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ABSTRACT

Interneurons, which primarily contain the neurotransmitter -amino butyric acid
(GABA), make up ~20 % of all cortical neurons. They play a key role in the operation of
neuronal networks by controlling the number of active pyramidal cells, their firing frequency
and discharge timing. Interneurons also play a pivotal role in the generation of network
oscillations. In this study, we assessed interneuron function / dysfunction in four genetically
modified mouse models. Its main focus is to assess with electrophysiological measures
(electroencephalography, event–related potentials) the impact on brain functions of certain
pin-pointed mutations which are associated with neurodegenerative diseases and/or
interneurons.

Electroencephalography (EEG) was used to test general excitation and inhibition
processes in the brain, while event–related potentials (ERPs) were used to test brain activity
ranging from sensory reception to cognitive processes (such as learning and memory). The
data from electrophysiological recordings was compared to behavioral assays (Morris water
maze and automated activity test) and detailed morphological analysis of interneuron
pathology.

Pattern of alternation of EEG and ERP was unique for each tested genotype. In line
with electrophysiological data, interneuron pathology was different between mutant mouse
lines. Developmental or pathological abnormalities caused enhancement or attenuation in
various frequency ranges (delta, theta, beta and gamma). Moreover, cortical and hippocampal
or even subfield (dentate gyrus vs. CA1) specific EEG alternations were found. Besides
intrinsic electrical activity, auditory evoked potentials showed distinctive changes in each
genotype as well.

In conclusion, electrophysiological measures (EEG and ERP) proved to be a very
sensitive tool to detect neuronal network abnormalities. Specificity of this measurement may
be enhanced by increasing the diversity of calculated parameters and the number of recording
sites.

National Library of Medicine Classification: WL 102.5, WL 150, WV 270, QU 60, QY 58, QY 60.R6, WL 314

Medical Subject Headings: Interneurons/pathology; Electrophysiology; Electroencephalography;
Evoked Potentials, Auditory, Brain Stem; Receptors, GABA; Hippocampus; Neurodegenerative
Diseases; Point Mutation; Disease Models, Animal; Mice, Transgenic; Brain Mapping; Sensation;
Cognition; Learning; Memory; Behavior, Animal





The peculiar fascination of the brain lies in the fact that there is probably

no other object of scientific enquiry about which we know at once so much

and yet understand so little.

Gerd Sommerhoff (from Logic of the Living Brain, 1974)
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Beta amyloid
ACh Acetylcholine, neurotransmitter
AD Alzheimer's disease
AEP Auditory evoked potentials
AMPA α-amino-3-hydroxi-5-methylisoxazole-4-propionic acid
APP/PS1 Transgenic mice expressing APPswe and PS1-A264E mutations
BAEP Brainstem (or short-latency) auditory evoked potentials
CA1 The hippocampal Cornu Ammonis subregion 1
CA1Mol Stratum radiatum/lacunosum moleculare of CA1
CA3 The hippocampal Cornu Ammonis subregion 3
CCK Cholecystokinin, neuropeptide
DG Dentate gyrus, part of the hippocampal formation
ECM Extracellular matrix
EEG Electroencephalography
EPSP Excitatory postsynaptic potential
ERP Event–related potential
FFT Fast Fourier transformation
GABA -aminobutyric acid, neurotransmitter
GABAA Ionotropic GABA receptor
GABAB Metabotropic GABA receptor
HIPP Hilar interneurons with axonal arborization in the PP termination zone
ING Interneuron network gamma
IPSP Inhibitory postsynaptic potential
i.p. Intraperitoneal injection
LAEP Long-latency auditory evoked potentials
LTP Long-term potentiation
L-VDCC L-type voltage dependent Ca2+ channel
mAChR Muscarinic acetylcholine receptors
MAEP Mid-latency auditory evoked potentials
mGluR Metabotropic glutamate receptor
mRNA Messenger Ribonucleic Acid
N/A Not available
NMDA N-metyl-D-aspartate
NPY Neuropeptide Y
NREM Non-rapid eye movement, sleep stage
O-LM Stratum oriens / lacunosum moleculare
PING Pyramidal-interneuron network gamma
PP Perforant path, the main input to the hippocampus
PV Parvalbumin, calcium-binding protein
SOM Somatostatin, neuropeptide
ST-/- Mice deficient in the HNK-1 sulfotransferase
TNR-/- Mice deficient in the extracellular matrix glycoprotein tenascin-R
TNC-/- Mice deficient in the extracellular matrix glycoprotein tenascin-C
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1. INTRODUCTION

Normal cortical function is dependent upon the balanced development of two major

neuron types: pyramidal cells and non-pyramidal cells. Non-pyramidal neurons primarily

contain the neurotransmitter -amino butyric acid (GABA) and make up ~20 % of all cortical

neurons. Non-pyramidal neurons also have another name - interneurons. GABAergic

synapses make up only about 5% of the synapses on a pyramidal neuron of the CA1 field.

However, it is commonly agreed that interneurons play a key role in the operation of neuronal

networks. There are number of functions which inhibitory cells provide: i) they control both

the number of active pyramidal cells and their firing frequency by feedforward and feedback

inhibition; ii) they control the timing of principal cell discharge; iii) they play a pivotal role in

the generation of network oscillations.

A balance of interaction between pyramidal neurons and interneurons is very

important for the normal brain function. In the intact brain balanced excitation and inhibition

give rise to brain rhythms. Despite decades of research, the explicit mechanisms of brain

oscillations generation are not fully known. Multiple sources of oscillations are possible in

such a complex system as the brain. First of all, the intrinsic properties of neurons themselves

contribute towards oscillation. Neurons can have frequency preferences due to passive

electrical membrane properties and due to specific expression of voltage-gated channels. This

feature enables them to either oscillate spontaneously, or react to input within a narrow

frequency range. Second, even a simple connection of two neurons (negative feedback) will

create an oscillatory circuit. This simple wiring may be turned to different frequencies by

manipulating the GABAA receptor response. Third, the collective action of neurons with a

pivotal role of interneurons is known to generate network oscillations.

To date, electroencephalography (EEG) remains a cost-effective method to measure

electrical brain activity. This noninvasive recording technique is still the most widespread

method used in clinical and psychological laboratories. Due to its excellent temporal

resolution EEG is suitable for monitoring fast, system level events. Signals measured by EEG

reflect the coordinated activity of neurons, but also glia cells and even blood vessels can

contribute to it. However, in a simplified view extracellular recordings reflects the "average"

activity of large numbers of interacting neurons. EEG can be used to test general excitation

and inhibition processes in the brain, while event–related potentials (ERPs) can be used to test

brain activity ranging from sensory reception to higher cognitive processes (such as learning

and memory). Because of ethical limitations, in most cases human EEG or ERP studies are

non-invasive (scalp recording), while animal experiment may use deep as well as surface

recording. This leads to better understanding of the surface EEG in relation to signals

generated in deep brain structures (such as the hippocampus).

Genetically modified mice, which are an invaluable tool for modern neuroscience,

give also an opportunity to address questions about the role of interneurons or oscillation in
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brain functioning. This PhD project is devoted to four different groups of genetically

manipulated mice, and studies changes in balanced excitation and inhibition processes in the

living brain. Its main focus is to assess with electrophysiological measures (EEG, ERP) how

pin-pointed mutations, which associate with neurodegenerative diseases and/or interneurons,

impact brain functions.
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2. REVIEW OF THE LITERATURE

2.1. INTERNEURON TYPES AND NETWORKS

Normal cortical function is dependent on the balanced development of two major

neuron types: pyramidal cells and non-pyramidal cells. Non-pyramidal neurons primarily

contain the neurotransmitter -amino butyric acid (GABA) and make up 15–30% of all

cortical neurons (Hendry et al., 1987; Meinecke and Peters, 1987; Parnavelas et al., 1977),

while the primarily glutamatergic pyramidal neurons constitute the remainder. Non-pyramidal

neurons also have another name - interneurons. This name carries an important and

descriptive message about the major contribution of these cells in the local networks. The

term interneuron was originally used to describe cells at the interface between input and

output neurons in invertebrates. However, following the development of the concept of

synaptic inhibition (Eccles, 1964), the word ‘interneuron’ progressively conveyed the

unifying principle that inhibitory cells with short axons play an essential role in the regulation

of local circuit excitability, in contrast to (excitatory) principal cells with long axons that

project information to distant brain regions.

2.1.1. Basic structural elements of Network

Interneurons and principal cells can be combined into a few basic configurations

(Fig. 1). In a feedforward inhibitory configuration (Fig. 1A), increased discharge of the

interneuron, as the primary event, results in decreased activity of the principal cell. Such

pairing of excitation and inhibition can increase temporal precision of firing substantially by

narrowing the temporal window of discharge probability. On the other hand, negative

(inhibitory) feedback (Fig. 1B) is a self-regulating mechanism. The effect is to dampen

activity within the stimulated pathway and prevent it from exceeding a certain critical

maximum. In other words, it provides stability for the network. Negative feedback between

excitatory and inhibitory neurons opens the possibility of oscillations. An extension of

feedback inhibition is lateral inhibition (Fig. 1C). This occurs when principal cell recruits an

interneuron to enhance the effect of the active pathway by suppressing the activity of another,

parallel pathway. Virtually any kind of network maybe build based on these principles.
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afferent excitation

A B C
Figure 1. Basic connection principles between interneurons (circles) and principal (triangles) cells.
(A) Feedforward loop. (B) Feedback loop. (C) Lateral inhibition.

2.1.2. Cortex vs. Hippocampus

To date, the many aspects of hippocampal interneurons have been documented more

extensively than those of neocortical interneurons (Freund and Buzsaki, 1996). However, the

data from early Golgi studies, immunocytochemistry and neocortical slices indicate a rich

variety of neocortical interneurons and their similarity to hippocampal interneurons (Somogyi

et al., 1998). Despite similar constructing elements, network connectivity is diverse in

different regions.

The brain is organized hierarchically. Organization at the molecular and cellular

levels gives rise to organization at the structural level (different structures of the brain like the

cerebellum, amygdala, neocortex, etc.). What distinguishes one brain region from another are

the number and types of its neurons and how they are interconnected. It is from the pattern of

interconnections that the distinctiveness of function emerges. Paul MacLean (MacLean,

1990), also advocated by György Buzsáki (Buzsáki, 2006), suggested that three gross levels

of brain organization is about right. At the bottom of hierarchy is the "reptilian brain". He

used the term archipallium as collective name for structures that include the olfactory bulb,

brainstem, mesencephalon, cerebellum and the basal ganglia. On the top of the organization

lies the neopallium, which is equivalent to the thalamoneocortical system. Sandwiched in

between is the paleocortex (comprising the structures of limbic system). From the point of

structural organization, the cerebellum or basal ganglia have small neuronal diversity, are

dominated by local inhibition and are mainly constructed from feedforward inhibitory loops

(Buzsáki, 2006). In contrast, rich variety of neurons and negative feedback connections are

common in the neocortex, which holds the key for understanding its dynamics. Besides

inhibitory feedback and feedforward loops an important constituent is long-range

connections, which provide necessary wire-economy and do not compromise computational

needs (Buzsaki et al., 2004). Like the isocortex, most paleocortical structures are constructed

from pyramidal cells and GABAergic interneurons, although their layer and wiring

organizations vary substantially from the regular isocortical modules.
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Figure 2. Domain-specific innervation of hippocampal interneurons. Camera lucida reconstructions of
three stratum oriens-alveus interneurons showing the domain-specific innervation of pyramidal cells
by their axons. A stratum oriens–lacunosum moleculare cell (O–LM cell) projects its axon (red) to
pyramidal cell distal dendrites of the stratum lacunosum-moleculare. A basket cell soma, located
within stratum oriens, projects its axon (green) to the pyramidal neuron soma and the proximal
dendrites. A bistratified cell sends its axon (yellow/blue) to both basal and apical dendrites in stratum
oriens and radiatum. Far left, a cartoon of a pyramidal cell showing the approximate location of the
basal and apical dendrites, and the cell body. (Figure modified from (Maccaferri et al., 2000)).
Adapted by permission from Macmillan Publishers Ltd: [Nature Reviews Neuroscience] (McBain and
Fisahn, 2001), copyright 2001.

2.1.3. Classification of interneurons

Interneurons represent a broad class of cells meant to multiply the functional

repertoire of principal cells. Multiple interneuron types interact and function within unique

circuits that execute complex functions including learning, memory, emotion, motivation,

perception, motor behaviors etc. The number of interneurons with different properties is still

growing but, to date, there are no commonly agreed classification schemes (Maccaferri and

Lacaille, 2003; McBain and Fisahn, 2001; Mott and Dingledine, 2003). Interneurons are so

diverse that to date there is no single unifying factor for this class of neurons (e.g.

localization, projection, primary neurotransmitter). However, a few descriptors of

interneurons are decisive. One of them is their morphological appearance. The anatomy alone

can provide intuitive insights into cell-type-specific contributions in an active network, by

relating the somatodendritic location to the layer specificity of synaptic input and the axonal

projections to the postsynaptic target domain (Fig 2). Based on the aborization of dendritic

and axonal processes ~20 cell types have been described (e.g. basket cells, axo-axonic or

chandelier cells, oriens-lacunosum moleculare cells etc). Development of new

immunohistochemical tools and their combination with morphological data provide new

possibilities for interneuron classification. It was found that interneurons contain not only -

aminobutyric acid (GABA) but a number of other peptides [e.g. somatostatin, cholecystokinin

(CCK) and substance P] or Ca2+-binding proteins (e.g. calbindin, parvalbumin and calretinin).
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Neurochemical classification adds functional specificity for interneurons as different

neurochemical substances are expressed in interneurons of different geometry (Freund and

Buzsaki, 1996). However, different types of morphologically defined interneurons could co-

exist and overlap in a single neurochemically identified subgroup. Another, and a more

useful, characteristic of interneurons is their physiological properties. Usually interneurons

have faster kinetics (fast-spiking cells) than principal cells. Interneurons operate with high

speed and temporal precision ensured by the expression of specific transmitter receptors and

voltage-gated ion channels (Jonas et al., 2004).

Adding further interneuron specific properties will increase heterogeneity in the class

to an unlimited number. However, based on their performance in a specific task, interneurons

(otherwise with different intrinsic biophysical, morphological and molecular features) may be

grouped into a few distinct groups. For example, in terms of their connectivity with the

principal cells, three major groups of cortical interneurons are recognized: i) interneurons

controlling principal cell output (by perisomatic inhibition), ii) interneurons controlling the

principal cell input (by dendritic inhibition), and iii) long-range interneurons coordinating

interneuron assemblies (Buzsaki et al., 2004). Furthermore, the division of labor between

interneuron classes and proportion in the brain suggest optimization of brain computation

power and wiring/metabolic economy.

2.2. FUNCTIONAL ROLE OF INTERNEURONS

Based on most elaborated classification schemes it may be assumed that the

interneurons have enormous number of functions (as each subclass of interneurons is likely to

have specific function). However, common principles do exist as each feature has an

underlying rationale in the evolutionary design of the brain. Despite the fact that GABAergic

synapses constitute only about 5% of the synapses in the CA1 field (Megias et al., 2001), it is

commonly agreed that interneurons play a key role in the operation of neuronal networks.

