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                                                          Abstract  

Two classical issues in criminology, criminal career paradigm and age-crime curve rule, 
are analyzed in terms of economics. Age-crime curve sums up the crime intensity and 
participation aspects of individual crime behaviour during his/her lifetime. It is argued 
that crime intensity must be the starting point of economic analysis if we want to 
understand crime career and age-crime curve regularities. A simple model with crime 
intensity as age dependent decision variable was proposed to generate non-homogenous 
life time crime intensity rate. The bell shaped age-crime alternative was tested 
empirically with arrest count data of felony defendants in large urban counties in U.S 
year 1998. Poisson and NegBin count data regression models gave unsatisfactory results 
concerning the age dependency of number of arrest counts. NLS regression on individual 
age standardized arrest counts and semi-parametric Poisson regression on individual 
arrest counts provided acceptable results. The semi-parametric model estimation allowed 
for non-homogenous crime intensity presentation in the form of age class average 
proportional intensities. Regardless of using age standardized counts or controlling for 
avarage age-dependent intensities the bell shaped age-crime profile was not rejected for 
the sample.   
 

Key words.  Criminal career, age-crime profile, non-homogenous Poisson process, count 
data regression models, semi-parametric estimation.  
 



                            
 

I.  Background  
 
There are two topics that have excited much debate in recent criminology literature.  The 

older one, criminal career paradigm, refers to basic empirical requirement for 

characterizing criminality as a career, the autocorrelation of criminal behavior. The 

probability to commit a crime is higher for individuals that have already a criminal record 

compared to individuals without one. The second topic is the most important empirical 

regularity in criminology, the age-crime curve:  however or wherever measured the rates 

of criminal involvement in the population is highest for the young (males) between ages 

17 to 25 (Land & Nagin 1993). Although these facts are not in accordance with each 

other in all cases (e.g. life-course criminals) they are typically closely inter-connected. 

Age-crime curve predicts that a gradual decline will take place in average crime rates 

among the older age cohorts. This fact does not rule out the state dependency predicted 

by criminal career paradigm. State dependency can still occur among the careerists 

although increasing number of criminals terminates their criminal career and crime 

intensity is small in the old age cohorts.   

 

Basically criminal age or time dependency (age-crime curve) and state dependency 

(criminal career and recidivism) are conceptually distinct   -  the former refers to particu-

lar age (or time) structure among the criminals, and  the latter refers to non-time 

dependent clustering  (stigmatization, lock-in or hysteresis phenomena)  of  criminal 

actions among some criminals. Nevertheless they are empirically closely related since 

criminal activity is determined by the criminals’ discounted lifetime, and once started 

criminality at youth breeds too often new crimes. Thus overall volume of crime is 

therefore a function of frequency and prevalence (participation). The crime frequency 

does not decrease as much with age as participation (Kyvsgaard 2003, Ch. 7-8). This 

particular two dimensionality of criminality is also harmed by many measurement biases 

(e.g. what is the proper and reliable unit of measurement of criminality, sample selection 

in analyzed data, individual unobserved heterogeneity, etc.) and conceptual problems 

(e.g. how to define the criminal career, changing legal norms and sanctions, etc.). In spite 

of these problems criminal career paradigm and age-crime curve are still major research 
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agendas in criminology (e.g. Fagan & Western 2005, D’Unger, Land & McCall 2002, 

Levitt 1999).     

 

However a more deeply problem lies in the disagreement concerning the theoretical 

understanding of age-crime curve and criminal career. Criminal (choice) career theory 

(Blumstein & Cohen 1979) underrates the age-crime curve much as statistical artifact but 

the criminal propensity theory (Gottfredson & Hirschi, 1990, 1983) stresses the lack of 

self-control and unsocial behavior of teenagers. Recently evolutionary psychology has 

give support the propensity theory with argument that age-crime curve is produced by the 

difference between the reproductive benefits and costs of competition among young men 

(see Campbell, 1995, Kanazawa 2002).  The well developed modern statistical theory 

provides models that can test the implications of both theories (e.g. Land 1992, Nagin & 

Land 1993, Blumstein 2005). The results support both theories. The outcome is expected 

remembering the dimensions of criminality.  Aggregate age-crime curve is a product of 

both the high rate of youth full participation in crime, and the high activity level (crime 

frequency or intensity) of these young offenders. Age specific differences in 

participation, however, rather that frequency, are primarily responsible for the basic form 

of the age-crime curve (Kyvsgaard, 2003, p. 106).          

 

Economic theory does not have much to say about age-crime curve phenomena but 

criminal career issue can be understood by it in some extension. Heineke (1978) 

categorizes economic models of crime as either (1) portfolio problems, in which the agent 

must decide how much wealth to put risk through involvement in crime, or (2) labour 

supply problems, in which the agent must choose the amount of time to be allocated to 

illegal activity. In both cases criminal activity onsets if the expected net gain or utility 

from it exceeds the benefits from legal activity. In principle a repeated activity 

(recidivism) can be modeled as a sequence of crimes where prolonged activity can be 

seen as means to accumulate (illegal) capital or consumption resources. As the activity 

can be halted by imprisonment the incentive to return to illegal activity after sentence is 

high as typically the capital gained from crimes is confiscated by state. This kind of 

career optimization can been modeled with dynamic programming methods including 
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three conditional states (terminated activity, halted activity, repeated activity) where the 

life time expected  net income is maximized. Leung (1991, 1995) provides a nice starting 

point to these models. His approach resembles closely to technically demanding job 

change and career literature found in modern labour economics (e.g. Berkovic & Stern 

1991, Hopenhayen & Rogerson 1993, Rust 1996, Adda & Cooper 2003). However many 

questions are still open and much work is needed to get transparent and robust economic 

models of recidivism.  

 

The main problem with the approach above is that it can reveal only some issues on 

property crimes – not crimes in general. Secondly, it is silent of age-crime curve or 

profile regularity. By adding some elements of human capital and portfolio theory to the 

career optimization model would support age-crime curve, since relative expected gains 

from crimes of young person are high as their wealth is very low and first round 

sentences are not severe. Leung’s paper (1994) on economics of age-crime profile is a 

promising starting point in this context.  He observes first that two dimensionality of 

unimodal and positively skewed age-crime profile relates to the above underlying 

concepts of ‘age-participation’ and ‘age-intensity’. The former can easily explain the age-

crime profile but surprisingly Leung argues that changes in the latter can alone explain 

the age-crime profile.   

 

The key of this result lies in the selection effect, i.e. intensity rate of offending increases 

with age and the hazard rate of arrest rises over time. An increasing hazard rate of arrest 

implies that fewer offenders can successfully avoid arrest as they got old.  As a result, the 

proportion of older offenders is smaller because many of them had already been 

apprehended when they were young. The observed age-crime profile indicates a more 

intense selection among the young offenders because it is more difficult to sustain 

criminal career involving more serious offenses for an extended period of time (Leung 

1994, p. 483-84). Leung’s basic economic argument for increasing crime intensity rate 

stems from the consumption-investment decision theory. The probability that criminal 

will not be arrested by time t is like a capital asset that has to be consumed in the finite 

lifetime. A dynamic trade-off exists between consumption and capital de-accumulation.  
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An optimal strategy is to increase the intensity (i.e. consumption) over life time as the 

expected returns form criminal activity fall over the finite life time. If criminal would 

exhaust the stock of capital too early, he/she would not be able enjoy any later gains at 

all, resulting in a lower lifetime expected utility. The increase in the intensity rate over 

time is driven by the end-of-horizon effects.  

