripheral vasoconstriction so 

that the rise in arterial BP by the muscle chemoreflex occurs almost solely via an 

increase in cardiac output (i.e. rise in HR) (156).  

Besides chemosensitive fibers, group III and IV afferent fibers in muscle also contain 

mechanosensitive fibers (115,148,154). These fibers are excited by mechanical stimuli 

(stretch and compression) in the active muscle (115,124,154). Their role in control of 

HR is not well understood (121,157), but it has been shown that a passive cycling of the 

legs significantly increased HR above baseline within one second of the onset of limb 

movement (158). In studies utilizing static muscle contraction this fast tachycardic 

response is vagally mediated (159), but evidence also exists for a slower 

sympathetically mediated tachycardiac response induced by mechanosensitive fibers 

(160). Since mechanoreceptor discharge quickly returns toward control levels during 

sustained static contractions, it is unlikely that these afferents contribute importantly to 

the maintained tachycardia in static exercise (157). It is not known, however, whether 
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this waning occurs to the same extent during dynamic contractions as well (18). 

Nevertheless, the muscle-heart reflex is not necessary for the vagally mediated increase 

in HR that occurs at the onset of exercise. This increase has been shown to be evoked 

by attempted exercise in subjects paralyzed with curare-like drugs (i.e. an absent 

afferent input from muscles) (161). 

In addition to responding to chemical and mechanical stimuli, many group III and IV 

sensory afferents are thermosensitive (18,143,155). Muscle temperature, which is 

normally well below 37°C in the limbs, can increase above 40°C during severe exercise 

(18,143). Thus, it is possible that these afferents could be stimulated and provide 

feedback to the central nervous system regarding the thermal status of the active muscle 

fibers (18,143). While this remains a possibility, experimental findings are insufficient 

to determine the role of this mechanism in autonomic nervous system-mediated 

cardiovascular control during exercise (18,124). 

 

2.5.3 Respiratory sinus arrhythmia, arterial chemoreceptors, and pulmonary and 

cardiac receptors 

Respiratory sinus arrhythmia refers to the rhythmic variations HR, occurring at the 

frequency of respiration (21,55,79). Typically HR accelerates during inspiration and 

decelerates during expiration (21,55,79) as a result of complex central and reflex 

intearactions involving both vagal and sympathetic branches of autonomic nervous 

system (162). During exercise respiratory sinus arrhythmia gradually disappears despite 

gradually increasing respiration (163,164).  

Peripheral arterial chemoreceptors are situated in the aortic and carotid bodies 

(21,29,50). They excite nerve fibers that pass through carotid nerves and the vagus 

nerves into the vasomotor center (39,50,74). Activity in their afferent nerves is 

increased by arterial hypoxia, hypercapnia, or acidemia (29,50,165). The primary effect 

of aortic body chemoreceptor stimulation on HR is excitatory (166). Conversely, carotid 

chemoreceptor stimulation causes a pronounced and consistent bradycardia, but with 

intact respiratory control it is normally counterbalanced by tachycardia accompanying 

the respiratory response induced by the same stimulation (29,55,167). Because exercise 

normally is associated with maintenance of PaO2, normal or reduced arterial carbon 
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dioxide, and maintenance of blood pH within acceptable limits, the arterial 

chemoreceptors are not normally activated and therefore likely do not play an important 

role in HR control during conventional dynamic exercise at sea level (20,124). 

The lungs are richly innervated and lung inflation, with moderate pressures, 

stimulates airways stretch receptors which results in a reflex increase in HR (168,169). 

The reflex response during hyperinflation of the lung and also during pulmonary 

congestion is to cause bradycardia (21). Because breathing frequency, tidal volume and 

minute ventilation all increase during exercise, it is possible that reflexes activated by 

lung inflation participate in HR control during exercise. At present, however, there is no 

compelling evidence for it (124).  

Atrial receptors are concentrated near the junctions of the superior and inferior venae 

cavae and the pulmonary veins with the atria (20,21,29). The afferent fibers are 

contained in the vagus and the efferent pathway within the sympathetic nerves 

(21,29,170). Atrial receptors are stimulated mainly by stretching due to increases in 

atrial volume, which results in a reflex increase in HR (20,21,29). Because of the 

relatively slow time-course of sympathetic responses, the tachycardia following to 

stimulation of atrial receptors requires up to 30 seconds to reach a stable level (21).  

Some authors suggest that a larger stimulation of atrial receptors via the increased 

venous return during exercise may be an important mechanism mediating a normal 

exercise-induced tachycardia (69,170,171). On the contrary, other authors conclude that 

the tachycardic reflex mediated by the atrial receptors is weak or nonexistent in humans 

and thus it does not play any role in exercise-induced tachycardia (18). A direct stretch 

of SA node can also increase HR to some extent, and this mechanism may be operative 

in exercise when venous return is increased (39,172). The mechanism might be 

augmented after heart transplantation (29,172), but in the normal heart this mechanism 

is largely masked or overridden by other reflex mechanisms (173). A rise in the 

temperature of the blood reaching SA node as the consequence of muscular work may 

also increase HR via a direct effect on SA nodal tissue (39,172). 

Ventricular mechanoreceptors are situated mainly in the left ventricle. Afferent 

nerves travel either in the vagus or in the sympathetic nerves (170,174). Both 

populations of receptors can be divided into mechanosensitive and chemosensitive 
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endings (170,174). Normally their activity does not modulate HR either at rest or during 

exercise, but in the ischemic myocardium their activation results in powerful reflex 

responses (21,78,174). The vagal afferents mediate reflex cardio-inhibitory, sympatho-

inhibitory and vasodepressor responses, while activation of sympathetic afferents results 

in cardio-accelerator, sympatho-excitatory, vasodepressor responses (170,174). Both 

mechanical and chemical stimuli may be involved in activation of receptors, but 

chemical stimuli are more important for triggering of reflexes (21,170,174). The anginal 

pain is mediated by sympathetic afferent fibers and causes tachycardia (21,170,174).  

The vagal afferents are located nearer to the endocardial than to the epicardial 

surface, while the reverse is true for the sympathetic afferents (174). Thus 

subendocardial ischemia stimulates vagal afferents, resulting in bradycardia, whereas 

transmural ischemia more likely induces tachycardia mediated by sympathetic afferents 

(174). Left ventricular vagal afferents are preferentially distributed in the inferoposterior 

wall. In contrast, sympathetic afferents appear to be more uniformly distributed 

throughout the wall of the left ventricle (174). This probably explains why bradycardia 

usually occurs when the circumflex branch is occluded or when ischemia involves the 

inferior and lateral wall of the left ventricle (170,174). Occlusion of the anterior 

descending branch or ischemia involving the anterior wall is likely to result in an 

increase in HR (170,174). The chemical stimuli that activate receptors involve 

substances resulting from myocardial ischemia, including bradykinin, prostaglandins 

and adenosine (170,174). The bulging or dyskinesis of the ischemic zone may stimulate 

mechanosensitive vagal afferents, but the increase in discharge lasts only approximately 

two minutes. In contrast, the increased discharge of chemosensitive vagal afferent 

persists for the duration of the ischemic event (174). 

 

2.6. Heart rate response to exercise: a synthesis 

 

In 1990 Rowell & O’Leary introduced an overall model as to how adjustments of the 

autonomic nervous system to large-muscle dynamic exercise may be mediated (136). 

This hypothesis represents the most compelling integrative scheme attempting to 

explain the primary signals involved and how those signals may interact to produce 
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autonomic nervous system adjustments to exercise (124). The key concept in the model 

is that BP is the primary variable controlled during exercise and control of HR serves as 

an adjunct in this scheme (136,150,175).  

From a resting value up to a rate of 100 beats/min during dynamic upright exercise 

HR increases rapidly primarily due to the activation of vagal withdrawal (51,65,73). 

The activation of vagal withdrawal is mainly due to augmented central command 

(136,150,157). The central command also resets the arterial baroreflex immediately to a 

higher operating point. Normally the baroreflex does not elicit an increase in 

sympathetic nervous system activity, however, because the rise in cardiac output (due to 

fast HR increase) is rapid enough to raise arterial BP to its new operating point 

(136,157,175). If any difference between the prevailing level of BP and a new, higher 

baroreflex operating point is detected by baroreceptors they can raise HR via further 

inhibition of parasympathetic tone (136,150,157). In this setting the muscle chemoreflex 

is not activated. The exact role of the afferents from muscle mechanreceptors is 

unknown, but in all probability their effect is negligible (136,150,157).  

During moderate exercise, when HR exceeds 100 beats/min, the activation of vagal 

withdrawal by central command still increases cardiac output, but not enough 

(136,150,175). The fast vagal component of the rise in cardiac output is not sufficient to 

raise cardiac output to a level that is needed to compensate fully the vasodilation in 

active muscle (136,150,175). Consequently, arterial BP cannot be increased 

immediately to its new, reset operating point so there is a pressure error detected by 

baroreceptors (136,150,175). As a consequence of this error, sympathetic nervous 

system activity to both the heart and to the resistance vessels increase in correct the 

pressure error (136,150,175).  

The sympathetically mediated increase in HR and cardiac output is much slower (by 

15- to 20-fold) than the parasympathetically mediated rise (136,150,175). Thus 

vasoconstriction in resistance vessels all over the body (including active skeletal 

muscle) becomes a necessary adjunct to increased cardiac output to raise arterial BP as 

quickly as possible to minimize the pressor error (136,150,175). As workload increases, 

HR increases due to further sympathetic nervous system activation (20,73,164). The 

increase in sympathetic nervous system activity can occur due to the arterial barofeflex 
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(via further baroreflex resetting), the muscle chemoreflex (after a threshold has been 

passed after which this reflex becomes tonically active), or muscle mechanoreceptor 

activation (20,150,157). 

 Besides direct neural excitation SA node is also stimulated by an increased level of 

circulating adrenaline, which is secreted from the adrenal medulla (23,73,176). 

Adrenaline secretion is increased only during moderate to heavy exercise (typically 

50% of maximal oxygen consumption or above) and sympathoadrenal activation 

becomes progressively greater as exercise intensity increases up to maximum 

(58,176,177). As exercise approaches maximal levels, parasympathetic activity wanes 

and sympathetic nervous system activity increases such that at maximal oxygen 

consumption (VO2max) little parasympathetic tone remains and sympathetic activity is 

greatly elevated (136,157,164). Because during severe exercise HR is at or near 

maximal level, any further pressor response (i.e. to a fall in a baroreceptor activity or 

further muscle afferent activation) can only occur via peripheral vasoconstriction in that 

cardiac output is already at maximal levels (121,136,157). 

Pharmacological blockade studies have proved the differential contributions of the 

two autonomic branches during exercise (178). Blockade of vagal control with atropine 

(muscarinic receptor antagonist) reveals that most of the initial response to exercise, up 

to a HR of approximately 100 beats/min, is attributable to the withdrawal of tonic vagal 

activity (164,179,180). Withdrawal of vagal tone has been confirmed using time and 

frequency domain analyses of HR variability as well (163,164). Conversely, blockade 

of sympathetic control with β-adrenergic receptor antagonist reveals the importance of 

augmented sympathetic activity during moderate and heavy exercise (181-183). During 

light exercise, with workloads of 25% to 40% of VO2max, plasma noradrenaline levels or 

directly measured muscle sympathetic nervous activity do not significantly increase, 

confirming the finding that the sympathetic nervous system is more important in the 

later stages of exercise (136,150,175).  
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2.7 Central circulatory response to exercise 

 

During dynamic upright exercise cardiac output (i.e. stroke volume times HR) increases 

somewhat linearly in proportion to the oxygen consumption (VO2), approximately 6 

l/min of cardiac output per 1 l/min of VO2 (19,171,184). An appropriate increase in HR 

contributes significantly to attaining high levels of cardiac output (23,29,67). Of the two 

major components of cardiac output, HR and stroke volume, HR is responsible for 

approximately two thirds of the total increase in cardiac output during dynamic upright 

exercise (17,185,186). When a normal human exercises maximally in the upright 

position, the HR increase is 150-300% of resting, while the stroke volume increase is 

about 10-100% (29,187,188).  

The stroke volume normally reaches its maximum or almost maximum by the time 

the cardiac output has increased only halfway to its maximum, after which any further 

increase in cardiac output must occur by increasing the HR (19,189,190). Thereafter 

stroke volume levels off (191-193), or there is a small decline (193-195) or increment 

(196-198) at maximal work intensity.  

An increase in HR accompanying dynamic exercise also results in an increase in the 

force of myocardial contraction (i.e. frequency-force relationship, or the staircase 

phenomenon) (20,37,143). The increase in force is secondary to a transient imbalance in 

cellular Ca2+ influx and efflux (favoring influx), an increase in sarcoplasmic reticulum 

Ca2+ content, and a larger sarcoplasmic reticulum Ca2+ release during each excitation-

contraction coupling cycle (18,37,143). Although a sufficient increase of HR is essential 

to raise cardiac output at heavier workloads, the absolute cardiac output which a person 

can attain is determined by the magnitude of maximal stroke volume (68,184,199). 

The relationship between HR and VO2 or work intensity is approximately linear 

(19,200,201). It has been suggested that the HR might increase relatively less than VO2 

as the work rate becomes very heavy (171,202,203), but two studies have shown the 

opposite (204,205). In both studies HR rose slightly more steeply above anaerobic 

threshold (approximately 50-60% of VO2max) than below anaerobic threshold, but the 

HR/work intensity -relationship was linear (205).  
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The linear relationship between HR and VO2 or work intensity is widely employed in 

a number of submaximal exercise tests (200,206-216), in which VO2max is estimated 

based on HR measured in a single or several submaximal workloads (69,217,218). By 

utilizing a linear HR-workload relationship a straight line is fitted to measured HR 

values (69,217,218). This line is extrapolated to the predicted maximal HR; the 

corresponding estimated maximal workload can then be approximated (69,217,218). 

VO2max can then be estimated by using the relationship between work rate and VO2 

(69,217,218). 

 

2.8. Factors modulating heart rate response to exercise 

 

In the same person under standardized conditions, the variation from day to day in HR 

at a given VO2 is 3-5 beats/min depending on the relative workload (%VO2max), 

provided the state of training is the same (219-221). The HR at a given VO2 is related to 

the maximal stroke volume (222,223), but it is not a measure of maximal 

cardiorespiratory fitness, unless the maximal HR is considered (69,224). Despite 

limitation some researchers have, however, considered the workload which a person can 

attain at some predetermined HR as a good estimate of cardiorespiratory fitness (225-

227). There is a tendency for persons with a low resting HR to have a low HR at a fixed 

submaximal workload (14,228,229), but this has not been observed consistently 

(171,230). Concerning maximal HR, persons with a high maximal HR have a higher 

HR at the same relative workload compared with the persons with a low maximal HR 

(230,231). Furthermore, an inverse (229) or non-existent (230) relationship has been 

observed between maximal HR and HR at a fixed submaximal workload, which 

emphasizes a fundamental difference when expressing a submaximal workload in terms 

of either relative or absolute work. 

The physiological limit on maximal HR in normal subject is determined by the 

steepness of the diastolic depolarization slope of SA nodal cells before they reach 

threshold potential, thus generating an action potential that is then propagated to 

surrounding cells (38,39). When HR reaches 195 beats/min in humans during severe 

exercise, ventricular diastolic filling time is only 0.12 seconds compared to 0.55 
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seconds at rest (HR 70 beats/min) (41,143,232). It seems logical that a limit would be 

approached where an increase in HR would not effectively increase cardiac output due 

to decreased diastolic filling; not only would the heart receive less blood to pump, but 

the degree of coronary artery perfusion would decrease (17,20). Although this 

theoretical limitation is reasonable, there is little experimental work to support it 

(17,20,196).  

Age. HR at a given submaximal VO2 (and workload) has been reported to be the 

same for individuals of the same gender and state of training regardless of age 

(14,229,233). On the other hand, HR at a fixed submaximal workload has also been 

suggested to be higher (15,226,234) or lower (228,235,236) in older subjects, but in 

these observations the state of training may differ between individuals.  

The decline of maximal HR with age is a well-known phenomenon (217,237,238). A 

comprehensive review of the literature compiling over 23 000 subjects aged 5 to 81 

years revealed that age alone accounted for 75% of the variability in maximal HR; other 

factors added only about 5% (239). Of mechanisms underlying age-related decrease in 

maximal HR, cardiac chronotropic responsiveness to β-adrenoceptor stimulation has 

been shown to be preserved (240) or reduced (241-243) in the elderly. Subclinical 

atherosclerosis accompanying aging has also been proposed as a mechanism (69). The 

slope of the decay of exercise maximal HR with age is very similar to the slope of the 

intrinsic HR with age, suggesting that the decline of maximal HR is independent of 

autonomic influence, but has more to do with the SA node and the myocardium 

(20,244,245). The age-related decline in maximal HR is steeper in men who have a low 

cardiorespiratory fitness (246) and are physically inactive (17). 

Gender. HR at a given submaximal workload is higher in women (229,247,248). 

Maximal HR does not differ between genders (17,239,249) or is slightly lower 

(229,250,251) in women. Menstrual cycle. In women HR at a fixed submaximal 

workload has been reported to be higher during the mid-luteal phase (252), but most 

studies have reported no change in submaximal (253-255) or maximal HR (255-257) 

during the menstrual cycle. 

Body height and weight. The persons with the heavier body weight have been 

reported to have a lower HR at a fixed submaximal workload (222,236), and the 
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association is more pronounced when lean body weight is considered instead of total 

body weight (258,259). Height and body weight (lean or total) do not affect on maximal 

HR (20,51,222). Obesity. The overweight persons have a higher HR at a fixed 

submaximal workload than normal weight persons. The relationship is valid especially 

when exercising on a treadmill, but also when on a cycle ergometer (251,260,261). In 

two studies, however, there was no relationship between body mass index (BMI) and 

HR at a given submaximal workload on a treadmill (14,262), and in one study (228) an 

inverse relationship was observed between BMI and HR at a given submaximal 

workload on a cycle ergometer. Overweight has not been reported to have an effect on 

maximal HR (20,51,261), except one study in which overweight was associated with 

lower maximal HR (263). 

Mode of exercise. HR is slightly higher at a given submaximal VO2 on a cycle 

ergometer than on a treadmill (264,265). Maximal HR probably does not differ between 

a cycle ergometer and treadmill (266-268), although it has been suggested to be slightly 

lower with cycle ergometer testing (29,239,269). Both HR at a given submaximal 

workload and maximal HR are lower on a cycle ergometer in the supine position 

(29,184,270). Total mass of working muscles. The HR at a given submaximal 

workload is higher when the dynamic exercise is performed with the arms than with the 

legs (171,271,272). The maximal HR with arm exercise is 88-100% of the maximal HR 

in leg exercise (171,273,274). Exercise protocol. Large increments in workload 

combined with a short duration of the step may result in HR not rising to a steady state 

level at that workload (275). Consequently, HR at that submaximal workload is lower 

than the actual HR at the identical work provided that steady state would have been 

achieved (275). The maximal HR is not markedly different between protocols as long as 

the same exercise mode is used (268,276). Pedal frequency. When exercising with 

cycle ergometer, HR at a fixed submaximal workload may be slightly lower with a 

pedal frequency of 40 to 50 revolutions/minute than at clearly higher pedal frequencies 

(277). 

Habituation. Habituation to repeated exercise tests has been found to lead to a 

reduction in HR response to a fixed submaximal workload, but the habituation effect is 

difficult to separate from a training response (278,279). Other studies have, however, 
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shown no appreciable habituation effect (220). True maximal effort. Maximal effort 

should always be confirmed objectively before an attempt is made to measure a 

maximal HR (29). Objective measures of appropriate maximal effort include respiratory 

exchange ratio >1.10 and blood lactate level >7-8 mmol/l (17,20,29). Older individuals 

might be more afraid to achieve true maximal exertion but this effect may disappear on 

repeated testing (20). Even if the true VO2max is achieved in exercise it is still possible 

that maximal HR is even slightly higher than HR measured at the workload 

corresponding to VO2max (280). Sampling interval of HR measurement. The 

difference between measured HR and true HR (determined by the last 30 seconds of 

each minute during exercise) is inversely related to sampling interval (281). The 6-

second rhythm strip at the end of each minute represents a reasonable balance between 

convenience and precision for measuring HR during exercise (281). 