There are number of functions which inhibitory cells provide: i) to control both the number of

active pyramidal cells and their firing frequency by feedforward and feedback inhibition; ii) to

control the timing of principal cell discharge; iii) to play a pivotal role in the generation of

network oscillations. Many of these functions depend on ability of interneurons to operate

with high speed and temporal precision, which in turn depends on the expression of distinct

transmitter receptors and voltage-gated ion channels (Jonas et al., 2004).

2.2.1. Control of excitability

Probably one of the most vital functions of interneurons in the brain is to balance

neuronal excitability. As early modeling work shows, a network consisting only of principal

cells is able to generate avalanches of activity, which would likely exhaust or damage the
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brain itself (Buzsáki, 2006). In order to generate harmony in cortical circuits, excitation must

be balanced with an equally effective inhibition. There are two GABAA receptor mediated

effects on the postsynaptic membrane which can effectively cancel action potential generation

in principal cells. First, the activation of GABAA receptors usually hyperpolarizes

postsynaptic neurons by opening anion channels and allowing an influx of chloride ions. A

second event, the importance of which was recognized only recently, is shunting inhibition

(Bartos et al., 2007; Mann and Paulsen, 2007). In contrast to hyperpolarization, shunting

inhibition drives membrane potential towards more positive value but smaller than action

potential firing threshold. However, this depolarization does not drive the principal cell to

fire, as increased synaptic conductance (due to the activation of GABAA receptors) leads to

reduced excitability of the cell. The interneurons with negative feedback control (Fig. 1B)

may achieve both types of inhibition. In case of the simplest partnership, increased activity of

principal cell elevates the interneuron discharge, which in turn decreases or shuts down the

principal cell output. By means of feedback inhibition, the activity of an excitatory pathway is

dampened and never reaches a certain critical value. An extension of this scheme - or special

case of negative feedback - is lateral inhibition (Fig. 1C). Here the principal cell recruits

interneurons in order to suppress activity of surrounding principal cells or pathways.

Therefore, interneurons serve an important function in the information segregation process,

the main mechanism behind David Hubel and Torsten Wiesel observations (Hubel and

Wiesel, 1963). Furthermore, a subset of interneurons acts on distinct subcellular

compartments, allowing them to selectively control the input, integration and output of the

target cells (Gulledge and Stuart, 2003; Miles et al., 1996). For example, a single IPSP

initiated by a single perisomatic inhibitory cell could suppress action potential generation in

the postsynaptic cell (Miles et al., 1996). In contrast, dendritic inhibition can regulate

dendritic integration, back-propagation of sodium spikes and generation of dendritic calcium

spikes (Mann and Paulsen, 2007; Miles et al., 1996).

2.2.2. Control of timing

Even though information segregation is an important constituent of brain function,

there is plenty of evidence that information integration (coherent processing) is also taking

place in the brain. Actually before the 1980s, the main function of a neuron was thought to be

to collect information about inputs (integrate), and send this information in the form of action

potentials to its downstream peers (see in Buzsáki, 2006). The current view endows a neuron

with enormous computational power but the important issue of temporal summation is still

relevant. Besides that, temporal relationship between two cells is the substantial matter in

Hebb's synaptic plasticity rule. More specifically, when a presynaptic spike and a postsynaptic

spike occur within a certain time window, it leads to corresponding plasticity outcomes.

An inhibitory feedforward loop (Fig. 1A) limits the temporal summation of
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excitatory postsynaptic potentials (EPSPs) far below the mean interspike interval of principal

cells, thus making them precise coincidence detectors (Pouille and Scanziani, 2001).

Presumably through somatic inhibition interneurons limit the time window for temporal

summation to ~2 ms. A hypothetical scenario of this process is the following. Action

potentials in a small number of pyramidal neurons produce a monosynaptic EPSP in

neighboring pyramidal neurons, which is rapidly abridged by a disynaptic inhibitory

postsynaptic potential (IPSP). In contrast, elimination of inhibitory control by GABAA

antagonists leads to time windows an order of magnitude greater. Therefore, a manipulation

of the strength of inhibition will change the principal cell operation mode from precise

coincidence detection to integration over a large time window. As a single perisomatic

interneuron targets ~1000 principal cells and could suppress their activation by a single IPSP

(Miles et al., 1996), basket and axo-axonic cells are in excellent position to regulate timed

activity of the hippocampal / cortical network (e.g. synchronize principal cell spiking) (Mann

and Paulsen, 2007).

Besides simply providing generalized inhibition, type-specific firing of interneurons

during network oscillations are also well characterized (Jinno et al., 2007; Klausberger et al.,

2005; Somogyi and Klausberger, 2005; Tukker et al., 2007). The interneurons belonging to

different classes fire preferentially at various specific time points during various oscillations

(e.g. theta, gamma, high frequency bursts). This would suggest an important role of

interneurons in structuring the activity of pyramidal cell discharge. It is also important to

consider specific domains of principal cells (proximal or distant dendrites, soma, axon),

which different classes of interneurons innervate. Ultimately that would lead to a dynamic

spatio-temporal GABAergic control, which is ideally suited to regulate the input integration

of individual pyramidal cells and contribute to the formation of cell assemblies and

representations in the hippocampus (Somogyi and Klausberger, 2005).

2.3. BRAIN NETWORKS OSCILLATIONS

"Balance of opposing forces, such as excitation and inhibition, often gives rise to

rhythmic behavior. Oscillators consisting of only excitatory pyramidal cells also exist, as is

the case when GABAergic receptors are blocked pharmacologically. In such case, the

frequency of hypersynchronous, epileptic oscillations is determined primarily by the intrinsic

biophysical properties of the participating pyramidal cells and the time course of

neurotransmitter replenishment after depletion. Under physiological conditions, oscillations

critically depend on inhibitory interneurons. In fact, providing rhythm-based timing to the

principal cells at multiple time scales is one of most important roles of interneurons." -

(Buzsáki, 2006).
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2.3.1. Most common oscillations

Since early works of Richard Caton, Adolf Beck and Hans Berger (Berger, 1929;

Berger, 1969; Swartz and Goldensohn, 1998), oscillations have been recorded in the brains of

numerous mammalian species. Brain rhythms range from ultra slow (with periods of minutes

or ~0.01 Hz) to ultra fast (reaching 600 Hz). The first classification was introduced in 1974 by

the International Federation of Societies for Electroencephalography and Clinical

Neurophysiology (IFSECN, 1974). However, the list is short and incomplete probably

because of pragmatic clinical considerations. Nowadays, clinical electroencephalograph

(EEG) recording still follows the old tradition and limits the range of recorded frequencies

between 0.5 and 70 Hz (or even more narrow). Despite its limitation, that first classification is

still widely used: delta corresponds to 0.5-4 Hz, theta (4-8 Hz), alpha (8-12 Hz), beta (12-30

Hz), gamma (>30 Hz). However, there is no real frequency border, as the physiology

underlying those rhythms maybe influenced by age, species-specific differences, drugs etc.

Therefore, the most useful brain oscillation taxonomy would be based on distinct

physiological mechanisms involved in particular group of rhythms. Unfortunately, the exact

mechanisms of most brain oscillations are not fully understood. As for today, researches are

using either the old classification (IFSECN, 1974) or a modernized one, based on an

arithmetic progression on the natural logarithmic scale (Penttonen and Buzsáki, 2003). A

more recent classification includes also ultra slow and ultra fast frequencies. Either way, exact

boundaries between distinct frequency bands may never be drawn.

2.3.2. Mechanisms of network oscillations

As it was mentioned above, the explicit mechanisms of brain oscillation generation

are not fully known. The multiple sources of oscillations are possible in such a complex

system as the brain. First of all, intrinsic properties of neurons themselves contribute towards

oscillation. Neurons can have several oscillatory and resonance properties due to specific

expression of voltage-gated channels with opposing properties to depolarize or hyperpolarize

the cell. Second, even a simple system of two interconnected neurons (negative feedback, Fig.

1B) will create an oscillatory circuit. This simple wiring may be tuned to different frequencies

by manipulating GABAA receptor responses (for example, prolongation of GABAergic IPSCs

will reduce the oscillation frequency). Third, collective action of neurons with a pivotal role

of interneurons is known to generate network oscillations. This possibility will be discussed

below in detail, mostly when reviewing theta (4-12 Hz) and beta/gamma (20-80 Hz) rhythms,

and high frequency bursts (150-250 Hz).
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2.3.2.1. Beta/Gamma oscillations

Despite considerable advantages, the mechanisms of gamma oscillations are not fully

understood. Data, which have accumulated mostly from hippocampal studies, suggest that

GABAergic inhibitory transmission has a major role in the generation of gamma rhythms. A

simplified model suggests that two main subtypes of GABA-dependent gamma frequency

network activities can be seen in the hippocampus (Whittington et al., 2000). The first,

interneuron network gamma (ING), is seen transiently in response to brief periods of direct

excitation of populations of interneurons. The second, pyramidal-interneuron network gamma

(PING), is seen persistently and does require phasic synaptic excitation of interneurons via α-

amino-3-hydroxi-5-methylisoxazole-4-propionic acid (AMPA) receptors. The magnitude of

the synaptic inhibition between interneurons governs the frequency of ING. Application of

diazepam (GABAA agonist) to an oscillating brain region increases the amplitude of trains of

IPSPs, which generate ING and produce a concentration-dependent decrease in frequency. In

contrast, a reduction of IPSP amplitude via the GABAA receptor antagonist bicuculline, or a

reduction of GABA release with morphine, increases the frequency of ING. From this, a

prediction can be made that any pharmacological agent or neuromodulator substance that

affects the kinetics of the GABAA response, the amount of GABA released at inhibitory

terminals, or the excitability of interneurons themselves, will affect the rhythmicity and

frequency of gamma oscillations generated by inhibitory neuronal networks. In addition, the

tonic driving force causing the excitation of the interneuron network has to be of sufficient

magnitude. As the driving force decreases from optimal, a decrease in the frequency of the

population oscillation can be seen until the population oscillation is no longer manifest.

However, both the ING and PING models are an oversimplified view as there are

many other factors which influence gamma oscillation in the brain. One of those factors

maybe excitatory neurotransmitters. It is known that hippocampal gamma depends on a

complex interaction between two oscillatory networks. One is driven by the activation of

muscarinic acetylcholine receptors (mAChRs) and the second is driven by the activation of

metabotropic glutamate receptors (mGluRs) (Mann and Paulsen, 2005; Palhalmi et al., 2004;

Whittington et al., 2000). It has been hypothesized that mAChR activation underlies gamma

during theta activity while mGluRs are activated during sharp waves, tetanic stimulation or

other large-amplitude events in the hippocampus in vivo (Mann and Paulsen, 2005;

Whittington et al., 2000).

Another important factor for gamma oscillation generation is the subclass of

interneurons involved. Of the large variety of interneuron subtypes particularly important

ones for gamma oscillation are the perisomatic inhibitory cells (Freund, 2003; Mann and

Paulsen, 2005; Whittington and Traub, 2003). These comprise two types of basket cells: those

containing Ca2+ -binding protein parvalbumin (PV) and those containing cholecystokinin

(CCK). While the assembly of PV-containing cells represents the non-plastic precision
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clockwork, the CCK-containing cell assembly is highly modifiable by local neuromodulators

(which might allow fine turning of oscillation frequency and amplitude) (Freund, 2003;

Klausberger et al., 2005). There are a number of drugs which act differently on PV- and

CCK-basket cells. For example, acetylcholine (ACh) excites the CCK-containing cells via

nicotinic receptors but inhibit GABA release from the PV-containing cells via presynaptic M2

receptors (Freund, 2003). As another example, benzodiazepines achieve anxiolysis via

potentiating inhibition evoked by CCK-containing (GABAA receptors mainly with α2

subunit), but not PV-containing (GABAA receptors mainly with α1 subunit), basket cells

(Freund, 2003). In vitro studies have found that carbachol induced fast oscillation are

enhanced by diazepam (highest affinity to α2 and/or α3 subunit of GABAA) while zolpidem

(highest affinity to α1 subunit of GABAA) suppresses oscillations (Palhalmi et al., 2004;

Shimono et al., 2000). The importance of parvalbumin-positive interneurons for gamma

oscillation has been confirmed by parvalbumin-deficient mice: in hippocampal slice

recordings, these mice exhibit increased power of gamma frequency oscillations (Vreugdenhil

et al., 2003).

Last but not least important factor in gamma rhythm generation is electrical coupling

(gap junction) between neurons (Lamsa and Taira, 2003). Two types of electrical coupling in

the hippocampus influence population oscillations. One between distal dendrites of

interneuron (at the border between the stratum oriens and the alveus; (Fukuda and Kosaka,

2000; Tamas et al., 2000)) and a second between pyramidal cell axons (suggesting that CA1

pyramidal neurons can be coupled through the contact of processes in the stratum oriens;

(Schmitz et al., 2001)). It has been hypothesized that axonal electrical coupling can be used to

generate oscillations, and that dendritic gap junctions can be used to sharpen them (Traub et

al., 2003). This proposal is based on modeling studies and experimental data from connexin36

knockout mice (Hormuzdi et al., 2001; Pais et al., 2003).

2.3.2.2. Theta oscillations

Similar to gamma oscillations, theta oscillations can be distinguished as atropine-

sensitive and atropine-resistant on the basis of pharmacological sensitivity (Kramis et al.,

1975). The muscarinic blockers, such as atropine, eliminate theta oscillations in anesthetized

animals. In contrast, in the awake rat, the amplitude and frequency of theta oscillation do not

change substantially after systemically administered muscarinic blockers. "Classic" theta

model in the hippocampus CA1 region assumes two dipoles (current generators) (Buzsaki,

2002). Rhythmic excitation of distal dendrites by entorhinal afferents is assumed to play the

most important role in the current generation of extracellular field theta. A second dipole in

the CA1 region is assumed to be generated by somatic IPSPs. Cholinergic neurons in the

medial septum and diagonal band of Broca (MS-DBB) provide slow depolarization of their

targets, pyramidal cells in the CA1 str. lacunusom-moleculare and basket interneuron. At the
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same time MS-DBB GABAergic interneurons rhythmically hyperpolarize the basket

interneurons.

It is well established that the receptors involved in atropine-resistant type of theta are

urethane sensitive (Kramis et al., 1975). This type of theta maybe modeled in vitro by co-

application of a mGluR agonist and an AMPA receptor antagonist (Gillies et al., 2002). In

addition, atropine-resistant component of the hippocampal theta is conveyed by layer II and

III entorhinal cortex afferents to the CA1 and CA3/dentate neurons. Although the

pharmacological action of urethane is not well understood, it is known to attenuate glutamate

release from presynaptic vesicles (Moroni et al., 1981 see in Buzsaki, 2002). However, the

theta dipoles mediated by the entorhinal cortex cannot be explained by glutamate activation of

pyramidal and granule cells via fast acting AMPA receptors. As Buzsaki review (2002)

indicates, N-metyl-D-aspartate (NMDA) receptors located on the distal apical dendrites are

important in spontaneous synaptic events and the maintenance of synaptic function.