 

Although Leung’s approach is challenging and novel it has some drawbacks. First, the 

analogy to capital theory is somewhat awkward. If the criminal’s subjective interest rate 

(time preference) is high and he/she is risk-aversive the increasing intensity rate is not 

necessarily sustained. Second, to derive the observed age-crime profile it is enough that 

the age-intensity profile has the same form, i.e. the intensity rate of offending increases 

rapidly in the teens and then start to decline after 25 years. However we do not have yet 

an economic theory to support this behaviour. Leung’s trick to derive observed age-crime 

profile with increasing intensity rate is the selection effect. It is difficult to maintain a 

criminal career with an increasing intensity rate of offending over an extended period of 

time. Thus there exist less offenders in old age cohorts compared to young ones. Third, 

Leung does not deal with the issues of criminal career and recidivism. He only derives 

optimal time for first crime action with increasing intensity rate. Thus Leung’s approach 

can give one answer to observed age-crime statistics but many other underlying aspects 

remain unexplained.  However other economic papers that pay theoretical attention to 

dynamic complexity of criminal activity are few (Davis 1988, Polinsky & Rubinfield 

1991, Lee & McCrary 2005, Jacob, Lefgren & Moretti 2004) 1).   

 

In this context a simple model that tackles the salient features of crime career and age-

crime curve is proposed. The starting point of the model is the fact that crime intensity 

per time and age varies across the individuals and they control their intensity. Higher 

activity increases the probability of imprisonment. The criminal sets his crime rate at 

level that minimizes his expected time devoted to criminal activity incurring some costs. 

_____________________________________________ 

1) Two last mentioned references give also partial review of current related literature. 
The special number of Int. Economic Review (Vol. 45, Number 3, 2004) on Economic 
Models of Crime contains also some important papers.                                 
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By augmenting the basic model with fixed expected life time during the total number of 

crimes can be committed we are able to show that increased number of crimes increases 

the expected life time with rate that increases also the life time crime intensity.  This 

result gives an explanation to question why old criminals necessarily do not commit less  

age standardized crime than young ones (the intensity effect). The assumption of age 

dependent subjective time preference stresses the model results that crimes are committed 

at the beginning of life time. The model emphasizes the noticed importance of finding a 

connection between behavioral models and stochastic models of crime.  

 
In the empirical part of paper some statistical models related to Poisson regression are 

suggested and estimated. However used crime career data (BJS, 1998) and implications 

of economic model refer to non-homogenous Poisson process for crime intensity. Thus 

some modifications of the basic Poisson regression – both parametric and semi-

parametric  - are proposed. Results show that age-crime curve is still valid although we 

control for observed personal characteristics and for average age cohorts effects of 

individual recidivism.              

 
II. Model of crime intensity, criminal career, and age-crime profile  
 
II.1.  Optimizing  the crime career  

Assume that measurable criminal activity rate (intensity)  (i.e. number of crimes during 

given time interval, e.g. )  takes values between 0

v

/s year   and  MAXv ,  i.e.  

 

           (I.1)                               
,  when  0 ,  and

 .
0,  when  and 0

MAX

MAX

v v v
v

v v v
≤ ≤⎧

= ⎨ > <⎩

 

It is assumed that activity is distributed uniformly between 0 MAXv v≤ ≤ . Naturally none 

activity takes place when  and at rate 0v ≤ MAXv v>  when a sure arrest happens. Higher 

the activity, the higher is the probability that it is stopped by the control authorities. 

Structure of Eq. 1) gives a linear relationship between activity and the probability of 

being stopped  
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         (I.2)           [ ] ( )     0 ,   where  1/ .MAX MAXProb V v p v kv v v k v≤ = = ≤ ≤ =  

 

The person is detained for average time . The random number of authorities in 

proximity to criminal activity has a Poisson distribution with a parameter

0t

μ . Assume that 

number of crimes person commits is .  Now the average or expected time S [ ]E t  of 

committing these crimes or criminal career, which includes also the imprisonment time, 

is  

         (I.3)                              0 0[ ] / ( ) / .E t S v Sp v t S v Skvtμ μ= + = +  

 

The rational criminal tries to minimize the expected time devoted to number of crimes  

with optimal criminal activity rate value 

S

* (0, )MAXv v∈ . Thus we have assumed that 

criminal has chosen a criminal career and he/she is maximizing the net benefits from it. 

Since high value of  gives a possibility to commit many crimes and at same time it 

increases the probability of arrest the rational criminal looks for a minimizing value of 

  that gives an optimal trade off value between these opposite factors. Optimizing  Eq. 

3)  in respect to    

v

*v

v

 

       (I.4)                              02

[ ] 0dE t S Skt
dv v

μ= − + =
2

2 3

[ ] 2    |   ( 0 )d E t S
dv v

= >  

 

gives a solution   that is independent of   *v S

 

      (I.5)                         
0 0

1* MAXvv
kt tμ μ

= =         (
0

1*   if   MAX MAXv v v
tμ

< > ). 

 

The first order condition for optimal crime activity  

     (I.6)                                            02

1 0kt
v

μ− + =  

 

entails following comparative statistic results 
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    (I.7)                              * * *
0

0,   0,   and  0.  v v v v v v
dv dv dv
d dk dtμ = = =< < <  

 

Thus an increase in control activity μ , a decrease of maximal crime rate, and an increase 

of arrest time decreases the optimal crime number per time unit. Subsequently the 

expected time t  of crime career increases for fixed crime intensity  and S when the 

control parameters increase (see Eq. I.3). Thus we run into same number of crimes as 

earlier but now they are committed during the longer time period. Contrary to this 

typically the parameters 

*v

0,  ,  and  k tμ  are lower for first time and young criminals 

supporting high crime intensity rates for them.    

 

The model above is in many ways too general or abstract to analyze all salient questions 

concerning the crime activity and life time crime career. However it gives some support 

for inverted U-shaped crime-age profile. Note also that optimal result for crime intensity 

 was surprisingly independent of participation activity  but the optimal v S | *[ ] v vE t =  

depends positively on S.  In following three modifications are introduced into the model. 

First we notice that v  is the crime activity during the whole expected life of criminal 

[ ]E T  and v s .  Now as (fixed) expected life time '/ [ ]E T= [ ]E T  is the maximal total 

expected life time devoted to criminal activity [ ]E t  and the criminal optimize with  we 

must have .  Second we assume that the probability of arrest is a convex function 

of crime activity during the expected life time.  Thus   

v

's S=

 

    (I.8)        [ ] ( )     0 ,   where  1/   with  1.a
MAX MAXProb V v p v kv v v k v α≤ = = ≤ ≤ = >

 

Note that with 0 1α< < , high criminal activity entails that the probability of arrest 

increases slowly. However when 1α >  the arrest probability is low for low levels of 

activity but the arrest probability increases rapidly with activity level. We consider only 

the latter case. Finally we assume that criminal activity incurs additional costs with a 

convex cost function depending on the number of crimes, i.e. .  The mini-

mization problem of the average length or expected criminal career 

2( / 2)Sβ

[ ] [ ]E E Tτ ≤  is  
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        (I.9)                            

2
0

1
2

0

[ ] [ ]
2

       [ ] .
[ ] 2

E E T Skv t S

SE T kt S
E T

α

α

α

βτ μ

βμ
+

= + −

= + −

 

 

As the number of life time crimes  is now the only variable of model the criminal 

minimizes with it the expected life time devoted to criminal career.  The first order 

condition is  

S

                

       (I.10)        

0

1 * 1

0

[ ] ( 1) [ ] 0

[ ]           ( )  0 :    ,   where    0.
( 1)

dE kE T t S S
dS

E Tg S S B S B B
kt

α α

α
α α

τ α μ β

β
α μ

−

− −

= + − =

⇒ = − = = = >
+

 

 

A minimum  exists since*S
2

*2

[ ] |S S
d E

dS
τ

= > 0   (see Appendix I). Note that for any 

parameter values of  (see Appendix II) 1a >

 

 

        (I.11)        *
[ ] 0S S

dE T
dS = > ,   *

[ ] 0S S
dE T

dμ = > ,  *
[ ] 0S S

dE T
dk = > ,  *

0

[ ] 0S S
dE T

dt = > . 