Environment. A hot environment causes a higher HR at a fixed submaximal 

workload than exercise at a low ambient temperature (171,282,283). Also a high 

relative humidity elicits a higher HR at a fixed submaximal workload (70). Maximal 

HR can even reach slightly higher values under hyperthermia than in normothermia 

(18). Again, HR at a given submaximal workload is lower in a cold environment (284) 

and also maximal HR is lower compared with neutral temperature (285). Emotional 

factors, nervousness, excitement and apprehension may raise the HR during exercise of 

light and moderate intensity (69,171,217). The heavier the workload, however, the less 

pronounced is this nervous effect on the HR such that it does not affect maximal HR 

(69). Dehydration. In dehydrated state HR at a given submaximal workload is higher 

than in euhydrated state (171,190,238), whereas acute expansion of blood volume 

decreases HR (286-288). Acute plasma volume expansion does not affect maximal HR 

(289), but in a dehydrated state maximal HR might be slightly higher than in the 

euhydrated state (18).  

Level of fitness. HR at a fixed workload seems to be inversely related to a maximal 

cardiorespiratory performance of a subject (238,290,291), although maximal HR 

modulates this relationship (69). A high cardiorespiratory fitness accelerates the rate of 

attainment of the steady-state HR at submaximal work (275,292). Maximal HR has 
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been reported to be the same (293-295), higher (229,230,296) or lower (239,250,297) in 

subjects with a high cardiorespiratory fitness.  

Training. Within the same subject endurance-typed exercise training reduces HR at a 

given submaximal workload, and reduced physical activity has the opposite effect 

(29,298,299). The rate of attainment of the steady-state HR at submaximal work occurs 

more rapidly after training as well (300). Endurance training does not change the 

maximal HR or slightly reduces it (301-303). Cessation of endurance-type exercise 

training may increase maximal HR (304). HR at a given submaximal workload has been 

reported to be lower (14,251,271) and maximal HR (230) higher, respectively, in 

subjects with a higher level of self-reported physical activity. Bed rest. After prolonged 

bed rest HR at a given submaximal workload is higher than before bed rest 

(190,280,305). The maximal HR is either the same (280) or increased after the bed rest 

(305,306). 

Medications and alcohol. The effects of various medications on HR during exercise 

are summarized in Table 1. After acute ingestion of alcohol, HR at a fixed submaximal 

workload is increased (307) or unaltered (308) but maximal HR is not affected (307).  

Arterial oxygen content. A reduced arterial oxygen content in anemia or after 

hemoglobin blocked by carbon monoxide (as acutely after smoking) results in a higher 

HR at a fixed submaximal workload (171,238,311). Parenthetically, also smokeless 

tobacco increases HR at submaximal work (70,312). The increased blood hemoglobin 

concentration lowers HR at a given submaximal workload (218,313), but does not affect 

on maximal HR (313,314). Long-term smokers seem to have a lower HR at a given 

submaximal workload (262,315,316), but unaltered (14,15,317) and higher (318) HR 

values have also been reported. Long-term smokers have been reported to have a lower 

maximal HR (230,263,315). Thyroid gland function. Hyperthyroid patients may have 

a high HR at a fixed submaximal workload (238,319), whereas hypothyroid patients 

may have the reverse (320). 
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Table 1. Medications affecting heart rate during exercise (20,308,309). 

Medications Effect on heart rate during exercise (↑ = 
increase, ↓ = decrease, ↔ = no effect) 

atropine ↑ 
agents blocking β-adrenergic receptors ↓*† 

nitrates ↑ or ↔ 
calcium channel blockers 
              dihydropyridine agents 
              diltiazem, verapamil  

 
↑ 
↓ or ↔ 

digitalis ↓‡ 
hydralazine, minoxidil ↑ or ↔ 
centrally acting antihypertensives (clonidine,  
methyldopa, moxonidine) 

↔ or ↓ 
 

antiarrhytmic agents 
               quinidine, disopyramide 
               propafenone  
               amiodarone 

 
↑ or ↔ 
↔ or ↓ 
↓ 

bronchodilatators 
               sympathomometic 
               anticholinergic 
               methylxanthines  

 
↑ or ↔ 
↑ or ↔ 
↑ or ↔ 

psychotropic medications 
               antidepressants 
               major tranquilizers  

 
↑ or ↔ 
↑ or ↔ 

cold medications with sympathomimetic agents ↑ or ↔ 
thyroid medications ↑ 
anorexiants / diet pills  ↑ or ↔ 

 
* β-blockers with intrinsic sympathomimetic activity have a reduced effect. 
† The effect increases with a relative intensity of exercise (64,183,310). 
‡ Heart rate decreases in patients with controlled atrial fibrillation and possibly congestive heart 

failure, but heart rate is not significantly altered in patients with sinus rhythm. 
 

 

Circadian rhythm and seasons. HR display a circadian rhythm so that HR at a fixed 

submaximal workload is slightly higher at early afternoon (a peak around 13.30) 

compared with morning or late afternoon (321,322). On maximal HR the effect of 

circadian rhythm is negligible (322). HR at a fixed submaximal workload has been 

shown to be lower in the summer than in other seasons (251). Eating and sleeping 

before the test. HR at a fixed submaximal workload is increased for an hour or more 

after a heavy meal (70,217). An abnormally short sleep the night before exercise may 

raise HR at a fixed submaximal workload (70).   

Genetics. The heritability estimates for HR at workload of 50 Watts (W) in cycle 

ergometer, and walking at submaximal speed on treadmill have been reported as 57% 

(323) and 32% (324), respectively. The workload that a person can attain at a 
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submaximal HR of 150 beats/min is characterized by a significant familial resemblance, 

but the heritability as a percent of the age and gender-adjusted phenotypic variance is 

only <10% (325-327). The genetic effect on maximal HR has been shown to be 

significant in two studies with brothers and twins (328,329), but this has not been a 

consistent finding, however (330). The current view is that the genetic effect for 

maximal HR is about 50% (331). Familial data has indicated that maximal HR may be 

characterized by a maternal effect (332).  

 

2.9. Heart rate response to exercise and prognosis  

 

During the last two decades, novel exercise test-derived HR variables like chronotropic 

incompetence and HR recovery have excited widely as prognostic markers of mortality 

and cardiac events both in asymptomatic persons and in patients with CVD (10-12,23-

26,51,73,122,201,333-340). HR recovery is outside the scope of the present review, and 

therefore only HR variables measured during exercise test are discussed.  

 

2.9.1 Submaximal heart rate and cardiovascular disease events in asymptomatic 

persons 

Seven reports (14,15,227,341-344) from six separate follow-up studies have examined 

the relationship between submaximal HR and future CVD events in asymptomatic 

persons as summarized in Table 2. Six papers measured the HR at a fixed submaximal 

workload (14,15,341-344), and one paper (227) measured the workload which a person 

can attain at a fixed submaximal HR of 150 beats/min as the variable to quantify 

submaximal HR-work rate relationship. In two of the seven reports a high submaximal 

HR was found to be an independent predictor of a future CVD death (14,15). In one of 

the five papers that did not find an association survival analysis was not performed, the 

medications influencing HR were not explicitly reported, and the study sample included 

both healthy men and men with clinical evidence of definite or probable CHD (21.9% 

of the total sample) (341). Additionally, prevalent CHD was not controlled for in the 

analysis (341). Two separate reports from one study (342,343) did not find an 

association either, but in both reports neither survival analysis was performed nor the 
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medications influencing HR were reported. In the fourth paper with a negative finding 

(227), the workload achieved at HR of 150 beats/min did not predict future CHD events 

as such, but after adjustment for body weight it was a strong independent predictor. In 

the fifth report with negative finding all subjects were hypertensive asymptomatic 

persons who were referred for the further investigation of hypertension (344). 

Additionally, from the results of the study by Lauer et al (345), it can be deduced that a 

high HR at a fixed submaximal workload did not predict CHD events, although the 

researchers did not directly examined that particular variable in their data. 

Only one of the seven reports involved also women (344) and the negative finding 

was observed similarly in both genders. The length of the follow-up was addressed in 

one study (15) in which the exercise test was performed twice, enabling the researchers 

to calculate the results with two separate follow-up periods of about 15 and 20 years. 

They showed that the predictive value of HR at a fixed submaximal workload for future 

CHD death improved if a shorter follow-up after the second exercise test was used, even 

though the number of events decreased from 258 to 147 (15). 

In two studies which found a high submaximal HR to be an independent predictor of 

future CVD death (14,15), a high submaximal HR was interpreted as a marker of low 

cardiorespiratory fitness, which was to considered explain the association with CVD 

death. The conjecture that the association is mediated by low cardiorespiratory fitness is 

supported by the facts that HR at a fixed workload is inversely related to the maximal 

cardiorespiratory performance of a subject (238,290,291), and low cardiorespiratory 

fitness is a major risk factor for future CVD event in asymptomatic persons (339,346). 

Indirect support for the association between a high submaximal HR and increased 

risk of future CVD events is found from four follow-up studies (226,347-349). In these 

studies the actual submaximal HR was not reported, but either an age-adjusted value 

was used for analyses, or submaximal HR was utilized for indirect estimation of 

cardiorespiratory fitness (226,347-349). In all four studies (226,347-349), an estimated 

low cardiorespiratory fitness was associated with an increased risk of CVD events. 

Because a low cardiorespiratory fitness estimated from an indirect test is based on a 

high submaximal HR (69,217,218), it is presumable that persons with an increased risk 

of CVD death in all four studies also had a high HR at a fixed submaximal workload.   
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A high HR at a fixed submaximal workload, or a low workload attained at a fixed 

submaximal HR, has been shown to be associated with risk factors for CVD, such as a 

low serum high-density lipoprotein (HDL) cholesterol level (14,226); high serum total 

cholesterol (226,228), low-density lipoprotein (LDL) cholesterol (14) and triglyceride 

level (14); low HDL/total cholesterol ratio (226); low level of self reported physical 

activity (14,251,342); high resting systolic (15,228,236) and diastolic BP (14); 

diagnosed hypertension (350); and overweight (251,260,261) in asymptomatic persons. 

On the other hand, smokers seem to have a lower HR at a given submaximal workload 

than nonsmokers (262,315,316). Also left ventricular hypertrophy assessed from ECG 

has been reported to be related to a lower HR at a given submaximal workload (228).  

Total cholesterol and BP level were controlled for, however, in two studies (14,15) 

which found the association between submaximal HR and the increased risk of CVD 

death. Slattery and Jacobs (15) performed stepwise analysis which revealed that the 

predictive value of the HR at a fixed submaximal workload was attenuated most by 

resting systolic BP, but the association remained statistically significant. Furthermore, 

the associations of submaximal HR with total (351,352) and HDL cholesterol 

(14,262,353) level; overweight (14,228,262); a low level of self reported physical 

activity (228); and smoking (14,15,317) have not been observed consistently.  

 

2.9.2 Submaximal heart rate and cardiovascular disease events in patients with 

known or suspected coronary heart disease 

The relationship between HR at a fixed submaximal workload and mortality as well as 

CVD events in patients with known or suspected CHD has not been investigated in 

previous studies. However, indirect evidence is available from two studies (354,355) in 

which the HR increment from rest to submaximal workload was measured. Falcone et al 

(354) followed 458 men with angiographically verified CHD for six years. They found 

that patients whose HR rose 12 beats/min or more from rest to one minute at a workload 

of 25 W at the beginning of exercise test had 5.8 and 13.5 times higher risk of adverse 

cardiac event and cardiac death, respectively, than patients with a milder HR increment 

(354). Leeper et al (355), however, did not find any association between HR increment 
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from rest to a fixed submaximal workload and all-cause or CVD mortality after 

following 1959 patients (5% women) referred for exercise testing for 5.4 years.  

    Falcone et al (354) reasoned the rapid HR increment resulting from a premature vagal 

withdrawal which in turn might be a marker of sympathetic overactivity or a reduced 

vagal activity, known risk factors for death or cardiac event in CHD patients especially 

after myocardial infarction (356-358). The explanation offered by Falcone et al (354) is 

not supported by the findings from a previous study in which HR increase from rest to 

one minute was lower in 12 CHD or cardiomyopathy patients with depressed baroreflex 

sensitivity (a marker of vagal activity) than in patients with a normal baroreflex 

sensitivity (359). Accordingly, Leeper et al (355) argued that the rapid HR increment at 

the beginning of exercise test reflects a high, rather than low, vagal activity, and they 

further suggested the early acceleration of HR in the study by Falcone et al (354) to be a 

marker of a low cardiorespiratory fitness, a known risk factor for death or cardiac event 

in persons with known or suspected CHD (17,360). 

Some authors have suggested that a high HR at a fixed submaximal HR may result 

from an inadequate stroke volume increase accompanying an impaired left ventricular 

function originating from either myocardial ischemia (361-363) or from left ventricular 

dysfunction not directly related to ischemia (364). According to this view, a high 

submaximal HR is a baroreceptor-mediated compensatory mechanism as an attempt to 

preserve an adequate cardiac output rise during exercise in the face of an impaired left 

ventricular function (319,362). Hence, the association of a high submaximal HR with an 

increased risk of death could be explained by an impaired left ventricular function, a 

known risk factor for death in CHD patients (17). In accordance with this are the 

findings from two previous studies in dogs (365,366). The rise of HR at the early phase 

of an exercise stress was steeper in dogs with a healed myocardial infarction that were 

susceptible to ventricular fibrillation after experimentally induced coronary occlusion 

than in dogs that were resistant to ventricular fibrillation. The susceptibility to 

ventricular fibrillation was associated with a greater degree of left ventricular 

dysfunction which was possibly due to significantly higher proportion of transmural 

infarctions in susceptible dogs (365). 
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2.9.3 Chronotropic incompetence and cardiovascular disease events in 

asymptomatic persons 

Chronotropic incompetence is a term that has been used to describe inadequate HR 

responses to metabolic demand (51,340,367). The simpliest measure of chronotropic 

incompetence is the peak HR attained in an exercise test (9,230,342-344,368-370), but 

maximal HR can be expressed as adjusted for age (315,316,345,368,371-376) or resting 

HR (9,230,345,370,377) or both (376), as summarized in Table 3. Additionally, 

chronotropic incompetence can imply the HR at submaximal workload which is 

unexpectedly low related to an age-adjusted expected maximal HR 

(315,316,345,373,376). 

Seven reports (9,230,345,370,374,375,377) from five separate follow-up studies have 

found chronotropic incompetence to be an independent predictor of future CVD events 

in asymptomatic persons (Table 4). Additionally one report has found the same 

association after adjustment for age and gender (316), and four papers 

(342,343,368,371) from two follow-up studies have found the same association in 

unadjusted models without reporting results from multivariable models (Table 4). On 

the other hand, in one study maximal HR did not predict CVD deaths in multivariable 

models either in men or women (369). In another study maximal HR did not predict 

CVD events in hypertensive asymptomatic men and women (344). 

Chronotropic incomptence did not predict an outcome either in men or in women in 

two (344,369) out of the five studies that included both genders, whereas in two studies 

(371,375) the association was observed in men, but not in women. In the only study 

including exclusively women (374), the risk of CVD death was increased in women 

who did not achieve an age-adjusted target maximal HR. Other subgroup analyses have 

shown that chronotropic incompetence is associated with an increased risk of CVD 

death in men with both low and intermediate or high level of cardiorespiratory fitness 

(230), and in both younger (20-39 yrs) and older (40-59 yrs) men (370). In the study by 

Balady et al (375) chronotropic incompetence predicted CHD events in 144 high risk 

men (according to the Framingham Risk Score), but not in 1276 men with intermediate 

or low risk in age-adjusted model. 
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The length of the follow-up was addressed in two studies (345,375). In the study by 

Lauer et al (345) two of the three chronotropic incompetence variables used in the study 

remained independent predictors of combined fatal or nonfatal CHD event when 

analysis were restricted to men with at least two years of event-free follow-up, whereas 

all three chronotropic incompetence variables were independent predictors when the 

follow-up of 7.7 years was considered as a whole. In the study by Balady et al (375), the 

predictive value of chronotropic incompetence for combined fatal or nonfatal CHD 

event in men remained similar during both the first and the last 10 years of the total 

follow-up of 18.2 years. 

Chronotropic incompetence has been associated with smoking in several studies 

(263,316,370), but smoking was controlled for in the studies which found the 

association between chronotropic incompetence and an increased risk of CVD event 

(9,230,345,370,375,377). Chronotropic incompetence has been shown to predict CVD 

events both in smokers and nonsmokers (230,315,316). In the study by Lauer et al (315) 

a synergistic effect between chronotropic incompetence and smoking was observed for 

the risk of CHD event, whereas in the study by Sandvik et al (230) a synergistic effect 

was not observed. 

Chronotropic incompetence has not been shown to be associated with exercise 

induced ischemic changes in ECG (342,345). Bruce et al (368) observed, however, a 

synergistic effect between chronotropic incompetence and exercise-induced ischemic 

changes in ECG for the risk of combined fatal or nonfatal CHD event. 

Besides smoking, chronotropic incompetence has been shown to be associated with 

risk factors for CVD, such as a low HDL/total cholesterol ratio (345); high total 

cholesterol (230,370) and triglyceride level (230,370); impaired glucose tolerance 

(230); low level of self reported physical activity (230); low cardiorespiratory fitness 

(229,296,370); high resting systolic (343,345,370) and diastolic BP (230,345); 

diagnosed hypertension (345,350,378); increased left ventricular mass (372) and left 

ventricular cavity dilatation (373); carotid atherosclerosis (376); and overweight 

(263,345,370) in asymptomatic persons. Most of the aforementioned CVD risk factors 

were controlled for, however, in the seven studies (9,230,345,370,374,375,377) that 

found an association between chronotropic incompetence and the increased risk of CVD 
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events. Pardaens et al (344) performed stepwise analysis which revealed that a low 

maximal HR predicted CVD events in hypertensive subjects after adjustment for age, 

gender and resting HR. Further adjustment for CVD risk factors did not substantially 

alter the finding, but the prognostic value of maximal HR disappeared entirely after 

additional inclusion of VO2max in the model (344). Furthermore, the associations of 

chronotropic incompetence with total cholesterol levels (342), self-reported physical 

activity (342,345), and systolic BP (342) have not been observed consistently.  

Several mechanisms have been suggested to mediate the association between 

chronotropic incompetence and increased risk of CVD event (Table 5) 

(23,24,26,51,122,171,230,320,338,345,369,377,379,380). A latent CHD has been 

proposed to be a mediating factor (26,171,338). According to this view, abnormal 

myocardial wall motion and accumulation of metabolic by-products caused by ischemia 

irritate ventricular mechano- and chemoreceptors (174) leading to vagal activation and 

consequently attenuation of normal HR increase during exercise (24,26). The imbalance 

between oxygen demand and delivery may worsen further because of increased wall 

stress induced by ventricular dilatation, a condition shown to accompany chronotropic 

incompetence (373). The view is supported by the findings that chronotropic 

incompetence is an independent predictor of the presence of CHD in patients referred 

for exercise testing to diagnose CHD (382-384) and that chronotropic incompetence is 

associated with an advanced carotid atherosclerosis in asymptomatic men (376).  

 

Table 5. The summary of proposed mechanisms explaining the association of chronotropic 

incompetence with an increased risk of cardiovascular disease event. 

latent coronary heart disease (26,171,338) 
atherosclerosis of the artery supplying the sinoatrial node (338,369) 
sinoatrial node dysfunction (171,320,379) 
reduced bioavailability of nitric oxide within the sinoatrial node (26) 
systemic low-grade inflammation (381) 
sinoatrial node β-receptor downregulation due to chronic sympathetic activation (26,230) 
reduced baroreflex sensitivity (359,377)  
abnormal cardiovascular autonomic control (26,51,230) 

 

The relationship between myocardial ischemia, chronotropic incompetence and 

mortality has been directly studied in patients referred for exercise testing, and in these 

studies chronotropic incompetence was associated with ischemic findings assessed by 
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angiography (extent (385)), exercise echocardiography (presence (386) and extent 

(387)) and thallium imaging (presence (388) and extent (389)). Importantly, in each 

study (385-389) chronotropic incompetence was an independent predictor of death in a 

multivariable model that also included myocardial ischemia, suggesting that myocardial 

ischemia does not solely explain the association between chronotropic incompetence 

and mortality in this patient group. More specifically, latent CHD involving an artery 

supplying SA node has been proposed to explain the association between chronotropic 

incompetence and an increased risk of CVD events (338,369). Against this notion is the 

finding that in a group of patients with chronotropic incompetence the artery to the SA 

node was free of significant stenosis in 90% of cases (390).  