One of the possible mechanisms responsible for atropine-sensitive theta is

cholinergic modulation of interneurons (Buzsaki, 2002). In this case, tonic cholinergic

excitation of interneurons, coupled with their phasic septal GABAergic inhibition, has been

suggested to be responsible for the rhythmic discharge of hippocampal interneurons (Freund

and Antal, 1988). In support to this view, the remaining theta sinks and sources after a

bilateral lesion of the entorhinal cortex are compatible with perisomatic inhibition. This points

to an important role of basket inteneurons in theta rhythmogenesis (Reich et al., 2005). As

resent findings show, cholecystokinin- and parvalbumin-expressing GABAergic basket cells

have different roles in vivo in urethane anesthetized rats during theta oscillations (Klausberger

et al., 2005). Overall it is agreed that two classes of interneurons are substantial for theta

oscillations: i) basket and chandelier cells with perisomatic target, ii) oriens lacunosum-

moleculare and hilar interneuron with perforant path axon projection, which specifically

innervate the terminal zones of entorhinal afferents (Buzsaki, 2002; Gillies et al., 2002;

Klausberger et al., 2003; Traub et al., 2004). In a reduced model, these two interneuron

classes alone (interconnected in between) are capable of producing a coherent population

theta oscillation (Rotstein et al., 2005). These authors also showed that hyperpolarization-

activated h-current is critical for the synchronization mechanism.

Electrical coupling between neurons seems to as important for theta as for gamma

oscillations (Whittington and Traub, 2003). As pyramidal cell fire rarely (if at all) during

oscillations, the theta  oscillation is blocked by NMDA receptor antagonist and manipulation

of gap junctions has profound effect on the oscillatory activity, it is reasonable to assume that

axonal activity in the pyramidal cell axonal plexus is essential for the those rhythms (Fischer,

2004; Traub et al., 2004). In addition, similar to gamma generators described above, the

recurrent network of CA3 pyramidal cells and possibly hilar mossy cells form an

intrahippocampal theta oscillator (Buzsaki, 2002).

Altogether, it seems that gamma and theta oscillations mechanisms share many
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similarities. Single-cell properties perfectly match circuit features in both principal cells and

interneurons. As a result, the multiple theta/gamma oscillation mechanisms can contribute to

the computational properties of hippocampal-entorhinal neurons in complex ways (Buzsáki,

2006). However, during normal physiological conditions gamma oscillation are transient (or

short lived) while theta is a sustained rhythm (waves occur continuously as long as subject is

engaged in the same behavior; see more in Buzsáki, 2006).

2.3.2.3. High frequency (~200 Hz) oscillations

The third major hippocampal pattern includes a ripple complex (fast field oscillation)

and its associate "sharp wave". Sharp waves are self-organized endogenous hippocampal

events as they occur during waking immobility and sleep. The coordinated discharge of CA3

pyramidal cells depolarizes CA1 pyramidal cells and interneurons, the result of which is a

sharp wave in stratum radiatum and a ripple in the pyramidal cell layer (Ylinen et al., 1995).

One of the major features of sharp-wave-ripple complex is its widespread effect. In the

approximately 100-ms time window of a hippocampal sharp wave, between 50,000 and

100,000 neurons discharge simultaneously in the CA3-CA1–subicular complex–entorhinal

axis, qualifying it as the most synchronous network pattern in the brain (Buzsaki and

Chrobak, 2005). This number represent 5-15 % of the local population, ten time larger than

during theta oscillation (Buzsáki, 2006). Ripple episodes are associated with increased

synchrony of pyramidal cells and several classes of interneurons (Klausberger et al., 2003;

Ylinen et al., 1995). In addition, axo-axonic interaction also has been show to be important

for high-frequency oscillations (Traub et al., 2004). However, the ripple generation is distinct

from the mechanisms involved in gamma oscillations, because the power of ripple band in the

hippocampal frequency spectrum has a weak if any correlation with power in the gamma

frequency band (Buzsaki et al., 2003).

2.3.3. Oscillations and information processing in the brain

The basic unit of information processing in the brain is an action potential. Classical

theories viewed brain as a feedforward model, where information in processed in serial steps.

The hierarchical organization of the brain was well established by 1950s with basic ideas

provided by John Hughlings Jackson already in 1870s (Saper et al., 2000). According to this

view, the cortex is organized hierarchically from primary sensory to association areas. This

'bottom-up' connectivity assumes that neurons at the bottom of hierarchy will respond to

simples feature of the stimulus while upstream neurons will have 'complex view' by merging

representation from 'simple' cells. Ultimately, at the top of hierarchy we would found 'gnostic

units' (or 'cardinal neurons') responsible for most complex brain activity. However, a purely

feedforward hierarchical model cannot be the whole story. Extensive discussion of this issues
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is covered elsewhere (Buzsáki, 2006; Roskies, 1999). Yet in short, the problem outlined by

critics are the following. First, the hierarchical model ignores extensive feedback connections

in the cortex. Second, there is a 'combinatorial explosion' problem (brain will soon run out of

neurons if at least one gnostic cell is required for representation of combination of various

object features). Third, anatomical data do not suggest a bottom or a top of the brain, as

neuronal connections are organized into infinitive number of loops. Fourth, the feedforward

model has limited abilities to compare a newly created representation with knowledge stored

about an object or a feature. Fifth, there is a decision-making problem as it is not clear how

highly convergent sensory input may lead to extensive divergent output.

An important addition to the hierarchical brain model would be the binding by time

solution. The idea of temporal synchrony assumes that functional and anatomical

specialization of the brain is brought together by transient synchronization. The temporal

binding model assumes that neurons which fire together are bind together, or features which

those neurons represent will be bound into a complex representation. Such a temporal

integration mechanism would provide an elegant solution to the binding problem, as

synchrony would selectively tag the responses of neurons that code for the same object, and

demarcate their responses from those neurons activated by other objects (Engel et al., 2001).

This highly exclusive temporal structure would allow the system to set up a precise

representational pattern (an assembly) for each object. Experimental support for this model

was provided almost 20 years ago (Gray and Singer, 1989; Gray et al., 1989). With

synchronization oscillatory activity emerges, as neural assemblies have a transient existence

that spans the time required to accomplish an elementary cognitive act, but their existence is

long enough for neural activity to propagate through the assembly (a propagation that

necessarily involves cycles of reciprocal spike exchanges with transmission delays that last

tens of milliseconds) (Varela et al., 2001).

From a vast range of oscillations gamma band frequencies are particularly suitable

for bringing neuronal population into synchrony. First, a 10-30 ms integration time

corresponding to the gamma oscillation appears optimal for discharging a postsynaptic neuron

(Harris et al., 2003). This is an important issue as the goal of a synchronized neuronal

population is to forward a message to downstream neurons. Second, the same time window is

optimal for synaptic modification, such as long-term potentiation (Magee and Johnston,

1997). In a broader context, gamma oscillation may link the 'binding problem' with synaptic

plasticity. This is because synchronization by gamma not only does perceptual binding but

also stabilizes assemblies representing the current experience.

The complete coverage of information processing in the brain is not possible without

inclusion of the 'top-down' processing mode. In its simplest form, this concept means

reciprocal or feedback anatomical connections from higher order association areas towards

the stimulus perception end (bottom). However, nowadays the 'top-down' concept has much

broader meaning than just an idea of a feedback signal flow (Engel et al., 2001; Varela et al.,
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2001). An equally important component of 'top-down' processing is endogenous brain

activity, which arises from the states of preparation, expectation, emotional context,

familiarity with object and attention. Bottom-up and top-down are just concepts for a large-

scale network that integrates both incoming and endogenous signaling, and from this

interaction emerge synchrony and oscillations. This interaction embraces not only single

sensory modalities but also the cross-talk between different brain areas. Although the role of

gamma oscillation is well established, the interaction during information processing may

occur in different frequency bands, as this brain operation spans on multiple temporal and

spatial scales in the nervous system. It seems that high oscillation frequencies (like gamma)

are more suitable for local cell population synchronization, while low frequencies (like theta)

support long-range coupling (Engel et al., 2001). Moreover, a recent review emphasizes a

different role for gamma and theta oscillation in memory formation (Axmacher et al., 2006).

However, it is the interaction between theta and gamma that leads to complex learning rules

required for realistic formation of declarative memories.

2.4. AUDITORY EVOKED POTENTIALS

Event-related potentials (ERPs) can be obtained by averaging over a large number of

EEG epochs that are time locked to a perceptual, cognitive or motor event. This electrical

activity of the brain changes rapidly over time and has certain spatial distribution. The

magnitude of ERP is typically small in comparison to the amplitude of the ‘background' EEG,

especially in human scalp recordings. Since the 1960s, ERPs have provided important insights

into perceptual, cognitive and motor functions. Due to high temporal resolution and low cost,

ERPs besides EEG remain an essential tool in neuroscience.

2.4.1. Components and latencies

The ERP to auditory (or any other sensory stimulus) may be represented as a series

positive-negative waves, "components" (Fig.3). There is no universally accepted definition of

what constitutes an ERP component (Otten and Rugg, 2005).  Features of the waveform (such

as a negative or a positive deflection) can result from summation of several contributing

sources. In turn, those sources may not reflect functionally homogeneous neural or cognitive

processes. Two extremes of the component definition maybe arbitrary named as

"physiological" and "functional" approaches. The first approach (Naatanen and Picton, 1987),

assumes that the ERP component should be defined by its anatomical source within the brain.

In contrast, the second approach (Donchin, 1981) emphasizes the functional process with

which the components are associated. In practice, ERP components are usually defined with

respect to both their functional significance and their underlying neuronal source(s) (Otten

and Rugg, 2005).
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Figure 3. Auditory evoked potentials (AEPs) consist of a sequence of positive and negative peaks
which can roughly be divided into three time domains: short or brainstem AEPs (BAEP), mid-latency
AEPs (MAEP) and long-latency AEPs (LAEP).

More than thirty years ago, Picton and his colleagues described the principal types of

auditory evoked potentials (AEPs) which can be obtained from the human scalp (Picton et al.,

1974). This classification scheme groups peaks into three time domains: (1) early or short-

latency AEPs which arise within the first 10 ms following the stimulus onset (also now

commonly called brainstem AEP (BAEP)); (2) mid-latency AEPs (MAEPs) which are

generated between 10 and 50 ms; (3) long-latency AEPs (LAEP). With small modifications

the original Picton classification is still widely used nowadays (Shaw, 1995). There is a

common agreement on the source of AEPs. According to the classic theory, each wave is

generated by the sequential activation of successively higher auditory structures. BAEP is

thought to arise principally within the auditory nerve and nuclei of the auditory brainstem

(Shaw, 1995). The MAEP is thought to reflect activity mostly in the subcortical structures

(such as the colliculus and thalamus) and the auditory cortical areas, while the LAEP is

considered to be generated by multiple sources within the auditory cortex and the frontal

association areas (Jaaskelainen et al., 2004; Naatanen et al., 2005; Pantev et al., 1995). This

classic scheme is widely used in clinical practice as it allows linking ERP waveform

abnormalities with particular pathology along the sensory information processing track

(Adams and Victor, 1993; Barry et al., 2003; Dorfman, 1983).
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2.4.2. Phase resetting of brain oscillation as mechanism of ERP generation

With advancement in computer technology, the averaging method introduced by

Dawson introduced in the 1950s became the foundation of a successful experimental program

in cognitive and experimental psychology (Hillyard and Kutas, 1983). The assumption behind

the averaging procedure is that external stimuli produce a small and constant evoked

response, which must be averaged out from much stronger background "noise" EEG. In

human scalp recordings, for a reliable extraction of an evoked response hundreds to thousands

repetitions are needed, while in animal studies (such as small rodents) this number is an order

of magnitude smaller. While the averaging approach is still widely (almost exclusively) used

in clinical practice, new mechanisms of ERP generation have been suggested and have gained

popularity during the last decade (see references in (Sauseng et al., 2007)). The supporters of

the new approach argue that the ERP components are generated by stimulus-induced phase

resetting of ongoing oscillatory activity. Despite huge amount of literature advocating for one

or the other model of ERP generation neither camp is "winning" (Sauseng et al., 2007),

because many of the arguments and methods seem to be unable to dissociate between these

two hypotheses.

2.4.3. Auditory gating paradigm

Sensory ERPs have been widely used to examine basic neuronal activity in both

normal brain function and disease-related impairments. One of the most widely used

stimulation paradigm is so-called Sensory Gating. Normal auditory processing in humans

includes a reduced expression in the mid-latency response to the second of two consecutive

stimuli. Theoretical considerations of brain function have adverted to such short-term

habituation (lasting less than 5 s) as a critical preventive mechanism that protects the limited

short-term-memory systems of the brain from overflow by excessive sensory information

(Broadbent, 1971). Studies in laboratory animals show a similar strong attenuation in the

sensory gating paradigm when recorded from skull surface or in the hippocampus (Bickford-

Wimer et al., 1990). Typically, the amplitude of the second response is dramatically reduced,

with the maximum reduction being observed around a 500 ms interval between the stimulus

pairs (Bickford et al., 1993).

As auditory information reaches hippocampus via two pathways, it is interesting to

note that only the non-lemniscal route conveys sensory gating information. In animal studies,

recordings from the brainstem reticular nucleus, medial septum and hippocampus show

significantly greater gating than the auditory cortex (Bickford et al., 1993; Miller and

Freedman, 1993; Moxon et al., 1999; Vinogradova, 1975). Sensory gating is a complex,

multisynaptic process and the underlying mechanisms are not fully understood. However,

some clues are provided by human as well as animal studies. All those studies point to an
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important role of inhibitory interneurons. A series of experiment in rats demonstrated that the

inhibition of a response at a 500 ms interval occurs due to presynaptic inhibition (Miller and

Freedman, 1995). Furthermore, this inhibitory response must be mediated by GABAB

receptors, because recurrent inhibitory pathways that activate GABAA receptors on

hippocampal pyramidal cells account only for short-term gating of the response to a repeated

stimulus (Hershman et al., 1995). The role of interneurons in sensory gating is further

supported by human studies. In particular, it has long been known that schizophrenic subjects

and some of their relatives demonstrate abnormal sensory gating (Freedman et al., 1996). As a

resent review outlined, "some form of dysfunction in the brain's GABAergic system appears

to be present in the cortex of schizophrenics" (Benes and Berretta, 2001). Even more

straightforward link between abnormal sensory gating and inhibitory interneurons is the

genetic factor. The failure to inhibit the AEP in human subjects has been linked to the α7

nicotinic receptor subunit gene (Freedman et al., 1997). This receptor is expressed in

interneurons while pyramidal cell rarely show nicotinic responses (Jones and Yakel, 1997;

McQuiston and Madison, 1999). Furthermore, the expression of α7 nicotinic receptors is

restricted to certain subtypes of hippocampal interneurons, those containing neuropeptide Y

(NPY), somatostatin (SOM) or cholecystokinin (CCK) (Freedman et al., 1993). In addition,

treatment with nicotine (which is an agonist at the α7 nicotinic receptor) restores auditory

sensory gating in schizophrenic patient and fimbria-fornix lesioned rats (Adler et al., 1993;

Bickford and Wear, 1995; Stevens and Wear, 1997).

