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ABSTRACT

In general, drug absorption into the eye from eye drops is limited. Only 1-7% of the dose
eventually reaches aqueous humor since corneal epithelium effectively limits drug delivery into
the eye. Gene therapy offers new therapeutic possibilities in ophthalmology, but delivery is an
important issue in this case. Ocular drug delivery experiments require sacrification of at least
five animals at each time point in the drug concentration profile. Improved cornedl cell culture
model would therefore be useful in ocular drug and gene delivery experiments, and might
reduce the need for animal experiments.

The aim of the study was to develop a cedl culture model of corneal epithelium for
pharmaceutical studies. The cell culture model was tested as a tool in drug and gene delivery
experiments.

Immortalised human corneal epithelial cells (HCE) were grown on collagen or laminin
covered permeable support filters with or without feeder fibroblasts. After air-lift the cells
stratify and differentiate forming epithelium approximately seven cell layers thick with flattened
superficial cells, tight junctions and microvilli. In the optimised cell model the penetration of f3-
blockers increased with lipophilicity following an almost similar sigmoidal relationship with
that of excised rabbit cornea. Paracdlular permeability in the HCE-model was generally found
to be slightly higher than in the excised rabbit cornea. The HCE-model has larger paracellular
pores at lower density than the excised cornes, but overall paracellular space was fairly similar.
The HCE-modd has esterase activity.

Rabbit corneal epithelium in vivo was transfected using non-viral liposomes (1,2-dioleoyl-3-
trimethylammonium-propane; DOTAP and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
DOPE) to secrete transgene product (SEAP; a secreted form of human placental akaline
phosphatase) into the tear fluid and aqueous humor. Furthermore, suitability of the
differentiated corneal epithelial cell culture for transfection studies was evaluated with
DOTAP/DOPE and cationic polymer (polyethyleneimine; PEI). The transfection levels
decreased with the increased differentiation of HCE cells. PEl was particularly effective in
transfecting the dividing cells but ineffective in the differentiated cells. DOTAP/DOPE aso
showed high activity in differentiated cell cultures. Significant SEAP expression was seen for at
least three days after in vivo transfection in the tear fluid and agueous humor. Rates of SEAP
secretion to the basolateral side of differentiated HCE-cells and into the aqueous humor in vivo
werein the same range showing the predictive applicability of the cell model.

In conclusion, the morphology, physical barrier and permeability properties demonstrate that
the HCE-model closely resembles those of the excised rabbit cornea. Corneal epithelium can be
transfected topically to reach prolonged protein secretion into the tear fluid and aqueous humor,
and the levels of this protein secretion can be predicted correctly with the cell culture model.

National Library of Medicine Classification: WW 166, WW 220, WB 340, QZ 52

Medical Subject Headings: Eye Diseases/drug therapy; Drug Administration Routes; Drug
Délivery Systems; Gene Transfer Techniques; Transfection; Liposomes; Ophthalmic Solutions;
Corneg; Epithdium, Corneal; Cells, Cultured; Permeability; Esterases, Alkaline Phosphatase;
Rabbits
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1 INTRODUCTION

The eyes provide the mgjority of information of the outside world to humans, and
therefore ocular disorders easily disturb daily life. The eye is effectively protected
against foreign substances by its structural features, which is extremely important in the
case of microbes and for the maintenance of vital ocular functions. However, these
barriers also complicate medical treatment by preventing drug delivery into the eye.

Drug delivery into the eye using topical eye dropsis an easy and patient friendly way
to treat ocular disorders. Unfortunately, most of the drug is rapidly eliminated from the
precorneal area, and eventually only a small amount (1-7%) of the instilled dose
actualy penetrates the cornea and reaches the aqueous humor (Ghate and Edelhauser
2006). Despite the poor bioavailability the cornea is considered to be a major pathway
for ocular penetration of topically applied drugs (Doane et al., 1978). Drug permesability
across the ocular surface is highly dependent on the features of the drug molecule; the
drug should be neither extremely hydrophilic nor lipophilic. Thus small lipophilic drugs
are absorbed into the eye via the cornea whereas large hydrophilic molecules absorb
into the eye through the conjunctiva and sclera (Ahmed and Patton 1985; Fig. 1, p. 14).
Systemic administration of drugs is not effective due to the blood-agueous and the
blood-retinal barriers (Duvvuri et al., 2003; Ghate and Edelhauser 2006). Furthermore,
the use of high doses of administrated drugs to compensate a poor bioavailability may
cause systemic and local adverse effects. Ophthalmic drug delivery can also be achieved
by periocular and intraocular injections, but these methods are painful, inconvenient and
can cause complications in the eye (Sasaki et al., 1999; Sunkara and Kompella 2003).
Accordingly, fast degradation of protein drugs effectively prevents their delivery into
target cells regardless of the administration method used.

Among other developed drug delivery systems (Ghate and Edelhauser 2006), gene
therapy offers new possihilities to overcome the aforementioned problems in corneal
drug delivery. In gene therapy a functional gene is inserted into the cell to produce
viable proteins using recombinant viruses as a vehicle for gene transfer or techniques
that are based on non-viral methods. Cure can be permanent or transient owing to
requirement therapy and the expression of the desired transgene can be also targeted,
and regulated.
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blood-retinal barrier

retina
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Figure 1. Thetight barriers and the pathways of drugs in the eye. The eye structures where the
tight barriers locate are indicated in red. The absorption routes are indicated with unbroken and
the elimination routes with broken arrows. The main pathway for drugs to enter the anterior
chamber is via the cornea (1). Some large and hydrophilic drugs are preferably absorbed viathe
conjunctival and scleral route, and then diffuse into the ciliary body (2). After systemic
administration small compounds can diffuse from the iris blood vessels into the anterior
chamber (3). From the anterior chamber the drugs are removed either by agueous humor
outflow (4) or by venous blood flow after diffusing across the iris surface (5). After systemic
administration drugs must pass across the retinal pigment epitheium or the retinal capillary
endothelium to reach the retina and vitreous humor (6). Alternatively drugs can be administered
by intravitreal injection (7). Drugs are eliminated from the vitreous via the blood-retinal barrier
(8) or via diffusion into the anterior chamber (9). Reprinted from Hornof et al., 2005 (European
Journal of Pharmaceutics and Biopharmaceutics, copyright 2005) with permission from Elsevier
Ltd.

Experiments of ocular drug delivery systems are usually performed in vitro using
isolated rabbit ocular tissues (Chung et al., 1998; Gukasyan et al., 2003; Okabe et al.,
2005). Ocular pharmacokinetic studies usually require at least five animals at each time
point in every studied drug concentration which means the sacrifice of over 100 rabbits
in a typical comparison study of three different drugs or formulations. This kind of

animal use is problematic and undesirable for ethical and economical reasons. In
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addition, corneal tissue is viable only a few hours after dissection and differences
between species may make predictions to human ocular absorption more difficult.
Therefore, new methods are needed for ocular pharmaceutical studies.

In principle, the corneal epithelial cell culture models may be useful in drug transport
studies (Kawazu et al., 1998, 1999 a and b; Chang et al., 2000). However, these models
were based on primary rabbit corneal epithelial cells. They grow only for a few
passages and new rabbit cells must be isolated frequently from animals. Therefore, the
primary cell models are not useful for large scale screening of new drugs, excipients or
delivery systems. Immortalised continuously growing human corneal epithelial cell
lines have been mainly used previously for toxicity studies (Kahn et al., 1993;
Kruszewski 1997; Ward et a., 1997; Offord et al., 1999). Such cells would be ideal for
ocular drug delivery studies, but the barrier formation and permeability features of these

models are unknown or poorly studied.
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2 REVIEW OF LITERATURE
2.1 Anatomy of cornea

The cornea is a clear, avascular tissue, which protects the anterior parts of the eye
from external injuries and inflammations (Watsky et al., 1995) (Fig. 1, p. 14). The
precorneal surface is covered with tear film and aqueous humor is on the other side. The
corneal mean thickness in human and rabbit is 0.52 mm and 0.40 mm, respectively and
it can be divided into five well-differentiated regions (Fig. 2).

epithelium

Bowman's layer/
membrane

stroma

Descemet's
| & membrane

endothelium

Figure 2. lllustration of the cornea (revised from Sasaki et al., 1999).

The cornea epithelium is typically five to seven cell layers thick, consisting of two
layers of the flattened superficial cells, the multilayered polyglonal-shaped wing cells
and one layer of columnar basal cells. The superficial cells are encircled by numerous
tight junctional complexes and wing cells are attached to both superficial cells and to
one another by desmosomes (Watsky et al., 1995; Sunkara and Kompella 2003). In
addition both wing and basal cells have gap junctions between cells. The corneal
epithelium lies on a thin layer of extracellular matrix (ECM) so called basement
membrane which plays a crucial role in epithelial adhesion to the underlaying stroma.
The epithelium is so called 'tight' epithelium with transepithelial electrical resistance
(TER) of ~1000 Qxcm? (Rojanasakul et al., 1992) and the most apical cells alone
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contribute to over half of the tota resistance of the cornea (Klyce 1972). The mean
thickness of the epithelium in humans is approximately 50 pm, and most of the apical
layer contains microvilli (Reingtein et al., 1994; Watsky et al., 1995).

Acellular Bowman's layer/membrane is composed mainly of different collagen types
(Nakayasu et al., 1986; Marshall et al., 1991). The layer does not regenerate and it is
disorganised in the rabhit cornea. Stroma represents 90% of the thickness of the cornea,
and it is composed mainly of hydrated type | collagen. Differentiated keratocytes are
situated throughout the stroma and they can for example synthesize new collagen for
tissue repair (Watsky et al., 1995). Descemet's membrane is the basal lamina of the
endothelium (Johnson et al., 1982). The corneal endothelium is a single layer of
unrenewable hexagonal cells in humans covering the posterior surface of the cornea and
facing the anterior chamber (Sasaki et al., 1999).