Other authors have suggested chronotropic incompetence to be a manifestation of SA 

node dysfunction, and consequently SA node dysfunction to be a link between 

chronotropic incompetence and an increased risk of CVD event (171,320,379). This 

view is supported by the observations that patients with SA node dysfunction, as 

evidenced by typical 12-lead and Holter ECG findings, often have an attenuated HR 

response to exercise (391-393), but this is not a consistent finding (171,379). 

Furthermore, Chin et al (390) did not find SA node dysfunction in 23 patients who had 

chronotropic incompetence in exercise.  

Routledge and Townend (26) have proposed that chronotropic incompetence might 

be caused by reduced bioavailability of nitric oxide within the SA node. Animal 

experiment (394) and study in human heart transplant recipients (395) have shown that 

nitric oxide exerts a tonic chronotropic effect on the SA node probably by causing 

activation of the If current. In persons with CHD, endothelial nitric oxide bioactivity is 

impaired as a result of reduced synthesis and inactivation by reactive oxygen species. 

This may further manifest itself as endothelial dysfunction and perhaps systemic low-

grade inflammation, known risk factors for future CVD events (26,396,397). In subjects 

undergoing investigation for angina, persons with chronotropic incompetence had raised 

markers of systemic low-grade inflammation compared with those having a normal HR 

response (381).  

Alternatively, chronotropic incompetence has been suggested to be a manifestation of 

SA node β-receptor downregulation as a result of chronic sympathetic activation 
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(26,230). This has been shown to be the case in patients with congestive heart failure 

(398), but it is not known whether this mechanism is also operative in asymptomatic 

persons. Routledge and Townend (26) have proposed that a SA node β-receptor 

downregulation in consequence of a chronic sympathetic activation could result from 

metabolic syndrome which may induce chronic sympathetic overactivation, particularly 

if hypertension is present (399). Chronic sympathetic overactivity may induce numerous 

unfavorable changes from the viewpoint of cardiovascular health, including 

hypertension (400-402); insulin resistance (403); a tendency to develop obesity (404); 

development of left ventricular (405) and vascular hypertrophy (406); an increased 

electrical instability of the heart, favoring life-threatening arrhythmias (407); occurrence 

of coronary thrombosis through increased blood viscosity (408), platelet activation 

(409) and development of a procoagulant state (410); and increased mechanical stress 

on the arterial wall via tachycardia (411).  

A reduced baroreflex sensitivity has also been mentioned as a link between between 

chronotropic incompetence and an increased risk of CVD events, and more specifically 

sudden cardiac death due to ventricular fibrillation (377). It has been shown that among 

patients who have had myocardial infarction and have similar left ventricular ejection 

fraction, the inability to sustain episodes of ventricular tachycardia was predicted by 

depressed baroreflex sensitivity (412,413). Impaired baroreflex sensitivity favors 

circulatory collapse during ventricular tachycardia, a condition that precipitates 

ventricular fibrillation and sudden death (377). Jouven et al (377) suggested that a 

reduced ability to increase HR during exercise to the maximum extent could be the 

clinical counterpart of an impaired baroreflex sensitivity. In cardiac patients the 

association between chronotropic incompetence and a reduced baroreflex sensitivity has 

been observed in CHD and cardiomyopathy patients (359) but not in patients with 

congestive heart failure (414).  

Finally, many investigators have supposed chronotropic incompetence to be a marker 

of abnormal cardiovascular autonomic control (26,51,230). This view is supported by 

the observations that the majory of patients with primary autonomic failure have a 

clearly abnormal HR response to exercise (222,415,416) and that in patients with 



 66

congestive heart failure chronotropic incompetence is related to reduced heart rate 

variability (a marker of depressed vagal activity) (414,417).  

Reduced heart rate variability is a risk factor for future CVD events in asymptomatic 

middle-aged (418) and elderly persons (419,420). The sympathetic nervous system and 

circulating catecholamimes can contribute to all three major mechanisms involved in 

the generation of cardiac arrhytmias (421), enhanced automaticy (40,422,423), triggered 

automaticy (early (424,425) and delayed (426,427) afterdepolarizations), and re-entry 

(428,429), in healthy or diseased myocardium. Quite the contrary, a high vagal activity 

protects from arrhytmias (430,431). Indeed, Freeman et al (51) have stated that HR 

response to exercise may help to identify persons with autonomic imbalance who are 

currently healthy and without CVD, but who are predisposed to to sudden cardiac death 

in the future. Likewise, among patients with CVD and concomitant autonomic 

imbalance, there might be a superimposed increase in the risk of CVD events (51).  

 

2.10 Summary 

 

The HR response to exercise, although simple to assess, reflects a complex, integrated 

physiologic response in which autonomic tone, central and peripheral reflexes, 

hormonal influences and factors intrinsic to the heart are all important (20-22). During 

the last two decades, the exercise test derived HR variables have generated wide interest 

as prognostic markers of mortality and cardiac events both in asymptomatic persons and 

in CVD patients (11,12,23-26,51,73,122,201,333-338,340). The results of the properly 

controlled studies (9,14,15,230,345,370,374,375,377) suggest a possible bimodal 

relationship of HR to prognosis in which both high HR at low workload and 

inappropriately low HR at maximal or near maximal workload (i.e. chronotropic 

incompetence) are associated with adverse prognosis (223). Indeed, in the Lipid 

Research Clinics Mortality Follow-up Study both a high HR at a fixed submaximal 

workload (14) and an inability to increase HR normally when approaching maximal 

wok capacity (316) were associated with an adverse prognosis in two papers from the 

same study sample.  
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A high HR at a fixed submaximal workload has consistently been interpreted as a 

marker of a low cardiorespiratory fitness, and therefore the association with CVD death 

has been explained by this mechanism (14,15,355). Interestingly, however, there are no 

published population-based follow-up studies exploring this hypothesis in which HR at 

a fixed submaximal workload and cardiorespiratory fitness have been entered into the 

same regression model predicting future CVD events. The mechanism mediating the 

association between chronotropic incompetence and an increased risk of CVD event is 

not known, although several possibilities has been presented 

(23,24,26,51,122,171,230,320,338,345,369,377,379,380).  

The hypothetical graph based on the results from previous studies 

(9,14,15,230,345,354,355,365,366,370,374,375,377) is shown in Figure 2. In essence, it 

is the theory proposed by Ramamurthy et al (223) in a graphic form. The hypothesis has 

a physiologically relevant basis, because HR increase from rest to maximal exercise is 

known to consist of two consecutive phases: the early rise up to a rate of 100 beats/min 

is controlled mainly by the parasympathetic nervous system (164,179,180), whereas the 

increase from 100 beats/min to maximum is controlled mainly by the sympathetic 

nervous system (181-183). In the current study the hypothesis presented in Figure 2 is 

further extended by suggesting that the predictive value of a high HR at a submaximal 

workload can be optimized if a submaximal HR response is quantified as a workload 

achieved at HR of 100 beats/minute (WL100). The HR of 100 beats/min is used, because 

it is the upper bound of the first, parasympathetically (164,179,180) controlled phase of 

the total HR rise during exercise and it has been proposed that an exaggerated HR 

response particularly during this phase indicates an adverse prognosis (354,365,366). 

Furthermore, the hypothetical graph in Figure 2 suggests that the predictive value of a 

blunted HR increase at maximal or near maximal workload is optimized if the HR 

increment particularly during the latter half of the exercise test is considered when 

quantifying chronotropic incompetence. The prognostic value of the two aforesaid new 

HR-derived variables, WL100 and the HR increment during the latter half of the exercise 

test, has not been studied formerly.  
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heart 
rate 

workload
 

Figure 2. The hypothetical heart rate response to incremental exercise in subjects with an increased risk 

of future cardiovascular disease events (dashed line) and in normal subjects (continuous line) based on the 

data from previous studies (9,14,15,230,345,354,355,365,366,370,374,375,377). 
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3. MAIN HYPOTHESIS AND AIMS OF THE STUDY 

 

The main hypothesis of the current thesis is that a bimodal relationship exists between 

HR and prognosis (Figure 2) in which both a low workload achieved at HR of 100 

beats/min (WL100) and a blunted HR increase particularly during the latter half of the 

maximal exercise test are associated with adverse prognosis. Accordingly, the aims of 

the study were:  

 

a) to examine whether a blunted HR increase during the latter half of the maximal 

exercise test better predicts CVD and CHD mortality than resting HR, HR reserve, or 

maximal HR in middle-aged men free of CHD. 

 

b) to investigate the association between WL100 and the risk of CVD death in middle-

aged men free of CHD. 

 

c) to study the association between WL100 and the risk of death in middle-aged men 

with known or suspected CHD and its prognostic value beyond other HR-derived and 

exercise test variables.  

 

d) to explore the association between HR increase from 40% to 100% of maximal work 

capacity in an exercise test (HR40-100) and the risk of acute myocardial infarction in 

middle-aged men without CVD and to compare the predictive value of HR40-100 with 

other variables describing chronotropic incompetence. 
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4. METHODS 

 

4.1 Study population 

 

The subjects were participants of the Kuopio Ischaemic Heart Disease Risk Factor 

Study (KIHD), a collaborative research project between the Kuopio Research Institute 

of Exercise Medicine and the Research Institute of Public Health, the University of 

Kuopio. The KIHD is an ongoing population study designed to investigate risk factors 

for CVD and related outcomes (432). The study involves men from East Finland, an 

area known for its high prevalence and incidence of CVD (432,433). The study protocol 

was approved by the Research Ethics Committee of the University of Kuopio and 

complies with the Declaration of Helsinki. Each participant gave written informed 

consent. The subjects are a representative age-stratified, age-balanced random 

population-based sample of men who lived in the city of Kuopio or neighbouring rural 

communities. Of the 3235 eligible men, 2682 (82.9% of those alive) were recruited in 

two cohorts. The first cohort consisted of 1166 54-year-old men (83.3% of those alive) 

enrolled in the study between March 1984 and August 1986; the second cohort was an 

age-stratified sample of 1516 42-, 48-, 54-, and 60-year-old men (82.6% of those alive) 

enrolled between August 1986 and December 1989. Table 6 describes the four follow-

up studies of the thesis. 

 

4.2 Examination protocol  

 

Examinations at baseline were carried out over two days, one week apart, and consisted 

of a wide variety of biochemical, physiological, anthropometric and psychosocial 

measures (432). Invitations to attend the first study visit and written instructions to 

complete a detailed self-administered questionnaire were mailed four weeks in advance. 

At the first visit, a trained interviewer checked the completed questionnaire and a nurse 

measured body height and weight and blood pressure. The subjects underwent a medical 

examination, during which information about medical history and use of medications 
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obtained from the self-administered questionnaire was checked. At the first visit, a 

maximal, symptom limited cycle ergometer test was performed (434-439).  

 

Table 6. The description of the study population and main variables* 

Study Total 
number 
of 
subjects 

Population Exercise HR-
derived variable 

Follow-
up time 

Main outcomes 

I 1378 without CHD and use 
of β-blockers 

heart rate increase 
at interval 40-
100% of maximal 
workload 

11.4 
years 

37 CHD deaths, 56 
CVD deaths 

II 1314 without CHD and use 
of HR-lowering 
medication 

workload achieved 
at HR of 100 bpm  

11.5 
years 

35 CHD deaths, 51 
CVD deaths 

III 365 known or suspected 
CHD 

workload achieved 
at HR of 100 bpm  

11.1 
years 

75 overall deaths 

IV 1176 without CVD and use 
of HR-lowering 
medication 

HR increase from 
40% to 100% of 
maximal work 
capacity 

11.0 
years 

106 acute myocar-
dial infarctions 

 
* HR, heart rate; CHD, coronary heart disease; CVD, cardiovascular disease; bpm, beats/minute. 

 

At the second visit seven days later blood specimens were taken between 8 and 10 

o’clock in the morning for laboratory determinations. For these blood samples, the 

subjects were instructed to fast and to abstain from smoking for 12 hours, to abstain 

from drinking alcohol for 3 days, and to abstain from using analgesics for 7 days. After 

the subjects had rested in a supine position for 30 minutes, blood was drawn with 

Terumo Venoject vacuum tubes (Tokyo, Japan). No tourniquet was used.  

 

4.3 Exercise testing 

 

HR response, cardiorespiratory fitness, exercise induced myocardial ischemia and BP 

response were assessed using a maximal, symptom limited cycle ergometer exercise test 

on an electrically braked cycle ergometer. For men examined before June 1986, the 

testing protocol comprised of a three-minute warm-up at 50 W followed by a step-by-

step increase in the workload by 20 W per minute (early protocol) (Tunturi EL 400, 

Turku, Finland). The remaining men were tested with a linear increase in the workload 
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by 20 W per minute (later protocol) (Medical Fitness Equipment 400L, Mearn, 

Netherlands). For safety reasons and to obtain reliable information, the test was 

supervised by an experienced physician with the assistance of a trained nurse. 

Submaximal effort at peak exercise was defined as respiratory exchange ratio at peak 

exercise below 1.00. It is an objective marker of premature termination of exercise test 

because normally respiratory exchange ratio rises much above 1.00 at peak exercise as a 

consequence of ventilatory compensation for metabolic acidosis (10,17,319). 

 

4.3.1 Assessment of heart rate response to exercise 

HR was recorded from ECG at rest, at the end of each 60-second interval during the 

exercise test, and at peak exercise. HR represents the prevailing value at that time point 

obtained from sample interval of approximately 3 seconds and measured digitally by 

electrocardiograph. Resting HR was expressed as the lowest HR value, whether 

measured in lying position before the test or while sitting on bicycle before the test. 

WL100 was recorded directly at HR of 100 beats/min or interpolated linearly as a 

function of HR by using resting HR and the nearest HR value above 100 beats/min. 

Chronotropic index at HR of 100 beats/min was calculated as ((100 – resting HR) / 

(maximal HR – resting HR)) / (workload at HR 100 beats/min / maximal workload). 

Chronotropic index at HR of 100 beats/min quantitatively expresses how steep the early 

rise of HR from rest to 100 beats/min is in relation to the overall steepness of HR rise 

during the exercise test. A value of roughly 1 means that the steepness of the early HR 

rise from rest to 100 beats/min is about the same as the HR rise from that time point to 

maximum. Correspondingly, a value larger than 1 means that the early HR rise is 

steeper than the HR rise from that time point to maximum. HR at 40, 60, 80, and 100 % 

of maximal workload was interpolated linearly as a function of HR by using the nearest 

HR values below and above the time point respectively. HR increase from rest to 50 W 

as well as HR increase from rest to 33% of maximal workload were calculated as the 

difference between HR at corresponding time point and resting HR (354,355). 

HR40-100 was calculated as maximal HR minus HR at the workload of 40% of 

maximal workload attained. All chronotropic incompetence variables listed in Table 3 

were defined accordingly except chronotropic response index at submaximal work 
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(submaxCRI). When calculating submaxCRI the workload of 100 W as the submaximal 

workload was used. The workload was expressed in Watts instead of METs to simplify 

the equation of submaxCRI, because Watts at rest are explicitly zero. SubmaxCRI was 

calculated according to the hypothetical situation in which the exercise test would have 

been stopped at 85% of age-adjusted expected maximal HR although in reality our 

subjects continued until their symptom-limited maximum. Age-adjusted expected 

maximal HR was calculated as 220 – age.  

 

4.3.2 Assessment of cardiorespiratory fitness, exercise electrocardiography and 

exercise blood pressure 

VO2max and exercise test duration were used as measures of cardiorespiratory fitness. 

Respiratory gas exchange was measured by the mixing chamber method with the use of 

a Mijnhardt Oxycon 4 analyzer (Gebr. Mijnhardt B.V., Netherlands) for men examined 

before June 1986 and by the breath-by-breath method with the use of a MGC 2001 

analyzer (Medical Graphics Corp., St. Paul, Minnesota, USA) for the remaining men. 

VO2max was defined as the highest value for VO2 recorded during a 30-second interval.  

ECG was recorded continuously with the Kone 620 electrocardiograph (Kone, Turku, 

Finland). The Mason-Likar lead system including V1, V5 and aVF lead connections 

was used (440). ECG was printed every 60 seconds intervals during exercise. Exercise 

ECGs were coded manually by one cardiologist. The criteria for ischemia in ECG 

during exercise was horizontal or downsloping ST depression with 0.5 or more mm at 

80 milliseconds after J point in studies I, II and IV, and horizontal or downsloping ST 

depression with 1.0 or more mm in study III, and any ST depression with 1.0 or more 

mm at 80 milliseconds after J point in all studies.  

Blood pressure was measured immediately before the test and every two minutes 

during and after the exercise test using cuff stethoscope method. The maximal systolic 

BP was the highest value achieved during the test. Systolic blood pressure (SBP) 

response was calculated as systolic BP at peak exercise minus systolic BP measured 

immediately before the test. BP was measured during recovery at regular 2 minutes 

intervals while subjects seated on the cycle without pedaling (437). Of these post-
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exercise measurements, systolic BP at 2 minutes recovery was selected as the main 

variable because it was available for all men.  

 

4.4 Biochemical analyses   

 

Fasting blood glucose was measured using the glucose dehydrogenase method (Merck, 

Darmstadt, Germany) after proteins had been precipitated with trichloroacetic acid. The 

main lipoprotein fractions (LDL, HDL) were separated from fresh serum samples using 

precipitation and ultracentrifugation (441). The cholesterol contents of lipoprotein 

fractions were measured enzymatically (Boehringer Mannheim, Mannheim, Germany) 

on the day after the ultracentrifugal spin. Blood hemoglobin was determined 

photometrically (Gilford Stasar III, Gilford Instrument Laboratories Inc., Oberlin, Ohio, 

USA) using the cyanmethemoglobin method (442) within a few hours of blood 

sampling.  

 

4.5 Resting blood pressure, body weight and body mass index 

 

Resting BP was measured between 8 and 10 o’clock in the morning by two trained 

nurses, one during 1984 to 1985 and another during 1986 to 1989, with a random-zero 

mercury sphyghomanometer (Hawksley, Lancing, UK). The measurement protocol 

included, after supine rest of five minutes, three measurements in the supine, one in the 

standing and two in the sitting position with five minute intervals. Blood pressure was 

read with an accuracy of two mmHg. The disappearance of sounds (Korotkoff’s fifth 

phase) was recorded as diastolic BP. In the present study the mean of all six 

measurements was used as systolic and diastolic BP. 

Body weight was measured using a balance scale. The subject wore light clothing and 

no shoes. BMI was computed by dividing body weight in kilograms by the square of 

body height in meters. 
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4.6 Smoking and alcohol consumption 

 

The current number of cigarette, cigars, and pipefuls of tobacco smoked daily and the 

duration of regular smoking in years were recorded using a self-administered 

questionnaire. Years smoked were defined as the sum of the years of smoking, 

regardless of when it had started, whether the subject had currently stopped smoking, or 

whether it had occurred continuously or during several periods. The lifelong exposure to 

smoking (“cigarette years”) was estimated as the product of years smoked and the 

number of tobacco products smoked daily at the time of the examination, or for ex-

smokers, at the time when they had smoked last time. Alcohol consumption was 

assessed with a structured quantity-frequency questionnaire using the Nordic Alcohol 

Consumption Inventory on drinking behavior over the previous 12 months. The average 

weekly consumption of alcohol in pure ethanol (g/week) was calculated based on the 

known alcoholic content of each beverage type and the reported doses and frequencies 

of drinking sessions (443). 