2.5. MOUSE MODELS OF INTERNEURON PATHOLOGY

Genetically modified mice are a primary tool in modern neuroscience to study the

specific functional role of certain wild-type and mutated proteins. The possibility to develop

transgenic or knockout mouse models for testing a specific hypothesis is very attractive.

However, usually it is not straightforward to link variable behavioral observations to pin-

pointed changes at the molecular level. Besides behavioral phenotypic characterization of new

mouse strains we need methods to directly assess the brain function (sensory or cognitive).

One possible such approach is electrophysiological measurements. Electroencephalography

(EEG) can be used to test general excitation and inhibition processes in the brain, while

event–related potentials (ERPs) can be used to test brain activity ranging from sensory

reception to higher cognitive processes (such as learning and memory). Because of ethical

limitations, in most cases human EEG or ERP studies are non-invasive (scalp recording),

while animal experiments may use deep as well as surface recording. This helps better

understand the surface EEG regarding signals generated in deep brain structures (such as the

hippocampus).
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2.5.1 Transgenic mice expressing APPswe and PS1-A264E mutations (APP/PS1)

Alzheimer's disease (AD) is the most common neurological disorder in elderly

individuals. Clinically it is characterized by a progressive impairment in cognitive function

along with numerous other symptoms. The pathological hallmarks of AD are beta amyloid

(Aβ) deposits, hyperphosphorylation of microtubules associated protein tau and formation of

neurofibriallary tangles, degeneration of synapses, and loss of neurons (Selkoe, 2001).

Transgenic mice expressing mutated human amyloid precursor protein (APP) and presenilin-1

(PS1) genes mimic certain neuropathological features of AD. These mice have elevated levels

of the highly fibrillogenic amyloid beta1-42 peptide and develop amyloid plaques around the

age of 9 months.

While loss of cholinergic cells and degeneration of cholinergic projection is

hypothesized to play a major role in AD-related cognitive decline (Bartus et al., 1982),

dysfunction or loss of interneurons has also been noted. Specifically, neuronal depletion of

calcium-dependent protein calbindin in the dentate gyrus has been reported in the brains of

AD patients, a mouse model of AD and aging dogs (Palop et al., 2003; Pugliese et al., 2004).

Furthermore, loss of SOM and/or NPY in AD patients is a well-reproduced observation (see

references in Ramos et al., 2006). Degeneration of the dendritic inhibitory interneurons

expressing SOM and NPY has also been reported in a mouse model of AD and aging rats

(Ramos et al., 2006; Vela et al., 2003). Considerable attention is focused on nicotinic

acetylcholine receptors (nAChRs), which are preferentially expressed on the interneurons

rather than the principal cells (Jones and Yakel, 1997; McQuiston and Madison, 1999), and

particularly on the α7 subtype. It has been suggested that Aβ peptide may disrupt α7 receptor

function in AD due to its high-affinity binding and co-localization with α7 receptor in post-

mortem AD tissue (Wang et al., 2000a; Wang et al., 2000b). Whether Aβ binding inhibits or

activates the α7 receptor remains controversial (Dineley et al., 2001; Pettit et al., 2001;

Spencer et al., 2006) but the balance between excitation and inhibition in the brain will be

disturbed.

2.5.2. Tenascins and development of interneuron networks

The architecture of a tissue is determined by recognition mechanisms that involve

not only cell-cell interactions but also interactions between cells and the extracellular matrix

(ECM). An ECM of collagens, proteoglycans and glycoproteins surrounds the glial cells,

neurons and appears in the synaptic terminals. Molecules in the matrix do not only interact

with each other - they also activate signal transduction pathways through diverse cell-surface

receptors. These pathways coordinate cell functions such as proliferation, migration and

differentiation. In the nervous system, they also coordinate synaptogenesis and synaptic

activity (Dityatev and Schachner, 2003). The role of ECM constituents has been extensively
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studied over the past few decades in knockout animal models. We focus on a few animal

models which showed alternation in interneuron network in the brain.

2.5.2.1. Mice deficient in the extracellular matrix glycoprotein tenascin-R

Tenascin-R (TNR, Fig.4a) is an extracellular matrix molecule that has been

implicated in axon growth and guidance (Faissner, 1997), neuronal migration, neuritogenesis

(Bartsch, 1996; Schachner et al., 1994), and myelination (Bartsch et al., 1993; Wintergerst et

al., 1993). It binds to voltage-dependent sodium channels and regulates their conductance

(Srinivasan et al., 1998; Xiao et al., 1999). TNR is an important constituent of perineuronal

nets surrounding some inhibitory interneurons (Bruckner et al., 2000), most notably

parvalbumin-positive interneurons that mediate perisomatic inhibition (Wintergerst et al.,

2001). The distribution of extracellular matrix molecules associated with perineuronal nets is

altered in TNR deficient (TNR-/-) mice (Bruckner et al., 2000; Weber et al., 1999). Previous

in vitro studies indicate that TNR and its associated HNK-1 carbohydrate are involved in the

modulation of perisomatic inhibition and long-term potentiation (LTP) in the CA1 region of

the hippocampus (Saghatelyan et al., 2000; Saghatelyan et al., 2001; Saghatelyan et al., 2003).

TNR-/- mice display reduced perisomatic inhibition and increased basal excitatory synaptic

transmission in synapses formed on CA1 pyramidal neurons, possibly resulting in an impaired

NMDA receptor dependent form of LTP despite normal NMDA receptor-mediated currents.

In behavioral studies, TNR-/- mice display deficits in motor coordination, hypoexploration,

and increased anxiety (Freitag et al., 2003). The number and density of parvalbumin-positive

interneurons (basket and chandelier cells) that account for the perisomatic inhibition are

apparently normal in TNR-/- mice (Saghatelyan et al., 2001). However, the number of

terminals forming symmetric synapses on the CA1 pyramidal cell somata in TNR-/- mice are

reduced by 30–40% compared with their wild-type (WT) controls (Nikonenko et al., 2003).

One proposed model for the lack of perisomatic inhibition in TNR-/- mice is the relief of

GABAB receptors from their inhibition by the HNK-1 carbohydrate, the level of which is

reduced in TNR-/- mice. Sustained activation of GABAB receptors may result in elevated

levels of extracellular K+, which in turn can inhibit evoked GABA release and GABAA

receptor-mediated inhibition (Fig.4d) (Saghatelyan et al., 2003). However, the mechanisms

underlying reduced perisomatic inhibition remain to be elucidated.

2.5.2.2. Mice deficient in the HNK-1 sulfotransferase

The HNK-1 carbohydrate (Fig.4b) (a structure containing a 3 -sulfated glucuronic

acid and first discovered on human natural killer cells; hence the name) is carried by many

recognition molecules (Kruse et al., 1984), including immunoglobulin (Ig) superfamily

members  such as the neural cell adhesion molecule (NCAM) (Kruse et al., 1984), P0 (Voshol
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et al., 1996), L1 (Faissner, 1987) and F3/F11/contactin (Gennarini et al., 1990), as well as

integrins (Pesheva et al., 1987), proteoglycans (Gowda et al., 1989; Xiao et al., 1997) and the

ECM glycoproteins tenascin-C and tenascin-R (Kruse et al., 1985). The HNK-1 carbohydrate

and its carrier molecules play functionally important roles in neural development, neurite

outgrowth, synaptic plasticity, and mediate neuronal cell adhesion (for review, see (Dityatev

and Schachner, 2003; Kleene and Schachner, 2004). More recent studies have shown  that

mice deficient in HNK-1 synthesis due to genetic ablation of the HNK-1 sulfotransferase or a

glucuronyltransferase are abnormal in hippocampus-dependent spatial learning and have

reduced LTP in area CA1 of the hippocampus (Senn et al., 2002; Yamamoto et al., 2002).

Despite the temporally and spatially broad expression of the HNK-1 carbohydrate moiety in

many neural and non-neural tissues, mice  deficient in HNK-1 sulfotransferase (ST-/- mice;

HNK-1 sulfotransferase (ST) is the enzyme that is responsible for transferring the sulfate

residue to the terminal glucuronic acid of the HNK-1 core carbohydrate (Schmitz et al.,

1994)) appear to develop and behave overall normally (Senn et al., 2002). In particular,

analyses of the brain, spinal cord, retina and femoral nerve of ST-/- mice have not revealed

abnormalities either at the macroscopic or at the microscopic level. Pertinent to a putative role

of HNK-1 in brain electrical activity is the observation that somata and perisomatic synapses

of interneurons in wild-type animals are embedded in an HNK-1 carbohydrate-rich

extracellular matrix, the perineuronal nets (Ren et al., 1994; Weber et al., 1999; Yamamoto et

al., 1988).

Earlier in vitro studies have suggested an important role of the HNK-1 carbohydrate

and its most prominent carrier, the ECM glycoprotein TNR, in the regulation of inhibitory

transmission. Application of monoclonal HNK-1 antibodies to hippocampal slices leads to a

decrease in the GABAA receptor-mediated perisomatic inhibitory postsynaptic currents in

CA1 pyramidal neurons of wild-type mice, but has no effect in mice deficient in the HNK-1

carrying glycoprotein tenascin-R (Saghatelyan et al., 2000). Similarly, amplitudes of unitary

perisomatic inhibitory currents in CA1 pyramidal neurons are smaller, whereas basal

excitatory synaptic transmision is elevated in the CA1 region in tenascin-R deficient mice

(TNR-/-) (Saghatelyan et al., 2001). More recently, we have demonstrated alterations in

neural network oscillations and increased amplitudes of evoked potentials in vivo in both the

hippocampus and the cerebral cortex of TNR-/- mice (Gurevicius et al., 2004).

Previous studies showed that the HNK-1 epitope binds to the GABAB receptor, and

tenascin-R is most likely a major carrier of HNK-1 in the mouse hippocampus (Fig.4c)

(Dityatev and Schachner, 2003). It has been proposed that reduced perisomatic inhibition in

TNR-/- mice results from diminished HNK-1-dependent GABAB receptor inhibition

(Saghatelyan et al., 2003).  Sustained activation of GABAB receptors may result in elevated

levels of extracellular K+, which in turn can inhibit evoked GABA release and GABAA

receptor-mediated inhibition (Fig.4d) (Saghatelyan et al., 2003). In support of the first

mechanism, mice deficient in expression of the HNK-1 sulfotransferase (ST) show moderate
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increase in basal transmission in the CA1 region of the hippocampus in vitro (Senn et al.,

2002).

Figure 4. Regulation of perisomatic inhibition in the CA1 region of the hippocampus by glycoprotein
tenascin-R and its associated HNK-1 carbohydrate.   a | Domain structure of tenascin-R. EGF,
epidermal growth factor; R1, alternatively spliced exon. b | Chemical structure of an HNK-1-
carbohydrate-carrying glycolipid. c | Hypothetical mechanism by which TN-R and associated HNK-1
regulate perisomatic inhibition. d | Genetic ablation of TN-R or application of monoclonal antibody
(Ab) directed against the HNK-1 carbohydrate neutralizes the inhibition of postsynaptic GABABRs by
the HNK-1 carbohydrate. GIRK, G-protein-coupled inwardly rectifying K+ channel. Adapted by
permission from Macmillan Publishers Ltd: [Nature Reviews Neuroscience] (Dityatev and Schachner,
2003), copyright 2003.

2.5.2.3. Mice deficient in the extracellular matrix glycoprotein tenascin-C

Tenascin-C (TNC), an extracellular matrix molecule of the tenascin family of

glycoproteins, is abundantly expressed in neural and non-neural tissues during normal

development, repair processes in the adult organism and tumorigenesis (Bartsch, 1996;

Faissner and Schachner, 1995; Jones and Jones, 2000). Despite the functional importance of

TNC, the gross morphology of the central nervous system and the histological appearance of
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the neocortex and hippocampus are not detectably affected in TNC deficient (TNC-/-) mice

(Evers et al., 2002; Saga et al., 1992). However, stereological analyses have revealed

abnormal cellular composition of the neocortex of TNC-/- mice indicating that TNC

expression is essential for normal cortical development (Irintchev et al., 2005). It has been

suggested that the observed structural aberrations, in particular the reduced ratio of inhibitory

to excitatory neurons, may underlie functional deficits such as enhanced cortical responses to

somatosensory stimuli in anaesthetized TNC-/- mice.

Nowadays, the connection between TNC expression and synaptic plasticity is well

established. The first study of this kind found that TNC was upregulated in the hippocampus,

both at the mRNA and protein levels, within hours after stimulation of synaptic activity

(Nakic et al., 1998). Later studies in TNC deficient mice showed a reduction of CA1 LTP

after stimulation of Schaffer collaterals, whereas CA1 long-term depression was completely

abolished (Evers et al., 2002). Furthermore, recording of LTP in the presence of nifedipine, an

antagonist of L-type voltage dependent Ca2+ channels (L-VDCC), show no effect on TNC

deficient mice, but reduced LTP in wild-type mice to the levels seen in the mutant. These

findings imply a link between L-VDCCs and TNC in the regulation of synaptic plasticity (for

resent review see Dityatev and Schachner, 2006).
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3. AIMS OF THE STUDY

The first aim of this project was to develop new tools for the analysis of EEG and

event-related potentials (ERP) in mice, which has been studied little so far. The second aim

was to validate certain EEG and ERP changes as a measure of the imbalance in the excitation

and inhibition processes in the brain. Eventually our aim was to make a direct connection

between known manipulation at the molecular level and the electrical signaling of the brain at

the systems level. These results will provide the research community with desperately needed

new tools to directly assess functional consequences of molecular level changes in the brain.
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4. MATERIAL AND METHODS

4.1. ANIMALS

4.1.1. Transgenic mice expressing APPswe and PS1-A264E mutations (APP/PS1)

These experiments were conducted using male APP and PS1 single- and APP/PS1

double-mutant mice. Founders for the mouse lines harboring human PS1 A246E mutation or

chimeric mouse/human APP695 mutations (K595N and M596L) were generated by

Dr. D. Borchelt at Johns Hopkins University (Baltimore, MD, USA). The mice were of hybrid

origin (C57BL/6J×C3H) but were back-crossed to C57BL/6J for six generations. The double-

mutant mice were produced through mating between single-mutant transgenic mice of each

line. The numbers of animals used in the study were as follows: Experiment 1, APP/PS1

(n=20) and their negative littermates NT (n=21); Experiment 2, APP/PS1 (n=10), NT (n=10),

APP (n=8) and PS1 (n=10). The mice were bred in the National Laboratory Animal Center,

Kuopio, Finland. The mice were housed individually after the surgery in controlled

environmental conditions (21±1°C, humidity at 50±10%, light period 07:00–19:00). Food and

water were available ad libitum.

4.1.2. Mice deficient in the extracellular matrix glycoprotein tenascin-R (TNR)

Male TNR deficient (Weber et al., 1999)  (TNR , n = 8, weight 37.9 ± 1.5 g) and

age-matched wild type littermates (WT, n = 7, weight 34.0 ± 1.1 g) from heterozygous

breeding pairs (mixed C57BL/6J × 129Ola background, two backcrosses into C57BL/6J)

were reared in groups of 4–6 until 4 months of age and individually thereafter in a controlled

environment (temperature +21°C, lights on from 7:00 to 19:00 h, water and food available ad

libitum). The genotypes of mice from the heterozygous breedings were determined by PCR

analysis as described earlier (Weber et al., 1999). The mice were bred at the Zentrum für

Molekulare Neurobiologie (University of Hamburg, Germany) and shipped to the Department

of Neuroscience and Neurology (University of Kuopio, Finland) at the age of 6 months.