2.2 Differentiation of corneal epithelium
2.2.1 Natural differentiation in vivo

The terminaly differentiated, superficial cells of the corneal epithelium are
continuously shed. It is estimated that the turnover time of the corneal epithelium is 7
days (Watsky et al., 1995). As cells are shed, basal cells, which are the only epithelial
cells capable of mitosis, move upward from the basal layer, and differentiate into wing
cellsand finally into superficial cells. New basal cells originate from corneal stem cells,
which exigt in the limbus on the border of the cornea and sclera (Boulton and Albon
2004).

2.2.2 Induction of differentiation

Proper cell differentiation in vitro should lead to the expression of phenotypic
properties characteristic of the functionally mature cells in vivo (Freshney 1987). As
differentiation progresses, cell division is reduced and eventually lost whereas synthesis
of the differentiated product increases. It is known that when cells are removed from
their usual environment, they and their progeny generally remain true to their original
instructions (Alberts et al., 1994). This phenomenon is particularly very strong in

primary cell cultures that are obtained directly from tissues.
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Differentiation process and stage of differentiation in cell culture can be achieved by
establishing cultivation conditions in away that make the induction and maintenance of
differentiation of the cells possible. Overall, the best results from in vitro cell culture are
reached using conditions that mimic in vivo conditions with respect to temperature,
oxygen and CO, concentration, pH, osmolality and nutrition (Hornof et al., 2005).
There are three main parameters especially governing the control of differentiation of
corneal epithelial cells; soluble factors, use of permeable support systems and an air-
liquid interface. Table 1 shows commonly used soluble inducers and permeable support
factorsin corneal epithelial cell proliferating and differentiation process.

In addition, most corneal epithelial cell media include serum that contains growth
factors, carrier proteins, cell protective agents, cell attachment factors and nutrients
(Cartwright and Shah 2002). Despite the growth factors in serum, some extra growth
factors and nutrients are added to media to increase proliferation and differentiation of
cells. On the other hand, high serum concentrations have been noticed to disturb cell
proliferation and differentiation (Kruse and Tseng 1993). Some corneal cell lines are
nowadays grown in commercially available serum-free medium (Gibson et al., 2003;
Mohan et a., 2003a; Robertson et al., 2005).

2.2.3Markersof differentiation

Corneal epithelial cell differentiation can be indicated by the expression of one or
preferably more marker properties. Table 2 (p. 20) shows some usual differentiation
markers. These markers are often determined after isolation of primary epithelia cells
from intact cornea or after immortalization of primary cells for ensuring the cells exhibit
corneal epithelial cells.

Tight junctions with its characteristic proteins, and desmosomes and microvilli
formation are particular markers for final differentiation of corneal epithelium with
flattened topical cells (Ward et a., 1997; Chang et al., 2000; Mohan et al., 2003z;
Reichl et al., 2004). Measurements of TER and permeability support the morphology
findings. Recently desgquamation of stratified epithelia was also used as a marker of
terminal differentiation of cornea (Robertson et al., 2005).
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Table 1. Inducers and their function in corneal epithelial cell differentiation.

Inducers Action
Soluble EGF stimulates cell migration, proliferation, synthesis of basement
BPE membrane/extracel lular matrix components, increases healing
wounds [1-3]
TGF-a stimulates cell proliferation and differentiation in serum-free
medium [4]
Insulin exerts metabolic and mitogenic effectsin the ocular surface[5]
Transferrin the major iron transporter protein [6]
Selenium prevents oxidative DNA damage [7]
Hydrocortisone improves cloning efficiency [8]
DMSO stimulates differentiation [9]
Choleratoxin increases intracellular cyclic AMP [10]
ca* proliferation, differentiation [11]
Filters alow cellsto grow in a polarized state, cells can be fed to the
basolateral and/or apical side
Permeable- Laminin corneal basement membrane components, attachment and
support collagens differentiation of cells[12]
fibronectin
3T3fibroblasts cdll interactions, regulatory functions and provoke
differentiation, secrete stimulatory factors [13, 14]
Amniotic membrane includes e.g. laminin, collagen and fibronectin [15]
Air-liquid promotes differentiation [16, 17]
interface

[1] Schultz et a., 1992; [2] Bennett and Schultz 1993; [3] Gibson and Inatomi 1995; [4] Castro-

Mufozledo et a., 1997; [5] Rocha et al., 2002; [6] Alberts et a., 1994; [7] Saito et a., 2003; [8]

Fresney 1987; [9] Santos et al., 2003; [10] Spangler 1992; [11] Kruse and Tseng 1992; [12] Ohji et a.,
1993 and 1994; [13] Sun and Green 1977; [14] Tseng and Kruse 1990; [15] Koizumi et a., 2000; [16]

Minami et al., 1993; [17] Ban et al., 2003a
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Table 2. Differentiation markers of corneal epithelium.

Marker Ref.
Keratins 64-kDa (K3) [1-8]
55-kDa (K12)
Morphology cell layers, the shape of the cells, microvilli, tight
junctions, desmosomes
Tight junction proteins claudins, occludin, ZO-1, ZO-2, ZO-3 [8-10]
Metabolic enzymes e.g. ALDH, cytocrome P450 [1-3], [6]
Other cytokines, growth factors, karyotypic analysis, [1], [31, 8],
basement membrane components, transporters, [11], [12],
efflux proteins [13], [14]

[1] Kahn et al., 1993; [2] Araki-Sasaki et a., 1995; [3] Offord et al., 1999; [4] Chang et al.,
2000; [5] Geerling et al., 2001; [6] Herndndez-Quintero et al., 2002; [7] Mohan ¢ al., 2003z; [8]
Robertson et al., 2005; [9] Yi et a., 2000; [10] Ban et a., 2003b; [11] Okamoto et al., 1995;
[12] Zieske et al., 1992; [13] Kawazu et al., 1999aand b, 2006 ; [14] Vellonen et al., 2006

2.3 Corneal cell modelsin vitro

Models of corneal epithelium are usually established by growing corneal epithelial
cells on collagen/laminin/fibronectin coated cell culture filters. Models of entire cornea
are constructed step by step on cell culture inserts by successive growth of corneal
epithelial cells, stromal cells with collagen and endothelial cells (Hornof et al., 2005).
Both reconstructions have been developed using both primary and immortalised cells
from different species. These models can be used for toxicity testing, transcorneal
permeation and metabolism studies. In addition, the organotypic cornea constructs
might be useful study of the response of the cornea/corneal epithelium to surgery,
wound healing and transplantation.

2.3.1Primary cell cultures

Primary corneal epithelial cells are obtained directly from different species. These
cells are fresh, but the condition of the cells and their behaviour in primary cell culture
is affected by the choice of starting material (MacDonald 1994). Terminally
differentiated epithelial cells grow poorly while corneal basal and limbal cells retain
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proliferative capacity and undifferentiated features. However, primary cultures are not
optimal for in vitro use owing to their senescence after several passages and their
biological variability. Corneal epithelial cells from human (Ebato et a., 1987 and 1988;
Ohji et al., 1993 and 1994; Pancholi et al., 1998; Bockman et al., 1998; Geerling et al.,
2001) and rabbit (Jumblatt et al., 1983; Lass et al., 1989; Herndndez-Quintero et al.,
2002; Wallace et al., 2005; O'Brian et al., 2006) have been used in studies of cell
attachments and basement membrane components, cellular uptake and toxicity tests as
well as effects of growth factorsin epithelia proliferation and differentiation processes.
In addition the primary cells have been used in growing the epithelium on the cell
culture filters for permeability experiments (Kawazu et a., 1998; Chang et al., 2000).
The use of corneal limbal stem cells has mainly been focused on transplantation and
corneal surface reconstruction studies (Germain et al., 2000; Boulton and Albon 2004).

2.3.2 Immortalised cell cultures

Primary cells can be transformed using some chemicals or viruses to establish
continuous'immortalised cells. However, these cells may have altered growth
characteristics, become tumorigenic and secrete abnormal levels of proteases and cell
surface markers. Furthermore, expression of many differentiated or tissue-specific
enzymes have been decreased and permanent cell lines are more likely to have
chromosomal abnormalities (MacDonald 1994). On the other hand immortalised cells
can be grown continuously and they survive well in liquid storage.

HCE-T (10.014) - Primary human corneal epithelial cells were infected with Adeno
12-SV40 hybrid virus or transfected with plasmid RSV-T (Kahn et al., 1993). In
appropriate cell culture conditions these cells form a three-dimensional, tissue-like
differentiated morphology with proper keratin expression. In addition, intercellular
junctions and other ultrastructural features, TER properties and fluorescein permeation
were determined in stratified cultures (Ward et al., 1997). Studies of stress protein gene
expression, laminins and cell surface receptors have used the cells grown as monolayers
(Braunstein et al., 1999; Kurpakus et al., 1999; Song et al., 2001; Lang et al., 2003).
The stratified differentiated cells have only been used in toxicity testing.
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The HCE (SV-40-immortalised) human corneal epithelial cell line exhibits a cobble-
stone-like appearance, desmosome and microvilli formation similar to normal corneal
epithelia cells and it expresses cornea-specific cytokeratin (Araki Sasaki et al., 1995).
HCE-cells as monolayer are for instance used to study the cytotoxicity (Saarinen-
Savolainen et al., 1998; Huhtala et al., 2002 and 2003). These cells were used in
developing human corneal epithelial cell culture model (HCE-model) in the present
study.

CEP1 or CEP1-17-CL4 are SV 40 T antigen retroviral vector immortalised human
corneal cells, that show typical cobblestone morphology, and expresses cytokines,
growth factors and metabolic enzymes that resemble original tissue (Offord et al.,1999).
CEP1 cells have been used in developing and improving the sensitivity of alternative
eye irritation tests (Debbasch et al., 2005). Thus far these cells have not grown on filters
and so the formation the cell layers with desmosomes and tight junctions as well as
permeability features are unknown.