 

 

These results mean that if the criminal keeps his criminal participation at the optimal 

level  that sustains the optimal minimized expected time devoted to this activity, then 

an increasing number of crimes must be compensated with higher expected total life time. 

In similar fashion if the control activities increase (

*S

00, 0, 0)d dk dtμ > > >  the expected 

life time increases. The result is called the paradox of crime career. In the fight against 

criminality the society increases the expected life time of careerist and his/her number of 

crimes.  The paradox lies in the existence of optimal value of number of crimes per life 
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time once the career of criminality is chosen:  higher the expected life time among the 

criminals, larger is the number crimes devoted to minimize the length of expected 

criminal career.  

 

II.2. Age dependent crime intensity and time preference  

The results obtained above support the bell-shaped age-crime curve regulatory since we 

can argue that young criminals have higher crime intensity than older criminals, and 

longer is expected life time of criminal larger is the number of crimes committed by the 

person. Thus we have a prediction that crime participation is distributed evenly during the 

life time but the intensity varies. Note however that 0/dS dt 0<  at participation optimum. 

The crime participation decreases when the average imprisonment time increases. This is 

the selection effect that reduces the number of older criminals among the population.  

 

The selection story is however deeper one in this context since  

with optimum  (see App. II). The result indicates that optimum participation level can 

be only sustained with expected life time with rate that is larger than life time intensity 

rate.  Note however that if 

/ [ ] / [dS dE T v S E T> = ]

*S

[ ]E T  refers to the expected remaining life time among the 

careerist then we observe two things.  

 

First, as the expected life time decreases with age the number of crimes decreases also 

but with a higher degree, i.e. life time crime intensity / [ ]v S E T= can still be high 

although the level of participation S and (remaining) expected lifetime [ ]E T  are low. A 

lower participation among older criminals is obtained if look in details the expected life 

formula, i.e.  

 

    (I.12)                              
0 0 0

[ ] ( ) ( ) [1 ( )]E T tf t dt G t dt F t dt
∞ ∞ ∞

= = = −∫ ∫ ∫
 

where  is the probability to live at least t  years, and  

 is survival probability of  living past  years.  A most 

elementary model of life time distribution that also has some relevance in human 

( ) [ ]F t Prob T t= ≤

( ) 1 ( ) [ ]G t F t Prob T t= − = > t
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populations is the exponential distribution. As ( ) tG t e φ−=  ( 0, 0t )φ≥ >  for exponential 

distribution, we have    

 

     (I.13)                              
0

1 1[ | ] [1 ]
t x

tE T t e dx
e

φ
φφ

−< ∞ = = −∫ . 

Now  

    (I.14)                               *
[ | ]

S S
dE T t

dS =

< ∞
=

1 1[ [1 ]]
0

td
e

dS

φφ
−

>   

 

can happen only with increasing age  if since  0dt > 0dS >

 

      (I.15)                            1 1[ ] t
td e d

e
φ

φφ φ
−− = > 0t . 

 

Thus the number of crimes decreases with less additional years of life. Note that other life 

time distributions can give opposite results and challenging our basic result that 

*
[ ] 0.S S

dE T
dS = >  

 

Secondly, the form of time preference for the remaining life may alter the result too. In 

Appendix III it is shown that an age exists where  turns negative when expected 

life time is valued with decreasing time preference when age increases , i.e. 

 

/dS dt

( 0dt > )

t( *)   with  '( *) 0,r te r t− < where  * *t T= − . Thus if the criminal values his remaining 

planned life time highly, then the number of crimes decreases, i.e. 0dS
dt

<  when ,  

and   

1t t>

*
[ ] 0S S

dE T
dS = < .   
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III. Statistical models of arrest counts    
 
Assume at the arrest time  the criminal i  has experienced during his lifetime  

number of earlier arrests denoted as

0t iT

0|i t ty < . Naturally 
0|i t t iy < y=  can take only finite 

number of non-negative integer value like 0,1,2,....iy = Assume that iy  measures the 

criminal career of person i  before time . This type of phenomena is called a count 

process { , , where  is the number of events that have occurred before time  

The process is called a Poisson process if the probability of a single occurrence during a 

brief time interval (exposure time t ) is proportional to its duration and if the occurrences 

in two non-overlapping intervals are independent. Now the probability function of Y  has 

the form 

0t

}tY t +∈\ tY 0 .t

 

        (II.1)                               ( )( ; , )   ( ; , ).
!

t y

i i
i

e tf y t Poisson y t
y

λ λλ λ
−

= ∼  

 

The Poisson process can be characterized by exponentially distributed waiting times 

between consecutive events leading to a time-invariant hazard function. This observation 

(with ) leads to Poisson –regression model that is a natural starting point in many 

applications. Thus

1t =

iy , given the vector of regressors , is independently Poisson 

distributed with density     

ix

 

      (II.2)                                  ( | ) ,      0,1, 2,...
!

i iy
i

i i
i

e
f y y

y

λ λ−

= =ix  . 

The mean parameter is   

 

      (II.3)                                          exp[ ],iλ = ix 'β   1, 2,....,i N=  

 

where β  is ( 1)xk  parameter vector.   
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However this set-up is not applicable for crime career data analyzed in this paper. The 

reason is two fold. First we have data for different person with different arrest numbers 

iy  during his/her life time  (i.e. his/her age) up till time point . Naturally in average 

older criminals have larger crime record than young criminals. Second we have argued 

that crime intensity is not constant but it is age dependent (i.e. the age-crime curve). This 

means that basically in Eq. 1) 

iT 0t

iλ  is time dependent, i.e. ( )  for  0i t tλ >  and the Poisson 

process is now non-homogenous. Thus we allow for possibility that arrests may occur 

more likely during certain periods of life time than during other times, i.e.  the age-crime 

profile. We also note that exposure time . i it T≠ Typically it Ti<  since we can not assume 

that all criminals devote their entire life time to criminal career.   

 

Figure  1. depicts  the  situation graphically. Person A is relative young (say above 15 

years) but has already experienced two arrests. Person B with age of 28 has already  a 

large and increasing crime record. Person  C is in his middle ages but his criminal career 

has started quite late.  Person D has a criminal career motivated by our theoretical model. 

Most of arrests happens at younger years and they decay at later years.   

 

Figure 1.  Crime  careers  and  ages  
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Note that in the Poisson regression model  

 

      (II.4)                              [ | ] [ | ] exp[ ].i i i iE y VAR y= = ix x x 'β            

 

Thus the conditional mean and variance are equal. The model assume that relevant 

individual factors that cause arrest counts are contained in vector . These are typically 

variables like sex, race, occupation and age. The last one is relevant in our case. Our 

hypothesis is that age dependency of criminal career is non-linear: first increasing in 

younger years and then decreasing at older ages. This can be modeled with 2

ix

nd order age 

polynomial like 2
0 1 2( )f T a a T a T= + + . The functional form corresponds to our predicted 

criminal age profile with . Thus the base model have form of   1 0  and  a 0a > 2 <

 

                                   [ | ]i iE y =x , ,1
exp[ ] exp[ ( )]k

j i j i ij
b x f T

=
= +∑ix 'β .  

