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Abstract

We investigate the performance of the GARCH modelling strategy
with symmetric and asymmetric power exponential error distributions
in predicting VaR values. Some elegance of formulation is gained by
expressing the volatility recursion in terms of the power characteriz-
ing the power exponential error distribution. At the same time useful
asymptotic results become readily available. Our approach is applied
to eight series of daily returns of lengths around 2800. Our overall con-
clusion is that many types of GARCH models capture the volatility
dynamics adequately. Nevertheless, more reasonable estimates for ac-
tual VaR values are obtained with bootstrap than with the estimated
error distribution.
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1 Introduction

Over the last decade Value at Risk (VaR) has become most important in-

strument to measure the market risk of the financial institutions. One reason

is that the Basel II, which directs banking laws and regulations world wide,

recommends that a capital adequacy of institutions should be based VaR

modelling. The VaR measure is easy to work with, which is the other reason

for the popularity. In fact, Value at Risk is an attempt to provide a single

number summarizing the total market risk in an asset or even investment

portfolio of the financial institution. Jorion (1997) has defined VaR expo-

sure as follows:” VaR is the worst expected loss over a great horizon within a

given confidence level”. Statistically VaR is a quantile of the expected return

distribution of the asset. In order to be specific choose the quantile, q(0.99)

say, corresponding to the probability 0.99, and let us consider the possible

loss occurring on the next day. Then with probability 0.99 the next day’s

loss will be no greater than q(0.99). VaR can be determined both long and

short positions. If a trader is holding a long (short) position she is interested

in the left (right) tail of the distribution.

Therefore, in VaR calculation we are interested in the tail behavior of

the expected asset return distribution. The financial series typically display

high kurtosis, fat tails and negative skewness, and most importantly they

exhibit clustering volatility. Granger and Ding (1995) listed a few more such

features. The most easiest way to estimate the return distribution is the use

of the past return data in a very direct way as a guide to what may happen

in the future. This historical simulation approach has the advantage that we

do not have to make an assumption on the return distribution. But there
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are disadvantage which Hull and White (1998) noticed. Historical simulation

does not easily allow volatility updating schemes to be used. In practice we

would also need a large database for historical simulation.

The parametric approaches such as exponentially weighted moving aver-

ages (EWMA) and generalized autoregressive conditionally heteroscedastic

(GARCH) models are probably the most common tools to determine VaR

for linear assets such as bonds and stocks. The main disadvantage of these

approaches is that we have to make an assumption on the error distribution.

Commonly a normal distribution is used regardless of apparent conflict with

the data. The consequence of this approach is that VaR is underestimated

due to the short tails of the normal distribution. Instead of the normal dis-

tribution, other distributions are also used, e.g. see Giot and Laurent (2004),

Kuester, Mittnik and Paolella (2006) and Komunjer (2007). Our choice for

the error distribution is the same as that of Komunjer (2007), i.e. the power

exponential distribution and its asymmetric version. The difference is that

she focuses on expected shortfall whereas we consider Value at Risk. An-

other deviance is that our volatility dynamics is modelled in terms of the

conditional expectation of the λ-th moment with λ being the exponent in

the error distribution. Komunjer (2007) uses conditional variances. Our ap-

proach yields, in addition to simplified formulas, certain stationary results as

well as asymptotic results.

We propose to use robust rank correlations to protect ourselves against

outliers in checking residual autocorrelations. We also strongly encourage to

use graphical techniques (QQplots and symmetry plots) rather than formal

statistical tests in assessing the adequacy of the error distribution.
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The remainder of the paper is organized as follows: Section 2 introduce

the asymmetric power exponential GARCH model and Section 3 describes

the maximum likelihood estimation of this model. In Section 4 concentrates

on VaR application and results from the empirical investigation. In Section

5 empirical results are discussed.