HPV16-E6/E7 corneal cell line was developed by transfecting human primary corneal
epithelial cells with tetracycline-responsive human papilloma virus (HPV)16-E6/E7
(Mohan et al., 2003a). The immortalised cells show typical corneal epithelial cell
morphology, express tissue specific keratins, the cells form multilayered dratified
cultures with surface microvilli and desmosome formation between cells. In addition,
fluorescein permeation was determined. However, more specific profile of drug
permeabilities and physical barriers are unknown.

Two different immortalised human cell lines from primary cultures of human corneal
epithelia cells infected with a retroviral vector encoding human telomerase reverse
transcriptase (hTERT) have been developed (Gipson et al., 2003; Robertson et al.,
2005). These cell lines exhibit well-stratified cell layers with differentiation keratin
markers. Permeability features of these cells have not been evaluated.

S RC-cdlls (Statens Serumingtitut rabbit corneal cells) are continuously grown cells,
which have been widely used during the last three decades in dozens of studies of
corneal transport and permeability (Tak et a., 2001; Dey et a., 2003; Talluri et al.,
2006) and toxicology (North-Root et al., 1982; Scuderi et al., 2003), athough it has
been shown that SIRC-cells are fibroblastic cells (keratocytes) and not corneal epithelial
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cells (Niederkorn et a., 1990). These cells grow as monolayers, and form atight barrier
(Goskonda et al., 1999). The model has been found to predict the permeability of
ophthalmic drugs across corneal membranes (George et a., 2000a).

IHCEC immortalised corneal epithelial cells are used in commercially available
human corneal epithelial model for in vitro toxicology testing (SkinEthic Laboratories,
Nice, France). IHCEC-cells are cultivated in chemically defined medium on permeable
polycarbonate inserts at air-liquid interface (Nguyen et al., 2003). Histologicaly,
cultures appeared as a multilayered, stratified epithelium resembling human corneal
epithelium while desmosomes, hemidesmosomes, laminin and keratin expression was
also identified. The use of this model has focused on toxicity and eye irritation studies
(Doucet et al., 2006; Van Goethem et al., 2006). Permeability features have not been
studied.

Animal corneal epithelial cellss Immortalised rabbit corneal epithelial cell lines by
Araki et al. (1993) and Okamoto et al. (1995) express cornea specific keratin, microvilli
and intercellular desmosomes. Immortalised rabbit corneal cells have been used in
developing stratified epithelium in vitro (Yang et a., 2000; Burgalassi et al., 2004).

The RCE1-cell line is a rabbit corneal epithelial cell line that was developed by
maximizing the number of passages of primary rabbit corneal epithelial cells in the
presence of additivesthat are simulators of epithelial growth (Castro-Mufiozledo 1994).
The culture stratified and expressed specific keratin pairs. Immortalised cell lines have
also been established from rat (Araki et al., 1994) and hamster (Halenda et al., 1998).

None of these cell lines have been used in studies of epithelia barrier features.

2.3.3 Whole cornea models

The first human corneal equivalents comprising epithelium, stroma and endothelium
were constructed using immortalised human corneal cells (Griffith et al., 1999).
Engineered corneas mimicked human corneas in morphology, biochemical marker
expression, trangparency, ion and fluid transport, and gene expression. Another three-
dimensional corneal equivalent was constructed recently using SV40-immortalised
human corneal epithelial cells (HCE), human corneal keratocytes (HCK) and human
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corneal endothelial cells (HCEC) (Zorn-Kruppaet a., 2005). This model was developed
as areplacement for eye irritation tests (Engelke et al., 2004).

Human corneal congtruct (HCC) includes monolayer of immortalised endothelial
cells (HENC), native keratocytes mixed with type | rat-tail collagen in the middle and
on the top immortalised epithelial cells (CEPI-17-CL-4) (Reichl et al., 2004 and 2005;
Meyer et al. 2005). This whole cornea model was used in permeability studies to
determine the transcorneal drug transport of different nanosuspensions (Friedrich et al.,
2005).

The primary corneal cells from bovine (Minami et al., 1993; Tegtmeyer et al., 2001
and 2004; Reichl et al., 2003), rabbit (Zieske et al., 1994) and fetal pig (Schneider et al.,
1997 and 1999) have also been used in developing corneal cell models.

2.4 Ocular drug absorption
2.4.1 Corneal route

Drug absorption from the surface of the eye can be either corneal or noncorneal (Fig.
1, p. 14). For most ocular drugs, passive diffusion is the main transport process across
the cornea. Passive diffusion is influenced by molecular weight, partition coefficient,
and degree of ionization of the drug. The corneal epithelium is the main limiting barrier
for hydrophilic drugs that penetrate through the paracellular pathway. The corneal
surface epithelial intercellular pore size has been estimated to range between 20 A
(Haméaléinen et al., 1997b) and 30 A (Tonjum 1974; Lee et al., 1986) and only very
small ionic and hydrophilic molecules penetrate corneal epithelium paracellularly. The
corneal epithelium is negatively charged and because the isoelectric point is 3.2, the
paracellular space is more permeable to cations than to anions at physiological pH
(Rojanasakul and Robinson 1989; Liaw et al., 1992).

Most drugs that are used clinically are sufficiently lipophilic to permeate across the
cornea viatranscellular route (Sasaki et al., 1999). Drug lipophilicity is one of the most
important factors and it has been reported that the log (partition coefficient) of 2-3 is
optimal for corneal penetration (Schoenwald and Ward 1978; Huang et al., 1983;
Schoenwald and Huang 1983). In general, adjusting pH so that a drug is mostly in the

unionized form increases its lipophilicity and thus, its transcellular permeability and
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ocular absorption (Burstein and Anderson 1985; Mitra and Mikkelson 1988). The
hydrophilic stroma represents a limiting barrier for penetration by highly lipophilic
compounds. The corneal endothelium is lipophilic in nature (Huang et al., 1983). It isa
'leaky" barrier, which allows both paracellular and transcellular permeability of many
drugs (Prausnitz and Noonan 1998).

Many ocular drugs interact with transporters, but not much is known about the
expression and function of transporters in the corneal epithelium (Mannermaa et al.,
2006). Functional P-glycoprotein (P-gp) has been identified in cornea and corneal cell
lines (Kawazu et al., 1999b and 2006; Dey et al. 2003) and recently P-gp has also been
found to be active in vivo by restricting topical erythromycin absorption across the
cornea (Dey et al., 2004). Accordingly, recent preliminary studies showed multidrug
resistance-associated protein (MRP) expression at RNA level in the cornea epithelium
(Vellonen et a., 2006).

Drug metabolising enzymes in ocular tissues congtitute a metabolic barrier that limits
the ocular entry of xenobiotics. Various enzyme classes have also been found in corneal
tissues (Duvvuri et al., 2004). The corneal epithelium has been shown to be
metabolically most active for esterases (Lee et al., 1982; Lee 1983), aminopeptidases
(Stratford and Lee 1985), ketone reductase (Lee et al., 1988) and N-acetyltransferase
(Campbell et al., 1991). Esterases and ketone reductase are perhaps the most important
ocular drug-metabolising enzymes due to their role in the activation of prodrugs or soft

drugs.

2.4.2 Noncorneal route

The noncorneal route involves penetration across the conjunctiva and sclera into the
intraocular tissues. The conjunctiva is a relative leaky membrane with rich blood flow
and a large surface area (Watsky et al., 1988). Despite these properties this pathway
does not appear to be important in drug absorption for most ocular drugs, but the route

has been shown to be particularly important for hydrophilic compounds with large

et a., 1997a and b). Drug absorption through conjunctiva is influenced less by the
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molecular size and lipophilicity than in the cornea. In general, sclera shows higher
permeability than the cornea and conjunctiva.

Conjunctival uptake via its blood vessels and solution drainage via the nasolacrimal
duct may lead to systemic absorption. In addition, drainage of tears and instilled
solutions away from the front of the eye increase the precorneal loss of the drug (Patton
and Robinson 1976).

2.5 Transfection of the cornea
The cornea is an attractive target for gene therapy owing to its simple histological
structure, an immuno-priviledged nature, and easy accessibility (Jun and Larkin 2003).
Furthermore, the cornea allows local application of therapeutic agents with reduced risk
of systemic effects and many animal models for human ocular diseases have been
developed. Accordingly, the function and health of the eye can be evaluated non-
invasively and in quantitative fashion, and the eye can be directly observed and
followed for signs of disease and inflammation (Bennett and Maguire 2000; Borrés
2003; Jun and Larkin 2003). Corneal gene therapy studies are mainly focused on
endothelium to prevent allograft rejection after corneal transplantation and different
injections into the eye are the most common administration methods used in vivo. Gene
therapy of epithelial layer has attracted less attention. Because it is practically
impossible to transfer genes systemically to the eye, the delivery has been achieved
mainly through injections using viral-based vectors (Table 3, p. 28). However, topical
delivery is another useful but less investigated delivery method for transgenes.
Transgene expression is usually monitored using reporter molecules such as
chloramphenicol acetyltransferase (CAT), B-galactosidase (B-gal), luciferase (luc) and
green fluorescent protein (GFP) (Hiramatsu et a., 2005). B-galactosidase has mainly
been used in demonstrating the localization of transgene expression in cells and tissues,
whereas other reporter genes express time dependent quantitative estimation of reporter
gene expression. However, previously mentioned assay methods of the secreted proteins
require tissue sampling and protein extraction, which is inconvenient for
pharmacokinetic determinations in in vivo experiments. Furthermore, for the analysis of

protein expression in tear fluid and aqueous humor, the aforementioned reporter
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molecules are not practical or they are impossible to use. Moreover, it is known that
gene transfer vectors that function well in vitro may not function in vivo; protein
expression substantially decreases or the expression is not seen at all. However, in
screening different transfection vectors differentiated cell cultures in vitro have been in
minor use as a linkage between dividing cellsin vitro and differentiated cellsin vivo.
Transfection of therapeutic genes has also increased in recent years. In these cases,

the success of the transfection is seen by the improved condition of the eyes.