 

4.7 Baseline diseases and medications 

 

Medical history and the use of medications were assessed using a self-administered 

questionnaire. A physician reinterviewed the subjects regarding their medical history 

and the use of medications during a medical examination. Known or suspected CHD 

was defined as having either a history of myocardial infarction, angina pectoris on effort 

based on the London School of Hygiene Cardiovascular Questionnaire (444), or the use 

of nitroglycerin for chest pain once a week or more frequently. A prevalent CVD was 

defined as a history of CHD, cardiac insufficiency, cardiomyopathy, arrhytmias, stroke 

or claudication. Diabetes was defined as fasting blood glucose ≥6.7 mmol/l (445) or a 

clinical diagnosis of diabetes with either dietary, oral, or insulin treatment.  
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4.8 Collection and classification of follow-up events 

 

4.8.1 Mortality 

All deaths were ascertained by computer linkage to the Finnish National Death Registry 

using the Finnish social security number. There were no losses to follow-up. All deaths 

that occurred between study enrollment (from March 20, 1984 to December 5, 1989) 

and December 31, 1998 were included. Deaths from CVD and CHD were coded 

according to the Ninth International Classification of Diseases (ICD) codes (390-459 

and 410-414, respectively) (446) or the Tenth ICD codes (I00-I99 and I20-I25, 

respectively) (447).  

 

4.8.2 Acute coronary events 

The collection of data on and the diagnostic classification of nonfatal and fatal coronary 

events by the end of 1992 were performed as part of the multinational WHO MONICA 

(MONItoring of Trends and Determinants in CArdiovascular Disease) project, in which 

detailed information on all coronary events was collected prospectively (448,449). All 

KIHD participants lived at baseline in the province of Kuopio, one of the monitoring 

areas of the Finnish part of the WHO MONICA project (FINMONICA) (450). In the 

FINMONICA study, regional coronary register teams collected data on coronary events 

from hospitals and wards of health centers and classified the events (450,451). The 

sources of information included interviews, hospital documents, death certificates, 

autopsy records, and medico-legal reports. The FINMONICA coronary register data 

were annually cross-checked with data obtained from the computerized national hospital 

discharge and death registers. Data on coronary events from the beginning of 1993 to 

the end of 1998 were obtained by computer linkage to the national hospital discharge 

and death certificate registers. A physician collected and classified the coronary events 

using the same procedures as in the FINMONICA study (450,451).  

The diagnostic classification of coronary events was based on cardiac symptoms, 

ECG findings, cardiac enzyme elevations, autopsy findings, and history of CHD. Each 

suspected coronary event (ICD-9 codes 410-414 and ICD-10 codes I20-I25) was 

classified into 1) a definite acute myocardial infarction (AMI), 2) a probable AMI, 3) a 
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typical acute chest pain episode of more than 20 minutes indicating CHD, 4) an 

ischemic cardiac arrest with successful resuscitation, 5) no acute coronary event or 6) an 

unclassifiable fatal case. In the present study, definite AMIs, probable AMIs and 

prolonged chest pain episodes were used as outcomes. All chest pain episodes lead to 

hospitalization. If a subject had multiple nonfatal coronary events during the follow-up 

period, the first event after baseline was defined as the outcome.  

 

4.9 Statistical methods 

 

Statistical analyses were performed by using SPSS 11.5 for Windows (SPSS, Inc., 

Chicago, Illinois). Descriptive data are presented as mean and standard deviations 

(SDs), or medians and ranges, respectively, for continuous data and percentages for 

categorical data. Differences in baseline characteristics were examined using linear and 

logistic regression analyses after adjustment for age. Because of the skewed 

distribution, the exact Mann-Whitney U-test was used for age, smoking and alcohol 

consumption.  

The association of HR-derived and other exercise test variables with the risk of 

outcomes were analyzed using Cox proportional hazards’ models (452). In the Cox 

model, the hazard is assumed to equal the instantaneous death rate is given by the 

formula: hi(t)=h(t)Ci, where Ci=exp(B1X1i+ B2X2i+…+ BpXpi) (3-5). The model 

assumes that the hazard (h) of death for patient I at time t (h1(t)) equals the hazard of 

death for an “average patient” at the same time (h(t)) multiplied by the factor (Ci) that is 

the function of the prognostic profile of patient I; this is the proportional hazards 

assumption that gives the model its name (3-5). The proportional coefficient for patient 

i (Ci) is, in turn, a function of the values for that patient of a set of prognostic factors 

(X1i,…, Xpi), multiplied by a corresponding set of regression coefficients (B1,…, Bp) 

that measure the strength of the association between the prognostic factor and outcome 

of large number of subjects (3-5). Relative risks (RRs), adjusted for risk factors, were 

estimated as antilogarithms of coefficients from multivariable models. Their confidence 

intervals (CIs) were estimated under the assumption of asymptomatic normality of the 

estimates. The proportional-hazards assumption was verified by inspection of the plots 
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of Schoenfeld residuals for covariates (453). Linearity of associations was assessed with 

the Martingale residuals (454). No violations were observed. To detect the best cut-off 

point for a variable, the dichotomization cut-off point that maximized the log-rank test 

statistics was sought, and the predictive power of this categorized variable was tested by 

using Cox models. In further analyses, the sample was restricted to subjects who 

remained free of events during the first 2 years of follow-up. All tests for statistical 

significance were two-sided. A value of p less than 0.05 was considered statistically 

significant.   

 

4.9.1 Study I 

The analysis of variance (ANOVA) for repeated measures, adjusted for age and the 

length of follow-up, was used to detect whether the slopes of HR increase of men who 

died during follow-up and survivors differed from the beginning of the test or only later 

during the test. In order to eliminate dispersion from compound symmetry assumption 

(equal correlations between measurements) Greenhouse-Geisser corrected degrees of 

freedom were used when testing the effects in ANOVA. The Helmert contrasts, which 

compare HRs at each relative workload with the mean HRs of the next relative 

workloads, were used to locate the phase of the test (rest, 40, 60, 80, and 100 % of 

maximal workload) where the HR slopes of men who died during follow-up and 

survivors started to diverge. The statistically most significant contrast was used to 

construct a new variable. The correlations between the new HR variable and other HR-

derived variables were analyzed using Pearson’s correlation test. The new HR variable 

constructed according to ANOVA for repeated measures was entered into forced Cox 

proportional hazards’ regression models. Two different sets of covariates were used: 1) 

age and examination year, 2) age, examination year, alcohol consumption, BMI, 

cigarette smoking, CVD history, diabetes, serum LDL cholesterol, systolic BP at rest 

and myocardial ischemia during exercise. To compare the additional predictive value of 

HR40-100 and other exercise test variables, a stepwise Cox regression analysis was 

used. After entering the conventional risk factors, the additional predictive value 

brought into the model by HR40-100 and each exercise test variable was compared in 

turns. In supplementary analyses, the sample was restricted to subjects who had none of 
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the following: history of cancer, submaximal effort observed at peak exercise, history of 

CVD, history of chronic obstructive pulmonary disease, bronchial asthma or pulmonary 

tuberculosis, or dizziness, dyspnea, chest pain, arrhythmia, ischemic ECG changes or 

change in BP as a cause of discontinuation of a test. 

 

4.9.2 Study II 

A multiple stepwise linear regression analysis including resting HR, chronotropic index 

at HR of 100 beats/min, maximal HR, and VO2max was used to investigate the 

determinants of WL100. Cox proportional hazards’ regression models were fitted to 

compute the relative risk of death associated with a low WL100, expressed as a 

continuous or dichotomous variable. Age, examination year, and exercise test protocol 

were forced into the Cox models, and rest of the variables were chosen by backward 

stepwise selection (p-value >0.1 for removal) from conventional risk factors, including 

alcohol consumption, BMI, cigarette smoking, CVD history, diabetes, myocardial 

ischemia during the exercise test, serum LDL and HDL cholesterol, and systolic and 

diastolic BP at rest. The additional predictive value brought by WL100 beyond other HR-

derived and exercise test variables was explored by entering WL100 into a Cox model 

that included age, examination year, exercise test protocol, conventional risk factors 

chosen by stepwise selection, and the HR and exercise test variables in turns.  

The difference in WL100 between two different testing protocols was tested using 

linear regression analysis after adjustment for age. To address specifically the effect of 

two different exercise test protocols the stepwise selection was performed separately in 

corresponding subgroups. In supplementary analyses, the sample was restricted to 

subjects who had none of the following: history of cancer, history of CVD, history of 

chronic obstructive pulmonary disease, bronchial asthma or pulmonary tuberculosis, or 

dizziness, dyspnea, chest pain, arrhythmia, ischemic ECG changes or change in BP as a 

cause of discontinuation of a test. 

 

4.9.3 Study III 

Difference in WL100 between men who used HR-lowering medication and those who 

did not was tested with independent samples t-test. A multiple stepwise linear 
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regression analysis was used to investigate determinants of WL100. Cox proportional 

hazards’ regression models were fitted to compute the relative risk of death associated 

with a low WL100, expressed as a continuous or dichotomous variable. Age, 

examination year, exercise test protocol, and use of HR-lowering medication (beta-

blockers, digoxin, clonidine) were forced into the Cox models, and rest of the variables 

were chosen by backward stepwise selection (p-value >0.1 for removal) from 

conventional risk factors, including alcohol consumption, BMI, cigarette smoking, 

cardiac insufficiency, history of myocardial infarction, diabetes, myocardial ischemia 

during the exercise test, serum LDL and HDL cholesterol, and systolic and diastolic BP 

at rest. The additional predictive value brought by WL100 beyond other HR-derived and 

exercise test variables was explored by entering WL100 into a Cox model that included 

age, examination year, testing protocol, use of HR-lowering medication, conventional 

risk factors chosen by stepwise selection, and the HR and exercise test variables in 

turns. Because the use of HR-lowering medication affects WL100, the association of 

WL100 with mortality was examined separately in men who did not use HR-lowering 

medication and in men who used such medication. 

Difference in WL100 between two different testing protocols was tested using linear 

regression analysis after adjustment for age and use of HR-lowering medication. To 

address specifically the effect of two different exercise test protocols the stepwise 

selection was performed separately in corresponding subgroups. In supplementary 

analyses, the sample was restricted to subjects who had none of the following: history of 

cancer, history of cardiomyopathy, stroke or claudication, history of chronic obstructive 

pulmonary disease, bronchial asthma or pulmonary tuberculosis, or dizziness, dyspnea, 

chest pain, symptoms of cardiac insufficiency, arrhythmia, ischemic ECG changes or 

change in BP as a cause of discontinuation of a test. 

 

4.9.4 Study IV 

The difference in HR40-100 between men whose test was terminated because of reason 

potentially caused by latent CVD (dizziness, dyspnea, chest pain, arrhythmia, ischemic 

ECG changes or change in BP) or because of submaximal effort and other men was 

tested with the independent samples t-test. The Pearson correlation coefficients between 
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chronotropic incompetence variables were calculated. Cox proportional hazards’ 

regression models were fitted to compute the relative risk of AMI associated with a low 

HR40-100, expressed as a continuous or dichotomous variable. Two different sets of 

covariates were used: 1) age and examination year; and 2) age, examination year, 

alcohol consumption, BMI, cigarette smoking, diabetes, VO2max, myocardial ischemia 

during exercise test, serum LDL and HDL cholesterol, systolic and diastolic BP at rest, 

SBP response, and SBP at 2 minutes after peak exercise. Age and examination year 

were forced into the model, and backward stepwise selection, with a p-value of >0.10 

for removal, was used for the rest of the variables. In separate supplementary analyses, 

we excluded the subjects who died because of CHD within the next year after 

experiencing AMI, and men whose test was terminated because of reason potentially 

caused by a latent CVD or because of submaximal effort. Comparisons among 

chronotropic incompetence variables was addressed in a separate Cox model in which 

first stepwise selection was performed among the rest of the variables, and then forward 

stepwise selection was performed among chronotropic incompetence variables, with a 

p-value of <0.05 for entry. To study the joint effect of HR40-100 and SBP response to 

exercise, men with HR40-100 in the lowest quartile of HR40-100 and SBP response in 

the two highest quintiles of SBP response were compared with men who had a normal 

HR40-100 and SBP response. The cut-off point for SBP response was based on the 

results from a previous study in the same study population (439). 
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5. RESULTS 

 

5.1 Baseline characteristics 

 

The most important demographic and biochemical characteristics of all 1679 men 

according to baseline health status are presented in Table 7. The median age of the 

subjects was 52.4 (range 42.0-61.3) years. Among 1314 men with no CHD, 190 men 

with CVD were older, smoked less, had a higher diastolic BP, were more likely to have 

bronchial asthma, and were more likely to use antihypertensive medication (other than 

HR-lowering agents) or nitrates than 1124 men with no CVD after adjustment for age. 

Almost two thirds of self-reported CVDs were arrhytmias.  

In 365 men with known or suspected CHD, 90 (24.7%) men reported a history of 

myocardial infarction, 226 (61.9%) men angina pectoris diagnosed by a doctor, 284 

(77.8%) men angina pectoris on effort based on the London School of Hygiene 

Cardiovascular Questionnaire (444), and 61 (16.7%) men the use of nitroglycerine for 

chest pain at least once a week. Of these 365 men, 34.2% used HR-lowering 

medications and 14.0% reported symptoms of cardiac insufficiency. The men with 

known or suspected CHD were older, had a higher BMI, smoked more, had a lower 

HDL cholesterol concentration, and were more likely to have a history of stroke, cardiac 

insufficiency, cardiomyopathy, claudication, arrhytmias, or diabetes compared with 

1314 men with no CHD after adjustment for age. Additionally, the 365 men were more 

likely to use antihypertensive medication, nitrates, or calcium channel blockers. The use 

of lipid lowering medication or ACE-inhibitors was not very common at the time of 

baseline examination. 

 

5.2 Exercise test findings 

 

Among 1314 men with no CHD history, 190 men with CVD were had a lower VO2max, 

were more likely not to achieve 85% of age-adjusted expected chronotropic response at 

maximal workload, and were more likely to have the exercise test discontinued because 

of arrhytmias than 1124 men with no CVD after adjustment for age (Table 8). The 190  
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Table 7. Baseline characteristics of the men who had complete data on heart rate response 

to exercise test according to baseline health status  

Characteristics Mean (SD), median (range) or proportion 
 No CHD or 

CVD history 
(n=1124)‡ 

No CHD 
history but 
CVD history 
positive 
(n=190)‡ 

p-value for 
difference¶ 

Known or 
suspected 
CHD 
(n=365)‡ 

p-value for the 
difference# 

Number of 
CVD/CHD/all-cause 
deaths‡ 

36/25/110 15/10/23 0.01/0.04/ 
0.68 

37/30/75 <0.001/<0.001/ 
<0.001 

Number of AMIs* 102 22 0.51 85 <0.001 
Age, years 52 (42-61) 53 (42-61) 0.001 54 (42-61) <0.001 
Body mass index, 
kg/m2 

26.5 (3.3) 26.7 (3.5) 0.38 27.3 (3.7) <0.001 

Cigarette smoking, 
cigarette-years|| 

0 (0-2880) 0 (0-1400) 0.04 0 (0-2000) 0.008 

Alcohol consumption, 
g/week 

0 (0-889) 0 (0-728) 0.94 27 (0-2307) 0.44 

Serum HDL 
cholesterol, mmol/l 

1.33 (0.30) 1.30 (0.26) 0.17 1.26 (0.33) <0.001 

Serum LDL 
cholesterol, mmol/l 

3.98 (0.96) 4.00 (1.03) 0.88 4.05 (1.05) 0.60 

Diastolic blood 
pressure at rest, 
mmHg 

88.0 (10.0) 89.9 (10.4) 0.02 87.5 (10.1) 0.34 

Systolic blood 
pressure at rest, 
mmHg 

132.2 (15.1) 135.0 (16.8) 0.06 132.9 (17.6) 0.76 

Resting heart rate, 
beats/min 

68.0 (10.0) 68.3 (10.8) 0.67 66.9 (10.6) 0.08 

Blood hemoglobin, g/l 146.9 (8.8) 147.0 (9.8) 0.71 147.2 (9.5) 0.22 
      
Self-reported diagnoses or symptoms 
      
History of myocardial 
infarction, % 

0.0 0.0  24.7  

History of stroke, % 0.0 7.9  3.3 0.003 
Cardiac insuffi-
ciency, % 

0.0 13.2  14.0 <0.001 

Cardiomyopathy, % 0.0 7.5  3.6 0.004 
Claudication, % 0.0 9.5  7.9 <0.001 
Arrhytmias, %† 0.0 61.9  28.8 <0.001 
Chronic obstructive 
pulmonary disease, % 

5.7 7.9 0.34 8.8 0.13 

Bronchial asthma, % 2.3 5.8 0.02 5.5 0.06 
Pulmonary 
tuberculosis, % 

3.3 2.1 0.29 5.2 0.23 

Cancer, % 1.7 1.1 0.39 1.9 0.99 
Diabetes, %§ 3.5 4.7 0.49 7.1 0.02 
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Table 7. Continued 
Regular use of medications 
      
Antihypertensive 
medication, % 

2.4 7.9 0.001 38.1 <0.001 

β-blockers, % 0.0 0.0  32.3  
Nitrates, % 0.4 2.1 0.03 21.4 <0.001 
ACE-inhibitors, % 0.3 1.1 0.16 0.3 0.86 
Calcium channel 
blockers, % 

0.7 0.0  4.4 <0.001 

Clonidine, % 0.0 0.0  0.3  
Digoxin, % 0.0 0.0  6.6  
Medication for 
hypercholestero-
lemia, % 

   1.6  

 
* AMI, acute myocardial infarction. 
† Arrhytmias included extrasystolia, regular or paroxysmalatrial fibrillation and supraventricular 

tachycardia. 
‡ CVD, cardiovascular disease; CHD, coronary heart disease. 
|| Cigarette-years denotes the lifelong exposure to smoking which was estimated as the product of 

years smoked and the number of cigarettes smoked daily at the time of examination. 
§ Diabetes was defined as fasting glucose ≥6.7 mmol/l or use of medication for diabetes.  
¶ Difference between men with no coronary heart disease or cardiovascular disease history and men 

with no coronary heart disease history but positive cardiovascular disease history. Difference in 
age, smoking and alcohol consumption was tested with exact Mann-Whitney U-test. Differences in 
number of deaths and acute myocardial infarctions, self-reported diagnoses or symptoms, and 
regular use of medications were tested with logistic regression analysis and differences in rest of 
the variables with linear regression analysis after adjustment for age. 

# Difference between men with no coronary heart disease history and men with known or suspected 
coronary heart disease. Differences between groups were tested as explained in previous footnote.  
 

men were also more likely to have myocardial ischemia during exercise test, but their 

test was not discontinued more often because of ischemic ECG changes. Among 1314 

men with no CHD, HR40-100 and WL100 were not different between men with CVD 

and those without it.  