2 Asymmetric power exponential model

The standard GARCH(p, q) model introduced by Bollerslev (1986) is defined

by the equations

yt = σtεt, (1)

σ2
t = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j, (2)

t = 1, . . . , n,

where the constants satisfy the nonnegative constraints α0 > 0, αi ≥ 0,

βj ≥ 0 for i = 1, . . . , p, j = 1, . . . , q. A standard assumption for the errors

εt is that they are independent and identically distributed (i.i.d.) with mean

zero and unit variance. Assuming unit variance means no loss of generality,

but if E(εt) = m 6= 0, then the conditional expectation of yt given the

past values yt−j, j = 1, 2, . . ., is mσt yielding a type of risk premium with

parameter m. Under mild conditions Bougerol and Picard (1992a and 1992b)

have shown that recursions (1) and (2) define a unique strictly stationary

process. The conditions allow E(εt) 6= 0. A simple sufficient condition for

stationarity is that
∑p

i=1 αi +
∑q

j=1 βj < 1 already established by Bollerslev

(1986). When all αi and βj are positive also the IGARCH process with∑p
i=1 αi +

∑q
j=1 βj = 1 is stationary.
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Ding, Granger and Engle (1993) introduced a model where the recursion

(2) occurs not with power two but with some other power λ, and where neg-

ative and positive errors at time t affect differently on the future volatilities.

The model, denoted here by APEGARCH(p, q) is

yt = σtεt, (3)

σλt = α0 +
∑

αi|yt−i − γ|yt−i||λ +
∑

βjσ
λ
t−j. (4)

Ding et al. (1993) call it APARCH under the assumption that the errors

εt are independent unit normal variables. Commonly we have restrictions

1 ≤ λ ≤ 2. We use the acronyms PEGARCH when γ = 0, AGARCH when

λ = 2 and GARCH when γ = 0 and λ = 2.

Following He and Teräsvirta (1999), mutatis mutandi, we can make the

transformations ut = sign(yt − γ|yt|)|yt − γ|yt||λ/2 and then define ηt =

sign(εt − γ|εt|)|εt − γ|εt||λ/2 with τt = σ
λ/2
t . Formally, the standard GARCH

model appears with observations ut driven by new errors ηt and with volatil-

ities τ 2
t . If the conditions of Bougerol and Picard (1992a and 1992b) for the

stationary solution exist in the transformed model with ut, τ
2
t and ηt, then

automatically the original model, with yt, σ
λ
t and εt, admits a unique strictly

stationary solution. In order to estimate the parameters in (3) and (4) we

need an assumption for the distribution of the errors. Commonly a normal

distribution is taken for this purpose. But in applications we most often are

faced with the facts that the error distribution has thicker tails than the nor-

mal distribution, and in addition it may exhibit skewness. Yet, an adequate

description of the dynamics of the volatility process σ2
t may be quite satis-

fying also under the tentative, plausibly wrong, normal assumption. But,

e.g. in VaR estimation, the distributional assumptions are more crucial.
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Our choice for the distribution of εt is the asymmetric power exponential

distribution APE(0, 1, λ, γ) given by the density

f(x;λ) =
1− γ2

2Γ(1 + 1/λ)λ1/λ
exp

(
−|x− γ|x||

λ

λ

)
, −∞ < x <∞, λ > 0, (5)

which nicely matches with (3) and (4). This distribution is also called an

asymmetric generalized error distribution. In literature it is parameterized

in various ways (e.g. see Komunjer, 2007, references therein), but our speci-

fication (5) has some benefits as seen later.

We find immediately that the symmetric versions with γ = 0 lead to

the standard normal density when λ = 2 , and to the Laplace distribution

when λ = 1. Moreover, in Appendix we will see that if εt ∼ APE(0, 1, λ, γ),

then E(|εt − γ|εt||λ) = 1 leading to the conditional expectation E(|yt −

γ|yt||λ | Ft−1) = σλt , where Ft−1 is the σ field induced by the past values

yt−1, yt−2, . . ..

3 Maximum likelihood

In practice the model often has also a mean process µt (measurable with

respect to Ft−1). Then the model (3) and (4) applies to the difference yt−µt.

In our applications we assume a constant mean µ.

For simplicity of notation write rt = yt−µ−γ|yt−µ|. The log-likelihood

function corresponding to APEGARCH model is then

logL = n logC(γ, λ)− 1

λ

∑(
log σλt +

|rt|λ

σλt

)
. (6)

where C(γ, λ) is the scaling factor in (5). The MLE is found as a solution to

∂ logL

∂φ
= 0, (7)
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where φ comprises all the parameters which need to be estimated. Appendix

A.1 provides the formulas for the partial derivatives for APEGARCH(1,1).

The asymptotic theory for the APEGARCH models has not been strictly

proved, but a partial results are obtainable from Berkes, Horváth and Kokoszka

(2003). Their results concern with ordinary GARCH with error distribution

satisfying mild regularity conditions. Suppose that λ, µ and γ are known.