2.5.1 Viral vectors

Viruses have developed efficient strategies to penetrate into host cells, transport
their genetic information into the nucleus either to become part of the host's genome or
to constitute an autonomous genetic unit (Pfeifer and Verma 2001). Virus vectors are
designed by identifying the viral sequences that are required in assembling of viral
particles, packaging of the viral genome into particles and delivering the foreign gene to
the target cells via cell surface receptors (Kao 2002). Dispensable genes are deleted
from the viral genome, and the residual viral genome and transgene are integrated into
the vector construct. Viral vectors are divided into integrating and nonintegrating
vectors, which are capable of permanent and temporary expression of the transgene,
respectively.

Successful virus mediated corneal transductions have been performed in vivo (Table
3, p. 28), ex vivo with isolated corneas and in vitro with different corneal cells from
different species (Jun and Larkin 2003; Rosenblatt and Azar 2004; Mohan et al., 2005).

Adenovirus and adeno-associated virus (AAV) are DNA viruses, which are capable
of infecting both dividing and non-dividing cells (Mohan et al., 2005). AAV is a hon-
pathogenic virus, which integrates into host cell genome and thus, is capable of
producing long-term gene expression genome. Other DNA-viruses, such as herpes
simplex viruses (HSV) and baculovirus can infect non-dividing cells (Das and Miller
2003).
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Table 3. Examples of transductions into corneain vivo.

Vector Transgene Administration / animal Protein or mRNA
expression / response
AAV VEGFr, GFP, anterior chamber injections/ rats and endothelium, reduced
[1-4] f3-ga rabbits neovascularisation
EGFP topical application after scraping off epithelium
superficial epithelid cedls/ rats
CAT, 3ga laméellar flap-technique/ rabbits keratocytes
Adenovirus HO-1 anterior chamber injections / rabbits epithelium,
[3,5-9] endothelium
R-gal, GFP anterior chamber injections/ rabbitsand ~ endothelium
monkeys
R-gluc, R-gal anterior chamber injections, insidestroma ~ endothelium,
with lameller keratotomy / mice keratocytes, reduced
cornesal clouding
EGFP topical application after scraping off epithelium,
superficial epithelia cells, intrastromal stroma
injections/ rats
Lentivirus GFP anterior chamber injections / mice endothelium
[3,10-12]
EGFP topical application after scraping off epithelium
superficial epithelia cells/ rats
EGFP intravitreal injections/ mice endothelium
Retrovirus R-gal topical application after a superficial keratocytes,
[13,14] HStk keratectomy / rabhits development of corneal
dnG1 haze was inhibited
HSV R-gal intracameral and intravitreal injections, entire cornea
[15] topical application after corneal
scarification / rats and mice
Baculovirus  GFP intravitreal injections/ mice corneal endothelium
[16]

[1] Lai et al., 2002; [2] Tsai et d., 2002; [3] Igarashi et al., 2002a and b; [4] Mohan et a., 2003b, [5]
Abraham et d., 1995; [6] Borraset al., 1996; [7] Borréset al., 2001; [8] Kamata et a., 2001; [9] Carlson et
al., 2004; [10] Bainbridge et al., 2001; [11] Challaet al., 2005; [12] Takahashi et a., 2002; [13] Seitz et dl.,
1998; [14] Behrens et a., 2002; [15] Spencer et ., 2000; [16] Haeseleer et d., 2001
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Retrovirus and lentiviruses are RNA viruses, which cause long-term expression due
to chromosomal integration (Das and Miller 2003; Rosenblatt and Azar 2004; Mohan et
al., 2005). Retrovirus provides gene expression for the lifetime of the cell, but infect
only dividing cells whereas lentiviruses are capable of transfecting non-dividing cells.

Disadvantages of the use of vira vectors include limitations on the size of
therapeutic genes, random integration in the human genome, insertional mutagenesis,

immunogenicity against virus as well as infections and inflammations in the eye.

2.5.2 Non-viral methods

Non-viral gene delivery systems consist of a therapeutic gene and a synthetic gene
delivery system. Non-viral vectors are also called plasmid-based gene expression
systems, because a transfected therapeutic/marker gene and other DNA sequences to
control the production of the resultant protein, are inserted into a plasmid-DNA vector.
Plasmids are large, hydrophilic macromolecules with a net negative surface charge,
which prevent plasmids to cross biological membranes efficiently (Mahato et al., 1997).
Thus a carrier system is needed to transfer plasmid DNA (pDNA) across the cell
membranes into cells. Depending on the carrier method, non-viral methods can be
classified in physical and chemical methods.

Non-viral vectors are relatively safe, capable of the transfer of large genes, non-
inflammatory, non-toxic and non-infectious (Mohan et al., 2003b). In addition, they can
be designed based on characterized agents, they are not limited by the size of the DNA,
their production is inexpensive, and they can be produced in large quantities (Das and
Miller 2003). Furthermore both dividing and non-dividing cells can be tranfected using
non-viral methods. On the other hand, non-viral vectors have low transfection
efficiency, relatively poor transgene expression and they are capable only in transient
transfection.

Physical methods- In the gene gun method gold microparticles are coated with
naked pDNA and the DNA is delivered into the target cells'organ using explosive or
gas-driven ballistic devices. This method allows direct penetration through the cell
membrane into the cytoplasm and even the nucleus (Niidome and Huang 2002).

Electroporation uses electric field pulses, which cause transient and reversible poresin
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the plasma membrane of cells, and drive the negatively charged DNA into the
cytoplasm (Blair-Parks et al., 2002; Trezise et al., 2003). Before electric field pulses
pDNA construct has to be injected into target cells/tissue. However, the disadvantages
of these methods are a low transfection efficiency and possible tissue damage and cell
death (Kao 2002). Furthermore, injection of naked pDNA and the use of ultrasound as a
transgene delivery method have been studied in transfection of cornea (Angella et al.,
2000; Stechschulte et al., 2001; Sonoda et al., 2006). Some corneal transfections in vivo
using physical methods areillustrated in Table 4 (p. 32).

Chemical methods consist of an expression cassette, inserted into a plasmid and
complexed with positively charged cationic lipid, cationic polymer, or a mixture of
these (Lechardeur et al., 2005). In addition, various forms of receptor-mediated gene
transfer are used (Varga et a., 2000). The functions of the various types of synthetic
gene carriers are to condense and protect pDNA from premature degradation during
storage and transportation and to augment DNA delivery into the cell nuclei (Mahato
2005). Efficiency and safety of the transfection reagents are strongly dependent on the
lipid:DNA ratios and concentrations; decreased lipid concentrations reduce toxicity and
efficiency (Dannowski et al., 2005).

The delivery of pDNA into the cell includes cellular binding and uptake, endosomal
escape and nuclear delivery. DNA release from the complex begins by binding the
positively charged DNA/carrier complex to, for example negatively charged
glycosaminoglycans (GAGs) on the target cell surface membrane (Ruponen et 4.,
2004). After that the complex is endocytosed into endocytic vesicles (endosomes) of the
cell (Clark and Hersh 1999; Lechardeur et al., 2005). The size and the composition of
the complex, as well as cell surface properties and endocytic activity of the specific cell
type influence the internalization pathways (Khalil et al., 2006). According to present
knowledge DNA has to release from the complex before transcription in nucleus.
However, it is not known if DNA release from the complex takes place in the
endosomes, cytoplasm and/or nucleus.

Cationic lipids, such as DOTAP are amphiphilic molecules that interact with the
negatively charged phosphate backbone of DNA, neutralizing the charge and promoting
the condensation of DNA into more compact structure (Mahato et a., 1997). The
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cationic lipids have one or more hydrophobic acyl chains, possible linker group, and a
positively charged headgroup, which interacts with plasmid. The addition of a lipid-like
compound or neutra lipid, like DOPE, is typically used as co-lipid to facilitate the
release of plasmid DNA from endosomes after endocytic uptake of the pDNA/liposome
complexes (Farhood et al., 1995). Furthermore, the ratio of DNA to lipid influences the
transfection efficiency; charge ratios (+/-) higher than one are preferred (Tseng et al.,
1997). Liposomes have been successfully used in delivering genes into immortalised
and primary corneal cells of different speciesin vitro (Pleyer et al., 2001; Nguyen et al.,
2002; Bertelmann et al., 2003; Dannowski et al., 2005), organ-cultured cornea in vitro
(Klebe et a., 2001) and endothelium ex vivo (Arancibia-Carcamo 1998; Nguyen et d.,
2002). Examples of the transfectionsin vivo are illustrated in Table 4 (p. 32).

Cationic polymers, such as PEl and dendrimers, with a strong positive surface
charge, make them suitable to bind and package large negatively charged pDNA. PEI
and dendrimers have been shown to mediate transfection in various cell lines in vitro
(Haensler and Szoka 1993; Boussif et al., 1996), whereas the transfection efficiency in
vivo is much less. Overall, PEI (or any cationic polymer) has been only once used in
vivo for the corneal transfections (Kuo et a., 2005). In addition, human corneal
endothelium expressed the transgene after transfection with polyamidoamine
dendrimers ex vivo (Hudde et a., 1999).