4.1.3. Mice deficient in the HNK-1 sulfotransferase (ST)

Male mice deficient in the HNK-1 sulfotransferase (ST) (ST , n = 9, mean weight

35.7 ± 1.0 g SEM) and age-matched wild-type littermates (ST+/+, n = 10, mean weight 35.7 ±

2.0 g) from heterozygous breeding pairs were used in these experiments. The ST  mice

were originally C57BL/6J × 129SvJ hybrids, but were backcrossed to the C57BL/6J

background for 8 generations. The mice were reared in groups of 4–6 until 4 months of age

and individually thereafter in a controlled environment (temperature + 21°C, light period 7:00
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- 19:00, water and food available ad libitum). The genotypes of offspring were identified by

multiplex PCR analysis as described earlier (Senn et al., 2002). The mice were bred at the

Zentrum für Molekulare Neurobiologie (University of Hamburg, Germany) and shipped to the

Department of Neuroscience and Neurology (University of Kuopio, Finland) at the age of 4

months.

4.1.4. Mice deficient in the extracellular matrix glycoprotein tenascin-C (TNC)

Male TNC deficient (Evers et al., 2002; had one backcross) (TNC-/-, n=9, weight

mean 34.2 ± 0.8 g)  and age-matched wild type littermates (WT, n=9, weight 34.2 ± 0.9 g)

from heterozygous breeding pairs (mixed C57BL/6J x 129SvJ background, five backcrosses

into C57BL/6J) were reared in groups of 4-6 until 4 months of age and individually thereafter

in a controlled environment (temperature +21°C, light period 7:00 - 19:00, water and food

available ad libitum). The genotypes of mice from the heterozygous breedings were

determined by PCR analysis as described earlier (Evers et al., 2002). The mice were bred at

the Zentrum für Molekulare Neurobiologie (University of Hamburg, Germany) and shipped to

the Department of Neuroscience and Neurology (University of Kuopio, Finland) at the age of

4 months.

4.2. ELECTROPHYSIOLOGICAL RECORDINGS

4.2.1. Surgery

At 5–11 months of age, the mice were chronically implanted with a bundle of two-

three recording electrodes (stainless steel wire of 50- m / 100- m diameter) in the

hippocampus at the following stereotaxic coordinates: AP  2.2 mm (from the bregma), ML

1.6 mm (from the midline), DV 1.5-1.7 mm (from the dura mater surface) with a vertical

separation of the tips of 0.5 / 0.3 mm). In addition, a cortical screw electrode was fixed on the

occipital bone at A  0.8 mm and ML - 1.5 mm (from the lambda), and two frontal screws

served as the indifferent and ground electrodes. The mice were anesthetized with a mixture of

pentobarbital and chloralhydrate (30-50 mg/kg, i.p.), and, for post-operative analgesia, they

received 0.1 mg/kg of buprenorphine (Temgesic©, Reckitt & Colman, Hull, UK) (s.c.) or 5

mg/kg of carprofen (Rimadyl®, Vericore, Dundee, UK) (i.p.) immediately after surgery, and

in some cases if needed in the drinking water (carprofen) during two post-operative days.

Recordings started after 2-3 weeks of recovery period. The experiments were conducted

according to the Council of Europe (Directive 86/609) and approved by the State Provincial

Office of Eastern Finland.
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4.2.2. EEG / AEP data acquisition

The mouse was placed into a 20 cm x 35 cm wide and 15 cm high plastic box. The

EEG was recorded for 3 min during constant movement (free exploratory behavior). Another

3 min time period was recorded during light non-REM (NREM) sleep (not for APP/PS1

mice). This state, which was reached after the animal had remained in the box for 30-100

minutes, was recognized by behavioral immobility, reduced EEG power and/or by 200 Hz

ripples in the hippocampal channels. Either four (in three last projects) different channels

were recorded (the three hippocampal and the occipital cortical screw electrodes were

compared to the reference and ground screws). Or two (in APP/PS1 projects) different

channels were recorded (cortical AEP was recorded between the posterior and frontal cortical

screw electrodes, and the hippocampal AEP was recorded between the long and short

intrahippocampal electrodes; the frontal screw also served as the ground electrode). The

signal was analog filtered for frequencies between 1 and 1000 Hz (or 0.1-100 Hz), amplified

(x 1000 - 9000), digitized at 2 kHz per channel and processed with fast Fourier transformation

(FFT). AEPs were evoked using a pair of clicks (duration 10 ms, 70 dB, 500 ms between the

pairs, inter-stimulus interval 10 s).  During AEP recordings the mouse stood still in a narrow

space between two vertical metal plates. The mouse was continuously observed and all

records from the mouse while moving were excluded from further analysis. A total of 30

responses were sampled and averaged. The signal was analog filtered for frequencies between

the 1 and 300 (or 500) Hz, amplified (x 1000 - 9000), and digitized at 2 kHz per channel for

further processing. Experiment were conducted with the aid of either Experimenter’s

WorkBench or SciWorks-Experimenter computer program (both DataWave Technologies,

Longmont, CO, USA)

At the end of the experiment, the mouse was killed by cervical dislocation, and the

sites of the electrode tips were marked by passing a 30 A anodal current for 5 s through each

hippocampal electrode. Subsequently, the brains were immersion fixed overnight with 4%

formalin and sectioned at 30 m with a freezing microtome. The sites of the electrolytic

lesions were verified in coverslipped sections stained with cresyl violet.

4.2.3. Electrophysiological data analysis

Offline analysis, including FFT and frequency band filtering, were conducted using

MATLAB® (Mathworks, Natick, MA, USA) or Experimenter’s WorkBench (DataWave

Technologies, Longmont, CO, USA) computer program. Waveform or FFT spectrum

averaging and AEP peak detection were conducted by custom made routines in Visual Basic

under Microsoft Excel®.

Cortical EEG analysis was based on FFT. The FFT spectrum between 1-20 Hz was

averaged to 2 Hz bins and if applicable, the upper frequency ranges (20-100 Hz) were
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averaged to 10 Hz bins. The group differences were compared bin by bin using Student’s t-

test. The hippocampal EEG analysis was based on previously identified main oscillatory

components, the theta (4-12 Hz) (Kramis et al., 1975), gamma (30-80 Hz) (Bragin et al.,

1995; Wang and Buzsaki, 1996), and high-frequency ripples (180-200 Hz) (Ylinen et al.,

1995). The theta peak was defined as the highest power between 5 and 12 Hz. The frequency

of the maximum power was also determined. The gamma power was calculated en block

between 30 Hz and 80 Hz. For the detection of high-frequency ripples, the signal was first

filtered with Symlets wavelet (approximately in the range 128 to 256 Hz; adapted from

“Uvi_Wave” toolbox for MATLAB). The ripples were defined as events with at least three

consecutive cycles crossing the threshold of the mean variance of the baseline amplitude for

the original signal. As ripples are never detected during movement, we used their appearance

in the EEG recording as an objective measure for time periods of alert immobility or sleep.

The theta and gamma rhythms were analyzed from the all hippocampal electrode

(fissure/outer molecular layer), while the ripples were analyzed from the electrode closest to

the pyramidal cell layer.

The AEP in the mouse typically had three middle-latency components P20, N30, P40

(in the hippocampus) and P50 (in the cortex) (for details see publications III-V). The

amplitude of these components was calculated as a deviation from the baseline as follows:

first, the baseline was calculated for each mouse from the averaged response between 0 and

100 ms before stimulus onset. Second, the amplitude of each peak was calculated as distance

between the baseline and the absolute maximum. When calculating habituation of the AEP

(auditory gating), we focused on the middle-latency components only, and further used two

parameters as described previously (Bickford-Wimer et al., 1990). One parameter was the

amplitude difference between the P20 and N30 peaks, and the other parameter,

correspondingly, the amplitude difference between the P40 (or P50) and N30 peaks. Also

single peak amplitudes were compared. Paired pulse ratio of the AEPs was calculated by

dividing the response amplitude to the second stimulus (A2, test stimulus) by the response

amplitude to the first stimulus (A1, conditioning stimulus), and was converted into % by

multiplying the values by 100.

4.3. BEHAVIORAL TESTING

4.3.1. Automated activity test

 TruScan (Coulbourn Instruments, Allentown, PA, USA) automated activity monitor

based on infrared photo detection was used for monitoring exploratory activity. The system

consists of a transparent observation cage (26 x 26 x 39 cm) and two rings of photo detectors

enabling separate monitoring of horizontal (XY-movement over time) and vertical activity

(rearing). Activity was measured for 10 min first day and 10 min after 48 hours.
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4.3.2. Water maze

The Morris water maze was used to measure spatial learning and memory. The

apparatus was a black plastic pool with a diameter of 120 cm. A black escape platform

(square, 14 x 14 cm) was located 1.0 cm below (hidden) the water surface. The temperature of

the water was kept constant throughout the experiment (20 ± 0.5°C), and a 10-min recovery

period was allowed between the training trials. First, the mice were pre-trained to find and

climb onto the platform for 2 days by using an alley (1 m x 14 cm x 25 cm) leading to the

platform located 1 cm below the water. The training consisted of 4 consecutive days of

testing, with 5 trials per day. If the mouse failed to find the escape platform within the

maximum time (60 s), the animal was placed on the platform for 10 s by the experimenter.

During the first 3 days of testing, the mice were trained with a hidden platform. The platform

location was kept constant, and the starting position varied between four constant locations at

the pool rim. The mouse was placed in the water with their nose pointing toward the wall at

one of the starting points in a random manner. On the last trial (5th) of the 4th day, the platform

was removed, and the mouse was allowed to swim for 60 s to determine its search bias.

Timing of the latency to find the submerged platform was started and ended by the

experimenter. A computer connected to an image analyzer (HVS Image, Hampton, UK)

monitored the swim pattern. During the water maze training, we measured swimming speed

and latency to find the platform. The wall-swimming tendency (thigmotaxis) was assessed by

dividing the pool into three concentric zones of equal surface area (wall zone, platform zone

and center) and calculating the time spent in the wall zone. Search bias during the probe trial

was measured by dividing the pool area into four quadrants and calculating the time in each

quadrant, as well as considering time spent in each zone.

4.4. MORPHOLOGICAL ANALYSES

Morphological analyses were done by collaborators from Hamburg, Germany.

Tissue preparation and immunohistochemistry were performed as described

(Irintchev et al., 2005). The mice were anaesthetized with sodium pentobarbital (Narcoren®,

Merial, Hallbermoos, Germany, 5 µl g-1 body weight, i.p.) and fixed by transcardial perfusion

with 4% formaldehyde and 0.1% CaCl2 in 0.1 M cacodylate buffer, pH 7.3. The brains were

post-fixed overnight (4°C) in the same fixative supplemented with 15% sucrose and then

immersed in 15% sucrose solution in cacodylate buffer for an additional day at 4°C. The

brains were frozen in 2-methyl-butane (isopentane) pre-cooled to -30°C. Serial coronal

sections of 25 µm thickness were cut in a caudal-to-rostral direction on a cryostat (Leica

CM3050, Leica Instruments, Nußloch, Germany). Sections from 1 mm tissue thickness were

collected on a series of 10 SuperFrost®Plus glass slides (Roth, Karlsruhe, Germany) so that 4
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sections 250 µm apart were present on each slide. Prior to the immunofluorescence staining,

antigen retrieval using 0.01 M sodium citrate solution (pH 9.0) was done in a water bath

(80°C, 30 min). Blocking of non-specific binding sites was performed for 1 hour at RT using

phosphate-buffered saline (PBS, pH 7.3) containing 0.2% Triton X-100, 0.02% sodium azide

and 5% normal goat serum. Incubation with mouse anti-parvalbumin (PV, clone PARV-19,

Sigma, Taufkirchen, Germany, 1:1000) or rabbit anti-S-100 (DakoCytomation, Hamburg,

Germany, 1:500) in PBS containing 0.5% lambda-carrageenan (Sigma) and 0.02% sodium

azide, was carried out at 4°C for 3 days. After wash in PBS (3 x 15 min at RT), goat anti-

mouse or anti-rabbit antibody conjugated with Cy3 (Jackson ImmunoResearch Laboratories,

Dianova, Hamburg, Germany) diluted 1:200 in PBS-carrageenan solution was applied for 2

hours at RT. Finally, cell nuclei were stained for 10 min at RT with bis-benzimide solution

(Hoechst 33258 dye, 5 µg ml-1 in PBS, Sigma) and sections were mounted under coverslips

with Fluoromount G (Southern Biotechnology Associates, Biozol, Eching, Germany). For

analysis of GABAergic terminals, double immunostaining for PV and vesicular GABA

transporter (VGAT)  was performed by mixing the primary antibody against PV with a rabbit

polyclonal antibody against VGAT (Synaptic Systems, Göttingen, Germany, 1:1000) and

using a Cy3-conjugated anti-mouse and a Cy2-labeled anti-rabbit secondary antibody pre-

absorbed with rabbit and mouse serum proteins, respectively (multiple-labelling grade

antibodies, Jackson ImmunoResearch).

Numerical densities (number per unit volume) of parvalbumin-positive (PV+) cells

were estimated using the optical dissector method on an Axioskop microscope (Zeiss,

Oberkochen, Germany) equipped with a motorized stage and Neurolucida software-controlled

computer system (MicroBrightField Europe, Magdeburg, Germany) as described (Irintchev et

al., 2005; Nikonenko et al., 2006). The volume of the dorsal hippocampus and its subdivisions

were estimated using spaced-serial sections (250 µm interval) and the Cavalieri principle

(Nikonenko et al., 2006). The borders of the hippocampal regions were outlined on the basis

of the nuclear staining pattern (Plan-Neofluar® 10x/0.3 objective). Border definitions were

those shown in the mouse brain atlas (Franklin and Paxinos, 1997). The small CA2 subfield

was added to the CA3 area and the border between CA3 and the dentate gyrus, not shown in

the atlas, was defined by straight lines connecting the lateral end of the hippocampal fissure

and the lateral tips of the granular layer. The numerical density of PV+ and S-100+ cells was

estimated by counting nuclei of labeled cells within systematically randomly spaced optical

dissectors. The parameters for this analysis were: guard space depth 2 µm, base and height of

the dissector 3600 µm2 and 10 µm, respectively, distance between the optical dissectors 60

µm, objective 40x Plan-Neofluar® 40x/0.75. The same parameters were used for the counting

of nuclei in the pyramidal layer except for the base of the dissector which was 625 µm2 and

the space between dissectors (25 µm). Nuclei of glial cells in the pyramidal layer were easily

recognized and were not counted. Left and right hippocampal areas were evaluated in 4

sections each. Left and right hippocampal areas were evaluated in 4 sections each. Total cell
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numbers were calculated by multiplying cell densities by volume estimates. All results shown

are averaged bilateral values.