The He-Teräsvirta transformation ut = sign(rt)|rt|λ/2 makes the likelihood

equal to the Gaussian likelihood (apart from constant), and we can deduce

that under analogous regularity conditions the quasi-maximum likelihood es-

timates for the parameters θ = (α0, α1, . . . , αp, β1, . . . , βq)
′, i.e. solution from

(9) with λ, µ and γ known, are asymptotically multivariate normal. Let this

quasi-MLE be θ̂n. Then we have

√
n(θ̂n − θ)

D→ N(0, v2B(θ)−1),

B(θ) = E

[
1

σ2λ
t

∂σλt
∂θ

∂σλt
∂θ′

]
,

v2 = var(|εt|λ).

The expectation is with respect to the stationary distribution of the process.

An easy calculation shows that v2 = λ leading to the well known result v2 = 2

under normal errors.

In practice B(θ) is estimated by the corresponding sample average at

θ = θ̂n. Also, instead of v2 = λ we can use the sample variance of the

absolute residuals raised to the power λ.

Despite of the lack of a rigorous proof we have used the standard maxi-

mum likelihood theory in our applications in other words we have assumed

that in large samples

φ̂ ∼ N(φ, n−1Ω),
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with φ̂ being the MLE and Ω as the limit of

−
(

1

n

∂2 logL(φ)

∂φ∂φ′

)−1

.

An alternative expression for Ω is obtained from the quasi maximum likeli-

hood theory and is the limit of(
1

n

∂2 logL(φ)

∂φ∂φ′

)−1(
1

n

∑ ∂ log `t(φ)

∂φ

∂ log `t(φ)

∂φ′

)(
1

n

∂2 logL(φ)

∂φ∂φ′

)−1

,

where `t is the conditional log-likelihood of yt, i.e. logL =
∑
`t. In practice

we replace φ by the estimate φ̂ when computing standard errors.

4 Applications

4.1 Value at Risk

Value at Risk (VaR) is mainly concerned with market risk which is one

type of risk in financial markets. VaR has been increasingly used as a risk

management tool (see e.g., Jorion, 1997, and Tsay, 2007, Ch 7).

Suppose that at the time t we are interested the risk of the financial

position for the next k periods. Let the price of the financial position be Pt

at time t. Then the change in value of our position is Pt+k−Pt, and the VaR

of a long position is defined to be VaR(t, k, p) satisfying

P[Pt+k − Pt ≤ VaR(t, k, p) | Ft] = p. (8)

Typically VaR = VaR(t, k, p) is negative for small p. Therefore (8) defines

the probability p that the holder of a financial asset suffers a loss which is

greater than or equal to −VaR (taken positive now). Alternatively, with
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Table 1: Parameter estimates of APEGARCH and PEGARCH models
Series Method α0 α1 β1 λ µ γ

Apple APEGARCH 0.012 0.018 0.978 1.211 0.000 0.026
(0.009) (0.006) (0.008) (0.040) (0.013) (0.013)

PEGARCH 0.011 0.018 0.978 1.207 0.055 0
(0.008) (0.006) (0.008) (0.039) (0.057) (-)

Barclays APEGARCH 0.014 0.050 0.943 1.303 0.018 0.018
(0.006) (0.008) (0.010) (0.050) (0.042) (0.019)

PEGARCH 0.014 0.050 0.943 1.309 0.052 0
(0.006) (0.008) (0.010) (0.048) (0.030) (-)

British Airways APEGARCH 0.023 0.062 0.930 1.392 -0.005 0.018
(0.010) (0.011) (0.013) (0.046) (0.044) (0.018)

PEGARCH 0.023 (0.061) (0.930 (1.392 0.023 0
(0.010) (0.011) (0.013) (0.046) (0.034) (-)

Dow Jones APEGARCH 0.009 0.070 0.921 1.529 0.116 -0.047
(0.003) (0.010) (0.011) (0.057) (0.028) (0.021)

PEGARCH 0.009 0.069 0.921 1.515 0.063 0
(0.003) (0.010) (0.011) (0.055) (0.016) (-)

Microsoft APEGARCH 0.012 0.063 0.932 1.306 -0.106 0.063
(0.006) (0.011) (0.012) (0.042) (0.026) (0.015)

PEGARCH 0.012 0.060 0.935 1.310 0.009 0
(0.005) (0.011) (0.012) (0.042) (0.031) (-)