365 men with known or suspected CHD had a lower VO2max, maximal workload, SBP 

response and SBP at 2 minutes after peak exercise, and were more likely to have 

submaximal effort at peak exercise than 1314 men with no CHD after adjustment for 

age and use of HR-lowering medication. Men with known or suspected CHD were more 

likely to have chronotropic incompetence and have the exercise test discontinued 

because of dyspnea, chest pain or ischemic ECG changes. WL100 was not different 

between men with CHD and those without it. 
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Table 8. Characteristics of exercise testing in the men who had complete data on heart 

rate response to exercise test according to baseline health status  

Characteristics Mean (SD) or proportion 
 No CHD or 

CVD 
history 
(n=1124)|| 

No CHD 
history but 
CVD history 
positive 
(n=190)|| 

p-value for 
difference§ 

Known or 
suspected 
CHD 
(n=365)|| 

p-value for 
difference¶ 

Workload at heart rate of 
100 beats/min, Watts 

63 (31) 64 (33) 0.85 69 (34) 0.12 

Chronotropic index at 
heart rate of 100 
beats/min* 

1.13 (0.28) 1.12 (0.27) 0.59 1.12 (0.27) 0.98 

Heart rate increase from 
rest to 50 Watts, beats/min 

29 (9) 28 (10) 0.85 28 (10) 0.76 

Maximal oxygen 
consumption, ml/kg/min 
[METs] ‡‡ 

33.5 (7.4) 
[9.6 (2.1)] 

31.6 (6.7) 
[9.0 (1.9)] 

0.03 26.8 (7.0) 
[7.7 (2.0)] 

<0.001 

Maximal workload, Watts 211 (45) 203 (47) 0.53 168 (43) <0.001 
HR increase from 40% to 
100% of maximal work 
capacity, beats/min 

55 (13) 53 (15) 0.23 43 (15) <0.001 

Maximal heart rate as a 
proportion of age-adjusted 
expected maximal heart 
rate 

0.97 (0.09) 0.96 (0.11) 0.19 0.86 (0.13) <0.001 

Men unable to attain 90% 
of age-adjusted expected 
maximal heart rate, % 

19.5 25.8 0.05 57.5 <0.001 

Heart rate reserve, 
beats/min†† 

95 (19) 91 (21) 0.17 75 (22) <0.001 

Maximal heart rate, 
beats/min 

163 (16) 159 (19) 0.20 142 (22) <0.001 

SubmaxCRI at workload 
of 100 Watts# 

0.98 (0.13) 0.96 (0.14) 0.14 0.89 (18) 0.002 

MaxCRI** 0.95 (0.15) 0.92 (0.18) 0.16 0.77 (0.21) <0.001 
Men unable to attain 85% 
of age-adjusted expected 
chronotropic response at 
maximal workload, % 

24.1 29.5 0.11 61.5 <0.001 

Systolic blood pressure 
response, mmHg || || 

64 (23) 61 (24) 0.15 47 (24) <0.001 

Systolic blood pressure at 
2 minutes after peak 
exercise, mmHg 

184 (27) 187 (29) 0.56 181 (27) 0.03 

Myocardial ischemia 
during exercise test, 0.5 
mm, %† 

13.0 19.5 0.03 83.7 <0.001 

Myocardial ischemia 
during exercise test, 1.0 
mm, %‡ 

6.5 6.1 0.86 11.5 0.001 

Respiratory exchange 
ratio at peak exercise 
below 1.00, % 

4.1 6.3 0.27 12.3 <0.001 
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Table 8. Continued      
Cause  of discontinuation  of exercise test 
      
Dizziness, % 0.6 0.0  1.1 0.67 
Dyspnea, % 2.7 2.1 0.51 8.2 0.001 
Chest pain, % 0.3 0.0  8.5 <0.001 
Symptoms of cardiac 
insufficiency, % 

0.0 0.0  0.3  

Arrhytmia, % 2.1 5.3 0.04 2.7 0.84 
Ischemic changes in 
electrocardiogram, % 

0.2 1.1 0.10 4.7 <0.001 

Change in blood  
pressure, % 

2.0 2.6 0.69 1.9 0.50 

 
* ((100 – resting heart rate) / (maximal heart rate – resting heart rate)) / (workload at heart rate of 

100 beats/min / maximal workload). 
† The criteria for myocardial ischemia in electrogram during exercise was horizontal or downsloping 

ST depression with 0.5 or more mm at 80 milliseconds after J point or any ST depression of more 
than 1.0 mm at 80 milliseconds after J point. 

‡        The criteria for myocardial ischemia in electrogram during exercise was any ST depression of more 
than 1.0 mm at 80 milliseconds after J point. 

|| CVD, cardiovascular disease; CHD, coronary heart disease.  
§ Difference between men with no coronary heart disease or cardiovascular disease history and men 

with no coronary heart disease history but positive cardiovascular disease history. Differences in 
continuous and dichotomized variables were tested with linear and logistic regression analysis, 
respectively, after adjustment for age.  

¶ Difference between men with no coronary heart disease history and men with known or suspected 
coronary heart disease Differences in continuous and dichotomized variables were tested with 
linear and logistic regression analysis, respectively, after adjustment for age and use of heart rate-
lowering medication. 

# ((Heart rate recorded at workload of 100 Watts – resting heart rate) / (age-adjusted expected 
maximal heart rate – resting heart rate)) / ((100 Watts – 0 Watts) / (Watts at maximal work – 0 
Watts)). 

** (Heart rate recorded at maximal work – resting heart rate) / (age-adjusted expected maximal heart 
rate – resting heart rate). 

†† Maximal heart rate minus resting heart rate. 
‡‡ MET denotes metabolic equivalent (1 MET equals 3.5 ml/kg/min oxygen consumption). 
|| || Systolic blood pressure at peak exercise minus systolic blood pressure measured immediately 

before the test.  
 

 

5.3 Heart rate increase from 40% to 100% of maximal work capacity and 

mortality in men without coronary heart disease (Study I) 

 

In ANOVA for repeated measures, the slope of HR increase was steeper in survivors as 

compared with those who died during follow-up due to CVD (F=12.9; df=1.757; 

p<0.001 for interaction effect adjusting for age and length of follow-up). By using 

Helmert contrasts, the difference in the steepness of HR slope between the groups was 
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the strongest at interval 40-100 % (F=19.6, p<0.001) as shown in Figure 3. Based on 

these results, a new variable called HR40-100 was constructed as maximal HR minus 

HR at the workload of 40% of maximal workload attained. The average (SD) HR40-100 

was 54 (13) beats/min in the whole study sample. HR40-100 correlated negatively with 

resting HR (r=-.33, p<0.001) and positively with HR reserve (r=.79, p<0.001) and 

maximal HR (r=.66, p<0.001).  

 

0

20

40

60

80

100

120

140

160

180

200

rest 20 40 60 80 100

relative intensity (% of maximal workload reached in exercise test)

heart 
rate 

(beats/min)

 
Figure 3. Heart rate (mean ± standard deviation) as a function of relative intensity (% of maximal 

workload reached in exercise test) in men who died during follow-up due to cardiovascular disease (n=56, 

dashed line) and survivors (n=1322, continuous line). 

 

When adjusted for age and examination year, CVD mortality increased by 82% (95 % 

CI 39%-138%, p<0.001), CHD mortality by 127% (61%-213%, p<0.001), and all-cause 

mortality by 59% (35%-85%, p<0.001) for a 1-SD (13 beats/min) decrement in HR40-

100. To investigate independent associations of HR40-100, it was entered 

simultaneously with age, examination year and known risk factors for CVD death into 

Cox models. CVD mortality increased by 35% (95% CI 1%-79%, p=0.04), CHD 
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mortality by 69% (19%-144%, p=0.004), and all-cause mortality by 33% (11%-59%, 

p=0.002) for a 1-SD (13 beats/min) decrement in HR40-100 (Table 9).  

 

Table 9. Risk factors for cardiovascular disease, coronary heart disease, and all-cause 

death in 1378 men with no history of coronary heart disease at baseline* 

Risk factor Death due to 
cardiovascular disease 

Death due to coronary 
heart disease 

All-cause death 

 Relative risk 
(95 % CI) 

p-value Relative risk 
(95 % CI) 

p-value Relative risk 
(95 % CI) 

p-value 

Age, for each 
increment of 1 year 

1.08 
(1.02-1.16) 

0.02 1.04 
(0.97-1.12) 

0.31 1.08 
(1.04-1.13) 

<0.001 

Alcohol consumption  
≥ 91 g/week, highest 
fourth vs. others 

1.14 
(0.62-2.09) 

0.68 0.97 
(0.45-2.09) 

0.94 1.52 
(1.06-2.19) 

0.02 

Body mass index, for 
each increment of 3.4 
kg/m2 

1.20 
(0.93-1.54) 

0.16 1.19 
(0.88-1.60) 

0.26 1.07 
(0.91-1.26) 

0.42 

Cardiovascular disease 
history, yes vs. no 

1.81 
(0.98-3.34) 

0.06 1.66 
(0.77-3.57) 

0.20 1.02 
(0.66-1.58) 

0.93 

Cigarette smoking, for 
each increment of 301 
cigarette-years 

1.43 
(1.19-1.72) 

<0.001 1.41 
(1.11-1.78) 

0.004 1.43 
(1.29-1.60) 

<0.001 

Diabetes, yes vs. no 1.29 
(0.48-3.47) 

0.62 1.14 
(0.33-4.00) 

0.84 1.25 
(0.64-2.45) 

0.52 

Myocardial ischemia 
during exercise, yes vs. 
no 

2.35 
(1.32-4.19) 

0.004 3.32 
(1.68-6.59) 

0.001 1.25 
(0.83-1.90) 

0.29 

Serum LDL 
cholesterol, for each 
increment of 0.97 
mmol/l 

1.16 
(0.89-1.51) 

0.28 1.26 
(0.92-1.72) 

0.15 1.01 
(0.86-1.18) 

0.92 

Systolic blood pressure 
at rest, for each 
increment of 16 mmHg 

1.36 
(1.09-1.70) 

0.008 1.19 
(0.89-1.58) 

0.24 1.28 
(1.11-1.49) 

0.001 

HR increase from 40% 
to 100% of maximal 
work capacity, for 
each decrement of 13 
bpm 

1.35 
(1.01-1.79) 

0.04 1.69 
(1.19-2.44) 

0.004 1.33 
(1.11-1.59) 

0.002 

 
* From Cox regression model adjusted for age, examination year and all variables shown in a 

table. Except for age, alcohol consumption, cardiovascular disease history, diabetes and 
myocardial ischemia, the relative risks were calculated for a change of 1 standard deviation, as 
shown. CI, confidence interval; LDL, low-density lipoprotein; HR, heart rate; bpm, beats/min. 

 

To address specifically the late events, the analyses were restricted to 1367 subjects 

who had at least two years of event-free follow up. These analyses included 52 CVD 

deaths, 35 CHD deaths, and 135 all-cause deaths. The risk of CVD, CHD and all-cause 
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death increased by 33% (95% CI -1%-79%, p=0.06), 59% (10%-127%, p=0.01), and 

28% (8%-54%, p=0.007) for a 1-SD (13 beats/min) decrement in HR40-100, 

respectively. 

The best cut-off point of HR40-100 for predicting CVD mortality was 43 beats/min, 

and 272 (20%) subjects had low HR40-100 (<43 beats/min). Altogether 28 (50% of 

total) CVD deaths and 23 (62%) CHD deaths were observed among men with a low 

HR40-100. When HR40-100 was entered as a dichotomous variable into a Cox model, 

the strongest predictor of CVD death was smoking (p<0.001) followed by a low HR40-

100 (RR 2.4, 95% CI 1.4-4.2, p=0.002), myocardial ischemia during exercise (p=0.007), 

high systolic BP at rest (p=0.007), high age (p=0.01), and CVD history (p=0.05). The 

strongest predictor of CHD death was a low HR40-100 (RR 4.3, 95% CI 2.1-8.7, 

p<0.001), followed by myocardial ischemia during exercise (p=0.001), and smoking 

(p=0.002). 

The associations of HR40-100 with mortality were compared also with those of 

VO2max, resting HR, maximal HR, HR reserve and systolic blood pressure response. All 

variables were considered as continuous variables, and relative risks were calculated for 

1 SD increment. When HR40-100 and each of the other exercise test variables were 

entered into the fully adjusted model using the forward stepwise method, HR40-100 

remained in the model for CVD and CHD mortality, whereas other exercise test 

variables did not. In the corresponding model for all-cause mortality, both VO2max and 

HR40-100 were included in the model, but VO2max was a stronger predictor (p=0.008) 

than HR40-100 (p=0.05).   

Finally, 463 men who had cancer (n=29), submaximal effort at peak exercise (n=61), 

CVD (n=203), chronic obstructive pulmonary disease, bronchial asthma or pulmonary 

tuberculosis (n=157), or dizziness, dyspnea, chest pain, arrhythmia, ischemic ECG 

changes or change in BP as a cause for discontinuation of the test (n=118) were 

excluded. When adjusted for age, examination year, and known risk factors, CVD 

mortality increased by 33% (95% CI -7%-89%, p=0.11), CHD mortality by 61% (8%-

144%, p=0.02), and all-cause mortality by 15% (-5%-39%, p=0.14) with a 10 beats/min 

decrement in HR40-100. After exclusions, the study sample included 137 (15%) men 

who had a low HR40-100 (<43 beats/min). When expressed as dichotomized variable, a 
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low HR40-100 was an independent predictor of CVD (RR 2.9, 95% CI 1.2-6.9, p=0.01), 

CHD (RR 4.4, 1.6-12.2, p=0.005) and all-cause death (RR 2.0, 1.2-3.2, p=0.007). 

 

5.4 Workload at heart rate of 100 beats/min during exercise test and mortality in 

men without coronary heart disease (Study II) 

 

The mean (SD) WL100 was 63 (31) W. Resting HR explained 39%, chronotropic index 

at HR of 100 beats/min 21%, VO2max 5%, maximal HR 5%, and all these variables 

together 70% of the variance in WL100. Heart rate vs. workload for those who died 

during follow-up due to CVD and survivors is shown in Figure 4. CVD mortality 

increased by 72% (95% CI 27%-138%, p=0.001), CHD mortality by 96% (32%-186%, 

p=0.001), and all-cause mortality by 23% (2%-47%, p=0.03) with a decrement of 31 W 

(1 SD) in WL100 after adjustment for age, examination year, and exercise test protocol. 

After further adjustment for conventional risk factors, CVD mortality increased by 72% 

(95% CI 27%-138%, p=0.001) and CHD mortality by 89% (28%-178%, p=0.001) with 

a decrement of 31 W in WL100, but no association was found between WL100 and all-

cause mortality (Table 10). Entering the whole set of covariates into the model 

weakened the independent predictive value of WL100 for CVD (p=0.006) and CHD 

death (p=0.001) marginally. To address specifically the late events, the analyses were 

restricted to 1303 subjects who had at least two years of event-free follow-up. The 

analyses included 47 CVD deaths and 33 CHD deaths. The risk of CVD and CHD death 

increased by 67% (95% CI 20%-133%, p=0.002) and 96% (32%-194%, p=0.001) for a 

1-SD (31 W) decrement in WL100, respectively. 

The best WL100 cut-off point for predicting CVD mortality was 50 W, and 497 

(37.8%) men had WL100 <50 W. Altogether 32 (63% of total) CVD deaths and 24 (69%) 

CHD deaths were observed among men with WL100 <50 W. When WL100 was entered 

as a dichotomous variable with conventional risk factors into a backward stepwise Cox 

model, the strongest predictors of CVD death were smoking (p<0.001), WL100 <50 W 

(RR 3.2, 95% CI 1.8-5.8, p<0.001), myocardial ischemia during exercise test (p<0.001), 

a high BMI (p=0.001), a high age (p=0.001), and CVD history (p=0.008). The strongest 
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Table 10. The relative risk for cardiovascular disease, coronary heart disease, and all-

cause death in 1314 men with no history of coronary heart disease at baseline* 

Risk factor Death due to cardio-
vascular disease 

Death due to coronary 
heart disease 

All-cause death 

 Relative risk  
(95% CI) 

p-value Relative risk  
(95% CI) 

p-value Relative risk  
(95% CI) 

p-value 

Age, for increment 
of 1 year 

1.12  
(1.05-1.20) 

0.001 1.09  
(1.01-1.19) 

0.03 1.10  
(1.06-1.15) 

<0.001 

Alcohol 
consumption ≥91 
g/week, highest 
fourth vs. others 

    1.64  
(1.13-2.39) 

0.009 

Body mass index, 
for increment of 3.5 
kg/m2 

1.48  
(1.18-1.87) 

0.001 1.44  
(1.10-1.90) 

0.009 1.20  
(1.01-1.43) 

0.04 

Cardiovascular 
disease history, yes 
vs. no 

2.31  
(1.24-4.28) 

0.008 2.19  
(1.03-4.68) 

0.04   

Cigarette smoking, 
for increment of 299 
cigarette-years 

1.44  
(1.22-1.70) 

<0.001 1.43  
(1.15-1.76) 

0.001 1.45  
(1.30-1.61) 

<0.001 

Myocardial 
ischemia during 
exercise test, yes vs. 
no 

3.13  
(1.75-5.59) 

<0.001 4.29  
(2.17-8.49) 

<0.001   

Serum HDL 
cholesterol, for 
decrement of 0.29 
mmol/l 

    1.22  
(1.01-1.47) 

0.04 

Systolic blood 
pressure at rest, for 
increment of 15 
mmHg 

    1.32 
 (1.14-1.53) 

<0.001 

Workload at heart 
rate of 100 
beats/min, for 
decrement of 31 
Watts 

1.72  
(1.27-2.38) 

0.001 1.89  
(1.28-2.78) 

0.001   

 
* From Cox regression models adjusted for age, examination year, alcohol consumption, body mass 

index, cigarette smoking, cardiovascular disease history, diabetes, myocardial ischemia during 
exercise test, serum low-density and high-density lipoprotein cholesterol, systolic and diastolic 
blood pressure at rest, and exercise test protocol. The relative risks are shown only for variables 
included in the final model after a backward stepwise selection. Except for age, alcohol 
consumption, cardiovascular disease history, diabetes, and myocardial ischemia during exercise 
test, the relative risks were calculated for a change of 1 standard deviation, as shown. CI, 
confidence interval; HDL, high-density lipoprotein. 
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Figure 4. Heart rate (mean) as a function of workload in men who died during follow-up due to 

cardiovascular disease (n=51, dashed line) and survivors (n=1263, continuous line). Workload achieved 

at heart rate of 100 beats/min is indicated with vertical lines for each group. Standard deviations are not 

shown because the number of subjects in both groups gradually decreased along with increasing 

workload.  

 

predictors of CHD death were myocardial ischemia during exercise test (p<0.001), 

smoking (p<0.001), WL100 <50 W (RR 3.9, 95% CI 1.9-8.2, p<0.001), a high BMI 

(p=0.01), a high age (p=0.03), and CVD history (p=0.05). The Kaplan-Meier curves for 

cumulative incidence of CVD and CHD deaths between men with WL100 <50 W and 

men with WL100 ≥50 W continued to diverge with extended time of follow-up, as shown 

in Figure 5. 

 

5.4.1 Workload at heart rate of 100 beats/min, other heart rate-derived and 

exercise test variables, and mortality 

In a Cox model that included age, examination year, exercise test protocol, conventional 

risk factors chosen by stepwise selection, and the HR-derived and exercise test variables 

in turns, a 28-unit (1 SD) increment in the chronotropic index at HR of 100 beats/min   
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Figure 5. Kaplan-Meier curves for cumulative incidence of CVD (upper graph) and CHD (lower graph) 

deaths in men men with WL100 <50 W and men with WL100 ≥50 W. 

 

was associated with a 43% (95% CI 9%-88%, p=0.01) increase in CVD mortality and a 

65% (19%-128%, p=0.003) increase in CHD mortality; an increment of 10 beats/min (1 

SD) in resting HR was associated with a 39% (0%-92%, p=0.05) increase in CHD 

mortality; a decrement of 7.3 ml/kg/min (1 SD) in VO2max (about 2.1 metabolic 

equivalents) was associated with a 59% (0%-150%, p=0.05) increase in CHD mortality; 

and a decrement of 46 W (1 SD) in maximal workload was associated with a 52% (0%-

133%, p=0.05) increase in CHD mortality. WL100 improved the predictive value of all 

models, except the model predicting CVD mortality that included chronotropic index at 
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HR of 100 beats/min. Whereas the predictive value of WL100 was consistent across the 

models shown, no other HR-derived or exercise test variable remained a significant 

predictor of CVD and CHD death in models that included WL100.  

 

5.4.2 Workload at heart rate of 100 beats/min and mortality: further adjustments 

When a low blood hemoglobin concentration (<135 g/l) was entered into the model, the 

predictive value of WL100 for CVD and CHD death remained unchanged. The mean 

(SD) WL100 was 65 (29) W and 62 (32) W in men tested according to early and later 

testing protocol, respectively (p=0.30 for difference after adjustment for age). To 

address the effect of a testing protocol, the survival analysis was conducted separately 

for subjects performing the two different protocols. In 528 men tested according early 

protocol, WL100 as a continuous variable remained in the final model after stepwise 

selection for both CVD (p=0.04) and CHD (p=0.02) mortality. Among the 786 men 

tested according to the later protocol, WL100 also remained in the final model for both 

CVD (p=0.02) and CHD mortality (p=0.03). Finally, 400 men who had cancer (n=21), 

CVD (n=190), chronic obstructive pulmonary disease, bronchial asthma or pulmonary 

tuberculosis (n=149), or dizziness, dyspnea, chest pain, arrhythmia, ischemic ECG 

changes or change in BP as a cause of discontinuation of a test (n=109) were excluded. 