 

Note that model is based on the homogenous Poisson process, i.e. λ  is constant. Our 

theoretical model, like Leung’s model, leads  to an interesting notion that a criminal can 

“speed up” his crime activity given the time of his/her life devoted to criminal active 

conditioned on the arrest probability. This observation entails a case where the length of 

count exposure time varies across the individuals, i.e. the expected count is proportional 

to the length of the interval during it has occurred.  Now for the individual time of 

exposure  homogeneous Poisson process entails that    it

 

 

   (II.5)                  exp[ ( )] exp[ ( ) ln ]i i i i it f T f T t= + = + +i ix ' x 'β β 1, 2,...,i N=,  . λ
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A) OLS and NLS estimation  

Eq. II.5) gives an interesting possibility for OLS estimation since under assumption that  

  we can use approximate model   it T= i

) i

 

 

     (II.6)                                     ˆ / (i i i iT g Tλ λ ε= = + +ix 'β . 

 

 

Thus we have a regression model that is not anymore based on counts and Poisson 

distribution but on exposure time age standardized “counts” with [ ] 0iE ε = .  Estimation 

of Eq. 6) gives us some preliminary information concerning how individual factors affect 

arrest intensity per age. Note also that standardization leads also to age function 

 where our crime career age profile hypothesis corresponds to 

 An alternative estimation is based on NLS-method. The method 

produces less biased results compared to OLS under assumption that Poisson approach is 

true one.     

0 1( )g T a a T= +

0 10  and  0.a a> <

i

 

     (II.6’)                                   ˆ / exp[ ( )]i i i iT f Tλ λ ε= = +ix 'β + . 

 

 

Note with assumption 2(0, )i NID εε σ∼  NLS equals MLE, and it gives consistent 

estimator for model parameters. However the efficiency loss is evident since NLS ignores 

the inherent heteroskedasticity of Poisson regression.   

 

B) Poisson Regression and unobserved heterogeneity  

Holding back to integer count numbers and  Poisson model  

 

 

   (II. 7)           exp[ ( )] exp[ ( ) ln ]i i i i it f T f T t= + = + +i ix ' x 'β β 1, 2,...,i N,  =  , λ
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we observe that this formula is problematic since it contains both exogenous time effect, 

 = age, and endogenous time effects, the optimal criminal career  (= exposure time).  

Typically, like in this study, we do not have data for criminal’s exposure time (or the 

period of risk) for criminal activity, i.e. waiting times between subsequent arrests or his 

total crime career period. One crude solution (used already above in Eq. II.6) is to assume 

that  meaning that criminal’s age equals the crime exposure time. Note that this 

result was obtained in our theory model above. Obviously they differ but they are 

expected to be highly correlated at least for life career criminals. This notion makes the 

statistical estimation of  Eq. II.7)  unreliable.  However we can assume that  and  are 

related to each other randomly, i.e. 

iT it

it T= i

i

iT it

i it Tε=  where iε  is some random variable defined on 

limits . Thus part of person’s life is selected randomly to the criminal career. This 

formulation preserves some age dependence on exposure time. Alternatively we can 

argue that we can not measure  correctly. We only observe  that is augmented with 

measurement error 

(0,1)

it iT

iε  to correspond the unobservable .  it

 

The main weakness of Poisson model is the assumption that  

stemming from the fact that the intensity of Poisson process is a deterministic function of 

the covariates. No unobserved heterogeneity is allowed for. Likewise assumption of 

independent random counts over time is questionable, i.e. occurrences influence the 

probability of future occurrences (positive count occurrence dependency or positive 

contagion). Unobserved heterogeneity and positive contagion lead to over-dispersion 

phenomena . The former is easily seen if we assume that  

[ | ] [ | ]i i i iE y VAR y=x x

[ | ] [ | ]i i i iE y VAR y<x x

i

 

        (II.8)                             exp[ ] exp[ ]i iλ ε μ= + =�
i ix ' x 'β  β  

 

where  captures the non-modeled unobserved heterogeneity and  iu [ , ] 0i icorr ε =x . Now 

[ ]iE iλ λ=�  and of 2 2[ ]
ii iVAR uλ λ σ=�  if we scale [ ] 1iE μ = . Thus  
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     (II.9)                              
2 2

[ ] [ [ | ]] [ [ | ]]

             [ ] [ ] .
i

i i i i

i i i i u

VAR y E VAR y VAR E Y

E VAR

λ λi

iλ λ λ λ σ λ

= +

= + = + >

� �

� �
 

 

Note that above we proposed the alternative that i it T iε= . Now noticing this in Eq. II.8)  

gives  

 

          (II.10)         exp[ ln( ) ] exp[ ln ln ] exp[ ]i i i i i iT T T iλ ε ε= + = + + =�
i ix ' x ' x ' εiβ  β β . 

 

Eq. II.10) gives the possibility to use age as exposure time variable but the price is the 

over-dispersed count model that is not anymore a Poisson process model. The 

specification in Eq. 10) entails that we can use once again function 
2

0 1 2( )f T a a T Tα= + +  with   to preserve the argued inverted U -shape  

age response to arrests counts. Note that specifications in  Eq. II.7) and Eq. II.10) imply 

that we have to use parameter constraint 

1 21  and 0a a> <

1θ =  in the models  

 

            (II. 7’)           exp[ ( ) ln ] exp[ ( )]i i i i if T t t f Tλ θ= + + = +i ix ' x 'β β , 

 

            (II.10’)          exp[ ( ) ln( ) ] exp[ ( )]i i i i if T T T f Ti iλ θ ε= + + = +�
i ix ' x 'β  β ε . 

 

These specifications support the basic assumption of  count models that intensity rate iλ  

is constant and preserve the proportionality to exposure time, i.e. doubling the exposure 

time doubles the expected number of counts.   Form point of view of age-crime curve 

testing this means that rejecting the constraint 1θ =  refers to non-homogenous Poisson- 

or count process where the exposure time affects the number of counts in non-linear way. 

This means that age and exposure time are partly endogenously selected to number of 

crimes, not only exogenously determining them. Thus rejecting the hypothesis 1θ =  for 

alternative 1θ >  in the presence of  2
0 1 2( )f T a a T a T= + +  in the model is actually test 

for age-crime curve hypothesis augmented with indication of deeper level age 
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dependency of crime rates.  Note that it is quite easy to show that if ( | )i t ageλ  is 

increasing function of age we have the case of [ | ] [ | ]i i i iE y VAR y<x x

x

 once again.  

 

Thus the equality of conditional expectation and variance is not realistic assumption for 

many applications of count data. The over-dispersion case is also evident under the 

presence of positive occurrence dependence.2) Much used Negative Binomial (NegBin) 

model alternative allows for over-dispersion, i.e 

 

   (II.11)                             2 2[ | ] [ | ] [ [ | ]]i i i i i iVAR y E y E yσ= +x x

 

leading to model alternative also for the conditional variance  

 

    (II.12)                                       2 1 exp( ' )iσ = + iz γ , 

 

where iz  is vector of some explanatory variables. When  1γ =  we get a scalar dispersion 

parameter, otherwise we estimate a variance function. Some more general models allow 

for under-dispersion (see Winkelmann & Zimmermann 1995, Winkelmann 2003, 

Cameron and Trivedi 1998).  Negbin –model alterative can easily to show preserve 

positive occurrence dependence. If an arrest occurrence increases the probability of next 

occurrence then the Polya urn schema gives NegBin distribution.     

 

 

 

___________________________________. 
2)  Negative contagion causes underdispersion. This can be seen in following way                               

                                     
0,    for  0

Pr [ ]
( , ) ( 1, ),  for  1, 2, ...