NASDAQ APEGARCH 0.011 0.088 0.908 1.663 0.225 -0.078
(0.004) (0.012) (0.012) (0.062) (0.034) (0.019)

PEGARCH 0.012 0.088 0.908 1.678 0.107 0
(0.004) (0.011) (0.012) (0.062) (0.021) (-)

Nokia APEGARCH 0.012 0.042 0.954 1.270 0.231 -0.031
(0.007) (0.008) (0.010) (0.038) (0.096) (0.025)

PEGARCH 0.012 0.043 0.954 1.265 0.141 0
(0.007) (0.008) (0.010) (0.038) (0.030) (-)

Shell APEGARCH 0.010 0.052 0.942 1.373 0.140 -0.032
(0.005) (0.010) (0.011) (0.047) (0.038) (0.020)

PEGARCH 0.010 0.052 0.942 1.378 0.088 0
(0.005) (0.010) (0.011) (0.047) (0.025) (-)
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Table 2: Parameter estimates of AGARCH and GARCH models
Series Method α0 α1 β1 λ µ γ

Apple AGARCH 0.025 0.011 0.986 2 -0.094 0.049
(0.014) (0.003) (0.004) (-) (0.105) (0.019)

GARCH 0.029 0.012 0.986 2 0.128 0
(0.016) (0.003) (0.004) (-) (0.059) (-)

Barclays AGARCH 0.024 0.046 0.949 2 0.065 0.002
(0.008) (0.007) (0.007) (-) (0.056) (0.019)

GARCH 0.024 0.046 0.949 2 0.071 0
(0.008) (0.007) (0.007) (-) (0.032) (-)

British Airways AGARCH 0.091 0.108 0.883 2 0.038 0.015
(0.026) (0.015) (0.016) (-) (0.064) (0.020)

GARCH 0.090 0.107 0.884 2 0.078 0
(0.026) (0.015) (0.016) (-) (0.035) (-)

Dow Jones AGARCH 0.011 0.086 0.908 2 0.148 -0.069
(0.003) (0.010) (0.011) (-) (0.030) (0.020)

GARCH 0.012 0.086 0.907 2 0.061 0
(0.004) (0.010) (0.011) (-) (0.016) (-)

Microsoft AGARCH 0.036 0.079 0.919 2 -0.055 0.046
(0.010) (0.012) (0.011) (-) (0.053) (0.017)

GARCH 0.035 0.075 0.923 2 0.057 0
(0.010) (0.011) (0.011) (-) (0.033) (-)

NASDAQ AGARCH 0.015 0.100 0.898 2 0.210 -0.071
(0.005) (0.012) (0.012) (-) (0.036) (0.018)

GARCH 0.015 0.100 0.899 2 0.092 0
(0.005) (0.012) (0.012) (-) (0.021) (-)

Nokia AGARCH 0.025 0.030 0.969 2 0.374 -0.068
(0.011) (0.005) (0.005) (-) (0.080) (0.017)

GARCH 0.027 0.030 0.968 2 0.134 0
(0.011) (0.005) (0.005) (-) (0.050) (-)

Shell AGARCH 0.022 0.068 0.928 2 0.107 -0.010
(0.007) (0.011) (0.011) (-) (0.045) (0.019)

GARCH 0.022 0.068 0.928 2 0.088 0
(0.007) (0.011) (0.011) (-) (0.025) (-)
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probability (1 − p) the holder suffers a loss which is less than or equal to

−VaR. Using the approximation (Pt+k−Pt)/Pt ≈ log(Pt+k/Pt) we can write

p ≈ P[log(Pt+k/Pt) ≤ VaR(t, k, p)/Pt | Ft].

Therefore, within an approximation, the problem of finding a VaR value is

reduced to a problem of finding a conditional pth quantile of the continuously

compounded return log(Pt+k/Pt). Denote it by q(t, k, p). Then VaR(t, k, p) =

eq(t,k,p)Pt. In the following we focus on estimating q(t, k, p), the VaR of the

log return series.

In our context loss means the decrease of price of financial asset. However,

in practice the asset holder suffer loss only when she sell asset at lower price

than she has bought it.

For the long position we consider the left tail of the return distribution

but for the so called short position we focus on the right tail. In practice,

the short position is more rarely treated than the long position.