After stepwise selection CVD mortality increased by 59% (95% CI 4%-144%, p=0.03), 

and CHD mortality by 100% (25%-223%, p=0.004) with a 30 W decrement in WL100.  

 

5.5 Workload at heart rate of 100 beats/min during exercise test and mortality in 

men with coronary heart disease (Study III) 

 

The mean (SD) WL100 was 69 W (34 W). Resting HR explained 38%, chronotropic 

index at a HR of 100 beats/min 18%, maximal HR 11%, VO2max 5%, and all these 

variables together 72% of the variance in WL100 in a multiple stepwise regression 

analysis. 

The risk of death increased by 56% (95% CI 20%-100%, p=0.001) for a 1-SD (34 W) 

decrement in WL100 when adjusted for age, examination year, testing protocol, and use 

of HR-lowering medication. After further adjustment for conventional risk factors, the 
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risk of death increased by 72% (95% CI 32%-122%, p<0.001) for a 1-SD (34 W) 

decrement in WL100 (Table 11). Finally, entering the whole set of covariates did not 

affect WL100 as an independent predictor of death (p<0.001). WL100 was also predictive 

of CVD and CHD death. After adjustment for conventional risk factors, the risk of CVD 

death increased by 59% (95% CI 11%-127%, p=0.01), and the risk of CHD death 

increased by 56% (4%-138%, p=0.03) for a 1-SD (34 W) decrement in WL100. In men 

who had at least 2 years of event-free follow-up from baseline, the risk of death 

increased by 69% (95% CI 28%-127%, p<0.001) for a 1-SD (34 W) decrement in 

WL100 after adjustment for other risk factors.  

 

Table 11. Risk factors for death in 365 men with known or suspected coronary heart 

disease at baseline*  

Risk factor Relative risk 
(95% CI) 

p-value 

Age, for increment of 1 year 1.08 (1.01-1.15) 0.02 
Cardiac insufficiency, yes vs. no 2.42 (1.36-4.32) 0.003 
History of myocardial infarction, yes vs. no 2.21 (1.32-3.71) 0.003 
Workload at heart rate of 100 beats/min, for decrement of 
34 Watts 

1.72 (1.32-2.22) <0.001 

 
* From Cox regression adjusted for age, examination year, alcohol consumption, body mass index, 

cigarette smoking, cardiac insufficiency, diabetes, history of myocardial infarction, myocardial 
ischemia during exercise test, serum low-density and high-density lipoprotein cholesterol, systolic 
and diastolic blood pressure at rest, testing protocol, and use of heart rate-lowering medication. 
The relative risks are shown only to the variables which were included in the final model of a 
backward stepwise selection. Except for age, cardiac insufficiency, and history of myocardial 
infarction, the relative risks were calculated for a change of 1 standard deviation, as shown. CI, 
confidence interval. 

 

The best cut-off point for predicting mortality was 55 W, and 130 (35.6%) of all 365 

men had WL100 <55 W. Altogether 38 (51% of total) deaths were observed among men 

with WL100 <55 W. When WL100 was entered as a dichotomous variable into the 

backward stepwise Cox model including other risk factors, the strongest predictor of 

death was WL100 <55 W (RR 2.4, 95% CI 1.5-4.0, p<0.001), followed by a self-reported 

cardiac insufficiency (p=0.004), a history of myocardial infarction (p=0.006), a low 

diastolic BP at rest (p=0.03), and high age (p=0.04).  
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5.5.1 Workload at heart rate of 100 beats/min, other heart rate-derived and 

exercise test variables, and mortality 

In a Cox model that included age, examination year, testing protocol, use of HR-

lowering medication, conventional risk factors chosen by stepwise selection, and the 

HR-derived and exercise test variables in turns, the risk of death increased by 32% 

(95% CI 5%-66%, p=0.02) with 11 beats/min (1 SD) increment in resting HR; by 47% 

(10%-100%, p=0.01) with 7.0 ml/kg/min (1 SD) decrement in VO2max; and by 35% 

(3%-75%, p=0.03) with 43 W (1 SD) decrement in maximal workload. Entering WL100 

into these models improved the predictive value of the model statistically significantly 

in each case (Table 12). The predictive value of WL100 remained stable in various 

models. Of other HR-derived and exercise test variables, only VO2max remained a 

statistically significant predictor of death in the models including WL100. In that model, 

mortality increased by 35% (95% CI 1%-82%, p=0.05) with a 7.0 ml/kg/min decrement 

in VO2max, and WL100 was also an independent predictor (p=0.002). 

 

Table 12. Workload at heart rate of 100 beats/min and mortality after adjustment for 

heart rate -derived and exercise test variables in 365 men with known or suspected 

coronary heart disease at baseline* 

Heart rate –derived or exercise test variable 
entered into adjusted model before WL100  

Improvement of the 
model after entering 

WL100 into the 
model 

Relative risk (95% CI) of 
death per each decrement 

of 1 SD in WL100 

Resting heart rate 0.006 1.56 (1.12-2.17) 
Heart rate increase from rest to 50 Watts  0.001 1.59 (1.20-2.13) 
Heart rate increase from rest to 33% of maximal 
workload  

<0.001 1.61 (1.23-2.08) 

Maximal heart rate  <0.001 1.72 (1.32-2.27) 
Maximal oxygen consumption 0.001 1.52 (1.18-1.96) 
Chronotropic index at heart rate of 100 beats/min  0.001 1.64 (1.20-2.17) 
Heart rate reserve  <0.001 1.59 (1.23-2.04) 
Maximal workload  0.002 1.52 (1.16-2.00) 

 
* Adjusted for risk factors chosen after stepwise selection before the variables in the left column and 

workload at heart rate of 100 beats/min were entered into the model in turns. WL100, workload at 
heart rate of 100 beats/min; CI, confidence interval; SD standard deviation.   
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5.5.2 Workload at heart rate of 100 beats/min, the use of heart rate-lowering 

medication, and mortality 

The mean (SD) WL100 was 61 W (29 W) in 240 men not using HR-lowering medication 

and 86 Watts (36 W) in 125 men using the medication (p<0.001 for difference between 

groups). WL100 was chosen after stepwise selection among conventional risk factors to 

final models predicting mortality in both subgroups. In men not using HR-lowering 

medication, the strongest predictor of death was a history of myocardial infarction 

(p=0.001), followed by WL100 and age (p=0.01). The risk of death increased by 54% 

(95% CI 14%-108%, p=0.005) for a 1-SD (29 W) decrement in WL100. In men using 

HR-lowering medication, the strongest predictor of death was self-reported cardiac 

insufficiency (p=0.004), followed by WL100 and diastolic BP at rest (p=0.04). The risk 

of death increased by 72% (95% CI 14%-163%, p=0.01) for a 1-SD (36 W) decrement 

in WL100. There was no interaction between WL100 and the use of HR-lowering 

medication (p=0.94).  

 

5.5.3 Workload at heart rate of 100 beats/min and mortality: further adjustments 

When a low blood hemoglobin concentration (<135 g/l) was entered into the model the 

predictive value of WL100 for death remained unchanged. The mean (SD) WL100 was 69 

(31) W and 70 (36) W in men tested according to the early and later testing protocol, 

respectively (p=0.36 for difference after adjustment for age and use of HR-lowering 

medication). To address the effect of a testing protocol the survival analysis was 

conducted separately for subjects performing the two different protocols. In 169 men 

tested according to early protocol WL100 as a continuous variable remained in the final 

model after stepwise selection (p=0.04).  Among the 196 men tested according to later 

protocol WL100 also remained in the final model (p=0.001). Finally, 176 men who had 

cancer (n=7), cardiomyopathy, claudication, or a history of stroke (n=53), chronic 

obstructive pulmonary disease, bronchial asthma or pulmonary tuberculosis (n=61), or 

dizziness, dyspnea, chest pain, symptoms of cardiac insufficiency, arrhythmia, ischemic 

ECG changes or change in BP as a cause of discontinuation of the test (n=100) were 

excluded. After stepwise selection mortality increased by 89% (95% CI 28%-178%, 

p=0.001) with a 30 W decrement in WL100 among the remaining men.  
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5.6. Heart rate increase from 40% to 100% of maximal work capacity and the risk 

of acute myocardial infarction in men without cardiovascular disease (Study IV) 

 

The mean (SD) HR40-100 was 55 (13) beats/min. The correlation coefficients between 

all continuous chronotropic incompetence variables varied between 0.60 and 0.99, but 

the correlation coefficients between submaxCRI and other variables describing 

chronotropic incompetence were between -0.05 and 0.30. 

The risk of AMI increased by 45% (95% CI 20%-75%, p<0.001) for a 1-SD (13 

beats/min) decrement in HR40-100 when adjusted for age and examination year. After 

further adjustment for conventional risk factors, the risk of AMI increased by 33% 

(95% CI 9%-64%, p=0.006) for a 1-SD (13 beats/min) decrement in HR40-100 (Table 

13). Entering the whole set of covariates into the model weakened the independent 

predictive value of HR40-100 for AMI slightly (p=0.03). The increase in HR from rest 

to 40% of maximal work capacity did not remain in the final model after stepwise 

selection. To address specifically later events, the analyses were restricted to 1153 

subjects who had at least 2 years of event-free follow up. These analyses included 91 

AMIs, and the risk of AMI increased by 37% (95% CI 9%-72%, p=0.008) for a 1-SD 

(13 beats/min) decrement in HR40-100. 

Twenty of the 106 men who had an AMI during the follow-up died because of CHD 

within the next year after experiencing AMI. After excluding these 20 men from 

analyses, HR40-100 was still an independent predictor of AMI after stepwise selection: 

the risk of AMI increased by 33% (95% CI 5%-67%, p=0.02) for a 1-SD (13 beats/min) 

decrement in HR40-100.  

Altogether 140 men had either a respiratory exchange ratio at peak exercise <1.00 as 

an objective marker of premature termination of the test (n=50) or stopped the exercise 

test because of a reason (dizziness, dyspnea, chest pain, arrhythmia, ischemic ECG 

changes or change in BP) that could be interpreted to indicate latent CVD (n=99). 

HR40-100 was lower in these men compared with other men (45 beats/min vs. 56 

beats/min, p<0.001). After exclusion of 99 men with termination of the test because of 

suspicious symptoms or findings, HR40-100 remained a statistically significant 

predictor of AMI after stepwise selection: the risk of AMI increased 23% (95% CI 3%-
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49%, p=0.03) with a 10 beats/min decrement in HR40-100. Further exclusion of 41 men 

with a respiratory exchange ratio at peak exercise <1.00 weakened the predictive value 

of HR40-100 only marginally: the risk of AMI increased 22% (95% CI 1%-49%, 

p=0.04) with a 10 beats/min decrement in HR40-100.  

 

Table 13. The risk of acute myocardial infarction in 1176 men without cardiovascular 

disease or the use of heart rate -lowering medication at baseline* 

Risk factor Relative risk 
(95 % CI) 

p-value 

Cigarette smoking, for increment of 306 cigarette-years 1.33  
(1.15-1.54) 

<0.001 

Diabetes, yes vs. no 2.71  
(1.42-5.18) 

0.003 

Myocardial ischemia during exercise, yes vs. no 1.76  
(1.10-2.82) 

0.02 

Serum LDL cholesterol, for increment of 0.96 mmol/l 1.33  
(1.10-1.60) 

0.003 

Systolic blood pressure response, for increment of 24 mmHg 1.25  
(1.02-1.53) 

0.03 

Systolic blood pressure at 2 minutes after peak exercise, for increment of 
27 mmHg 

1.26  
(1.03-1.54) 

0.02 

HR increase from 40% to 100% of maximal work capacity, for decrement 
of 13 bpm 

1.33  
(1.09-1.64) 

0.006 

 
* From Cox regression adjusted for age, examination year, alcohol consumption, body mass index, 

cigarette smoking,, diabetes, maximal oxygen consumption, myocardial ischemia during exercise 
test, serum low-density and high-density lipoprotein cholesterol, systolic and diastolic blood 
pressure at rest, systolic blood pressure reserve, and systolic blood pressure at 2 minutes after 
peak exercise. The relative risks are shown only to the variables which were statistically 
significant predictors of acute myocardial infarction in the final model after a backward stepwise 
selection. Except for age, alcohol consumption, diabetes, and myocardial ischemia during 
exercise test, the relative risks were calculated for a change of 1 standard deviation, as shown. 
CI, confidence interval; LDL, low-density lipoprotein; HR, heart rate; bpm, beats/minute. 

 

5.6.1 Heart rate increase from 40% to 100% of maximal work capacity, other 

chronotropic incompetence variables, and the risk of acute myocardial infarction  

When HR40-100 was replaced by other chronotropic incompetence variables in separate 

stepwise selections all other chronotropic incompetence variables were chosen into the 

final models among statistically significant predictors except HR reserve, chronotropic 

response index at maximal work (maxCRI) as a dichotomous variable, and submaxCRI 

both as a continuous and dichotomous variable. The risk of AMI increased by 25% 

(95% CI 5%-49%, p=0.01) with 1 SD (0.09) decrement in maximal HR as a proportion 
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of age-adjusted expected maximal HR; by 30% (6%-59%, p=0.01) with a 1-SD (17 

beats/min) decrement in maximal HR; and by 27% (5%-52%, p=0.01) with a 1-SD 

(0.16) decrement in maxCRI. The risk of AMI was 1.8-fold (95% CI 1.2-2.8, p=0.005) 

in 228 (19.4%) men who were unable to reach 90% of age-adjusted expected maximal 

HR as compared with men who could reach the target value. The comparison among the 

variables describing chronotropic incompetence was performed by exploring how much 

additional information they bring to an optimal model constructed without them. After 

stepwise selection among the rest of the variables, only HR40-100 improved the 

constructed model both as a continuous and as a dichotomous (the lowest quartile vs. 

others) variable (p=0.05 and p=0.03 for improvement of the model, respectively).  

 

5.6.2 Heart rate increase from 40% to 100% of maximal work capacity, systolic 

blood pressure response and the risk of acute myocardial infarction 

Both HR40-100 and SBP response remaind in the model as independent predictors of 

AMI after stepwise selection (Table 13). The subjects were classified according to 

HR40-100 and SBP response so that 296 men with HR40-100 <46 beats/min (the lowest 

quartile) were categorized as having a low HR40-100, and 473 men with SBP response 

>67 mmHg (two highest quintiles) were categorized as having a heightened SBP 

response, respectively. After stepwise selection, men with a low HR40-100 had a 1.6-

fold (95% CI 1.0-2.5, p=0.03) higher risk of AMI than other men. In a separate stepwise 

selection, men with a heightened SBP response had a 1.7-fold (95% CI 1.1-2.6, p=0.01) 

higher risk of AMI than other men. After adjusting for age, examination year, cigarette 

smoking, diabetes, myocardial ischemia during exercise test, serum LDL cholesterol, 

and SBP at 2 minutes after peak exercise, 89 men with a low HR40-100 and a 

heightened SBP response had a 3.1-fold (95% CI 1.7-5.7, p<0.001) higher risk of AMI 

than the reference group consisting of men with both variables normal (Table 14). The 

interaction between HR40-100 and SBP response was not statistically significant 

(p=0.55) in an unadjusted model. 
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Table 14. The risk for acute myocardial infarction in 1176 men without cardiovascular 

disease or the use of heart rate -lowering medication at baseline according to heart rate 

increase from 40% to 100% of maximal work capacity and systolic blood pressure 

response* 

Group Number of acute myocardial 
infarctions/subjects 

Relative risk  
(95 % CI) 

Normal HR40-100, normal SBP response  28/496 1.00  
(reference group) 

Normal HR40-100, heightened SBP response 30/384 1.56  
(0.91-2.68) 

Low HR40-100, normal SBP response 29/207 1.73  
(1.01-2.96) 

Low HR40-100, heightened SBP response 19/89 3.07  
(1.66-5.66) 

 
* From Cox regression adjusted for age, examination year, cigarette smoking,, diabetes, myocardial 

ischemia during exercise test, serum low-density lipoprotein cholesterol, and systolic blood 
pressure at 2 minutes after peak exercise. CI, confidence interval; HR40-100, heart rate increase 
from 40% to 100% of maximal work capacity; SBP, systolic blood pressure. 
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6. DISCUSSION 

 

6.1 Methodological aspects 

 

6.1.1 Study design 

The prevention of diseases can only be achieved when factors that predict disease 

outcomes are identified and prevented or treated (455). Conduction of randomized 

controlled trials is the best way to determine if a variable causally contributes to an 

outcome, but for practical and ethical reasons, it is usually impossible to hold biological 

factors constant in human research (455). Additionally, several risk factors for a given 

outcome interact so that a particular variable may predict an outcome when considered 

univariately, but in reality the association may be through other variables (17).  

    Therefore, multivariable statistical models called survival analysis are used to assess 

possible causal factors for an outcome, permitting estimation of the unique effects of a 

particular variable on the outcome while statistically holding other variables constant 

(3,17,455). Such models help identify risk factors for an outcome, allow to formulate 

risk stratification tools, and often may suggest pathophysiological mechanisms (455). 

However, causation can never be definitively discerned from observational data sets, 

regardless of the statistical tools used, including testing for independence (455). The 

most common technique for multivariable survival analysis is the Cox proportional 

hazards model (3-5), which was also used in the present study. Seven 

(9,14,15,230,316,344,345,369,370,374,375,377) of 11 previous studies  exploring the 

association between HR at exercise test and CVD events in asymptomatic subjects 

(Tables 2 and 4) reported the result from multivariable models.     

The accepted way to analyze relationships between multiple risk factors and an 

outcome is, if possible, to include all relevant risk factors in the statistical model to 

determine the adjusted effect of each risk factor on the outcome (455). If, after 

adjustment, a risk factor maintains a statistically significant association with the 

outcome, it is called an independent risk factor for the outcome (455). However, no 

study will ever properly model all cardiovascular risk factors to assert that a particular 

variable is truly an independent risk factor for a given CVD outcome (455). For any 
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variable described as an independent risk factor for a given CVD outcome, residual 

counfounding may remain, ie. potential predictors also associated with a variable of 

main interest have been excluded, poorly measured or not measured at all, or incorrectly 

modeled (455). Hence, terms such as independent risk factor or independent predictor 

have meanings only in the context of a particular statistical model (455). Importantly, in 

the current study a large number of established and potential risk factors were measured 

at baseline. Consequently it was possible to evaluate their impact on the associations of 

WL100 and HR40-100 with outcomes thoroughly. However, the possibility of residual 

confounding due to some unmeasured factors can not be excluded. 

The length of follow-up may influence the results via opposing mechanisms. The 

short follow-up may weaken the associations if only a relatively small number of 

outcome events occur during the follow-up. A limited number of outcome events 

inevitably weakens the power of a study to find out whether the given difference in 

outcome is statistically significant. On the other hand, false positive findings can be 

made due to small number of outcome events. A long follow-up may weaken the 

associations if the values of variables measured at baseline change considerably during 

the follow-up although the statistical power increases along with the increasing number 

of outcome events (226). Because it is not known whether WL100 or HR40-100 changed 

during the follow-up of the present study, it is impossible to evaluate the relative effects 

of the aforesaid mechanisms. Nonetheless, the question can be addressed indirectly by 

recalculating the results according to a hypothetical situation where the follow-up would 

have been only eight years instead of true 11 years. The recalculation shows that the 

prognostic values of HR40-100 and WL100 are clearly attenuated with a follow-up 

shorter than eight years (data not shown). It can therefore be speculated that the 

prognostic values of WL100 and HR40-100 would have been even larger if the follow-up 

time had been extended longer than 11 years.    

Censoring refers to the removal of intervened subject from observation when the 

intervention occurs during follow-up because the intervention changes the natural 

course of a disease of a subject (3-5). In observational studies for cardiac events the 

interventions leading to censoring are coronary artery by-pass surgery and percutaneous 

transluminal coronary angioplasty with or without stenting (3-5). In the current study, 
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subjects who underwent coronary artery by-pass surgery or percutaneous transluminal 

coronary angioplasty during the follow-up were not censored at the time of intervention 

because we did not have a possibility to monitor those events during the long follow-up. 