In receptor mediated gene delivery pDNA-vector complex istargeted to a particular
target molecule on the cell surface. This has the potential for specific delivery to
particular cells, and also delivery to molecules that are optimal for gene delivery
(George et al., 2000b). Transferrin-PEI conjugate (Tf-PEI) sysem (Nguyen et al.,
2002), the similar transferrin-mediated lipofection method (Tan et a., 2001) and
integrin-targeted peptide/pDNA complexes (Shewring et al., 1997) have been tested to
deliver the transgene into rabbit, human and pig endothelial cells in vitro. Coupling
antibodies to lipid-DNA complexes leads to the production of immunoliposomes, and
this antibody targeted gene transfer method was used to transfer genes into primary
human corneal endothelial cells in vitro and ex vivo (Tan et al., 2003). Polyethylene
glycols (PEGs) stabilize the liposomes and PEGs were used in conjugating the surface

of liposomes in immunoliposomes in intravenous gene transfer (Zhu et al., 2002; Zhang
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et al., 2003). In these studies transgene expression was seen even in the epithelium of

cornea in mice and rhesus monkey.

Table 4. Examples of non-viral transfections into cornea in vivo.

Vector Transgene Administration / animal Protein expression/
response
Electro- f3-ga anterior chamber injections/ rats endothelium, fibrin
poration tPA formation decreased
[1-4]
GFP, luc injections into stroma, intracorneal and epithelium
subconjunctival injections/ miceand rats  stroma
Genegun EGFP, luc, IL-  cornea/ mice epithelium
[5-8] 4, IL-10, prolonged corneel
CTLA4 graft survival
GFP, 3-gal, cornea/ rabbits and rats epithelium
HA, OGFr,
Liposomes 3ga topical application, injectionsinto anterior  epithelium
[9-13] chamber, topical application / rats
CAT, 3-ga lamelar flap-technique/ rabbits stroma
luc intravitreal injections/ rabbits cornea, agueous humor
EGFP, BAI1- subconjunctival injections/ rabbits stroma, reduced
ECR neovascul arization
PEI GFP, b-FGF injectionsinto stromal pocket / rats epithelium
[24] keratocytes
induced angiogenesis
Immuno- (3-gal injectionsintravenoudy / miceand rhesus  epithelium
liposomes monkeys
[15,16]

[1] Oshimaet al., 1998; [2] Sakamoto et a., 1999; [3] Blair-Parks et al., 2002; [4] Oshima et al., 2002; [5]
Tanelian et al., 1997; [6] Shiraishi et d., 1998; [7] Konig et al., 2000; [8] Zagon et a., 2005; [9] Masuda
et a., 1996; [10] Matsuo et a., 1996; [11] Mohan et a., 2003b, [12] Kawakami et a., 2004; [13] Y oon et
al., 2005; [14] Kuo et a., 2005; [15] Zhu et al., 2002; [16] Zhang et a., 2003
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3 AIMSOF THE STUDY

The overall aim of the present study was to develop a cell culture model of human

corneal epithelium for drug permeability studies. The specific aims of the study were:

1. To develop appropriate cultivating conditions for SV 40 immortalised human corneal
epithelia cell line to generate differentiated corneal epithelium for drug permeation

studies.

2. To charecterise the morphology, transepithelial electrical resistance, and
permeability of HCE-model using model compounds with different lipophilicity,
molecular size and charge.

3. To evaluate the suitability of HCE-model for transfection studies.

4. To study the transfection of the corneal epithelium and its use as a platform for

transgene product secretion into the lacrimal fluid and anterior chamber.



4 MATERIALSAND METHODS
4.1. Cdl culture(l)

Immortalised human corneal epithelial cells (HCE SV-40-immortalised; Araki-Sasaki
et a., 1995) were seeded on polyester and polycarbonate cell culture permeable
membrane filters, which were coated with corneal basement membrane components; rat
tail collagen type | or mouse laminin. Some filters were coated with collagen mixed
with mouse embryonic fibroblasts to mimic corneal stroma. Filters without any coating
were also used. The cells were grown using standard culture medium both in the apical
and the basolateral chambers until the cells were confluent. Then, the cells were
exposed to an air-liquid interface for 2-3 weeks. The culture medium was replaced
every other day.

4.2 Transepithelial electrical resistance- TER (1)
TER was measured by Endohm™ at different phases of cell growth. Measurement
was based on the voltage difference while the current is passed through cell layers.

4.3 Histology (I)

Morphology such as number of cell layers and the shape of cells were analysed using
light microscopy. Different cell organelles and junctions between cells were visualised
with transmission electron microscopy (TEM), which is based on electrons which pass
through specimen and are scattered by structures stained with the electron-dense
material.

4.4 Permeation studies(l and I1)

HCE-model- The transport of model probes across cell culture were determined using
3H-mannitol and 6-carboxyfluorescein (6-CF) as hydrophilic markers for characterising
the paracellular permeation between the epithelial cells. Rhodamine B was used as
lipophilic marker for establishing transcellular permeability of HCE-culture.

Eight B-blockers (atenolol, sotalol, nadolol, pindolol, timolol, metoprolol, propranolol
and alprenolol) with logP values ranging between -0.62 and 3.44 were used to study the

influence of lipophilicity on drug permeation across the HCE-cell layer. Permeation
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studies with polyethyleneglycols (PEGs; mean molecular weights of 200, 400, 600, and
1000) were carried out to characterise the effects of molecular size on permeability and
to determine the paracellular pore size and porosity of the differentiated HCE-cells.
Positively charged amino-polyethylene glycols (amino-PEGs) with mean MW of 350-
750 (agift from Dr. Etienne Schacht, University of Ghent) were used to study effects of
size and charge on the passive paracellular permeation across differentiated HCE-cells.
Esterase activity of the differentiated HCE-cells was examined with the permeation
of fluorescein and fluorescein diecetate across cells. This method is based on the
esterases of cells which are able to hydrolyse fluorescein diacetate to fluorescein.
Excised rabbit corneas were used to compare the drug permeabilities and esterase
activity of the intact tissue with the HCE-model. All animal experiments conformed to
the ARVO Resolution on the Use of Animals in Research. The cornea of rabbit was
dissected with a scleral ring and the permeation studies were performed using Snapwel |

side-by-side diffusion chambers.

45 Genetransfer into corneal cells(l11)

In vitro transfection- Complexes were performed with pCMV-SEAP2 and
DOTAP/DOPE with or without PS a charge ratios +/-2 and +/-4, and PEI at charge
ratio +/-8. The cells were transfected at three stages of differentiation; the next day after
seeding of the cells onto filters (dividing cells), one week after seeding the cells were
exposed to air-liquid interface (dividing/differentiating cells), and after 4-5 weeks at the
stage of differentiation (differentiated cells). After transfection samples were withdrawn
daily for one week. The condition of the differentiated cells was examined daily by TER
measurement.

SEAP permeation across HCE-layer was followed to identify the degree of
permeation of the large protein molecule across differentiated HCE-cells.

In vivo transfection- Complexes of DOTAP/DOPE/pCMV-SEAP2 (+/- 2), naked
pCMV-SEAP2, DOTAP/DOPE/pSEAP2-Basic (+/- 2) and DOTAP/DOPE/ pCMV-
Luc4 (+/- 2) were applied topically to the male albino New Zealand rabbits. The amount
of pDNA delivered was 24 ug per eye and the treatment was repeated twice. Precornea

tear fluid was withdrawn daily from each eye for the first four days and on the seventh
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day after transfection. Aqueous humor samples were taken from the anterior chamber
with needle under microscope from anaesthesised rabbits after 1, 2 and 3 days following
transfection.

4.6 Analysisof model compounds

The radioactivity and fluorescence were measured using a liquid scintillation counter
and fluorescence plate reader, respectively (I and I1).

PEGs and amino-PEGs were quantified using the combination of reversed-phase high
performance liquid chromatography (RP-HPLC) and electrospray ionization mass
spectrometry (ESI-MS). The HPLC-ESI-MS method is described by Palmgrén et al.,
(2002). Shortly, the samples of PEGs and/or charged PEGs were driven into lipophilic
HPLC column. The retention times in the column were dependent on the oligomer
molecular weight as they are eluted at different concentrations of acetonitrile in the
gradient mobile phase. Liquid eluent with separated PEGs and aminoPEGs was sprayed
through the electrospray needle and as a result every charged drop contains only one
PEG oligomer. Solvent evaporated from drops and PEG molecules were transmitted
into MS-detector for quantification.

B-blockers were analysed simultaneously by gradient HPLC with combined UV and
FL detection as described earlier (Ranta et al., 2002). A reversed phase column was also
used in this method. Ultraviolet (205 nm) and fluorescence detection with 230 nm
excitation and 302 nm emission filters were used.

The fluorescence-based real-time reverse transcription PCR (real-time RT-PCR) was
used for the quantification levels of steady-state luciferace mRNA produced in corneal
epithelial and conjunctival cells (111).

SEAP-assay- Great EsSCAPE SEAP Chemiluminescence Detection kit was used to
determine SEAP from the cell culture medium, tear fluid and aqueous humor samples
following manufacturer introductions. The detection of SEAP was performed with

luminometer (111).
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4.7 Dataand statistical analysis

Apparent permeability coefficients (Papp) in cnV/s of the cultured HCE-cells and filter
together or excised cornea were calculated using the equations illustrated in article 1.
The effects of filter and extracellular matrix on drug permeation (Psiier) Were taken into
account in determining the permeability of the cultured corneal epithelium (Pcq))
without support.

Paracellular space dimensions (I1) - Paracellular permeability data (Peai—values of
PEGs) and effusion-like analysis allow estimation of the size and number of the
paracellular pores in the biomembranes. An effusion-based theory assumes that the low
probability of finding the pore, rather than diffusion, determines the paracellular
permeation. Increasing molecular size of the permeant decreases the rate of paracellular
penetration. Paracellular pore size and porosity in HCE-model was obtained from
effusion based equations from Haméléinen et al. (1997a and 1997b).