4.2 Fitting the model

In the empirical part we study eight financial time series, daily index se-

ries NASDAQ and Dow Jones as well as daily price series of Apple, Bar-

clays, British Airways, Microsoft, Nokia and Shell. Our samples starts at

the beginning of 1995 and ends at 02/07/2006. We take into account stock

splits on stock price series and construct log-returns series multiplied by 100,

i.e. yt = 100 log(Pt/Pt−1). The series have 2771–2895 observations. We have

made all computations within the R environment (Ihaka and Gentleman,

1996).
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Figure 1: Autocorrelations of the ranks of squared residuals.

Table 1 gives parameter estimates and standard errors results from PE-

GARCH(1,1) and APEGARCH(1,1) models. In each case the estimates sat-

isfy the restrictions α̂0 > 0 and α̂1 + β̂1 < 1. We find that in stock returns

series the power parameter λ̂ varies between 1.2–1.4. But in index series it is

bit higher, 1.5 for Dow Jones and 1.7 for NASDAQ. There are no substantial
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Figure 2: Symmetry plot of the residuals from the fitted PEGARCH model.

differences in λ̂ between the symmetric and asymmetric specifications of the

same series. In all cases the estimates differ significantly from both 1 and

2, thus the assumption that errors εt are Laplace or normally distributed is

rejected. A significant skewness parameter occurs in Apple and Microsoft

(positive) as well as in Dow Jones and NASDAQ (negative). The corre-
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Figure 3: Symmetry plot of the return series.

sponding estimates α̂0, α̂1, β̂1 in symmetric and asymmetric specifications of

the same series are very close to each other.

In Table 2 we have the estimates from AGARCH(1,1) and GARCH(1,1)

models. We find that the estimates of γ̂ have the same signs in APEGARCH

and AGARCH models. Also the respective estimates α̂0, α̂1, β̂1 are again
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Figure 4: Quantile to quantile plot of the residuals from the fitted APE-

GARCH model.

very close in AGARCH and GARCH models, though somewhat different

from those in APEGARCH and PEGARCH models.

The figure 1 shows the autocorrelations function of ranks of the squared

residuals. Note that the ranks remain the same whatever power of the ab-
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solute values of the residuals are used. We have used ranks because there

are outliers among the residuals which may distort autocorrelations of the

genuine squared residuals. As we see, only minor autocorrelation is left. The

Ljung-Box test (Ljung and Box, 1978; and McLeod and Li, 1983) having an

approximate χ2 distribution is commonly used for a significance test. The

appropriate number of degrees of freedom for the χ2 distribution is not known

and with the lack of a better choice we have actually used K − p− q degrees

of freedom for K autocorrelations when the model of order (p, q) is fitted. In

actual computations we have used K = 12, p = 1, q = 1. For our series the

smallest p-values are for Apple (0.052) and for Nokia (0.072). The rest are

well above 0.1. With the qualification concerning Apple, the fitted volatility

dynamics seem to be adequate.

In figures 3–2 we exhibit plots that we call symmetry plots. Let us suppose

that we have a sample from a symmetric distribution. Then with k < n/2,

the distance from the median to the kth smallest value and the distance from

the kth largest value to the median value should be approximately equal.

We plot these values against each other, and under symmetry we expect the

points lie on a straight line with an intercept zero and a slope one. Putting the

negative tail is on the horizontal axis yields the interpretation that negative

skewness is seen when the values are below the straight line. When the

opposite is true positive skewness occurs. Figure 2 shows symmetry plots of

the scaled residuals from the PEGARCH fits. We have taken the residuals

from a model with assumed symmetry in order to see whether the figures

suggest we should use asymmetric error distribution. In most cases we see,

indeed, a clear indication of skewness. Further, the negative/positive division
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is the same in the plots as in in the estimates of the skewness parameters γ̂ of

the APEGARCH fits. The possible exception is Shell which has γ̂ = −0.032

but the corresponding plot seems fairly symmetric (e.g. compared to Nokia

where γ̂ = −0.031 and the plot showing a clear negative skewness). When

comparing the plots of return series and the corresponding residual plot we

find that in Dow Jones and NASDAQ negative skewness is more prominent

in the residuals than in the return series.

In Figure 4 we have plotted the ordered scaled residuals from APE-

GARCH(1, 1) fits against the corresponding theoretical quantiles of the es-

timated APE distribution. The plots are called quantile to quantile plots.

In all figures the black dots should lay on the straight line through origin

with slope one. We find this to be true on the central part of the data, but

a marked deviation is observed on the tails either generally or in terms of

a few outliers. Especially, Apple, Microsoft and Nokia show more kurtosis,

and Dow Jones still exhibit extra (negative) skewness. Note that the kurtosis

and skewness is measured with respect to the fitted APE distribution. Apart

from outliers, the residuals in others behave adequately.