However, in none of the 13 previous studies in asymptomatic subjects and patients with 

known or suspected CHD was such censoring performed either.  

Collinearity means that at least one of the covariates can be predicted well from the 

other covariates in the model (456). In the present study, collinearity was tried to 

minimize by utilizing a backward stepwise selection method in Cox models (studies II-

IV). This method effectively limits a number of variables so that only one of two highly 

correlated covariates is left in the final model, provided its predictive value is high 

enough. However, the main results of studies II-IV remained very much unchanged 

when all covariates were entered simultaneously into the model instead of stepwise 

selection method. In study I, the results were reported after entering all variables 

simultaneously into the model. Nonetheless, when the main analysis were repeated in 

study I with backward stepwise selection, HR40-100 remained as a statistically 

significant predictor in the final models predicting CVD, CHD and all-cause death (data 

not shown).      

 

6.1.2 Study population  

A strength of the current study is that subjects are a representative population-based 

sample of middle-aged men from eastern Finland, an area known for its high prevalence 

and incidence of CVD (432,433). Second, the participation rate was high, and there 

were no losses to follow-up. The representative sample of men makes it possible to 

generalize the observed results to male populations of European background. One 

limitation of the present study is that only men were enrolled. The extent to which age, 

gender, ethnic population, underlying diseases, and regular physical activity possibly 

modify the observed findings deserves further study.  

The baseline characteristics of the previous studies exploring the association between 

HR during the exercise test and CVD events in asymptomatic subjects and in subjects of 

the current study are gathered in Tables 2, 4 and 7. The age of the subjects in the present 

study is on the upper end of the range reported in previous studies. It is impossible to 
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evaluate the exact CVD or CHD death rates in all previous studies, but crude estimates 

can be calculated in studies which reported CVD or CHD death as an outcome and the 

average or median length of the follow-up: the number of outcome events divided by 

the number of subjects divided by the the length of the follow-up. According to this 

equation, in all three previous studies which reported CHD death as an outcome, the 

event rate was higher than in the present study. The lower CHD mortality rate in the 

present study as compared with three previous studies might be due to a considerably 

longer follow-up in two studies (9,15), the inclusion of men with a clinical evidence of 

definite or probable CHD in one study (341), and the intitiation of earlier studies in the 

1970s, when the incidence of CHD was higher. 

Because of the limited number of CVD deaths during the follow-up, men with a 

history of CVD (involving cardiac insufficiency, cardiomyopathy, arrhytmias, stroke or 

claudication) were included in studies I and II. This may potentially lead to selection 

bias, which means that the study sample includes individuals with symptomatic or 

asymptomatic CVD who perform poorly in the exercise test and have an increased risk 

of future CVD events during follow-up (457). The potential selection bias was taken 

into account by including a history of CVD as a covariate in the Cox models (studies I 

and II). Furthermore, when the main analyses were repeated after excluding men with 

CVD or other diseases or conditions potentially affecting the exercise test findings or 

the outcomes, the results did not change considerably (studies I, II and IV). Finally, two 

exercise HR variables of main interest in the present study, HR40-100 and WL100, were 

not different between men with CVD and those without it (Table 8). It is noteworthy, 

however, that by far the most common CVD was arrhythmias (Table 7), which are 

generally benign and usually have no prognostic value.  

The relationship of HR at submaximal workload with mortality and the risk of CVD 

events in patients with known or suspected CHD has not been investigated. 

Nonetheless, for descriptive purposes the present study can be compared with two 

recent studies (354,355) that explored HR increment from rest to submaximal workload 

as a predictor of death in men with known or suspected CHD. The sampling of subjects 

in the present study (study III) differs markedly from that of the previous two studies. 

The men in the present study were from a large population-based sample and the 
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inclusion criteria involved a self-reported history of myocardial infarction or angina 

pectoris, or a regular use of antianginal medication. However, the study was not carried 

out in a clinical setting, and therefore the complete medical records of subjects were not 

available.  

In contrast, in studies conducted in one or several academic clinics the detailed 

objective clinical history of participants can be gathered easily. The subjects in the two 

clinical studies were either patients with angiographically documented CHD (354), or 

consecutive patients referred for exercise testing (355). Self-reporting unavoidably 

involves inaccuracy and a risk of misclassification (17). However, in the present study 

the history of myocardial infarction or angina pectoris were based on a diagnosis made 

by a physician. Furthermore, the London School of Hygiene Cardiovascular 

Questionnaire (444) is a widely used and well validated tool for a standard, unbiased 

assessment of chest pain in epidemiological studies (458).  

It is therefore possible that the subjects in the present study represent a wide spectrum 

of severity of CHD, and consequently the results can be generalized to an even larger 

group of patients with known or suspected CHD than the results from studies involving 

subjects referred for exercise testing (457). Moreover, men in the current study III can 

be considered as patients who according to current guidelines (459) should be referred 

for exercise testing either for diagnostic purposes or for evaluation of prognosis and 

treatment options.  In this respect, the subjects of the current study III resemble those in 

the study by Leeper et al (355). The number of subjects was lower and the subjects were 

younger, but the length of follow-up was about twice as long in the current study III as 

in two previous studies in patients with known or suspected CHD (354,355), 

respectively. The estimated crude outcome rates for all-cause, CVD and CHD death 

were very similar in all these studies. 

We deliberately excluded men who used HR-lowering medication in studies which 

involved men without CHD at baseline (studies I, II and IV). This exclusion has been 

used also in previous studies exploring the association between HR at exercise test and 

CVD events in asymptomatic subjects. In seven (9,14,227,230,316,344,345, 

368,374,375) of 11 studies users of HR-lowering medication have been excluded, and in 

only one (341) study have they been included in the study sample (Tables 2 and 4). In 
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four (15,342,343,369,370,377) studies the presence of users of HR-lowering medication 

was not reported. Definitely future studies are needed to clarify the prognostic value of 

chronotropic incompetence also among the users of HR-lowering medication. In the 

current thesis, however, a low WL100 predicted all-cause deaths both in subjects who 

used and did not use HR-lowering medication among men with known or suspected 

CHD. 

 

6.1.3 Exercise testing 

A maximal, symptom limited exercise test was performed on an electrically braked 

cycle ergometer. The advantage of cycle ergometer is that an upper body motion is 

usually reduced, that makes it easier to measure BP and to record the ECG 

(10,190,319). It is argued that a major limitation to cycle ergometer testing is the fatigue 

of the quadriceps muscles in subjects who are not experienced cyclists, which may 

cause them to stop before reaching a true maximal HR (10,17,190).  

    Unfortunately the testing protocol was changed midway through the baseline data 

collection so that the increment of workloads during first minutes of a test was different 

between men tested earlier or later during the course of baseline data collection. 

Because WL100 characterizes the early rise of HR at the beginning of a test, two 

different protocols could affect WL100. However, WL100 was not different between men 

tested according to different protocols (studies II and III). Furthermore, the potential 

effect of two different protocols was taken into account by including testing protocol as 

a forced covariate in all Cox models in studies II and III. Finally, WL100 was included as 

a statistically significant predictor in the final Cox models after stepwise selection 

performed separately in men tested with both earlier and later protocol (studies II and 

III). These findings suggest that the difference in the testing protocols had no effect on 

the results in studies II and III. The different testing protocols should have no effect on 

HR40-100 or other chronotropic incompetence variables because they are determined 

by a HR increase during the latter half of the test which was identical in both testing 

protocols. The main results were unchanged when the analyses were performed with the 

testing protocol as a forced covariate in Cox models (data not shown). 
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HR was recorded from ECG as the reciprocal of the time interval between successive 

R peaks obtained from sample interval of approximately three seconds and measured 

digitally by ECG. The difference between the measured HR and the true HR 

(determined by the last 30 seconds of each minute during exercise) is inversely related 

to the sampling interval (281). It is possible that the measurement of HR would have 

been more accurate if a longer measurement interval had been used. Hence, the possible 

inaccuracy associated with a short sampling interval rather weakens than falsely 

strengtens the predictive value of HR variables observed in the present study. On the 

other hand, HR can climb steeply even in the final seconds of exercise (17,460), in 

which case an inappropriately long sample interval would prevent the detection of the 

true maximal HR.  

In studies I, II and IV myocardial ischemia during exercise test was defined as a 

horizontal or downsloping ST depression with 0.5 or more mm at 80 milliseconds after 

J point instead of conventionally used cut-off value of 1.0 mm. An ST depression of 0.5 

mm was used as a cut-off value for definition, as in the early reports from the KIHD 

data (434,441,461), because in univariate Cox models (studies I, II, III, IV) it was a 

stronger predictor of the outcome than a 1.0-mm cut-off for ST depression. In study III, 

a 1.0 mm ST-depression was used as a cut-off value, however, because the prevalence 

of ischemic change in exercise ECG would have been quite large (84%) had a 0.5 mm 

cut-off been used. More importantly, the main results were practically unchanged even 

when an ST-depression of 0.5 mm was replaced by 1.0 mm as a cut-off value in studies 

I, II and IV, and vice versa in study III.  

Another strength of the present study is that cardiorespiratory fitness was measured 

objectively by direct expiratory gas analysis instead of using predicted values. The use 

of direct expiratory gas analysis can greatly supplement exercise testing by adding 

precision and reproducibility as well as increasing the yield of information concerning 

cardiopulmonary function (319,363,460). Importantly, a submaximal effort at peak 

exercise can also be objectively evaluated based on respiratory exchange ratio 

(10,319,460). VO2max is considered the best index of aerobic capacity and maximal 

cardiorespiratory function (10,190,460). As VO2 is determined primarily by cardiac 

output in the absence of pulmonary or skeletal limitations, this allows for the use of 
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VO2max as an estimate of cardiovascular function during physical stress (18,319). 

Predicting VO2 from cycle ergometer workload is a common clinical practice, but such 

predictions can be misleading (319,363,460). In the current study, exercise testing with 

both the conventional indirect definition of exercise capacity and respiratory gas 

analysis was used, which is unique in a large cohort study. The accurate measurement of 

VO2max assured the reliable estimation of the predictive value of cardiorespiratory 

fitness. The predictive value of other exercise test variables independent of 

cardiorespiratory fitness could also be assessed more reliably as well.  

Maximal HR was relatively low in the current study compared with previous studies 

(9,230,342,344,368-370) exploring the association between HR at exercise test and 

CVD events in asymptomatic subjects. This might be explained by the higher age of our 

subjects, because the prevalence of chronotropic incompetence in the current study, as 

measured by variables that take age into account, was similar to those reported in 

previous studies (316,345,368,371,374,375). The exercise characteristics in the present 

study III were similar to those in two previous studies in patients with known or 

suspected CHD (354,355).  

 

6.1.4 Collection and classification of outcome events   

During the follow-up of the current study it was possible to to assess both cause-specific 

and overall mortality as hard end points. The present study is based on reliable data on 

outcome events because deaths were ascertained from the Finnish National Death 

Registry using personal identification codes. The coding of cause of death in the Finnish 

National Death Registry has been validated (462). Additionally, the validity of 

diagnoses of CHD deaths in the Finnish National Death Registry has been addressed 

and its use in endpoint assessment in epidemiological studies has been justified 

(463,464). Data on coronary events were obtained by computer linkage to the national 

hospital discharge and death registers. The source of this information was checked by 

interviews, hospital documents, death certificates, autopsy reports and medico-legal 

reports. The diagnosis of an acute coronary event was typically based on symptoms, 

ECG and cardiac enzymes or autopsy findings. 
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Five (227,342-345,368,371,375) of 11 previous studies exploring the association 

between HR at exercise test and CVD events in asymptomatic subjects (Tables 2 and 4) 

used composite end points (fatal or nonfatal CVD event) as an outcome. The several 

problems accompanying composite end point has been discussed thoroughly (465,466). 

One of the main problems is that variables predicting nonfatal CVD events can be 

different than those predicting CVD death, creating a situation where one variables’s 

contrasting effects with respect to two end points can cancel each other out (3-5). 

Among fatal end points, all-cause mortality is suggested to be objective, unbiased, and 

clinically relevant (467,468). On the other hand, CVD mortality has been proposed to 

be more appropriate for evaluating the prognostic value of exercise test variables 

because exercise test is used to assess the response of a cardiovascular system to a 

standardized stress (17). In the present study, to avoid inherent problems associated 

with composite end points, incident AMI and mortality from CHD, CVD and all causes 

were used as the main outcomes. When mortality was used as an outcome (studies I-

III), the results were reported separately for CHD, CVD and total mortality.  

 

6.2. Results 

 

The main finding of the current thesis is that both a low workload at HR of 100 

beats/min and an inability to raise HR appropriately during the latter half of the 

maximal exercise test are prognostically adverse findings in the population-based 

sample of middle aged-men without CHD at baseline. These observations are from two 

separate studies (studies I and II) which involved virtually the same subjects. The 

results support the main hypothesis that a bimodal relationship exists between HR and 

prognosis as presented in Figure 2. The actual HR-workload-curve shown in Figure 4 

resembles the hypothetical curve in Figure 2, although the distance between curves is 

exaggerated in the latter curve.Among asymptomatic subjects, only the Lipid Research 

Clinics Mortality Follow-up Study has shown that both a high HR at a fixed 

submaximal workload (14) and a low HR near maximal workload (316) are associated 

with an adverse prognosis. Although the two reports (14,316) are from a single study, it 

is impossible to derive the proportion of subjects that were included in both papers.  



 111

6.2.1 Heart rate increase from 40% to 100% of maximal work capacity, mortality 

and the risk of acute myocardial infarction in men without coronary heart disease 

(Studies I and IV) 

According to the hypothesis shown in Figure 2 we expected that a blunted increase in 

HR particularly during the latter half of the maximal exercise test predicts CVD events 

in a population-based sample of middle-aged men free of CHD. We observed that the 

HR response to exercise between those who died of CVD during follow-up and 

survivors began to diverge only after 40% of maximal work capacity was achieved. The 

survival analysis show that a blunted HR increase between 40 and 100 % of maximal 

work capacity (HR40-100) during an exercise test was associated with increased CHD, 

CVD and all-cause mortality and an increased risk of AMI. The magnitude of the 

association was comparable with that of other major CVD risk factors and exercise test 

variables, including other variables quantifying chronotropic incompetence.  

The present findings are in line with the results of previous studies in which 

chronotropic incompetence has predicted adverse cardiac events in asymptomatic 

persons (9,230,316,342,343,345,368,370,371,374,375,377) and confirm the hypothesis 

that chronotropic incompetence is an important risk factor for death and cardiac events 

regardless of the chronotropic incompetence variable used. A new chronotropic 

incompetence variable, HR40-100, was as strong predictor of mortality and AMI as 

previously established chronotropic incompetence variables. HR40-100 was formulated 

based on the finding that when compared with survivors, the blunted HR rise in subjects 

who died of CVD during follow-up was statistically significantly only when calculated 

during the latter half of the exercise test. This observation was confirmed in 

multivariable Cox models in which HR increase from rest to 40% of maximal work 

capacity was not associated with an increased risk of adverse outcome, whereas HR40-

100 was a strong independent predictor. The findings furthermore support the 

hypothesis of a bimodal relationship between exercise HR and prognosis (223).  

Symptoms originating from existing non-cardiovascular disease or latent CVD may 

interrupt the test prematurely, and in such case the underlying disease may explain the 

association between chronotropic incompetence and an outcome (230). In the present 

study, the exclusion of subjects who had an outcome event within two years after 



 112

baseline and those whose test was terminated because of symptoms or findings 

potentially due to existing disease or latent CVD did not weaken the prognostic value of 

HR40-100 dramatically. This suggests that neither existing baseline disease nor latent 

CVD explain the increased risk associated with a low HR40-100.  

The mechanism mediating the association between chronotropic incompetence and an 

increased risk of CVD events is unknown. The proposed mechanisms include abnormal 

myocardial wall motion and accumulation of metabolic by-products caused by ischemia 

which irritate ventricular mechano- and/or chemoreceptors (174) leading to vagal 

activation and consequently attenuation of normal HR increase during exercise (24,26); 

abnormal cardiovascular autonomic control (26,51,230), and more specifically sinus 

node β receptor down regulation caused by chronic heightened sympathetic activation 

(26,230); SA node dysfunction (171,320,379); reduced bioavailability of nitric oxide in 

sinus node (26); latent ischemia of sinus node (338,369); reduced carotid baroreflex 

sensitivity (377), possibly due to carotid atherosclerosis (376); and systemic low-grade 

inflammation (381). Numerous proposed mechanisms may simply mean that the 

prognostic value of chronotropic incompetence is based on several overlapping 

mechanisms instead of a single one.  

Three follow-up studies, the Norwegian Study (9), the Paris Prospective Study 

(228,377) and the KIHD Study, have shown that a heightened BP response and a 

blunted HR increase are independent predictors of CVD events in asymptomatic men 

(Table 13). The present findings add to current knowledge in that the heightened BP 

response and the blunted HR increase during the exercise test were independent risk 

factors for AMI and provided additional information for risk prediction beyond each of 

them alone (Table 14).  

The finding that the heightened BP response and the blunted HR increase during 

exercise test both were independent risk factors for AMI is somewhat puzzling, because 

they simultaneously reflect exaggerated and blunted hemodynamic response. We 

hypothesize that there is a common physiological link between the heightened BP 

response and the blunted HR increase during the exercise test, such as arterial 

dysfunction due to subclinical adverse vascular changes, e.g. atherosclerosis and media 

thickening. Arterial dysfunction leads to reduced arterial compliance, which is known to 
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heighten the increase of SBP in response to exercise (469,470). It may also interfere 

with the normal exercise-induced HR rise. Because of a nonlinear pressure-volume-

relationship in conduit arteries (471), a heightened SBP increase rapidly shifts the 

pressure-volume-curve towards an even more noncompliant region. With reduced 

arterial compliance, the pressure wave reflects back from peripheral circulation 

abnormally fast and results in an augmented central SBP in the latter half of systole 

(472). Both of these phenomena stretch aortic baroreceptors, the activation of which 

may lead to a vagally mediated inhibition of the normal increase in HR in response to 

exercise. These phenomena may be obscured at rest or during light dynamic work, but 

at higher workloads the inability to normally reduce total peripheral resistance may 

become evident. This could also explain the finding in the present study that a blunted 

HR rise during the latter, but not during the first half of the test predicted outcomes.  

Several prospective studies have shown that measures of arterial function and 

structure provide prognostic information incremental to conventional risk factors for 

CVD (472,473). We suggest that arterial dysfunction, indicated by the heightened BP 

increase and the blunted HR increase during the exercise test, is a potential and 

currently overlooked mechanism explaining partly, although not completely, the 

association between chronotropic incompetence and an increased risk of CVD events. 

Supporting this hypothesis, flow mediated vasodilatation as a marker of endothelial 

function in conduit arteries has been shown to be markedly lower in patients with 

chronotropic incompetence compared with patients with normal HR response to 

exercise (381). 

To address a potential overlapping between results of study I and study IV, the 

predictive value of HR40-100 for AMI was separately studied after excluding 20 men 

who died because of CHD within the next year after experiencing AMI. HR40-100 was 

still an independent predictor of AMI. This indicates that the main results of the studies 

I and IV do not overlap to a great extent, but instead represent two separate and 

clinically meaningful relationships.        
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6.2.2 Workload at heart rate of 100 beats/min during exercise test and mortality 

(Studies II and III) 

The workload achieved at a HR of 100 beats/min during exercise test (WL100) reflects 

physiological responses to early stages of the exercise test and is determined by resting 

HR, maximal HR, cardiorespiratory fitness and steepness of the early HR rise as related 

to the overall HR increase (Figure 6). Because both a high resting HR (377,474,475) 

and low cardiorespiratory fitness (339,346,360) are known risk factors for death and 

CVD events both in asymptomatic persons and in patients with known or suspected 

CHD, we hypothesized that a low WL100 is an independent predictor for adverse 

outcomes. 