Mann-Whitney's U-test and paired two-tailed t-test were used to test for statistical
significances. P < 0.05 was taken to represent statistical significance in both analyses (I
and I11).

Pharmacokinetic parameters of SEAP expression after transfection in vitro and in

vivo were obtained using equations illustrated in the article I11.
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5 RESULTS
5.1 Differentiation

Based on light microscopy and TEM, the HCE-cells consisted of 5-8 cell layers when
they were grown on collagen, collagen/laminin or collagen/fibroblasts coated membrane
filters (I; Fig. 3 B). The most apical cells were flat with tight junctions, microvilli and
desmosomes (TEM) (I; Fig. 4). The thickness of the cultured corneal epithelium was
found to be 70 pm which is close to the thickness of the human corneal epithelium (50-
70 um) (Watsky et a., 1995). When the cells were grown on polycarbonate filters, 3-10
cell layers were formed without flattening of the apical cell layers (I; Fig. 5). However,
there were some tight junctions, microvilli and desmosomes. If the cells were cultivated
without the air-liquid interface, only 2-3 cell layers without flattened cells and tight
junctions were formed (I; Fig. 6).

The TER-values of HCE-cells without the air-liquid interface were ~ 100 - 200
Wixem? and the Pey; of *H-mannitol was (10 — 20) x 10°® cns, regardless of the filter or
coating material used. TER-values remained at the same level even after the cells
reached confluence in one week after seeding them onto the filters. Under the air-liquid
interface the TER increased for 2-3 weeks to ~200 — 800 Wxcm? depending on the
culture conditions (I; Fig. 1). With increasing TER the permeability coefficient
decreased. At TER values of 400-800 Wxcm? the Peys values were (1 — 2) x 10°® cnv/sec
(I; Fig. 2). TER values were similar before and after the permeability experiment.

The cells migrated through the filter with 3 mm pore size. In each coating system the
polyester filters were better than polycarbonate filters for culturing HCE barrier.
Polyester filters (0.4 nm) coated with collagen or laminin alone, or mixture of
collagen/fibroblasts or collagen/laminin were the best methods for culturing HCE cell
layers.

5.2 Paracdlular and transcellular per meability
Rhodamine B penetrated across the cell layers 21 and 11 times faster than hydrophilic
6-carboxyfluorescein or *H-mannitol, respectively (I; Table 1). In excised rabbit cornea

the differences for the same comparisons were 39- and 48-fold, respectively. HCE cell
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culture model was more permeable to *H-mannitol than isolated rabbit cornea (P <
0.05), while in the case of rhodamine B and 6-carboxyfluorescein no significant
differences were seen.

Permeability of PEGs in the HCE-model decreased with increasing molecular weight
from 1.20 x 10° cnVs of PEGgs to 0.50 x 10° cm/s of PEGes (II; Fig. 1).
Permeabilities of PEGs in the HCE-model are 1.6 to 2.3 times greater than in isolated
isolated cornea and culture model increases with increasing molecular weight. For
example the ratio of the permeabilities (HCE-model/cornea) at MW ~ 300 and 800-900
were about 1.5 and 3.0, respectively.

The relationship between the permeability (Peqi) and the radius of PEG oligomers in
the HCE-cell model and excised cornea shows a linear relationship and intercepts on the
x-axis at positive values (11; Fig. 2). Porosity, pore size and the number of poresicm?in
the differentiated HCE-model and excised rabbit cornea were similar, but not identical.
In both cases, the pore radius ranged between 0.7 and 1.6 nm and the porosity in terms
of paracellular poreswas in the range of (1—3) x 10 (11; Tablel).

Pagp Of amino-PEGs are illustrated in Fig. 3 (unpublished data). Permeability of
amino-PEGs across the HCE-model also decreased with increasing molecular weight
from 0.7 x 10°® cm/s of amino-PEGs; to 0.23 x 10°® cmi's of amino-PEGgss. The Pay

values of amino-PEGs are a lower level than the values of uncharged PEGs.
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Figure 3. The permeability (Psp) of PEGs (squares) (I1; Fig. 1) and amino-PEGs
(triangles) inthe HCE-model (n = 6-9; mean + SE.M.).



40

Permeability of B-blockers in the HCE-model increased with increasing lipophilicity
according to a sigmoidal relationship (I1; Fig. 3). In the HCE-model permeability
coefficient of the most hydrophilic drug, sotalol (Papp 1.21 X 10 cm/s) was 13.5 times
smaller than the permeability of the most lipophilic drug, betaxolol (Pap 15.01 X 10°®
cm/s) (I1; Table 2). The difference was 38.6-fold in the isolated rabbit cornea (Wang et
al., 1991; Prausnitz and Noonan, 1998). Experiments did not show any preferable
directionality suggesting lack of active transport of the permeants in the differentiated
HCE-cells.

Fluorescein diacetate showed improved permeability in the HCE-model (49-fold) and
in the rabbit cornea (31-fold) compared to the permeability of fluorescein. These data
show that the esterases cleave acetates from fluorescein diacetate efficiently in the
HCE-model and rabbit cornea.

5.3 Transfections

In vitro transfections- Overall the highest rate of SEAP secretion was during the
second and the third day after transfection and levels of SEAP secretion decreased
clearly after days 2 and 3 in al gene transfer experiments.

PEI +/- 8, DOTAP/DOPE +/- 2, DOTAP/DOPE/PS a chargeratio +/- 2 and +/- 4 are
among the mogt effective carriers in the dividing cells (111; Fig. 3A and B). SEAP
secretion was 1.5-2.1 times higher to the apical than to the basolateral side.

PEI is the most effective carrier in transfections of the dividing/differentiating HCE-
cells (I11; Fig. 4A). The secreted amount of SEAP is at least 1.7-fold greater than with
the other carriers. Peak concentration of SEAP after PEI mediated transfection is 14
times lower in the dividing/differentiating than in the dividing cells.

DNA complexes of the DOTAP/DOPE +/-2, DOTAP/DOPE/PS +/-2 and
DOTAP/DOPE +/-4 have similar transfection efficacy in differentiated HCE-cells (I11;
Fig. 4B). Peak concentration of SEAP after DOTAP/DOPE +/-2 transfection with
differentiated cells is 196 and 8.2 times lower than in the dividing and
dividing/differentiating cells, respectively. PEI +/-8 did not mediate any detectable
SEAP transfection in the differentiated cells.
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During 5 hours of permeation experimentation approximately 14.1% of SEAP was
transported across the filter alone, and less than 0.01% could permeate across the
cultured differentiated HCE.

In vivo transfections- In tear fluid, peak SEAP concentrations were reached 1-2 days
after topical ingtillation of DOTAP/DOPE/pCMV-SEAP2 (n = 6; p < 0.05) and the
concentration of SEAP remained statistically significant during the third and fourth days
(I1; Fig. 5). Transfection with naked-DNA did not cause statistically significant
expression of SEAP in the tear fluid of rabbits.

SEAP concentration in aqueous humor varied from (1.4 £ 0.4) ng/ml to (4.7 £ 1.4)
ng/ml (n = 14-20) within three days after transfection and was significantly higher
compared to situation before transfection (p < 0.05). The average steady-state (Cs)
concentration of SEAP protein in agqueous humor within three days after transfection
was 3.05 ng/ml. No SEAP was detected in agueous humor after transfection with naked
pDNA.

Secretion rates- Secretion rate of SEAP to the basolateral side of differentiated HCE-
cells was (0.51 + 0.09) - (1.63 + 0.18) ng/l/cm?. In vivo the mean rate of SEAP
secretion to agueous humor was (0.20 + 0.06) - (0.68 + 0.20) ng/h/cm? during the three
days after transfection. Secretion rates of SEAP into the tear fluid and agueous humor
were (0.12 + 0.04) - (0.30 + 0.07) ng/h and (0.31 + 0.09) - (1.08 + 0.32) ng/h,
respectively.

Real-time RT-PCR study shows that relative expressions of luc-mRNA from rabbit
corneal epithelium and conjunctiva are about 10- and 20-fold higher than in the control
tissues, respectively (111; Fig. 6). No luciferase expression at mMRNA level was detected
in these tissues after transfection with naked pDNA.
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6 DISCUSSION

One of the main problems in development of new ophthalmic drugs is their poor
absorption into the eye after topical application. The cornea is the main route of drug
absorption from tear fluid to the inner eye for clinically used ophthalmic drugs. In order
to reduce the number of animal experiments, new research methods for drug delivery
studies are needed.

In the present study, differentiated culture model of human corneal epithelium was
developed as a tool for drug and gene delivery studies. The culture conditions,
morphology and physical barrier properties of the cultured epithelium were evaluated.
The usefulness of the new cell model was also tested in gene delivery experiments with
non-viral vectors.

6.1 Culture conditions

Differentiation process of corneal epithelial cells in vitro is a combination of soluble
inducers in culture medium, used permeable support system and cell grown on air-lift.

The feeding medium of the HCE-cells includes 15% of FBS. Serum represents most
of the factors required for cell proliferation and maintenance and in addition buffers the
cell culture system against a variety of perturbations and toxic effects (Cartwright and
Shah 2002). Disadvantages in the use of serum are lack of reproducibility which leads
to different absolute and relative levels of growth factors, protein and monoclonal
antibody existence. High concentrations of serum have been noticed to disturb cell
proliferation and differentiation (Ahmed and Patton 1985; Kruse and Tseng 1993).
Some groups have reported improved differentiation of the corneal epithelium in serum
free medium (Kruszewski et al., 1997; Castro-Mufiozledo et a., 1997) and many
immortalised corneal epithelial cell lines are grown in serum-free medium (Offord et al.,
1999; Mohan et al., 2003a; Robertson et al., 2005). HCE-cells were also cultivated at
lower serum concentrations (2%, 5%, 10%), but in these conditions the cells did not
survive. On the other hand, any extra supplements e.g. growth factors were not added in
culture medium to compensate for reduced serum concentration. Furthermore, the
differentiation of corneal epithelia cells growing in serum-free medium is stimulated

with changes in ionic calcium concentrations (Ward et al., 1997; Mohan et al., 20033;
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Robertson et al., 2005). In our studies, Ca’* concentration remained stable while HCE-
cells grew at reduced serum concentration. HCE-cells have also been grown
successfully in serum free medium with or without animal based extracts (Wilkinson
and Clothier 2005). The growth was equal in the both methods, but ZO-1 localization
was seen only at Ca?* concentration of 100 uM or above. However, the cells were
investigated only as monolayers.