4.3 Estimation of Value at Risk

Because conditionally yt+1 ∼ APE(µ, σt+1, λ, γ) the VaR values for time hori-

zon k = 1 with probability p are simply

VaR = µ+ σt+1zp(λ, γ) (9)

where zp(λ, γ) is the pth quantile of APE(0, 1, λ, γ). After inserting the

parameter estimates the desired empirical frequency is obtained by sim-

ply checking the scaled residuals against an appropriate quantile. In our
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application we focus on the long position case, in fact, we have chosen

p = 0.01, 0.02, . . . , 0.10.

For a general time horizon k the problem is more complicated as the

change in value of our financial position is 4V (t, k) = yt+1 + · · ·+yt+k which

has an unknown conditional distribution given Ft. A common approach,

especially suitable for the GARCH model, is to find the conditional variance

τ 2
t (k) = var(4V (t, k) | Ft), and then assume that conditionally 4V (t, k) ∼

N(kµ, τ 2
t (k)). Unfortunately, the normal assumption for 4V (t, k) fails even

for GARCH with normal errors not to speak of our more general models.

Therefore, we have used simulation techniques in our calculations.

Assume for simplicity of notation that the length of the series n is even.

Our experiment is performed as follows:

1. For j = 1, . . . , T with T = n
2
− 10 do 2,3,4.

2. Use yj, . . . , yj−1+n
2

to find the estimated parameters vector φ̂j.

3. Using φ̂j compute the VaR estimates V̂aR(j−1+ n
2
, k, p) either from (9)

(when k = 1) or by simulation, with 10000 replications, using recursions

(3) and (4) (when k = 5, 10). Use values p = 0.01, 0.02, . . . , 0.10.

4. For the chosen values of p and k compute the zero-one values

U(j, k, p) = 1, if 4V (j − 1 +
n

2
, k) < V̂aR(j − 1 +

n

2
, k, p),

= 0, otherwise.

5. Compute averages Ū(k, p) = T−1
∑

j U(j, k, p).

The algorithm is easily changed to a bootstrap estimation method of VaR.

Only the step 3 needs modification. Instead of drawing random errors from

17



the relevant APE distribution we sample them from the scaled residuals after

fitting the model to the subseries yj, . . . , yj−1+n
2
.

In Figures 5–7 we have plotted the values Ū(k, p) as percentages (dashed

lines) versus the nominal values, for k = 1, 5, 10, respectively. Thus, if the

model is correct we expect to see the dashed lines be close to the line with

slope one. The 95 % tolerance lines are the standard limits

p± 1.96

√
p(1− p)

T
, 0.01 ≤ p ≤ 0.10.

For the case k = 1 the bootstrap is clearly preferable to model simulation.

Remarkably, the differences between models (i.e. between estimated volatility

dynamics) are negligible. Only the APEGARCH model competes well with

bootstrap.

The situation with k = 5 in Figure 6 is somewhat worse than the one-step

predictions. The asymmetric models with bootstrap seem to give similar and

reliable estimates for the majority of the series. The most deviant series are

Nokia and Barclays. The former is often above the upper tolerance limit

whereas the latter is below the lower tolerance limit.

Apart from Nokia and Barclays the results for k = 10 in Figure 7 show

that reasonable VaR estimates are achieved via bootstrap. Also model based

AGARCH is comparable to these.

5 Discussion

In this paper we have determined and analyzed VaR measures using APE-

GARCH model. This model allows for clustering volatility, asymmetric and

leptokurtic behavior. By fixing parameters appropriate way the model re-
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Figure 5: One-step ahead Value at Risk; dashed lines are observed values,

the thick solid line in the middle is the nominal line and the other two thick

lines are 95% tolerance lines
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Figure 6: Five-step ahead Value at Risk; dashed lines are observed values,

the thick solid line in the middle is the nominal line and the other two thick

lines are 95% tolerance lines 20
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Figure 7: Ten-step ahead Value at Risk; dashed lines are observed values,

the thick solid line in the middle is the nominal line and the other two thick

lines are 95% tolerance lines 21



duces to PEGARCH, AGARCH or GARCH model. We fitted these four

models to two daily stock indices and six daily stock return series and deter-

mined VaR for these series. We applied model based and bootstrap simula-

tion techniques to calculate VaR for one, five and ten days ahead.