.
r

ob Y r
Poisson r Poisson r rα α

=
= =

− + =

⎧
⎨
⎩

If 1α >  (the parameter for positive duration dependence in Gamma distributed waiting time) then Poisson 
count process exhibits under-dispersion (Winkelmann 1995). Note that positive contagion (negative 
duration dependence) can also rise from aggregation of individuals having different waiting times (i.e. 
different propensity to experience an event).  
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We stress that above developments and comments do not imply that we have solved the 

statistical problems of unobserved heterogeneity and (positive) contamination  - far from 

it. We have only shown that all assumptions of Poisson model are not fulfilled in our 

model specification of arrest counts and suggested specification of age effects leads to 

richer model alternative. One alternate to be estimated combines normal distributed 

unobserved heterogeneity in NegBin –model.              

 

C) Semiparametric  estimation   

The Poisson equi-dispersion model can still be questioned when we face non-

homogenous Poisson process ( )i tλ  for observed counts. A partly solution to this problem 

is to use richer functional presentation for exposure time effects in Poisson model, i.e. we 

have to have model  like  

 

           (II.13)                                  ( ) ( ) exp[ ]i it g tλ = ix 'β , 

 

where  is a some function that models the time (e.g. age) dependent crime event 

occurrence rate. The model in Eq. II.13) allows us to separate the age class effects and 

individual age effects on crime counts.   measures the age class effects, and   - 

still including 

( )ig t

( )ig t ix '

2
0 1 2( )f T a a T a T= + +  - measures the individual crime rate effects. 

Because our sample of age observations is used to model both these effects some special 

model and estimation alternative are used.  

 

Assume next that non-homogenous Poisson process with time dependent intensity 

function fulfills the following proportional property  

 

          (II.14)                                   0( ) ( )exp[ ],i it tλ λ=x ix 'β    

 

where 0 ( )i tλ  is the baseline intensity function. The corresponding cumulative or 

integrated intensity function is  
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         (II.15)                             0
0

( ) ( ) ( ) exp[ ' ]
t

i i i it u du tλΛ = = Λ∫x x x β , 

 

where  . Suppose that there are independent observations on   

individuals and he/she is observed over the time interval . Let  be events (arrests) 

observed to occur at times . Given the age information we can always 

order ’s so that  with .  Letting 

0 0( ) ( )t
i t uλΛ = ∫0 du

n

n

m

(0, )iT in

1 2 ....
ii i it t t< < <

iT 1 20 .... mT T T< ≤ ≤ ≤
il iT t≥ 0 0T =  and  represent 

the total number of events (arrest) in (0 , we can write for 

( )n t

, )t 1, 2,...,i m=   

 

                * *
1 0 0 1[ ( ) ( )] [ ( ) ( )] exp( ' )m

i i l i
E n t n T t T− − =

− = Λ − Λ k∑ x β ,   for   ,  1i iT t− < ≤ T

 

where  corresponds to *
0 ( )tΛ 0*

0 0( )t eβλ λ= . Note that in this application context both 

 refer to different age classes, i.e. we estimate average proportional age class 

crime intensities.  

  and  it T

 

This suggest the estimate for  1, 2,...,   i m=

 

   (II.16)                       
1

1* 1
0 ˆ ˆ' '

1

( ) ( ) ( ) ( )ˆ ( ) ,i i

l l
i

i

i
n n i

m m
n

l n l i

n T n T n t n Tt
e e

−
− −

=
= =

− −
Λ = +∑

∑ ∑x xβ β
 1i iT t− T< ≤ .    

 

Eq. II.16) entails a two step estimation routine with equations  

 

         (II.17a)             
'*2

01 1
ˆ ( ) 0,     1, 2,...,i

m m
i ir i iri i

r

l n x T x e r k
β = =

∂
= − Λ = =

∂ ∑ ∑ x β  

   and  

          (II.17b)          
1

1*
0 ˆ'

1

( ) ( )
( ) ,     1, 2,.., ,i i

l
i

i

i
n n

i m
n

l n

n T n T
T i

e

−
−

=
=

m
−

Λ = =∑
∑ x β
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where l2 is the loglikelihood from likelihood * *
1 0 2 0( ) ( , )L LΛ Λ β . Thus we estimate first 

 from  Eq. II.17b)  with by setting *
0 ( )iTΛ =� 0β  and then by  using the gradient condition 

II.17a)  a ML –estimate is obtained for  β̂ .  Inserting this back in  II.17b)  provides a 

new estimate for .  By repeating this iterative 2-step produce convergent estimates 

for 

*
0 ( )iTΛ

*
0 ( )  and iTΛ  β   are obtained (for more details, see Lawless 1987).  In principle this 

method separates and estimates the average proportional age class intensities and 

individual control effects on observed individual crime counts.    

 

IV. Data and Estimation Results  
 
IV.1.  Data  
 
Our data consists of felony defendants in large urban counties in U.S in year 1998  

(USDoJ/BJS: State Court Processing Statistics, 1998). In the 1990’s Bureau of Justice 

tracked every second year a sample of felony cases during the month of May in 75 largest 

counties in the US. Thus the follow up (or sample exposure) time  is one month. The 

original sample consisted of 15878 arrested individuals with following variables 

0t

 

PRIARR = Number of prior arrests (0,1,2,….,N),    AGE  = Age of defendant.  

PRICONV = Number of prior convictions.  

PRIJAIL = Number of prior jail incarcerations.   

PRIPRIS = Number of prior prison incarcerations 

RACE  =  White: 1, Black: 2, American Indian or Alaskan Native: 3, Asian: 4.  

SERARR = Most serious prior arrest. Misdemeanor: 1,  Felony: 2,  No Prior Arrest  

                   (NPA): 0. 

SERCONV = Most serious prior conviction. Misdemeanor: 1,  Felony: 2,  No Prior  

                       Conviction (NPA):  0.   

SEX  =  Male: 1,  Female: 2.  

STATE = state where the arrest took place. A qualitative index that was transformed  

                to ascending numerical index with state population size.  
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After excluding missing observation from each variable the sample reduced to 6827 

observations. The main interest variables are PRIARR (number of prior arrests in May 

1998) and AGE (age of defendant). Table 1 gives the main summary statistics of 

continuous variables and Table 2 reports the distributions of discrete variables. The age 

range between defendants is 13 – 81 with mean of 30.6 years. Past criminal record 

(arrests) is found among 72% of them and earlier prison convictions are also typical.   All 

variables are skew to right and highly peaked compared to normal distribution. The age 

distribution is most close to normal. Most of offenders are male and black (79.8% and 

44.1%). Many of them has multiple type of criminal record.   

 

Table 1. Summary statistics of continuous variables.  
 

 PRIARR PRICONV PRIJAIL PRIPRIS AGE 
 Mean  7.222  2.878  1.418  0.431  30.607 
 Median  3.000  1.000  0.000  0.000  29.000 
 Maximum  114  52  39  16  81 
 Minimum  0  0  0  0  13 
 Std. Dev.  10.497  4.559  2.833  1.208  10.043 
 Skewness  2.861  3.134  4.227  4.641  0.829 
 Kurtosis  15.123  18.356  31.185  33.567  3.768 
 %  X > 0 72.2% (4932)  58.6% (4004) 43.1% (2931) 19.3%  (1321)  

 

 

Table 2. Distributions of discrete variables.  
 