Estimation of perisomatic puncta and area of pyramidal cell bodies was performed as

described (Nikonenko et al., 2006). Stacks of images of 1 µm thickness were obtained from

sections double-stained for PV and VGAT on a LSM 510 confocal microscope (Zeiss) using

63x oil immersion objective and 1024 x 1024 pixel digital resolution. One merged image (red

and green channel) per cell at the level of the largest cell body cross-sectional area was used

to measure soma perimeter and area and to count individually discernible perisomatic puncta.

Numbers of PV+VGAT+ and PV-VGAT+ puncta, were normalized to the perimeter of the

cell profile. These measurements were performed using with UTHSCSA ImageTool 2.0

software (University of Texas, San Antonio, TX, USA, http://ddsdx.uthscsa.edu/dig/).

Morphological analyses were performed on coded preparations by one observer. Two-sided t

test was used to compare mean group values with a threshold level for acceptance of

significance of 5%.
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5. RESULTS

5.1. ELECTROPHYSIOLOGICAL FINDINGS

Summary of the results for all studies is provided in Table1. Below are details of

findings for each mouse model tested.

Table 1. Electrophysiological finding summary for all mice model.

Parameters to compare
APP/PS1

mice1,2 TNR-/- mice3 ST -/-  mice4 TNC-/- mice5

Power of cortical EEG θ ↓ → →

Power of cortical EEG β/γ → → only β → →

Changes in 200 Hz ripples N/A no no no

Power of hippocampal γ → → ↓ →

Power of hippocampal β → → →

Power of hippocampal θ →
Frequency of hippocampal θ ↓

Laminar specific

hippocampal EEG change
N/A no no yes

AEP amplitude →

Paired pulse ratio of the

AEP

→ →

Latency shift of AEP

components

→ (ctx) no ↓ (hipp) no

1 data from Wang et al., 2002 (study I)
2 data from Wang et al., 2003 (study II)
3 data from Gurevicius et al., 2004 (study III)
4 data from Gurevicius et al., 2007 (study IV)
5 data from Gurevicius et al. (study V)
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5.1.1. Transgenic APP/PS1 mice

Independent of the age of animals, the cortical EEG in the APP/PS1 mice during

waking immobility tended to have a lower power than in NT mice around the theta peak but a

increased power over two wide frequency bands ranging from 12 to 23 Hz and 28 to 40 Hz

(Fig.1A and Fig.2 in Publication I). The hippocampal EEG during waking immobility showed

a different pattern. The total power over 1–40 Hz was significantly higher in APP/PS1 mice

(Fig.1B in Publication I). However, neither theta peak amplitude nor frequency was different

between groups. An additional experiment with both double and single mutant mice clearly

suggests that the observed EEG changes are linked with the APPswe genotype (Fig.5 in

Publication I).

In the cortical recording, auditory gating was weaker in APP/PS1 mice than in NT

mice (Fig.2A in Publication II). Also the cortical N35 latency to the first (conditioning)

stimulus tended to be longer in APP/PS1 than in NT mice (p = 0.06) (Fig.2C in Publication

II). In contrast, the latencies to the subcortical (most likely inferior collicular) N8 peak did not

differ between the genotypes (Fig.3C in Publication II). In addition, the hippocampal

recording revealed weaker auditory gating in APP/PS1 mice (Fig.2B in Publication II). In a

control experiment with both double- and single-mutant mice, we were able to associate

impaired auditory gating with the APP/PS1 genotype, whereas prolonged latency of the N35

response was associated with the presence of the APPswe transgene (Fig.3 in Publication II).

5.1.2. Knockout TNR-/- mice

The characteristic oscillation of hippocampal EEG were tested: high-frequency

ripple, gamma/beta and theta. The high-frequency ripple oscillations during immobility were

present in both TNR-/- and WT mice, and did not differ in shape or frequency between the

genotypes. The mean power of the gamma range (30–80 Hz) was increased by almost 100%

in TNR-/- mice compared with their WT controls (Fig.2D and Fig.3 in Publication III). The

peak theta power during movement was almost identical in the two groups, but the frequency

of the theta peak was lower in TNR-/- mice (8.07 ± 0.18 Hz) than in WT mice (9.04 ± 0.22

Hz) (Fig.2C and Fig.4 in Publication III). The peak looks much sharper in TNR-/- mice, but

this is not due to different variability of peak frequency. The theta peak was much more

blunted during waking immobility, and neither the maximum theta power nor its frequency

differed between the groups. For cortical EEG we focused on waking immobility state to

avoid possible contamination by volume conduction from the dominating hippocampal theta

rhythm during movement. In general, the cortical EEG power during waking immobility was

higher in TNR-/- animals than in their control littermates (Fig.5 and Fig.6 in Publication III).

The amplitudes of all measured cortical AEP components (except for the P50

response to the conditioning tone) were significantly higher in TNR-/- mice than in WT mice
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(Fig.7A, B in Publication III). In the hippocampal recordings, only the early components P20

and N30 had higher amplitudes in TNR-/- mice than in WT mice (Fig.8A, B in Publication

III). Paired-pulse ratio of the cortical N30–P50 component was clearly increased in TNR-/-

mice compared with WT mice, indicating weaker inhibition upon stimulus repetition (Fig.7 in

Publication III). A similar genotype difference was also observed in the hippocampal P20–

N30 component (Fig.8 in Publication III).

5.1.3. Knockout ST-/- mice

The hippocampal high-frequency ripple oscillations during immobility were present

in both ST-/- and ST+/+ mice (wild type littermates of ST -/- mice) and did not differ in their

special features between the genotypes. The mean power of the gamma range oscillations

(between 30–80 Hz and 50–70 Hz) for the dentate gyrus (DG) was 30–40% lower in ST-/-

mice compared with ST+/+ controls, but the difference was not statistically significant

because of high between-subject variability (Fig.2 in Publication IV). The same tendency was

observed for stratum radiatum/lacunosum moleculare of CA1 (CA1Mol) gamma but the

genotype difference was smaller and also non-significant. However, we observed an

augmentation of the oscillations within the beta range (16–28 Hz) in the hippocampus during

free exploratory movement of ST-/- mice (Fig.2A in Publication IV). Overall, there was a 40–

50% increase in the total beta range power in ST-/- mice compared with control animals. A

closer examination of the raw EEG data revealed that gamma and beta rhythms alternated on

top of theta oscillations during movement (Fig.3 in Publication IV). Brief epochs of beta

rhythms were occasionally seen in ST+/+ mice, but these epochs were much more frequent in

ST-/- mice. This was evident from a twofold increase in the beta/gamma power ratio in ST-/-

mice in comparison to ST+/+ mice. The peak theta frequency during free exploratory

movement or immobility (Fig.4 in Publication IV) was lower in ST-/- mice than in ST+/+

mice and the power of theta range was slightly higher but these differences were not

statistically significant. Overall, the cortical EEG power was higher in ST-/- than in ST+/+

mice during free movement (Fig.5A in Publication IV) but was lower during immobility

(Fig.5B in Publication IV). This difference was significant for the beta range and beta/gamma

power ratio but not for the other measured parameters (delta and theta maximum amplitude or

maximum frequency, gamma power, delta and theta power).

Overall amplitudes of the cortical AEPs were higher in ST-/- than in ST+/+ mice.

However, the genotype difference approached significance only for the early P20 component

of the 1st response (Fig.6 in Publication IV). The hippocampal AEP amplitudes were

somewhat higher in ST-/- than in ST+/+ mice but none of the differences were significant

(Fig.7 in Publication IV). However, the latencies of several components were shorter in ST-/-

mice: the P20 latency of the 1st and 2nd responses, and the N30 latency of the 2nd response.

Paired-pulse ratio of the single components (P20, N30, P40/P50) was similar between ST-/-



49

and ST+/+ mice.

Morphological analysis found a lower density of PV+ interneurons in the CA3

subfield of ST-/- compared with ST+/+ mice, but no differences in CA1 or DG (Fig.8A in

Publication IV). Subfield volumes (Fig.8B in Publication IV) and total numbers of PV+

interneurons (Fig.8C in Publication IV) were similar in ST-/- and ST+/+ mice. In addition,

brain weight, brain volume and soma area of PV+ interneurons were normal in ST-/- mice.

5.1.4. Knockout TNC-/- mice

We found a 20% reduction in the volume the CA1 subfield of TNC-/- mice

compared to TNC+/+ mice (Fig.8A in Publication V). This hypoplasia was region-specific,

since the DG and the CA3 were normal in size. Further analysis of the CA1 region of TNC-/-

mice showed volume reduction of layers containing apical dendrites (strata radiatum and

lacunosum-moleculare, -24 % compared with TNC+/+ mice), and basal dendrites (stratum

oriens, -17%) of pyramidal cells, but not pyramidal cell bodies (stratum pyramidale) (Fig.8B

in Publication V). Despite the volume reduction, the total number of CA1 PV+ cells was

similar in TNC-/- mice to TNC+/+ mice, as was the number of pyramidal cells and the ratio of

pyramidal cells to PV+ cells (Fig.9A in Publication V). In addition, densities of PV+ and PV-

GABAergic terminals on pyramidal cell perikarya as well as pyramidal cell body area were

similar between groups (Fig.10 in Publication V). While no abnormalities in neuronal

populations were found in the DG of TNC-/- mice (Fig.9B in Publication V), the number of

S-100+ astrocytes was increased in both the DG and CA1 (+31 % and +26 % compared to

wild-type mice, respectively) (Fig.9A, B in Publication V).

The automated activity test showed no difference between the genotypes. The Morris

water maze was used to test spatial learning and memory. The escape latencies during 4 days

of task acquisition did not differ between the genotypes (Fig.1A in Publication V), neither did

the average swimming speed. However, in a probe test without the platform on the last trial of

Day 4 TNC+/+ mice showed a stronger search bias towards the platform quadrant than did

TNC-/- mice (Fig.1B in Publication V). In contrast, TNC-/- mice focused their search on the

platform zone equally well as TNC+/+ mice.

Overall TNC-/- mice showed a general increase in a wide range of oscillations

including theta and gamma (Fig.3-5 in Publication V). While the power of oscillations

showed no difference in the DG (Fig.3A in Publication V), the groups differed dramatically

when the power was measured in the area close to the CA1 pyramidal cell layer (Fig.3B in

Publication V). At the same time, AEPs from both genotypes appeared similar (Fig.6-7 in

Publication V). In addition, no difference between genotypes was found in the high-frequency

ripple oscillations.

The mean hippocampal power of the gamma range (30-80 Hz) in the DG was similar

(p > 0.5) in TNC-/- mice compared with TNC+/+ controls (Fig.3A in Publication V).
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However, whereas in control mice gamma power decreased almost to a half when the

electrode position shifted from the DG to CA1Mol, a slight increase (on average 15 %) was

seen in TNC-/- mice (Fig.3B in Publication V). To further assess this laminar specific

oscillation change, we calculated the ratio of CA1Mol vs. DG gamma power. We found that

for TNC-/- mice this ratio was twice as high as for wild type mice (movement or NREM).

The hippocampal peak theta frequency during movement was almost identical in the

two groups, but power the of the theta peak and total power in the range 4-12 Hz were

increased by almost 100 % in TNC-/- mice compared to TNC+/+ mice (Fig.4 in Publication

V). During NREM sleep the difference in theta power was even higher. Theta peak power and

total power in the range 4-12 Hz were 2.5 times higher in TNC-/- mice than in TNC+/+ mice.

As with gamma rhythm, the theta oscillation also had a laminar specific pattern. The ratio of

CA1Mol vs. DG theta was increased in TNC-/- mice compared to TNC+/+ controls, but the

difference did not reach significance due to high variation within groups.

In general, recording of cortical EEG reveal higher power in TNC-/- animals than in

their control littermates. This difference reached significance at the number of frequencies

ranges (Fig.5 in Publication V). In addition, the delta peak frequency (during NREM sleep)

was lower in TNC-/- mice (then only mice with distinguishable delta peak were included).
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6. DISCUSSION

6.1. ALTERNATION OF EEG AND ERPS IN TRANSGENIC APP/PS1 MICE

We detected significant differences in the cortical EEG power spectrum, sensory

gating and latency of the N35 component between transgenic APP/PS1 mice and their non-

transgenic littermates, but these changes were not age dependent as would have been

hypothesized on the basis of underlying progressive A  accumulation. In a control experiment

with both double and single transgenic mice, we were able to associate altered cortical EEG

and prolonged N35 latency (corresponding human P50) with the presence of APPswe

transgene, whereas impaired auditory gating was associated with the presence of A .

6.1.1. Alternation of EEG

The observed EEG changes were obviously not caused by amyloid deposition in

plaques. First, the differences were present at the age of 7 months, before the appearance of

the first amyloid deposition, and did not change when plaques started to appear. Second, the

number of plaques was small even at the age of 13 months, except in some layers of the

hippocampus. Third, the cortical theta activity was found to be different between APP/PS1

and non-transgenic mice, whereas the genotypes did not differ with regard to the hippocampal

theta activity, although the hippocampal formation had more amyloid depositions. Similarly,

these arguments speak against the role of A 42 level as the cause of the EEG changes.

The control experiment with both double and single mutant mice clearly suggests

that the observed EEG changes are linked to the APPswe genotype. This association indicates

that either elevated levels of A 40 or the presence and/or overexpression of mutated human

APP protein could be the underlying factor. In our APP/PS1 mice the APP protein levels are

about twice as high as endogenous mouse APP levels, and remain relatively constant over the

entire age span of the study (Liu et al., 2002a). In contrast, like A 42, A 40 accumulates in

the brain as the mice age. Therefore, the presence of mutated human APP remains the most

likely factor underlying the EEG changes. However, the role of soluble A 40 cannot be ruled

out either.

One specific GABAergic neuronal population may be particularly vulnerable to A

deposition. As studies in AD patients and animal models of AD suggest, SOM and/or NPY

expressing interneurons selectively degenerate at early stages of AD neuropathology (Ramos

et al., 2006). In line with our observation, a recent study in another AD mouse model found

an association between selective decrease in SOM and/or NPY expression and APP gene

mutation (Ramos et al., 2006). The molecular mechanism underlying the loss SOM / NPY

neurons remains largely unknown but high-affinity binding of A  to the α7 nicotinic

acetylcholine receptor subunit may be one underlying factor (Wang et al., 2000a; Wang et al.,



52

2000b). The nicotinic α7 receptor is mainly expressed in hippocampus interneurons which

contain NPY, SOM or CCK (Freedman et al., 1993). Furthermore, Aβ binds to the α7

receptor and shifts the balance between excitation and inhibition in the brain (Dineley et al.,

2001; Pettit et al., 2001; Spencer et al., 2006). This shift is also likely to result in changes of

hippocampal gamma and theta oscillations. Theta generation is heavily depend on stratum

oriens / lacunosum moleculare (O-LM) and HIPP (interneurons with hilar dendrites and

ascending axons) cells (Buzsaki, 2002; Traub et al., 2004) - that is exactly the same neuron

population that expresses SOM and/or NPY (Freund and Buzsaki, 1996). On the other hand,

both gamma and theta rhythms depend on perisomatic inhibitory cells (Buzsaki, 2002;

Freund, 2003; Mann and Paulsen, 2005; Whittington and Traub, 2003), of which CCK but not

PV basket cells express the α7 nicotinic-receptor subunit in the hippocampus (Freund, 2003).