We found that innovations of the time series are often asymmetric and

power parameter were between 1.2 and 1.7. The results indicates that APE-

GARCH model is a preferable model in most cases. However, the quantile

to quantile plots of the residuals indicate that model is not always able to

capture the tail behavior.

As a general conclusion we observe that the bootstrap simulation com-

bined with model based volatility estimation works best in VaR calculation.

The differences between models are minor though asymmetric models have

some advantage. We also observe that with an increasing time horizon the

VaR estimation becomes less accurate and that, when predicting 10 step

ahead, estimated VaR values can be unreliable in some cases.
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A Appendix

A.1 Gradients

Consider the likelihood (6) in its general form where rt = yt − µ− γ|yt − µ|.

Let θ be the vector of all other parameters than λ. Write logL =
∑
`t. Then

∂ logL

∂θ
=
∑ ∂`t

∂θ

with

∂`t
∂θ

= cγ +
1

λ

1

σλt

[(
|rt|λ

σλt
− 1

)
∂σλt
∂θ
− λ|rt|λ−1 sign(rt)

∂rt
∂θ

]
,

where cγ is a vector with zeroes apart from the coordinate corresponding to

the partial derivative of ∂ logC(γ, λ)/∂γ. Differentiation for λ yields

∂`t
∂λ

=
1

λ2

[
log λ+ ψ

(
1 +

1

λ

)
− 1

]
+

1

λ2

(
log σλt +

|rt|λ

σλt

)
+

1

λ

1

σλt

[(
|rt|λ

σλt
− 1

)
∂σλt
∂λ
− |rt|λ(log |rt|)

]
,

where ψ denotes the digamma function ψ(u) = d log Γ(u)/du.

The partial derivatives for σλt using (4) with p = q = 1 yields

∂σλt
∂θ

=
∂α0

∂θ
+
∂α1

∂θ
|rt|λ + α1λ|rt|λ−1 sign(rt)

∂rt
∂θ

+
∂β1

∂θ
σλt−1 + β1

∂σλt−1

∂θ
∂rt
∂θ

= −∂µ
∂θ
− ∂γ

∂θ
|yt − µ|+ γ sign(yt − µ)

∂µ

∂θ
∂σλt
∂λ

= α1|rt|λ log |rt|+ β1

∂σλt−1

∂λ
.

A.2 Properties of APE distribution

It is illuminating to consider how to generate random variables from APE(0, 1, λ, γ).

It is useful as such but as a byproduct we can establish some important prop-

erties of asymmetric power exponential distributions.

23



First, by the change of variable technique we find that if Z ∼ PE(0, 1, λ),

then |Z|λ follows Gamma distribution with shape 1/λ and scale λ. Thus,

E(|Z|λ) = 1. Further, let V ∼ Gamma(1/λ, λ) and U ∼ Uniform[0, 1]

independently from V . Then

Z =
V 1/λ

sign(U − (1− γ)/2)− γ
∼ APE(0, 1, λ, γ).

Explanation is that V 1/λ is distributed as the absolute value of PE(0, 1, λ)

variable, and that this is multiplied by −1/(1 + γ) with probability (1 −

γ)/2 and by 1/(1 − γ) with probability (1 + γ)/2. The formula also leads

straightforwardly to moments and absolute moments

E(Zk) =
Γ
(
k+1
λ

)
λk/λ

Γ
(

1
λ

) (
1 + γ

2(1− γ)k
+ (−1)k

1− γ
2(1 + γ)k

)
,

E(|Z|k) =
Γ
(
k+1
λ

)
λk/λ

Γ
(

1
λ

) (
1 + γ

2(1− γ)k
+

1− γ
2(1 + γ)k

)
.

Therefore the mean is

E(Z) = m = m(γ, λ) =
Γ(2/λ)λ1/λ

Γ(1/λ)

2γ

1− γ2
. (10)

Note that the formula of absolute moments holds also for non-integer powers.

Write Z−γ|Z| = (1−γ sign(Z))|Z|, Z ∼ APE(0, 1, λ, γ). Since sign(Z) =

sign(U − (1− γ)/2), we have

Z − γ|Z| = 1− γ sign(U − (1− γ)/2)

sign(U − (1− γ)/2)− γ
V 1/λ = ±V 1/λ

which yields

E(|Z − γ|Z||λ) = 1. (11)
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