The principal findings of this part of the study is that a low WL100 was associated 

with an increased CVD and CHD mortality in men who did not have prior CHD at 

baseline, and with an increased mortality in men with known suspected CHD at 

baseline. The association was independent of other HR-derived or other exercise test 

variables, and the magnitude of the association was comparable with that of 

conventional risk factors. In two previous studies with a similar finding (14,15), a high 

HR at a fixed submaximal workload, which equals a low workload at a fixed HR, has 

been considered as a surrogate measure of a low cardiorespiratory fitness, and the 

prognostic value of a high submaximal HR has been explained by this assumption 

(corresponding to graph c in Figure 6). Moreover, in those studies the actual maximal 

cardiorespiratory fitness was not measured and thereby could not be included as a 

covariate in the analysis. In the present study, a low WL100 was a strong predictor of 

premature CVD, CHD and all-cause death even after adjustment for directly measured 

VO2max, which means that low cardiorespiratory fitness did not explain the association 

of a low WL100 with outcomes. This interesting finding suggests that an exaggerated HR 

response at low workload indicates increased risk in and of itself, instead of being only 

a surrogate marker of low cardiorespiratory fitness.  
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Figure 6. The graph illustrating how a high resting heart rate (a), a high maximal heart rate (b), a low 

cardiorespiratory fitness (c), and a disproportionately increasing heart rate at light workloads (d) each can 

have a lowering effect on workload achieved at heart rate of 100 beats/min as shown by broken lines.    

 

Resting HR was the most significant individual determinant of WL100 and was also an 

independent predictor of outcomes. A high resting HR has been considered as a 

surrogate measure of reduced parasympathetic tone (476), which is a known risk factor 

for CVD events in asymptomatic subjects (418-420) and cardiac patients (51,430,431). 

Although the mechanism of the association is unknown, it has been suggested that a 

reduced parasympathetic tone makes an individual vulnerable to fatal ventricular 

arrhythmias in circumstances that may induce them, such as myocardial ischemia 

(430,431). It is possible that a high resting HR in men with a low WL100 reflects an 

impaired vagal control of the heart, but it is noteworthy that resting HR did not weaken 

the prognostic value of WL100 when entered in the same Cox model. Unfortunately, 

directly measured information on autonomic nervous system status (e.g. heart rate 

variability) is not available is the present study.  
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A continuosly elevated resting HR and exaggerated HR responses to daily stressful 

situations may burden cardiovascular system and enhance progression of athesclerosis 

(477,478) via several mechanisms (479-481). An elevated HR may be a sign of chronic 

sympathetic nervous system overactivity, which may induce numerous unfavorable 

changes from the viewpoint of cardiovascular health, as discussed previously. Because 

the cardiac work is a product of HR, stroke volume and BP, a consistently elevated HR 

will impose greater cardiac work (482).  

The direct atherosclerotic effect of a high HR on the arterial wall can be explained by 

the intensification of the pulsatile nature of the blood flow and the associated changes in 

the shear stress (479,481,483). High HR is associated with a longer time spent in 

systole, during which changes in the rate of blood flow and departures from laminar 

flow are largest (479,484). The increase in arterial wall stress caused by a high HR can 

also be the result of a higher mean BP in individuals with tachycardia (485), which is 

due to the progressive shortening of the diastolic phase of the cardiac cycle (480,486). 

The increased arterial wall stress may perturb intercellular junctions, increase 

permeability of the endothelial cells and favor the ingress of atherogenic particles, 

leading to atherosclerotic plaques (479,483,487).  

In rats, carotid artery compliance and distensibility have been shown to be markedly 

impaired by the progressive increase in HR caused by pacing (488). This might be due 

to the fact it takes a certain time for the arterial wall to distend fully in response to BP 

variations (480). On the other hand, pharmacologic HR reduction induced a significant 

decrease in thoracic aorta wall thickness in rats (489). In CHD patients, hemodynamic 

forces resulting from an increased HR may favor vulnerable coronary plaque disruption 

(490). In patients with restricted coronary blood flow a high HR can further increase 

cardiac ischemia and precipitate the occurrence of arrhythmias and impair left 

ventricular performance by increasing myocardial oxygen demand, facilitating 

desynchronization of ventricular myocardial cells and worsening coronary perfusion 

(480,491).     

WL100 was recorded directly at HR 100 beats/min or interpolated linearly as a 

function of HR by using resting HR and the nearest HR value above 100 beats/min. The 

advantage of this method for defining WL100 is that the lowest HR values at the early 
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phase of the exercise test are not required to be below 100 beats/min. An exaggerated 

HR rise above the level of 100 beats/min at the first workload is an actual phenomenon 

in individuals with a limited exercise capacity, particularly if the first workload is not 

adjusted for the reduced performance. Resting HR, when measured before the exercise 

test, is higher than the true resting HR because of nervousness, excitement and 

apprehension related to the testing environment (476). Because data on the true resting 

HR measured at less stressful conditions was not available in the present study, it is 

impossible to evaluate to what extent interindividual differences in pre-test excitement 

affects resting HR values measured before test and consequently on WL100. It is 

possible that a pronounced anticipatory HR response to test includes not only a high 

resting HR before the test, but also an exaggerated HR response at the first workloads 

(69,171,217), indicated by a low WL100.  

In previous reports from the KIHD Study, an exaggerated anticipatory BP response to 

exercise test has been linked to an increased left ventricular mass assessed by 

echocardiography (492), and a heightened BP response during mental stress has been 

linked to enhanced carotid atherosclerosis (493,494). Furthermore, a trend was observed 

between an exaggerated HR response during mental stress and enhanced carotid 

atherosclerosis in 4-year follow-up (493), but no association was observed to a 

progression of atherosclerosis from the fourth to eleventh follow-up year (494). Thus, a 

low WL100 may represent a trait characterized by an exaggerated cardiovascular 

responsiveness to stressful situations (corresponding to graph d in Figure 6). 

 A high chronotropic index at HR of 100 beats/min, reflecting a disproportionately 

steep HR rise at the early phase of a test, was an independent predictor of CVD and 

CHD death in men without CHD at baseline. This observation may further suggest that 

a trait characterized by an exaggerated cardiovascular responsiveness to stressful 

situations can to some extent explain the association of a low WL100 with an increased 

risk of outcomes in the current study.  

To recapitulate, we suggest that a low WL100 concurrently reflects a high resting HR, 

an exaggerated HR increase at the beginning of an exercise test, and a low 

cardiorespiratory performance. While these variables separately had only a limited 
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predictive value in the present study, the combined variable WL100 provided valuable 

prognostic information beyond these variables. 

We intentionally used the workload achieved at a fixed submaximal HR instead of 

using HR at a fixed submaximal workload. This approach has a solid physiological 

basis, as explained. Use of the workload achieved at a fixed submaximal HR enables the 

testing of subjects at approximately the same relative intensity independent of age, 

gender, size of body or fitness level, unlike when a fixed workload is used. However, 

careful inspection of Figure 4 suggest that the maximal predictive value might be found 

if a slightly lower HR value than 100 beats/min was used to quantify a submaximal HR 

response. Among asymptomatic subjects the association between a high HR at 

submaximal work and an increased risk of CVD death has been observed in studies that 

have used a treadmill as a testing mode (14,15), but not in studies using a cycle 

ergometer (227,342-344). In contrast, in patients with known or suspected CHD the 

findings have been just opposite (354,355). Therefore it is unclear whether the testing 

mode affects the prognostic value of a high HR at submaximal work or that of WL100, 

and further studies are needed to address the issue. 

Submaximal exercise tests have some benefits over maximal tests. A low level of 

exercise enables testing of individuals with a limited exercise capacity, and 

cardiovascular risks associated with high-intensity exertion can be largely avoided 

(17,69). This is an important aspect in subjects who have any contraindication for 

maximal test. If necessary, the exercise test can also be repeated frequently because of 

the short recovery period needed. 

 

6.2.2.1 Workload at heart rate of 100 beats/min during exercise test and 

cardiovascular disease mortality in men without coronary heart disease at baseline 

The results of the present study are in accordance with two previous population-based 

studies (14,15) which reported that a high HR at a fixed submaximal workload predicts 

CVD and CHD deaths. As explained, cardiorespiratory fitness did not explain the 

association of a low WL100 with outcomes. Furthermore, the level of exercise used to 

explore the association of a submaximal HR and workload with outcomes was lower in 

the present study compared with two previous studies (14,15). While the minimum HR 
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required for risk assessment was 116 (15) and 133 beats/min (14) in two previous 

studies, the mean HR to enable the risk assessment (ie. the first HR value above 100 

beats/min) was only 104 beats/min in the present study. 

Interestingly, three of the four studies (14,15,341), including the present study, 

investigating CVD and CHD death as an outcome have found a submaximal HR 

variable to be a statistically significant predictor. Conversely, all three (227,342-344) 

previous studies exploring a composite end point, including fatal and nonfatal CVD 

events, as an outcome have not found a submaximal HR variable to be a statistically 

significant predictor. It has been suggested that variables predicting nonfatal CVD 

events can be different than those predicting death, creating a situation where a 

variables’s contrasting effects with respect to the two end points can cancel each other 

out (3-5). Because of a limited number of studies it is precipitated to state that a 

submaximal HR predicts fatal CVD events more potently than nonfatal CVD events. 

However, in the current study a low WL100 was not associated with an increased risk of 

AMI or nonfatal AMI, but it was an independent predictor of fatal AMI (15% of all 

AMIs). 

One previous study (227) did not find the association between a low workload 

attained at HR of 150 beats/min and an increased risk of CHD event, but the association 

was observed when the workload attained was expressed as divided by body weight. 

The association may not have been observed because at the HR of 150 beats/min the 

difference in workload between groups with adverse and good prognosis had already 

narrowed considerably, although the difference might have been observed at lower HR 

levels. According to Figure 4 this could also have been the case in the study II of the 

current thesis. We did not divide WL100 by body weight, although there is a theroretical 

basis for it (69). Furthermore, because a high BMI was a risk factor for death in study 

II, it is possible that the prognostic value of WL100 would have improved if it had been 

expressed in relation to body weight.  

A low stroke volume may be a common denominator for a high resting HR, an 

exaggerated HR increase at the beginning of an exercise test, and a low 

cardiorespiratory performance (18,69). We could not, however, directly assess stroke 

volume in the present study, and thereby its role in the association between WL100 and 



 120

mortality can not be considered any further. The exclusion of subjects who had an 

outcome event within two years after baseline and those whose test was terminated 

because of symptoms or findings potentially due to latent CVD did not weaken the 

prognostic value of WL100 much. This suggests that latent CVD probably does not 

explain the increased risk associated with a low WL100. 

 

6.2.2.2 Workload at heart rate of 100 beats/min during exercise test and mortality 

in men with known or suspected coronary heart disease at baseline 

The results of the present study basically agree with the findings of a recent study in 

which a large HR increase from rest to a workload of 25 W at the onset of an exercise 

test was a strong predictor of adverse cardiac events and cardiac deaths in patients with 

CHD verified by angiography (354). In the present study, HR increase from rest to a 

workload of 50 W was associated with a nonsignificant trend (p=0.11) toward increased 

risk of death after stepwise selection (data not shown). Because of the testing protocol, 

the workload of 50 W was used instead of 25 W that hampers the comparison of the 

results of these two studies. Although WL100 was not measured in the study by Falcone 

et al (354), closer inspection indicates that men with an exaggerated HR response 

obviously had a low WL100. The researchers suggested that a rapid HR increase was 

caused by a rapid vagal withdrawal reflecting an autonomic imbalance. Exercise 

capacity was lower in men with an exaggerated HR response. Unfortunately, exercise 

capacity was not included in the Cox model as a covariate, leaving open the possibility 

that an exaggerated HR response was caused by a low cardiorespiratory fitness.  

The results of the present study also agree with the findings of two previous studies in 

dogs (365,366). The rise of HR at the early phase of an exercise stress was steeper in 

dogs with a healed myocardial infarction that were susceptible to ventricular fibrillation 

after experimentally induced coronary occlusion than in dogs that were resistant to 

ventricular fibrillation. The susceptibility to ventricular fibrillation was associated with 

a greater degree of left ventricular dysfunction (365), which probably also explains the 

higher HR at submaximal workloads.   

On the contrary, in another recent study a HR increase from rest to 2 METs workload 

in treadmill was not associated with an increased risk of CVD death in patients referred 
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for exercise testing (355). Again, WL100 was not measured in the study by Leeper et al 

(355), but closer inspection shows that WL100 obviously was not different between 

subjects who died of CVD during the follow-up and survivors. One disparity between 

the present study and the study by Leeper et al (355) is that the latter used an 

individualized ramp treadmill protocol in which workload increments are tailored 

according to the estimated work capacity of a patient (268). It has been discussed that a 

prognostic value of an exaggerated BP response to submaximal exercise is directly 

related to the strain of the first workload(s) as related to the total exercise capacity of a 

subject (16). If a similar relationship exists for HR response too, then a discrepancy 

between the findings in the present study and in the study by Leeper et al (355) could to 

some extent be attributed to the different testing protocols used in these studies.  

A low WL100 could result from left ventricular dysfunction in subjects with a more 

severe CHD (362-364). Although this possibility cannot be ruled out in the current 

study, an argument against this notion is that a low WL100 was not associated with a 

more prevalent history of myocardial infarction or self-reported cardiac insufficiency 

either in men using HR-lowering medication or in nonusers (data not shown). More 

specifically, a low WL100 could originate from myocardial ischemia beginning already 

at early exercise when HR is below 100 beats/min (361-363). An early appearance of 

myocardial ischemia has been shown to be associated with an adverse prognosis 

(495,496) and angiographically more severe CHD (496). Because the data on ST-

segment depression at workloads below HR of 100 beats/min is not available, the role 

of early ischemia as a link between a low WL100 and an increased risk of death in the 

present study can not be excluded either.  

 

6.3 Clinical implications  

 

The recent consensus statements from the American Heart Association, the American 

College of Cardiology (10) and from the US Preventive Services Task Force (497) have 

led to recommendation against the use of exercise testing as a screening tool for 

detecting latent CHD in asymptomatic persons at low to intermediate risk. These 

recommendations have been largely based on an extensive body of literature 
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documenting the limitations of the ST-segment for diagnosing CHD in asymptomatic 

subjects (339). Still, reports on evaluation of the exercise test as a prognostic rather than 

a diagnostic test suggest that the prognostic value of the screening exercise test may 

have been underestimated (11,12,339). The latest version of the textbook written by 

major authorities in the field (17) states, indeed, that exercise testing should be used for 

screening healthy, asymptomatic individuals along with risk factor assessment (498). In 

this context assessment of exercise test result includes not only ST-segment diagnostics, 

but also other exercise test variables shown to have a prognostic value (17).  

    Nonetheless, no consensus exists whether this further risk stratification should be 

targeted to persons at an intermediate or high risk of events based on office tools such 

as the Framingham Risk Score or European Systematic Coronary Risk Evaluation 

(SCORE). Some authors have suggested that the current risk assessments based on 

conventional risk factors are especially ineffective among persons at an intermediate 

risk of events, and these individuals may benefit from further risk stratification 

(472,499). Recent prospective studies in asymptomatic persons have shown, however, 

that an additional prognostic value from exercise testing above conventional risk factors 

seems to be the largest in persons at a high risk of events (9,375,500). Whatever the 

target group, the primary aim of enhanced risk stratification is to detect those 

individuals who would benefit most from targeted aggressive treatment of risk factors 

(501). The recent expert statement concluded that the next major priority is the design 

and implementation of large-scale randomized trials to determine whether an exercise 

screening strategy leads to an improvement in outcomes (339). Additionally, these trials 

would provide much-needed evidence about the cost-effectiveness in execise testing in 

asymptomatic persons (339). 

Because in patients with known or suspected CHD the value of exercise testing is 

more clearly established, the post-exercise test risk assessment serves as a guide to a 

particulatr management strategy that is viewed as most appropriate, based on expected 

outcomes (10,190). According to the guidelines of the American Heart Association and 

the American College of Cardiology (10), patients with a low-risk exercise test result 

can be treated medically without need for referral to cardiac catheterization. Patients 

with a high-risk exercise test result should usually be referred for cardiac 
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catheterization. Patients with an intermediate-risk exercise test result should be referred 

for additional testing, either cardiac catheterization or an exercise imaging study, 

depending on other clinical variables (10).  

An obvious question with regard to the clinical use of WL100 or HR40-100 is whether 

it is a modifiable risk factor. For WL100, the existing literature shows that physical 

activity or training lowers HR at a fixed submaximal workload (190), and thus also 

increases WL100. This has been observed both in healthy subjects (29,298,299) and in 

patients with CHD (502-504). Weight loss in obese subjects is another physiological 

means to increase WL100. This effect is especially pronounced in activities involving 

weight-bearing, such as walking on a treadmill.  

As far as HR40-100 and other chronotropic incompetence variables are concerned, 

the effects induced by physical training are not as straightforward. In healthy persons, 

physical training lowers resting HR, but usually has no effect on maximal HR (17,190). 

Hence, chronotropic incompetence variables (Table 3) which are based solely on 

maximal HR (inability to achieve the fixed %-value of age-adjusted expected maximal 

HR or maximal HR) do not change as a consequence of training. On the other hand, 

chronotropic incompetence variables that do not depend exclusively on maximal HR 

(HR reserve, submaxCRI, maxCRI, HR40-100) may change towards values attributed 

to a lower risk after training, depending on whether resting HR decreases. Cessation of 

smoking has been speculated to improve chronotropic incompetence variables to a 

favorable direction, but direct evidence of this is lacking (315,316). In contrast to 

healthy persons, maximal HR may increase as a result of physical training in CHD 

patients (190). Changes in maximal HR may reflect a greater level of effort applied after 

training (190). Whether it is due to habituation to the testing situation, improved self-

confidence to exercise until a true maximum is achieved, or physiological alterations 

induced by training, is not known. 

In the current study, several exercise test variables predicted outcomes independent of 

each other or conventional risk factors. This highlights the fact the maximal prognostic 

yield from exercise test is obtained by measuring several variables at submaximal and 

maximal workload and during the recovery phase. The underestimation of exercise 

testing as a prognostic tool has been based on a constricted assessment of solely the ST-
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segment response to exercise. Several studies conducted during the last 15 years in 

healthy individuals and patients have shown without doubt that exercise testing can 

offer additional prognostic information beyond conventional risk markers. 

Consequently, multivariable equations and scores derived from clinical variables and 

exercise test results are considered to be a highly recommended method to evaluate an 

individual’s risk for adverse CVD events in the future (12,339,340).   
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7. SUMMARY AND CONCLUSIONS 

 

1. Both a low workload achieved at HR of 100 beats/min and a blunted HR increase 

particularly in the latter half of the maximal exercise test are associated with an adverse 

prognosis in men without CHD at baseline. The findings support the main hypothesis 

that a bimodal relationship exists between HR and prognosis in which both an 

exaggerated HR response at submaximal workload and a blunted HR response at 

maximal or near maximal workload are associated with an unfavorable prognosis. 
 

2. The heart rate increase from 40% to 100% of maximal work capacity (HR40-100) is a 

strong predictor of all-cause, CVD and CHD mortality in middle-aged men without 

CHD at baseline. Additionally, a low HR40-100 is associated with an increased risk of 

future myocardial infarction in the same population. The magnitude of the association is 

comparable with that of other major CVD risk factors and exercise test variables, 

including other variables quantifying chronotropic incompetence. 
 

3. A low workload achieved at HR of 100 beats/min during an exercise test predicts 

CVD and CHD death in middle-aged men without CHD at baseline, and also all-cause 

death in men with known or suspected CHD at baseline. The association between 

workload achieved at HR of 100 beats/min and mortality is not explained solely by 

cardiorespiratory fitness, as previously assumed. 
 

4. Several exercise test variables predict CVD events independently of each other and 

conventional risk factors. This emphasizes that the maximal prognostic yield from an 

exercise test is obtained by measuring several variables at submaximal and maximal 

workloads and during the recovery phase. 
 

5. A complex interplay exists between an exaggerated BP response to exercise and a 

blunted HR increase during the latter half of maximal exercise test so that their 

simultaneous presence is related to a markedly increased risk of future myocardial 

infaction. Arterial dysfunction may be a link between an exaggerated blood pressure 

response, a blunted HR increase and an increased risk of future myocardial infarction.  
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