6.1.2. Alternation of ERPs

The observed changes in cortical and hippocampal AEPs in APP/PS1 mice were

obviously not caused by the amyloid deposition in plaques. Namely, the group differences in

auditory gating and N35 latency remained the same between 7 and 11 months of age,

although the mouse brains showed dramatic increase in the A  load and the formation of first

amyloid plaques during this time. Furthermore, the prolongation of N35 latency unlikely

relates to A 1-42 at all, as it was equally present in APP/PS1 and APP mice despite 20- to 30-

fold difference in the levels of soluble A 1-42 between these two lines. Interestingly, cortical

EEG abnormalities were also similar in magnitude in APP/PS1 and APP mice and contrast

with NT or PS1 mice (Publication I).

The most plausible link to prolonged N35 latency is the overexpression of mutated

APP. Interestingly, the delayed auditory ERP latency was restricted to mid-latency

component, while the subcortical N8 component did not differ between the groups. Consistent

with this observation, we did not detect the transgene protein in the subcortical auditory relay

nuclei, although it was abundantly present in the auditory cortex and in the hippocampus. It

remains open whether this change is specific to the APPswe mutation or whether it is related

to increased APP levels in general. Namely, in this transgenic mouse the transgenic APP

levels are about twice as high as the endogenous APP protein levels (Liu et al., 2002b).

The association between impaired auditory gating and APP/PS1 genotype is also

straightforward, as impaired gating was not observed in either one of the single transgenic

mouse lines. Numerous studies show an important linkage between abnormal sensory gating

and α7 nicotinic-receptor subunit (Adler et al., 1993; Bickford and Wear, 1995; Freedman et

al., 1997; Stevens and Wear, 1997). It is long known, that nicotinic α7 receptor is mainly

expressed in hippocampus interneurons which contain NPY, SOM or CCK (Freedman et al.,

1993). Thus, in transgenic mice with amyloid accumulation, a selective loss of SOM and

NPY interneurons (Ramos et al., 2006) is likely to lead to impaired auditory gating.
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6.2. ALTERNATION OF EEG AND ERPS IN KNOCKOUT TNR-/- MICE

The present study provides first in vivo electrophysiological evidence for the

importance of tenascin-R (TNR) in the control of certain inhibitory networks in the brain. The

TNR-/- mice expressed multiple abnormalities in their EEGs and AEPs not only in the

hippocampus, but also in the cortex. In general, TNR-/- mice revealed enhanced amplitudes of

either spontaneous or evoked fluctuations in the extracellular field potentials compared to

their WT littermates. These findings support the idea of a reduced inhibition in the TNR-/-

mice.

Our recordings focused on the hippocampal CA1 layer that is characterized by high-

frequency ripple oscillations because we wanted to test the idea that TNR is primarily

involved in the perisomatic inhibition of CA1 pyramical cells (Saghatelyan et al., 2000;

Saghatelyan et al., 2001; Saghatelyan et al., 2003). Based on these in vitro findings, we

expected robust changes in the high-frequency ripples, as synchronous discharge of CA1

GABAergic chandelier cells and basket cells and the consequent rhythmic perisomatic

inhibition of the pyramidal cells is thought to underlie high-frequency oscillations (Ylinen et

al., 1995). However, no difference was found between the TNR-/- mice and their WT controls

in the quality or quantity of 200 Hz ripples. It is possible that synchrony of the inhibitory

interneurons is more important for the 200 Hz ripples than the number of synaptic contacts

between the interneurons and the pyramidal cells, so that an almost 40% loss of perisomatic

terminals on CA1 pyramidal cells (Nikonenko et al., 2003) is not enough to remove or even

attenuate the ripples. There is evidence for the presence of gap junctions between the

dendrites of parvalbumin-containing chandelier and basket cells (Fukuda and Kosaka, 2000;

Ylinen et al., 1995), which is a very effective mechanism to synchronize a network of

interneurons with minimum number of synaptic contacts. On the other hand, connexin-36

knockout mice, which lack interneuronal gap junctions, also display intact fast ripple

oscillations in vivo (Buhl et al., 2003). One possible explanation for the presence of ripple

oscillations in TNR-/- mice despite weakened mechanisms to maintain synchronization in the

interneuronal network is the fact that in vivo ripple oscillations are present only during so-

called sharp waves, that is, synchronous discharges of populations of CA3 cells that give a

powerful momentary excitation to CA1 pyramidal cells and interneurons (Buzsaki, 1986).

This strong discharge in CA1 may be sufficient to synchronize the inhibitory interneurons to

such a degree that it overcomes the weakened perisomatic inhibition. Furthermore, a ripple

component composed of only excitatory input has been described in vitro (Draguhn et al.,

1998).

In contrast to the normal high-frequency ripples in TNR-/- mice, we observed clear

changes in gamma and theta rhythms that are also dependent on interneuronal networks in the

hippocampus. It is noteworthy that the change in theta rhythm was a decreased peak

frequency with no change in its amplitude, whereas the amplitude of the gamma oscillations
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was robustly increased in TNR-/- mice. Although perisomatic inhibition is assumed to play a

role in both gamma and theta oscillations, some treatments have dissociable effects on these

two oscillations. For instance, a selective immunotoxin lesion of the cholinergic septo-

hippocampal projection cells in the medial septum/diagonal band of Broca results in a robust

decrease in theta amplitude with no change in its frequency and no change in the gamma

rhythm (Lee et al., 1994). Whereas lesions of the medial septum reduce the theta amplitude

without affecting its frequency, lesions of the supramammillary nucleus of the hypothalamus

reduce the frequency of the theta rhythm but not its amplitude (McNaughton et al., 1995). In

addition, the NMDA-antagonist, phencyclidine, when given systemically to freely moving

rats, selectively increases the amplitude of hippocampal gamma oscillations without affecting

the amplitude or frequency of hippocampal theta oscillations (Lee et al., 1994). Furthermore,

a recent report describes a selective decrease in gamma oscillations with no change in ripples

or theta oscillations in connexin-36-deficient mice (that lack gap junctions between

interneurons) (Buhl et al., 2003). Another interesting parallel to TNR-/- mice with defects in

extracellular matrix around parvalbumin-positive interneurons are parvalbumin-deficient

mice. In hippocampal slice recordings, these mice also exhibit increased power of oscillations

within gamma frequency (Vreugdenhil et al., 2003). One further mechanism that could

account for a selective enhancement of gamma oscillations is an increase in extracellular K+,

which specifically evokes fast oscillations in hippocampal slices (LeBeau et al., 2002).

Interestingly, disinhibition of postsynaptic GABAB receptors and resulting increase in

postsynaptic K+ conductance has been suggested to mediate the lack of perisomatic inhibition

in TNR-/- mice (Saghatelyan et al., 2003).

The observed slowing of hippocampal theta oscillations in TNR-/- mice is difficult to

attribute to changes in direct perisomatic inhibition of hippocampal CA1 pyramidal cells by

PV+ interneurons. On the other hand, a significant and selective loss of calretinin-positive

interneurons in the CA1 and CA3 areas of TNR-/- mice has recently been observed (Brenneke

et al., 2004), possibly secondary to excitotoxicity. Among other locations, calretinin-positive

GABAergic neurons have been described at the border between the medial and lateral septum.

These cells receive afferent input from the entrorhinal cortex and terminate in the

supramammillary nucleus on calretinin-positive non-GABAergic neurons, which in turn are

important regulators of the hippocampal theta oscillations through their projection to the

medial septum and hippocampal interneurons (Leranth et al., 1999). Interestingly, lesion of

the supramammillary nucleus of the hypothalamus reduces the frequency but not amplitude of

theta oscillations (McNaughton et al., 1995).

A comparison of the AEPs of TNR-/- mice and their controls revealed a robust

difference in the response amplitudes, such that the response to the first click was about twice

as large in amplitude in the TNR-/- mice compared with controls. The effect could be seen in

CA1 recordings, but was more pronounced in the cortical recording channel. The

enhancement of the first responses to the paired clicks can arise either by enhanced excitatory
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drive or reduced feedforward inhibition of pyramidal cells. It needs to be pointed out in this

context that TNR has been reported to regulate the activity of voltage dependent sodium

channels and would thus directly affect excitability of neurons. However, the lack of TNR

would work towards decreased excitation (Srinivasan et al., 1998; Xiao et al., 1999).

Therefore, reduced perisomatic inhibition remains a more likely explanation for our

observations. In addition, auditory sensory gating (e.g., reduced inhibition upon repetition)

was weaker in TNR-/- mice than in control mice, pointing also to a reduced inhibition in

TNR-/- mice. However, direct feedback inhibition of pyramidal cell by basket and chandelier

cells through GABAA receptors alone cannot account for the sustained inhibition over a 500-

ms inter-stimulus interval (Andersen et al., 1964). In accordance with this notion,

involvement of GABAB receptors has been suggested as the underlying mechanism for

auditory gating in the hippocampus (Hershman et al., 1995). In this regard, it is noteworthy

that there is evidence that the reduced perisomatic inhibition in TNR-/- mice is actually

GABAB receptor mediated, in that postsynaptic GABAB receptors may regulate pre-synaptic

GABA release via retrograde K+ signaling (Saghatelyan et al., 2003). The very same

mechanism has been suggested to mediate the anxiolytic effect of GABAB receptor

antagonists (Zarrindast et al., 2001).

In conclusion, our study concurs with previous in vitro findings that TNR plays an

important role in perisomatic inhibition of hippocampal pyramidal cells. Furthermore, the

present study extends these findings and shows that the lack of TNR results in a robust

decrease of inhibitory control in vivo, not only in the hippocampus, but also in the cerebral

cortex, manifesting itself in alterations of neural network oscillations and increased amplitude

of evoked potentials. The attenuation of inhibitory neurotransmission may explain the

behavioral phenotype of these mice, characterized by increased anxiety and impaired motor

coordination (Freitag et al., 2003).

6.3. ALTERNATION OF EEG AND ERPS IN KNOCKOUT ST-/- MICE

The present study provides first in vivo electrophysiological evidence for the

importance of the HNK-1 carbohydrate in the control of inhibitory networks in the brain. The

ST-/- mice have abnormalities in EEGs and AEPs not only in the hippocampus, but also in the

neocortex.

The most robust EEG abnormality in ST-/- mice was the increase in beta oscillations

during free movement with simultaneous decrease in the amount of gamma power. In fact,

episodes of beta oscillations alternated with periods of gamma rhythms. This is consistent

with in vitro recordings in which gamma and beta rhythms often occur in succession (Traub et

al., 1999) and with in vivo recordings from the rat hippocampus, showing that stimulation-

induced beta and gamma oscillations do not coexist (Mikkonen and Penttonen, 2005). Beta

frequency oscillations often occurs in epileptic conditions (Amzica and Steriade, 1999; Hirai
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et al., 1999). However, we observed no seizure-like behavior of the mice during periods of

beta oscillations. Moreover, the episodes of beta oscillations were of short duration (less than

5 s), and were followed by normal EEG. Therefore, it is likely that episodes of beta

oscillations are part of a normal EEG of ST-/- mice during movement. To our knowledge, the

present data are the first evidence that the gamma-beta shift found in hippocampal slice

preparations can occur also in freely moving animals.

The ST-/- mice showed a different pattern of EEG and AEP changes from those

reported earlier for TNR-/- mice (study III and Table1 in the result section). The power of

hippocampal gamma oscillations, which were increased in TNR-/- mice , tended to be smaller

in ST-/- compared with their ST+/+ controls. Although both TNR-/- and ST-/- mice had

increased cortical power in the high beta – low gamma range, this difference was seen during

different activity states of the animals. Increased low gamma oscillations were observed in

TN-R-/- mice during waking immobility, while beta and low gamma rhythms were increased

in ST-/- mice only during free movement.  Furthermore, TNR-/- mice displayed robust

increase in cortical delta power, whereas cortical activity in this frequency range was reduced

in ST-/- mice as compared with ST+/+ littermates. The only similarity in EEG abnormalities

between TNR-/- and ST-/- mice was the shift of hippocampal theta peak towards lower

frequencies during free movements. In addition, AEPs in ST-/- mice bear little similarity to

the robustly increased cortical and hippocampal AEP amplitudes recorded from TNR-/- mice.

Furthermore, auditory gating was impaired in TNR-/- mice but normal in ST-/- mice. The

only significant AEP abnormality in ST-/- mice was a decrease in the latencies of several

hippocampal AEP components, a phenomenon not found in TNR-/- mice. Thus, it is unlikely

that the EEG and AEP aberrations which we had previously reported for TNR-/- mice are

mediated by the sulfate residue to the glucuronic acid of the HNK-1 core carbohydrate.

However, this does not rule out the possibility that HNK-1 may influence interneuron

function via a different mechanism. In support of this notion, application of monoclonal

HNK-1 antibodies to hippocampal slices results in a dramatic decrease of GABAA receptor-

mediated perisomatic inhibitory postsynaptic currents in CA1 pyramidal neurons

(Saghatelyan et al., 2000), whereas the corresponding decrease in ST-/- mice is only moderate

(Senn et al., 2002).  In addition, TNR-/- mice display several developmental abnormalities,

not reported for ST-/- mice, such as defective formation of perineuronal nets (Bruckner et al.,

2000; Weber et al., 1999) and decreased density of calretinin-immunopositive neurons in the

hippocampus (Brenneke et al., 2004), which may also contribute to reduced perisomatic

inhibition.

Another question requiring consideration is whether the proposed HNK-1 mediated

mechanisms in TNR-/- mice might actually account for the observed EEG abnormalities in

ST-/- mice, especially for the increased power of beta oscillations. The generation of beta

oscillations has been studied mainly in hippocampal slices, where it can be induced by strong

tetanic electrical stimulation or by bath application of the muscarinic acetylcholine receptor
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agonist carbachol. The most relevant model of beta rhythm generation to the present

observations is the one involving a network of both interneurons and pyramidal cells

(Whittington et al., 2000). According to the model, beta oscillations arise when interneurons

continue to oscillate at gamma frequencies, while excitatory neurons fire action potentials

coherently during every second or third cycle of the gamma rhythm, resulting in net

oscillations at beta frequency. Three conditions favor this ‘missed beat’ beta rhythm: i)

sufficient tonic depolarization of the interneuron network, ii) enhanced afterhyperpolarization

of pyramidal neurons, and iii) recurrent excitation between pyramidal neurons (Bibbig et al.,

2001; Whittington et al., 2000). If in ST-/- mice, similar to TNR-/- mice, inhibition of

GABAB receptors through the HNK-1 carbohydrate is reduced, sustained activation of

GABAB receptors should result in elevated levels of extracellular K+ (Saghatelyan et al.,

2003). This condition could favor tonic depolarization of interneurons, but at the same time it

would reduce K+ currents underlying afterhyperpolarization of pyramidal cells. On the other

hand, the decreased PV+ interneuron density in CA3 of ST-/- mice likely increases recurrent

excitation among pyramidal neurons. Since recurrent connectivity in CA3 is much higher than

in CA1 (Miles and Wong, 1986; Thomson and Radpour, 1991), this subarea is the most

plausible generator of synchronous firing of excitatory cells in beta band rhythms in the

hippocampus. Beta/gamma oscillations generated in CA3 propagate easily to CA1 (Csicsvari

et al., 2003; Fisahn et al., 1998; Shimono et al., 2000) and CA3 may further extend its

oscillatory influence into the DG as demonstrated in slice recordings (Arai and Natsume,

2006; Fisahn et al., 1998).