SEX RACE SERARR SRCONV 

MALE  5447  

(79.8%) 

WHITE 2281 

 (33.4%) 

MISDEM.  861 

 (12.6%) 

MISDEM 1265 

  (18.5%) 

FEMALE 1380 

(20.2%) 

BLACK 3013 

 (44.1%) 

FELONY  4071  

 (59.6%) 

FELONY  2739  

 (40.4%) 

 
INDIAN  71 

  (1%) 

NPA         1895  

 (27.7%) 

NPA        2823  

 (41.4%) 

 
ASIAN  82 

 (1.2%) 
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Figure 2.  Age Distributions of Arrested  
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Figures 2-10 give a closer look at age distribution of analyzed sample of arrested. Figures 

basically tell the story of age dependency of crime participation. The peak is obtained age 

20 but other lower peak is found at age 32. Thus the unimodality of aggregate age-crime 

profile is not valid in this sample but right skewness is obvious. Next eight pictures (age 

distributions of arrested in different arrest number classes) give the explanation for found 

density estimate. The peak number of arrests shift toward right and the distributions 

normalizes with age. Most importantly the number of arrested decreases fast with the age 

and the number of arrests.  
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Figures 3-10.  Age Distributions of Arrested with Different Arrest Numbers   
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Figures 11.  Distribution of  Number of Arrests  
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Figure 11 shows that arrest number declines rapidly after the first arrest in sample. The 

distributions are similar in all age classes (see Appendix IV). Thus shape of relative 

crime frequency in different age classes remains same but the number of arrested 

participation) is lower in higher age classes. Finally Box –plots  in Figures 12 and 13 sum 

the information above. Figure 12 shows the distributions of number of arrests at different 

ages. Figure 13 tells the story in the opposite way: the age distributions of given arrest 

numbers.  

 

Age class crime intensity distributions in Figure 12 are clearly skewed, mean values 

increase with the age, and in age classes above 57 years distributions are very diffuse. 

However after age 45 the increase ceases. The number of defendants is low in higher age 

classes due the voluntary and involuntary drop-out selection of crime careers. The Box-

plots in Figure 13 confirm us the earlier results that crime intensity increases with age but 

many outliers are found with arrest number less than 20. Age distributions with high 

arrest numbers are also very diffuse. Expected age of defendants increase with number of 

arrest when number of arrests is below 25 but after that it seems to decline or stabilize.  
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Figure 12.  Distributions of  Number of Arrests in Age Classes  
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Figure 13.  Distribution of  Number of Arrests  
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Generally the figures support the view that inverted U-shape age-crime profile is valid in 

analyzed sample but tail behaviour of marginal distributions of two-dimensional age and 

arrest number distribution are diffuse (see also Figure 14). This makes the conditional 
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modeling of number of arrests with given age of arrested, i.e. [ |  ]E Y X age= , a 

demanding task.    

   

Figure 14.  Age and number of arrests in 3D 

AGE and  NUMBER OF  ARRESTS 

25
17

8
0

30

25

20

15

220

165

110

55

0

 

V. Estimation results  
We first report least square estimation results on age standardized intensities /i iTλ . 

Figure 15. below depicts the age distribution of /i Tiλ  (see also Appendix V). We notice 

that age response to /i Tiλ  gives the age-crime profile shape. In Figure 15 number of 

arrested per age increases faster than age under age class 27 and after it the converse 

happens. The increasing mean intensity values are in accordance with Leung’s 

assumption of increasing age-crime intensity. The OLS estimation with different  
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               Figure 15.  Age and age standardized crime counts 
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covariates show that negative age effects dominates in multivariate regression setting. 

Number of prior convictions (PRICONV) does not halter age standardized number of 

arrested. Prior prison and jail incarcerations (PRIJAIL, PRIPRIS) do not affect them in 

statistically significant way. However the severity of prior arrests (SERARR) increases 

standardized arrests and prior convictions effects are non-significant. Non-white males 

are most often arrested and larger the state (city) less arrests happen. NLS –estimation of 

Poisson type model with 2
0 1 2( )i i iF T a a T Tα= + +  on age standardized arrest counts are 

close to OLS estimation results. Note negative  corresponds to bell shaped age-crime 

profile hypothesis. However the coefficient estimates of PRIJAIL, PRIPRIS, and STATE 

lose their statistical significance. Coefficient for SERCONV turns positive and is 

statistically significant.  

2a
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Table 3.   OLS  on  PRIARRG = arrests/age:   0 1/i i iT T iλ α α ε= + + +ix 'β  

 
Method: Least Squares,  N = 6827   
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.154841 0.010264 15.08573 0.0000 
AGE -0.003618 0.000234 -15.47848 0.0000 

PRICONV 0.043868 0.002689 16.31571 0.0000 
PRIJAIL 0.004997 0.003504 1.425968 0.1539 
PRIPRIS -0.004473 0.004193 -1.066720 0.2861 

RACE 0.009234 0.003527 2.617997 0.0089 
SERARR 0.083795 0.003423 24.47661 0.0000 

SERCONV -0.005002 0.005124 -0.976094 0.3291 
SEX -0.034881 0.004407 -7.915146 0.0000 

STATE -0.002290 0.000310 -7.382945 0.0000 

R-squared 0.605303     Mean dependent var 0.229880 
Adjusted R-squared 0.604782     S.D. dependent var 0.315579 
S.E. of regression 0.198393     Akaike info criterion -0.395666 

 
 
 
Table 4.  NLS  on  PRIARR =arrests/age: 2

0 1 2/ exp[ ]i i i i iT a a T Tλ α ε= + + + +ix 'β  
 

Method: Non-Linear Least Squares,  N = 6827   
White Heteroskedasticity-Consistent Standard Errors & Covariance 
================== ======== ========== ========== ======== 

 Coefficient Std. Error t-Statistic Prob.   

C -4.760519 0.227273 -20.94628 0.0000 
AGE 0.026478 0.012039 2.199385 0.0279 

AGE2 -0.000617 0.000181 -3.410445 0.0007 
PRICONV 0.046751 0.006835 6.840137 0.0000 
PRIJAIL 0.005105 0.007384 0.691324 0.4894 
PRIPRIS 0.009112 0.013265 0.686907 0.4922 

RACE 0.073747 0.027966 2.637073 0.0084 
SERARR 1.023955 0.041260 24.81730 0.0000 

SERCONV 0.217287 0.023041 9.430374 0.0000 
SEX -0.176210 0.043011 -4.096840 0.0000 

STATE -0.002308 0.002339 -0.986915 0.3237 

R-squared 0.534479     Mean dependent var 0.229880 
Adjusted R-squared 0.533796     S.D. dependent var 0.315579 
S.E. of regression 0.215475     Akaike info criterion -0.230334 
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                Table 5.   MLE with Poisson model on  PRIARR =arrests   
 
                                            2

0 1 2exp[ln ]i i iT a a Tλ α= + +i+ x 'β iT+
 

Dependent Variable: PRIARR, N = 6827   
Method: ML/QML - Poisson Count (Quadratic hill climbing) 
QML (Huber/White) standard errors & covariance 

Variable Coefficient Std. Error z-Statistic Prob. 

ln(AGE) 1.00    
C -5.226 0.168 -32.30 0.000 

AGE -0.0038 0.0081 -0.478 0.636 
AGE2 -0.00017 0.00011 -1.578 0.115 

PRICONV 0.0637 0.0072 8.851 0.000 
PRIJAIL 0.0015 0.0075 0.206 0.836 

PRIPRIS -0.0007 0.0125 -0.062 0.951 
RACE 0.050 0.0210 2.365 0.018 

SERARR 1.365 0.0352 38.31 0.000 
SERCONV 1.188 0.0244 7.731 0.000 

SEX -0.209 0.0331 -6.031 0.000 
STATE -0.0082 0.0018 -4.476 0.000 

R-squared - Mean dependent var 7.222 
Adjusted R-squared - S.D. dependent var 10.497 

Log likelihood -20561.27 Restr. log likelihood -48103.79
Test of restriction θ =1 

for θ ln(AGE) 98.55  (p-value:  0.00)   
Over-dispersion test 13.03 (0.00)   

Katz-family test 23.51  (0.00)   
Test against  NegBin 998.2  (0.00)   

 

 

Results of ML–estimation of Poisson and Negative Binomial regression models with 

restriction 1θ =  against the alternative 1θ >  are confusing.  The coefficient values and 

their statistical significances do not conflict the results for NLS–estimation but age 

variables (AGE and AGE2) get non-significant or opposite results compared to OLS/NLS 

–estimation rejecting the age-crime profile hypothesis. Over-dispersion and Katz family 

tests reject the Poisson alternative. Also the test against NegBin –alternative is rejected. 