Filter material with its pore size and the coating components was seen to be important
factors in HCE-cell differentiation. Polyester filters with 0.4 um pore size proved to be
better than polycarbonate filters for barrier formation with HCE-cells, and the clear
polyester membrane also provides better cell visibility using light microscopy or phase-
contrast microscopy.

Human corneal epithelium cultured on collagen gels can synthesize and deposit
basement membrane components like laminin and type 1V collagen (Ohji et al., 1994,
Fukuda et al., 1999). HCE-cells have been proved to express laminin and two
fibronectin isoforms (Ebihara et al., 2000; Filenius et al., 2001 and 2003). The mixture
of collagen and laminin represents the basal lamina in HCE-model and further improves
the differentiation features of the model. However, the cells did not differentiate when
growing on commercially available basement membrane matrix (MATRIGEL®)
(unpublished data), which includes laminin, collagen and some growth factors. Collagen
with mouse 3T3-fibroblast resembles a corneal stroma in HCE-model and interactions
between the fibroblasts and corneal epithelia cells stimulate the differentiation of the
HCE-cells. Based on morphology and on the barrier properties, a polyester filter coated
with laminin/collagen, collagen or collagen/fibroblasts mixture appeared to be optimal
for HCE-cell differentiation. In other corneal epithelial models, the cells have grown
both on polyester and polycarbonate filters coating with collagen type I, laminin or
fibronectin (Table 5, p. 45). Mixture of collagen and fibroblasts has been mainly used in
the organotypic whole cornea models.

The air-liquid interface seems to be the most critical for the differentiation of HCE-
cells as has previously been observed in other corneal epithelial cell models (Table 5).
No flat apical cells or proper barrier was obtained without air lifting in HCE-culture.
The apical surface of the corneal epithelium contributes about 70% of the total electrical



resistance of the cornea (Klyce 1972) and the top two layers are the most important part
of the cornea in limiting the permeability of hydrophilic drugs (Klyce and Crosson
1985). HCE-model shows tight junctions and desmosomes in the flattened apical cell
layer, but the wing cells and basal cells in the cultured epithelium are not organized as
well as they are in the intact cornea. The HCE-model does not include stroma, only
‘stroma-like’ much thinner ‘extracellular matrix'. Stroma and endothelium are not
critical barriersin the corneal drug absorption (Prausnitz and Noonan 1998).

In optimal conditions, the TER values of the HCE-model were 400 — 1200 Qxcm?
which is a lower level than the TER-values of intact cornea. TER-values of the
differentiated HCE-cells are in line with other human corneal epithelial cell models
(Table 5). In addition, TER-values of HCE-T cells grown without airlift remained ~200
Qxem? (Ward et al., 1997) that was seen also in HCE-cell grown. No flat apical cells or
proper barrier was obtained without air lifting in HCE-culture and TER-values lower
than 400 Qxcm? with poor hydrophilic drug permeation indicated failed terminal cell

differentiation.

6.2 Paracellular and transcellular per meability

Paracellular permeation takes place via the spaces between the cells. These spaces
are limited by the tight junctions in the cornea epithelium (Marshall and Klyce, 1983).
Major determinants of the paracellular permeability are the dimensions of the
paracellular space and permeating molecule.

HCE-cells have dlightly larger paracellular pores than the excised cornea, but the
pore density is less than in the rabbit cornea (II; Fig. 2, Table 1). Due to the larger
intercellular space (i.e. higher porosity) the HCE-model shows 2 — 4 times higher or
similar permeability for the hydrophilic compounds (6-carboxyfluorescein, mannitol,
PEGs, hydrophilic p-blockers), (I; Table 1, Il; Fig. 1 and 3, Table 2). However, these
differences are relatively small. Furthermore, the paracellular permeability in rabbit
cornea may be less than in the human cornea (Urtti and Salminen, 1993). This has also
been seen in this study, as the paracellular space of the HCE-model is slightly wider
than in the rabbit cornea. Paracellular dimensions of any other corneal cell culture

model have not been determined before.



45

Table 5. Cell culture models of the corneal epithelium (revised from Hornof et al.,

2005).
Primary céls
. L TER _ —

Species  Cell culture conditions [Wéem?] Char acterisation Applications Ref.
rabbit collagen-coated ~100-150 morphology; permeability and  [1-3]
(RCEC) membrane; medium bioelectric active transport

contains 5% serum; parameters, studies
culture time 8 days permeability
rabbit fibronectin / collagen / ~ 5000 morphology; permeability [4-6]
(RCrECL) laminin-coated bioelectric studies
membrane; serum-free parameters, keratin
medium; air-lifted; expression;
culturetime 7-8 days permeability
rabbit collagen coated ~200 morphology; toxicity [7
membrane; medium bioeectric
contains 10% serum parameters,
Immortalised cells
human collagen-coated ~400-600 morphology; cell biology; [8-10]
(HCE-T membranes, serum-free bioelectric toxicity; ocular
10.014) medium; air-lifted; parameters, irritancy; gene
culturetime 6 days karyotype; isozyme; regulation studies
keratin expression
human collagen-coated/ ~400-800 morphology; permeability [11]
(HCE) fibroblasts membrane; bioelectric studies; prediction
medium contain 15% parameters, of ocular
serum; air-lifted; culture permeability; pharmacokinetics
time 3-4 weeks esterase activity; by combining in
paracellular pore vitro permestion
size and density data with
computer
simulation
program
human coll agen-coated ~400-500 morphology; toxicity [12]
(HPV 16- membrane; EpiLife bioelectric
E6/E7) medium; air-lifted; parameters;
culture time 4-12 days cytogenetics
rabbit polyester membrane; ~150 morphology; permeability [13]
(RRCE) medium contains 15% bioelectric studies
serum; air-lifted; culture parameters,
time 2-6 weeks permeability

[1-3] Kawazu et d., 1998, 1999 a and b, 2006; [4] Chang et al., 2000; [5] Scholz et al., 2002; [6] Chang-
Lin et al., 2005; [7] Wang et al., 2001; [8] Kahn et al., 1993; [9] Ward et d., 1997; [10] Kruszewski et al.,
1997; [11] Ranta et a., 2003; [12] Mohan et al., 2003a; [13] Burgalass et ., 2004
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In other models, permeabilities of hydrophilic markers in primary corneal epithelial
cell model are practically the same as in intact rabbit cornea (Chang et al., 2000), but
Kawazu's et al. (1998) model showed levels of permeability about 100 times higher
permeabilities than those of the whole cornea. Permeation of sodium fluorescein in
HCE-T and HPV 16-E6/E7 models was studied by Ward et al. (1997) and Mohan et al.
(2003a). After a 30-min exposure, HCE-T and HPV16-E6/E7 cultures allowed
permeation of about 5% and 9% of the sodium fluorescein as compared to filter control,
respectively. Since only one time point was used, Py in cm/s cannot be evaluated
reliably.

In general, increased lipophilicity facilitates the corneal permeability. Lipophilic
transcellular marker rhodamine B exhibited a high permeability across the HCE-cell
culture and the value was practically the same as in the isolated rabbit cornea (I; Table
1). Permeability studies of p-blockers across differentiated HCE-cells shows a parabolic
relationship between the lipophilicity (i.e. logP) and permeability (I11; Fig. 3). Similar
relationship has been shown for isolated cornea with B-blockers and pilocarpine
prodrugs (Huang and Schoenwald 1983; Wang et al., 1991; Suhonen et al., 1991 and
1996) and primary rabbit corneal cell culture model (Kawazu et al., 1998), but in this
case the levels of permeability were at much higher level than in other sudies.

Due to the transcellular permeation with increasing lipophilicity (logP > 1.7) the
permeability of B-blockers in the HCE-model and in the excised cornea improved
substantially. At high lipophilicity (logP > 2.5), the Py, in the HCE-model was less than
in the excised cornea. Highly lipophilic drugs penetrate easily to the lipophilic corneal
epithelial cells, but their transfer into the hydrophilic stroma becomes the rate-limiting
step (Schoenwald and Huang 1983). The properties of the corneal stroma and the
collagen matrix and filter of the HCE-model differ from each other by thickness,
construction and permeability features. The experiments showed that the permeability in
the filter is independent on lipophilicity and the rate-limiting factor shifts from the
HCE-cells to the filter and matrix, with increasing lipophilicity. The permeability
coefficients of hydrophilic and lipophilic B-blockers in the corneal stroma, ~ (32 — 35) x
10°® cm/s (Huang et al., 1983), were higher than in the coated filters in the present
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study, (23 — 24) x 10°® cnv's. This is in line with the lower permeabilities of lipophilic
drugsinthe HCE-model.

The degree of ionization is the third important factor which affects the corneal
penetration so that unionized drug usually permeates the epithelium more easily than its
ionized form (Ramer and Gasset 1975; Sieg and Robinson 1977; Mitra and Mikkelson
1988; Suhonen et al., 1998). The better permeability of unionized drugs is based on
their higher lipophilicity unless the lipophilicity is very high (Suhonen et al., 1998).
Thus, transcellular permeability increases with increasing fraction of the unionized
drug.