The increase in amplitude and decrease in latency of mid-latency auditory evoked

potentials have been shown in many studies on patients after wakening from anesthesia (for

example Rundshagen et al., 2000). Higher arousal levels in smokers after smoking a single

cigarette is also well known (Pomerleau and Pomerleau, 1984). Interestingly, a recent study

on smokers found a decrease in delta EEG rhythms, an increase in beta EEG activity, no

changes in theta oscillations, and shortening and increase in amplitude of mid-latency

auditory potentials after cigarette smoking (Domino, 2003). All those changes are related to

increase in plasma nicotine. The striking similarities of observed differences between ST+/+

vs. ST-/- mice in study-IV and between non-smokers vs. smokers in the above mentioned

study (Domino, 2003) suggest an important role of the nicotinic cholinergic system for those

findings. The nicotinic α7 receptors are expressed in hippocampal interneurons which

contains NPY, SOM or CCK (Freedman et al., 1993). NPY and SOM expressing cells are

associated with O-LM and HIPP cells while CCK cells associate with perisomatic inhibitory

cells (Freund and Buzsaki, 1996). Nicotinic ACh receptor activation has been shown to excite

GABAergic interneurons in the hippocampus, but not the principal excitatory cells in stratum

pyramidale and stratum granulosum (for review see Jones et al., 1999). Therefore, alterations

in nicotinic ACh neurotransmission may contribute to altered inhibition in ST-/- mice.

In conclusion, lack of the sulfate residue in the glucuronic acid of the HNK-1 core
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carbohydrate does not reproduce the robust phenotype of TNR-/- mouse, arguing for the

existence of parallel signaling mechanisms through the HNK-1 carbohydrate. However, lack

of the sulfate residue is associated with increased cortical and hippocampal beta and

corresponding decrease in gamma oscillations. This change in oscillatory pattern in the

hippocampus may stem from the decreased density of parvalbumin-positive interneurons in

the CA3 subregion, which do not develop or survive normally in ST-/- mice.

6.4. ALTERNATION OF EEG AND ERPS IN KNOCKOUT TNC-/- MICE

The present study provides the first electrophysiological evidence in freely moving

animals for the importance of tenascin-C (TNC) in the control of inhibitory networks in the

brain. TNC-/- mice express multiple abnormalities in their spontaneous but not evoked brain

activity in the cortex and hippocampus. In general, TNC-/- mice express higher EEG

amplitude compared to their WT littermates. In addition, laminar specific morphological and

oscillatory changes were observed in the hippocampus. These electrophysiological changes

were accompanied by impaired spatial memory but unimpaired general learning ability or

exploratory activity. As earlier reported for LTP in hippocampal slices (Evers et al., 2002),

alterations in L-type voltage sensitive Ca2+ channels (L-VDCC) may contribute to EEG

changes in TNC-/- mice, since an L-VDCC antagonist or agonist affected differently cortical

or hippocampal oscillations in TNC-/- mice compared to WT controls. Morphological

analysis in TNC-/- mice revealed CA1-specific hypoplasia (reduced volume of layers

containing apical and basal dendrites but not of the pyramidal cell layer). In contrast to earlier

findings in the neocortex (Irintchev et al., 2005), numbers of principal cells and PV+

interneurons, and their ratios, were normal in the hippocampus of TNC deficient mice, while

increased astrogliosis was observed in both hippocampal subregions. These layer specific

structural abnormalities likely account for the altered hippocampal network oscillations and

contribute to observed spatial learning deficit.

At a first glance, the finding of impaired spatial memory in TNC-/- mice appears to

be in contrast with an earlier report of the same mice (Evers et al., 2002). However, the

difference is subtle and most likely attributable to slight differences in the testing procedure.

In fact, both studies found normal acquisition in the hidden platform version of Morris water

maze in TNC-/- mice, and the only difference between the studies appeared during the probe

trial. In the Evers et al. study (Evers et al., 2002), mice were first trained to find a visible

platform, and had only three days thereafter to learn the location of the hidden platform,

whereas the present study involved four days of acquisition directly with the hidden platform.

Thus it is understandable that the wild type mice expressed weaker search bias towards the

correct platform location in the study of Evers and colleagues (Evers et al., 2002) than in our

study. Another possible contributing factor is a difference in the breeding history. Whereas

the earlier study used 129/SsvJ mice with only one generation of backcrossing into C57BL/6J,
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mice of the present study had already five generations of backcrossing. Since C57BL/6J mice

are better learners in spatial tasks than 129/SvJ mice (Crusio et al., 1987), the background

difference may have produced a better spatial learning in general in the present study and

revealed a difference in learning strategies between wild type and TNC-/- mice. In fact, both

mouse lines learned to locate the escape platform in the same amount of time, but while wild

type mice focused on orienting to the correct sector of the pool, TNC-/- mice tried to keep the

correct distance from the pool wall. Nevertheless, impaired direction search bias is considered

to be the most sensitive water maze parameter indicative of hippocampal dysfunction (Wolfer

et al., 1998). Therefore, TNC-/- in this study can be considered to have abnormal

hippocampal function.

Earlier in vitro electrophysiological studies in TNC-/- mice have revealed a deficit in

the induction of LTP in the CA1 subregion of the hippocampus (Evers et al., 2002), but only

with stimulation protocols that activate L-VDCCs. No deficit was found in LTP induction in

the CA3 or DG, but also a different L-VDCC independent stimulation paradigm was used in

these subregions. Interestingly, recording of theta-burst induced LTP in the presence of

nifedipine did not affect LTP in TNC-/- mice, but reduced LTP in wild-type mice to the levels

seen in mutants (Evers et al., 2002). In the present study, nifedipine and the L-VDCC agonist

BayK had opposite effects on theta and gamma oscillation in TNC-/- and control mice, which

suggest that impaired function of L-VDCCs may also partially contribute to observed

increases in theta and gamma oscillations in TNC-/- mice.

Despite considerable advantages, the neural mechanisms of gamma oscillations are

not fully understood. The gamma oscillation in hippocampal slices depends on complex

interaction of two oscillatory networks. One is driven by activation of muscarinic

acetylcholine receptors (mAChRs) and second driven by activation of metabotropic glutamate

receptors (mGluRs) (Mann and Paulsen, 2005; Palhalmi et al., 2004; Whittington et al.,

2000). In entraining the network into gamma oscillation, two types of basket cells are

particularly important: those containing Ca2+-binding protein PV and CCK. While assembly

of PV-containing cells represents the non-plastic precision clockwork, the CCK-containing

cell assembly is highly modifiable by local neuromodulators (which might allow fine tuning

of oscillation frequency and amplitude) (Freund, 2003; Klausberger et al., 2005). Some

pharmacological agents which differently act on PV and CCK basket cells (Freund, 2003)

have been shown to enhance hippocampal high frequency oscillations both in vitro and in

vivo; these include GABAA agonist diazepam (Shimono et al., 2000), NMDA-antagonist

phencyclidine (Lee et al., 1994; Ma et al., 2004), and cholinesterase inhibitor eserine (Leung,

1985). It is interesting to note the parallel influence on gamma oscillation by the prototype

anxiolytic drug diazepam and knockout of TNC, as decreased anxiety has also been reported

in TNC-/-  mice (Morellini and Schachner, 2006).

Theta oscillations can be divided on the basis of their pharmacological sensitivity

into atropine-sensitive (during behavior immobility) and atropine-resistant (during movement)
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(Kramis et al., 1975). One way to achieve increased power of theta oscillation in the

hippocampus is to influence ACh receptors (Masuoka et al., 2006; Rowntree and Bland,

1986). However, this is an unlikely mechanisms in TNC-/- mice as ACh manipulation also

results in a shift in the theta peak frequency, which did not happen in TNC-/- mice (Fellous

and Sejnowski, 2000; Keita et al., 2000). Another possibility to increase theta oscillation may

arise from facilitated axo-axonic interaction (e.g. with NH4Cl) (Fischer, 2004). Facilitation of

axo-axonic interaction (presumable between axons of pyramidal cells) would lead to

increased theta oscillation amplitude in hippocampal-cultured slices. Axo-axonic interaction

has also been shown to be important for gamma and high-frequency oscillations

(approximately 200 Hz) (Traub et al., 2004). Two types of electrical coupling in the

hippocampus influence population oscillations: those between distal dendrites of interneurons

(at the border between the stratum oriens and alveus) (Fukuda and Kosaka, 2000) and those

between pyramidal cells (through the contact of processes in the oriens) (Schmitz et al.,

2001). As the volume of apical and basal dendrites is most likely reduced in TNC-/- mice, we

hypothesize that the probability of electrical contacts between axons is increased. However,

this possibility is difficult to verify in principal neurons as axo-axonic contact number is very

low (~1.6 per neuron).

Some of the EEG changes can be attributed to altered morphology in TNC-/- mice.

Previous findings in TNC-/- mice demonstrated reduced number / density of PV+

interneurons (Irintchev et al., 2005) in the cortex. This would lead to reduced inhibition or

increased excitation and could account for the general increase in cortical EEG power in

TNC-/- mice. However, the observed cortical EEG delta peak shift toward lower frequencies

during NREM sleep does not fit as a consequence of reduced number of cortical PV+

interneurons. It is more likely a result of alternation in the cortico-thalamic system.

Morphological changes in the thalamus were not addressed in the current study but thalamic

expression of TNC has been demonstrated in earlier studies (Irintchev et al., 2005; Kusakabe

et al., 2001).  Morphological changes in the hippocampus were much more subtle than those

in the cortex in TNC-/- mice, and no loss of principal cells or PV+ interneurons were

observed. However, a volume loss was manifested in a subregion and layer specific manner:

only the CA1 subregion was affected and all other layers but the pyramidal cell layer. This

pattern of altered morphology is fully compatible with the finding of robust increase in the

power of CA1 gamma oscillation in comparison to DG gamma. The layer specificity of the

volume loss points to thinning of the dendritic tree of pyramidal cells. As the number of

pyramidal cells themselves and that of PV+ interneurons providing somatic inhibition and

their perikarya on pyramidal cells remained normal in TNC-/- mice, the basic rhythm

generator units thus reside in a smaller tissue volume than in WT mice, resulting in higher

power of the oscillation in electrophysiological recordings. Thinning of dendritic trees of CA1

pyramidal cells could partially also account for the impaired LTP induction in the CA1

subregion in TNC-/- mice as compared to the CA3 and DG subregions (Evers et al., 2002).
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The possible explanation of shrinkage of CA1 subregion is the specific loss of interneurons

that resides in those sub-layers. As a resent study shows, diminished number of O-LM

interneurons expressing SOM / NPY will cause shrinkage of the stratum lacunosum-

moleculare layer (Ramos et al., 2006).

In conclusion, lack of extracellular matrix glycoprotein TNC in mice produces robust

changes in hippocampal and cortical EEG. However, the profile of in vivo

electrophysiological measures (oscillations power and frequency, structural and laminar

specific EEG, AEPs) differs from that in mice deficient in a related glycoprotein TNR (study

III) or its associated HNK-1 carbohydrate (study IV). The difference between TNC-/- and

TNR-/- mice could be expected because of different localization of these two extracellular

matrix glycoproteins. While TNR is an important component of perineuronal nets, TNC is

more broadly expressed in the brain. In the hippocampus, the morphological changes in

TNR-/- and TNC-/- mice were almost orthogonal. Atrophy of perineuronal nets in TNR-/-

mice results in general attenuation of perisomatic inhibition, which manifests as increased

power of gamma oscillation and enhancement of AEP amplitudes (study III). In contrast,

perisomatic inhibition appears intact in TNC-/- mice, and polysynaptic excitatory drive results

in normal AEPs. An increase in gamma oscillation was observed only in the CA1 subregion,

where it associates with volume loss of layers with pyramidal cell dendrites.  On top of that,

TNC-/- mice express dysfunction of L-type voltage sensitive Ca2+ channels, which has not

been found in TNR-/- mice.

6.5. GENERAL DISCUSSION

Electrophysiological measures (EEG and ERP) proved to be very sensitive tools for

detection of even subtle neuronal network abnormalities. In the light of present knowledge

about AD mouse models our data in APP/PS1 mice (study I and II) show EEG and ERP

parameter differences after minor (one fifth; (Freedman et al., 1993)) population of

interneurons loss or malfunction. It is likely that observed alternations of EEG and/or ERP are

due to altered function of interneurons expressing nicotinic α7 receptor (most likely

SOM/NPY expressing L-OM and CCK expressing basket interneurons). Similarly, fine

physiological changes in the hippocampal circuit may have been left unnoticed by

morphological assessment (study IV and V), but were manifest in EEG and/or ERP. Those

studies found small alternations in another subpopulation of interneurons (although not yet

confirmed in study V) only after a detailed morphological analysis, while beta and/or gamma

oscillations alternation were identified by a simple electrophysiological measure. When

changes in interneuron are robust (like in study III) EEG and ERP parameters are almost as

powerful index of the genotype as genomic analysis with twofold increase in some parameters

compared to normal values.

Altogether, findings of this project speak for an underestimated potential of
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electrophysiological measurements as simple as EEG and ERP. However, we should admit

that lack of specificity of EEG and ERP is a major drawback of these methods. Nevertheless,

lack of specificity is not due to limitation of the method itself but due to limited

implementation. In order to fully exploit the potential of EEG recording and increase it

specificity, we should increase our understanding about the role of each interneuron

subpopulation in the complex information processing and/or oscillations in the brain. In the

quest of that knowledge not only other neuroscience tools (genetically modified mice,

morphological, behavioral analysis etc.) are instrumental but also increasing the diversity of

calculated EEG/ERP parameters and number of recording sites is crucial.
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7. CONCLUSION

Electrophysiological measurements (EEG and ERP) remain a low-cost but a very

sensitive measure of brain interneuron pathology. Studies described here show their potential

value in phenotyping various genetically modified mice with interneuron pathology. Diversity

of interneurons suggests that each specific group is tuned to a specific task in the brain

machinery. Measurement of spontaneous oscillations and evoked potentials helps to discover

those functions in which interneuron maybe involved. As our present studies show, specific

alternations in a subpopulation of interneurons lead to increase / decrease of unique pattern of

electrophysiological parameters. Whether L-OM, perisomatic inhibitory, or nicotine sensitive

interneurons, they all play a specific role in information processing in the brain. Notably, no

single EEG or ERP parameter (e.g. theta, beta/gamma oscillation, ERP amplitude or paired-

pulse ratio) alone is capable of pointing to a specific interneuron population as responsible for

the observed alternation. However, specificity of EEG and ERP increase substantially with

the number of parameters extracted and with increased number of recorded locations.
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