However Vuong test favors Poisson model against NegBin -alternative with Normal 

unobserved heterogeneity with test value of -16.11 (see the likelihood values). Evidently 
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the results stem from  the invalid restriction  θ =1 on ln(AGE) since Poisson and NegBin 

model estimates without variable ln(AGE) gives similar results as NLS –estimation for 
2

0 1 2( )i i iF T a a T Tα= + +  (see Appendix VI).  The intensity process is non-homogenous.  

 
Table 6.  MLE with Negative Binomial Model on arrests with Unobserved Normal               
                heterogeneity 
 
          2

0 1 2| exp[ ln ]i i i i i ia a T T Tλ ε α θ ε= + + + +ix 'β 2[ | ] 1i i iy x,  VAR φ σ= +  =
 
            2(0, )i Nε ρ∼  
  

Dependent Variable: PRIARR N = 6827  
Method: ML - Negative Binomial Count (Quadratic hill climbing) 
QML (Huber/White) standard errors & covariance 

 Coefficient Std. Error z-Statistic Prob.   

ln(AGE)      1.00        
C -12.145 0.434 -27.951 0.000 

AGE -0.193 0.028 -6.754 0.000 
AGE2 0.018 0.0005 37.815 0.000 

PRICONV 0.064 0.0119 5.385 0.000 
PRIJAIL 0.0020 0.0157 0.131 0.897 
PRIPRIS -0.0002 0.0297 -0.008 0.998 

RACE 0.0492 0.0307 1.601 0.109 
SERARR 1.362 0.0450 30.241 0.000 

SERCONV 0.182 0.0026 7.007 0.000 
SEX -0.215 0.0652 -3.297 0.001 

STATE -0.008 0.00242 -3.447 0.000 

 
Over-dispersion 

Parameter   

1+φ  10.31 0.244 42.11 0.0000 

 
Standard dev. of  

heterogeneity   
ρ  0.283              0.032             8.883  0.000 
================== ======== ===================== ======== 
R-squared -     Mean dependent var 7.222352 
Adjusted R-squared -     S.D. dependent var 10.49760 
Log likelihood -27099.80 Restr. log likelihood -48103.79 
Test of restriction θ =1  
for θ ln(AGE) 

 44.12  
(p-value: 0.00)    

================== ======== ========== ========== ======== 
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Results with semiparametric proportional cumulative intensity function are reasonable.  

The estimation is conducted for age classes 13 – 56 since above age class 56 the 

intensities are very unstable (see Figure 13 or 15). We lose 98 observations of full sample 

(1.4% of sample) due to the truncation. Most important finding, compared to earlier 

results, is the semi-parametric estimate for  that controls much of variability of age 

class dependent intensity (see Figure 16).  The outcome is more transparent when non-

cumulative intensities  are depicted (see Figures 17a and 17b). The semiparametric 

presentation is much less in scale and flatter than the non-parametric data estimate for 

cumulative intensity (

0
ˆ ( )tΛ

*( )tλ

=β 0 ).  

 
Table 7. MLE with Semiparametric Proportional Cumulative Intensity  
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Dependent Variable: PRIARR N = 6729 
AGE CLASSES 

13 – 56  
Method: ML  (Newton-Raphson ) 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

 Coefficient Std. Error z-Statistic Prob.  

AGE 0.0342 0.0022 15.59 0.000 
AGE2 -0.0004 0.00003 -13.61 0.000 

PRICONV 0.066 0.0009 71.032 0.000 
PRIJAIL 0.0007 0.0004 1.787 0.043 
PRIPRIS -0.0045 0.0007 -6.037 0.000 

RACE  0.0380 0.0080 4.728 0.000 
SERARR 1.3390 0.0115 116.422 0.000 

SERCONV 0.1792 0.0061 29.157 0.000 
SEX -0.2232 0.0060 -36.947 0.000 

STATE -0.0082 0.0004 -20.627 0.000 

R-squared -     Mean dependent var 7.2239
Log likelihood -12431.32     S.D. dependent var 10.4636
================= ======== ========== ========== ======== 
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Note that construction of Poisson model with semiparametric intensity assumed that 

model does not include a constant term. Every age class a specific constant term, that is 

or  for , although all classes share the same parametric 

presentation for crime counts.   

0
ˆ ( )tΛ *( )tλ 1 20 .... mT T T< ≤ ≤ ≤

 

The results imply that the age-crime profile in still bell shaped when estimation controls 

both for individual and average age class intensity effects. The result does not support 

Leung’s conjecture of increasing intensity with age. The results are more in line with 

model implications derived earlier in the paper: both the crime intensity and  participation 

are decreasing with age. Note that we have not provided 95% confidence intervals for 

average age intensity estimates. Anyway we have succeeded to separate age class 

dependent intensities and individual control effects on crime counts. The semiparametric 

estimation provides more precise estimates than alternative models since the non-

homogenous intensity presentation is also estimated in the presence of the individual 

controls, including age, for the counts.    

 

                  Figure. 16. Cumulative proportional intensities  
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                       Figure 17a.  Age class average intensities   
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                 Figure 17b.  Semiparametric average age class intensities   

5753484439353126221713

AGE

2.0

1.8

1.7

1.5

1.4

1.2

1.0

0.9

0.7

0.6

0.4

IN
TE

N
S

IT
Y

INTENSITY (MLE)

 

 33



                            
 

VI. Conclusions                     
Two classical issues in criminology, criminal career paradigm and age-crime curve (or 

profile) rule, were re-opened into analysis with economic analysis. Although age-crime 

curve and criminal career (or recidivism) are conceptually distinct they are closely 

interlinked empirically to each other. The career paradigm can’t be put aside when 

analyzed data contains individuals with repeated arrests. Age-crime curve and profile 

sum up the crime intensity and participation aspects of individual crime behaviour during 

his/her lifetime. The age dependency is relevant for both the intensity and the 

participation.  The latter is typically considered to produce the observed age-crime curve 

as the repeated criminal activity calms down voluntary or involuntary after age of 25.  

 

However this answer is too simple, and partly wrong, since observed individual criminal 

intensity, e.g. number of crimes per year,  varies substantially also with age. We have 

tried argue like Leung (1994) that crime intensity must be the starting point of the proper 

analysis, since if want to understand crime career and  age-crime curve regularities with 

economic terms, the whole crime career is the exposition time during the crimes are 

committed.  Thus the economic modeling takes the crime intensity as age dependent 

decision variable where both the number of crimes and the length of crime career 

generate non-homogenous intensity rate.       