At physiological pH or pH above the pl (3.2) of paracellular protein, the corneal
epithelium is negatively charged and paracellular permeability is selective to positively
charged solutes (Rojanasakul et al., 1992). At pH values below the pl, the reverse order
is observed. It has been shown in previous studies that protonated hydrophilic amines
permeated e.g Caco-2 epithelia cell monolayers faster than their neutral forms (Adson
et al., 1994), whereas hydrophilic peptides at positive net charge permeate Caco-2 cell
monolayers slower than neutral compounds (Pauletti et al., 1997). The levels of
permeability of positively charged PEGs across HCE-model were mainly at a level 2-
fold lower than those of neutral PEGs at the similar molecular weights. Positively
charged PEGs may bind to negatively charged functional groups in the cell membrane
too tightly which may decrease the paracellular permeability of these compounds.
Furthermore, pH might affect uncharged PEGs in water a different pH values.

Any evidence of P-gp activity was not seen in propranol permeability across HCE-
cell layers(11; Table 2), although propranolol (Hamilton et al., 2001) as well astalinolol
(Hilgendorf et a., 2000) are P-gp-substrates.

The permeation studies of new ocular drug candidates have traditionally been
performed using excised rabbit corneas. However, this method does not take into
account the limited contact time of the solution on the ocular surface in vivo or the rate
of drug desorption from the cornea into the receiver solution. Ranta et al. (2003)
determined the absorption and desorption rates of p-blockers in the HCE model. These
data and relevant pre-ocular and intraocular kinetic parameters were incorporated into

ocular pharmacokinetic model to simulate the in vivo situation. The simulated timolol
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concentration profiles in the rabbit aqueous humor were similar, but not identical, with
in vivo studies.

6.3. Esterase activity

The corneal epithelium is known to be metabolically active, which may limit
permeation of many drugs (Lee 1983; Harris et al., 1992), but aso many ophthalmic
drugs are applied as ester prodrugs to achieve a higher bioavailability. However,
determination of esterase activity is rarely used in characterisation of corneal cells.
Previously permeation and metabolism studies by Meyer et al. (2005) indicated that the
HCC-whole cornea model is able to adequately convert hydrocortisone acetate to
hydrocortisone.

Permeability study with an esterase substrate fluorescein diacetate showed that only
fluorescein was found in the basolateral side of the HCE-model. The improvement in
permeability (i.e fluorescein and fluorescein diacetate) in the HCE-model was 49-fold
and in the rabbit cornea 31-fold. These results show that the HCE-model may be
applicable to prodrug studies. However, many types of esterases with different activities
as well as peptidases and proteases exist, and more detailed characterisation of
metabolic activity in HCE-cells has not been determined.

6.4 Genetransfer

Despite poor bioavailability topical delivery isthe most common route of ocular drug
delivery. However, topical application is an ineffective delivery system in the use of
hydrophilic and protein drugs of larger size. Moreover, use of many protein drugs is
limited by their manufacturing cost, chemical and biological instability. Administration
through systemic circulation is also inefficient because of blood-retinal barrier and/or
rapid hepatic metabolism and renal excretion. Furthermore, very high doses of protein
drugs for compensation of low permeability may lead to toxic side effects (Banga
1996).

According to the present study, SEAP protein concentration in eye drops should be

13% to reach steady-state concentration in the agueous humor. Such high concentration
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is impossible for a protein drug. Gene transfer of corneal epithelium may offer an
effective possibility to overcome the tight barrier of corneal epithelium.

Reporter gene- Recombinant alkaline phosphatases are efficiently secreted from
transfected cells. SEAP can be ssimply studied by repeated collection of the culture
medium from the same cultures. SEAP concentration in culture medium is directly
proportional to changes in intracellular SEAP mRNA (Berger et al., 1988). So far, there
are only a few reports about transfection of SEAP-gene into eye cells in vitro
(Maruyama et a., 2001 and 2002; Mannermaa et al., 2005) and none in vivo.
Pharmacokinetic studies of transferred protein expression in the corneal epithelium
using SEAP as a reporter genein vitro and in vivo are not available.

Secretion of reporter gene- Secretion rate of SEAP was 2.6 times greater into
agueous humor than into tear fluid. SEAP found in agueous humor comes from cornea,
but the proportions of SEAP secretion from cornea and conjunctiva into tear fluid are
not known. However, real-time RT-PCR results suggest a greater rate of secretion from
the conjunctiva (111; Fig. 6).

Secretion rate of SEAP to the basolateral side of differentiated HCE-cells was only
2.6-fold greater than the in vivo rate into agqueous humor during the three days after
transfection. Influence of exposure time of DNA complexes on transfection was not
studied, but shorter periods in vitro probably would lead to lower expression levels. The
dataanalysis shows that the differentiated HCE-model secretes transgene product SEAP
approximately at the same rate corneal epithelium does in vivo suggesting that the cell
model gives realistic prediction. Transfection levels decreased with the cell
differentiation (111; Fig. 7): cumulative basolateral secreted SEAP from differentiated
cells in three days was 250 times less than from the dividing HCE-cells demonstrating
the importance of differentiated cell model.

Transfection efficiency- The relative transfection efficacy of different carriers was
dependent on the stage of differentiation. PEI was the most effective gene carrier to
dividing/differentiating cells, but it did not transfect differentiated HCE-cells. The
ability of PEI to transfect dividing cells compared to other carriers like DOTAP/DOPE
has been shown also in some other cells (Ruponen et al., 2001; Mannist6 et al., 2005;
Reinisalo et a., 2006). In differentiated and polarized retinal pigment epithelial cell line
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(RPE), the high cellular uptake of PEI complexes did not lead to transfection
(Mannermaa et al., 2005). DOTAP/DOPE complexes mediated higher transfection in
the differentiated HCE-model than PEI although PElI was more effective in
dividing/differentiating cells. In addition, transferrin-PEIl conjugate was effective in the
transfection of rabbit corneal endothelial cells in vitro but not ex vivo (Nguyen et al.,
2002).

PSs, which are naturally occurring substances found only in sperm, has been shown
to condense pDNA efficiently for delivery into several different types of cells in vitro
by several different types of cationic liposomes (Sorgi et al., 1997). In previous studies,
the transfected gene expression has been shown to be higher with liposomal/PS
complexes than liposome complexes alone (Pleyer et al., 2001; Mannermaa et al.,
2005). However, PS did not improve the efficiency of gene transfer with
DOTAP/DOPE in HCE-model.

Administration- Despite the use of a transfection vector the administration of
transferred genes into cornea has usually been performed by injectionsin vivo (Table 3,
p. 28; Table 4, p. 32). Cornesas have also been transfected ex vivo and then transplanted
in vivo (Larkin et al., 1996; Rayner et al., 2001). Lately the ocular tissues have
successfully transfected via intravenous administration using non-viral vectors with
gene-targeted technology and tissue-specific gene promoters (Zhu et al., 2002; Zhang et
al., 2003). Topical administration is quite rarely used in gene transfer, because of rapid
elimination of eye drops from precorneal area and epithelial tight barrier. In some
studies, the epithelial superficial cells have been scarified before topical administration
of foreign genes. Masuda et al. (1996) and Matsuo et a. (1996) reported that topical
application of liposome eye drops into rat eyes could transfer gene to corneal epithelium
and even to the retinal ganglion cells, but these results have not been supported later by
other studies.

Higher viscosity and longer contact time of eye drops on the cornea may increase
transfection levels (Adler et al., 1971; Patton and Robinson 1976; Chastain 2003), if
formulation technologies can be developed for that purpose. Furthermore, conventional
methods like to decrease the drainage loss by adjusting ingtillation volume and time

interval between drops (Chrai and Robinson 1974), closure of the eyelids (Zimmerman
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et a., 1984) or blocking the nasolacrimal duct (Kaila et al., 1986) may facilitate
complex delivery into the cornea. Transfection efficiency may also be improved by
vector design such as the use of tissue specific, strong or inducible promoters,

replicating plasmids and gene vector targeting to cell surface receptors (Hart et al.,
1998; Borras 2003; Tan et a., 2006).
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7 CONCLUSIONS

In the present study the in vitro cell model of human corneal epithelium (HCE-
model) was developed and characterised for ocular drug studies. The main conclusion is
that the model is a useful and realistic model in corneal permeation and gene transfer

studies. The specific conclusions of the study are the following:

1. The HCE-model resembles intact corneal epithelium with morphologically
identifiable desmosomes, tight junctions, microvilli, and cell layers with apical flat

cells.

2. The passive permeabilities of hydrophilic and lipophilic model compounds across
the HCE-model correlate well with the intact rabbit cornea. The differences in
permeabilities between HCE-model and rabbit cornea were practically less than 2-fold.
Paracellular permeability was dightly higher whereas transcellular permeability lower
than that of excised rabbit cornea. HCE model can be used to predict ocular absorption
of the drugs that permeate through the cornea by passive diffusion. However, the
expression of the active transporters, efflux proteins, metabolic enzymes, surface

proteins and mucins in the differentiated HCE-cells are so far unknown.

3. HCE-model proved to be a promising method to screen chemical gene delivery
vectors. Importance of differentiation is demonstrated both in terms of SEAP secretion
levels and by the rank order of delivery systems. The transgene expression levels
strongly decreased with the increased differentiation of corneal epithelia cell.
Accordingly, it was proved that functional delivery system in vitro in proliferating cells
may not function in vivo. In differentiated cells the rate of SEAP secretion showed

similarity with in vivo results.

4. Prolonged protein secretion into the tear fluid can be obtained by transfecting the

corneal epithelium which serves as secretion platform of protein.
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5. Therapeutic protein can be delivered into the anterior eye chamber by topical
transfection of the corneal epithelium, which then secretes the protein to the basolateral
side and further to the anterior chamber. As such proteins can not penetrate from the

tear side across the corneal epithelium.
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