 

A simple model that included the salient features of crime career and age-crime curve 

was proposed. It was assumed that individuals can control their crime intensity. The 

criminal sets his crime intensity rate at level that minimizes his expected time devoted to 

criminal activity incurring some costs. By augmenting the basic model with fixed 

expected life time during the optimal number of crimes can be committed we were able 

to show that increased number of crimes increases the expected life time. The result gives 

an explanation to question why old criminals necessarily do not commit less crime per 

their age compared to young criminals. Thus their intensity rate can still be high but the 

number of old criminals is less among the total number of criminals due the participation 

selection effect. The assumption of age dependent subjective time preference and 
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shortening remaining life emphasize the model results where crimes are committed at the 

beginning of life time.  

 

In the empirical part of study the arrests count data of felony defendants in large urban 

counties in U.S in year 1998 was analyzed with count-data regression methods. It was 

shown that  Poisson and  NegBin  models give unsatisfactory results concerning the age 

dependency of  number of arrest counts as the models are based on  constant intensity 

rate. Much better results were obtained with NLS–method on individual age standardized 

counts, and with semi-parametric Poisson estimation on individual arrest counts where 

average age class effects are controlled for age dependency of crime intensity. The 

estimates of parametric part of models showed that sex, race, and past criminal record 

and its seriousness had the typical, and too often observed, influences on crime counts. 

Only the number of prior prison incarcerations reduced the number of arrests.  

 

The parametric part of models also included the individual age effect function 
2

0 1 2( )i i if T a a T Tα= + + .  The function tested the bell shaped age-crime profile hypothesis 

in the presence of age standardized and non-standardized counts, i.e. life time intensities. 

The age function estimates indicated that the average age-crime profile is still a bell 

shaped in the sample although we control for average class intensities in semi-parametric 

model and NLS –approach is based on age standardized arrest counts. The results 

rejected the Leung (1994) approach where crime intensity increases with age but 

confirmed some of our model predictions.  In general the results support the view the 

age-crime curve is still alive and well.              
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Next we analyze the sign of [ ] /dE T dμ . 
 
                     -1

0  [ ] 0,   where  (1 ) 0.             CE T C kt Sα αμ β α− − = = + >
 
Differencing totally this first order condition with respect to [ ]  and  E T μ   

 36



                            
 

                   

1
1 2

1
1 2

1

2

   [ ] [ ] [ ] [ ] 0,    

      where  [ ] 0   and  [ ] 0

[ ]  0.

CE T d C E T dE T C d C dE T

C CE T C C E T

CdE T
d C

α α

α α

μ μα μ

μα

μ

− − −

− −

− = −

= > = >

⇒ = >

−

=

>

t

 

 
 
Results for are obtained in similar way.  0[ ] / 0  and [ ] / 0 dE T dk dE T dt>
 
 
 
APPENDIX  III 
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The function alters its sign from positive to negative with a 
value   

( ) '( )(1 )tg t e r t eφφ −= + −
(0, *),    when  *   and  '( ) 0.t T T r t∈ → ∞

 
For example with 2
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Now, if 0.5,  0.05,  and  0.005a bφ = = = ,  then ( 5.7)g t 0= ≈ .  
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APPENDIX IV   Number of Arrest in Different Age Classes 
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APPENDIX V   
 
INTENSITY OF CRIME IN DIFFERENT AGE CLASSES 
 
Descriptive Statistics for PRIARRG = arrests/age 
Categorized by values of AGE  
Included observations: 6827  

AGE  Mean  Std. Dev.  Obs.
13 0.000000 NA 1
14 0.047619 0.082479 3
15 0.024242 0.080403 11
16 0.045673 0.102405 26
17 0.072591 0.184902 141
18 0.104238 0.227648 388
19 0.147569 0.197732 367
20 0.198899 0.351168 318
21 0.179539 0.236061 283
22 0.229521 0.284370 283
23 0.229865 0.296120 244
24 0.257037 0.362554 225
25 0.240637 0.279519 251
26 0.290617 0.344655 232
27 0.299121 0.400833 236
28 0.252723 0.335130 223
29 0.222257 0.280762 220
30 0.304538 0.396268 213
31 0.258065 0.285191 211
32 0.292271 0.326247 224
33 0.268328 0.322297 248
34 0.287701 0.310741 220
35 0.263172 0.367075 218
36 0.295930 0.409346 202
37 0.277443 0.335962 211
38 0.260249 0.342393 190
39 0.251792 0.332567 161
40 0.257292 0.296251 168
41 0.246377 0.294197 138
42 0.288132 0.342016 128
43 0.196549 0.274324 124
44 0.291924 0.421032 103
45 0.247737 0.329405 81
46 0.216498 0.288776 73
47 0.256714 0.269882 61
48 0.178066 0.212285 53
49 0.182982 0.226590 59
50 0.250980 0.362642 51
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51 0.153251 0.227062 38
52 0.187965 0.272766 31
53 0.152740 0.262590 21
54 0.125220 0.155589 21
55 0.234091 0.332475 16
56 0.199176 0.212398 13
57 0.008772 0.017544 4
58 0.064655 0.105380 8
59 0.096852 0.245385 14
60 0.018333 0.041907 10
61 0.081967 0.117359 9
62 0.232719 0.443461 7
63 0.142857 0.127644 7
64 0.113281 0.138217 4
65 0.125641 0.235021 6
66 0.136364 0.064282 2
67 0.007463 0.010554 2
68 0.000000 NA 1
69 0.032609 0.055974 4
70 0.069048 0.162234 6
71 0.018779 0.021514 3
72 0.027778 NA 1
74 0.114865 0.162443 2
75 0.060000 0.065997 2
76 0.289474 NA 1
77 0.805195 NA 1
78 0.089744 NA 1
80 0.000000 NA 1
81 0.000000 0.000000 2
All 0.229880 0.315579 6827
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APPENDIX VI  
 
Dependent Variable: PRIARR,   N = 6827   
Method: ML/QML - Poisson Count (Quadratic hill climbing) 
QML (Huber/White) standard errors & covariance 

Variable Coefficient Std. Error z-Statistic Prob.  

C -3.206763 0.169363 -18.93422 0.0000
AGE 0.052705 0.008837 5.964434 0.0000
AGE2 -0.000552 0.000126 -4.391824 0.0000

PRICONV 0.063757 0.007224 8.825754 0.0000
PRIJAIL 0.001482 0.007544 0.196398 0.8443
PRIPRIS -0.000899 0.012658 -0.071042 0.9434

RACE 0.050533 0.021287 2.373937 0.0176
SERARR 1.366285 0.035650 38.32450 0.0000

SERCONV 0.190435 0.024506 7.770815 0.0000
SEX -0.207850 0.033163 -6.267530 0.0000

STATE -0.008206 0.001856 -4.420355 0.0000

Log likelihood -20595.94
Restr. log likelihood -48103.79

 
 
Method: ML - Negative Binomial Count (Quadratic hill climbing) 
QML (Huber/White) standard errors & covariance 

 Coefficient Std. Error z-Statistic Prob.  

C -3.496442 0.131476 -26.59382 0.0000
AGE 0.050857 0.006418 7.923781 0.0000

AGE2 -0.000561 8.85E-05 -6.337929 0.0000
PRICONV 0.107470 0.005979 17.97500 0.0000
PRIJAIL 0.010028 0.007565 1.325617 0.1850
PRIPRIS -0.041233 0.008709 -4.734323 0.0000

RACE 0.026668 0.019696 1.353952 0.1758
SERARR 1.485725 0.032041 46.36942 0.0000

SERCONV 0.099808 0.024841 4.017896 0.0001
SEX -0.222625 0.032523 -6.845219 0.0000

STATE -0.008750 0.001758 -4.978525 0.0000

 Mixture Parameter   

1+φ  1 + 0.356 0.315 11.520 0.0000

Log likelihood -15170.91
Restr. log likelihood -48103.79
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