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Abstract

We introduce a model describing the evolution of an asset price.
Individual investors in the stock market are assumed to use a sub-
jective set of information in making their expectations of the future
asset price. Security trading takes place according to investors’ expec-
tations of the rate of return of investing in this asset, and the asset
price changes in the perfectly competed stock market according to
excess demand or supply. We define the ‘force’ which acts upon the
asset price and show that the adjustment may be stable or unstable.
The possible equilibrium asset price is conditional on the distribution
of expectations of individual investors.1 (JEL G12).
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1 Introduction

The concept of equilibrium used in economics was borrowed from physics
and introduced in economics by Canard in 1801 (Mirowski 1989). Although
equilibrium means a balance of forces situation, in economics the balancing
‘forces’ in various situations have not been defined. In order to efficiently
exploit the concept of equilibrium, however, we should be able to distinguish
whether the equilibrium is stable or not, and to understand the adjustment
process, we should define the forces which either‘push’ economic quantities
toward their equilibrium values or cause their evolution with time.

The use of the term ‘force’ as the cause of a change in an economy is old.
For example, the ‘invisible hand’ of Adam Smith can be seen as a force field;
a reason which ‘pushes’ an economy toward its equilibrium state. In physics,
the existence of the (invisible) gravitational force field can be demonstrated
by letting an object fall; without the force field the object would not move.
We can similarly demonstrate the existence of an (invisible) economic force
field by observing that an economic quantity changes, and call the reason for
this a ‘force’. What remains is to give a meaningful expression for this force.

Static neoclassical theory as a whole is an application of equilibrium anal-
ysis. In the theory only equilibrium states are studied, and the adjustment
from one equilibrium to another is not modelled even though it is understood
in the framework that in a non-equilibrium situation economic agents change
their behavior with time to reach their optimum. The equilibrium thinking
in economics is so deeply rooted that it is also applied in the modelling of
financial phenomena, such as asset prices and exchange rates, which show
high fluctuations and where an equilibrium state seldom exists. This kind
of evolutionary behavior requires a dynamic framework for modelling. In
physics, too, the equilibrium states of various dynamic systems were known
much before Newton defined his dynamic laws of mechanics. Inspired by this
we introduce a dynamic extension for the equilibrium analysis of asset prices
analogous to that Newton gave for classical mechanics, namely, we define the
forces which create the motion of asset prices. Cox et al. (1985), too, use
this terminology in their introduction: ‘Our framework is general enough to
include many of the fundamental forces affecting asset markets...’.

Jeremy Bentham (1963) writes: “Nature has placed mankind under the
governance of two sovereign masters, pain and pleasure. It is for them to
point out what we ought to do, as well as to determine what we shall do. ...
They govern us in all we do, in all we say, in all we think.” “Although Ben-
tham explicitly states that the pleasure-pain calculus is applicable to what
we ‘shall’ do as well as to what we ‘ought’ to do, he was primarily interested
in ‘ought’ and did not develop a theory of actual human behavior with many
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testable implications” (Becker 1976 p. 8). “I am saying that the economic
approach provides a valuable unified framework for understanding all human
behavior. ... If this argument is correct, the economic approach provides a
unified framework for understanding behavior that has long been sought by
and eluded Bentham, Comte, Marx, and others” (ibid. p. 14). “Only after
long reflection on this work and the rapidly growing body of related work
by others did I conclude that the economic approach was applicable to all
human behavior” (ibid. p. 8).

We continue in line with Bentham and Becker to search for a basis for
modelling economic phenomena. We extend the neoclassical analysis as
follows: Economic agents like to improve their current situation, and in a
decision-making situation, a rational economic agent compares the expected
benefits and costs from the decision and makes the decision on the basis of
which of these ‘weighs’ more. This way we get an isomorphism between the
mathematical model of the behavior of the lever, and the decision-making
of a human being or an organization. The force acting upon a particular
economic quantity — the change of which the decision-making concerns —
is the difference between the benefits and costs for the decision-maker from
the decision. With this assumption, we can model the observed evolution
of economies and it gives the static neoclassical theory as a special (Pareto-
optimal) case where the evolution ceases. The neoclassical assumption, that
economic agents behave optimally, prohibits the modelling of dynamics in
that framework, because none likes to change his optimal behavior. This is
analogous as in dynamic games where each player is assumed to behave ac-
cording an improvement algorithm, and in the Nash -equilibrium situation,
none of the players likes to change his behavior. The proposed framework is
applicable also for the modelling of economic growth, see Estola (2001).

2 Our Framework as Compared with Others

Our assumptions of the stock market behavior are: 1) Only a part of all
security-owners and potential investors are active in the market at a partic-
ular moment in time with limited funds. 2) Transaction costs are abstracted
away, and individual investors are assumed to plan to hold the assets they
buy for a finite time. 3) Investors like to buy those securities whose rates
of return they expect to exceed the others and the prevailing interest rate,
and they like to sell other securities. 4) Asset prices change according to the
investors’ aggregate net demand. 5) The (rational) expectations of future
asset prices of individual investors are conditional on information of factors
investors consider relevant for their expectations. 6) The market expectation
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of a future asset price is a weighted average of those of all investors.
Our analysis deviates from Grossman (1976), Grossman & Stiglitz (1976)

and Grossman & Stiglitz (1980) the following ways: 1) We simplify the com-
mon modelling of investors’ risk-averseness with a concave utility function
by introducing a parameter which determines the investor’s attitude toward
risk. 2) We assume that investors behave rationally both in buying and in
selling assets, and both these components of net demand of assets affect their
prices. 3) Grossman and Stiglitz (1980) assume that a correct rate of return
exists for a risky asset which investors are able to find out in advance by
investing enough in information. Our modelling, on the other hand, implies
that asset prices change according to investors’ buying and selling, which
transactions are based on their beliefs of the rates of return of investing in
them. The instantaneous ‘equilibrium price of an asset’ reflects the prevailing
beliefs of all investors of the growth rate of this price, and it changes with
these beliefs via investors’ buying and selling. If some investors were able
to know in advance the correct rates of return of risky assets, they should
be able to forecast the average investment decisions of other investors in a
given time unit and estimate the effects of these decisions on asset prices.
John M. Keynes (1964 p. 156) was aware of this when he wrote that the
investment behavior might be viewed as a beauty contest, where the judges
are not concerned in finding out the prettiest girl, but in finding out who the
other judges will vote as the prettiest one.

Merton (1973) assumes that the rates of return of risky assets follow a
Wiener process, investors choose their optimal portfolios by maximizing their
life-time expected von Neumann-Morgenstern utility functions, and the de-
mands of assets are derived from the first order conditions of the investors’
optimization problems. Merton shows that with these assumptions there
exists a unique pair of efficient portfolios, one containing only risky assets
and the other only the single riskless asset so that in the equilibrium all
investors are indifferent between choosing their portfolios from the original
n risky assets and the riskless asset or from these two ‘funds’. The equi-
librium defines unique returns for the risky assets. Cox et al. (1985) show
that if the growth of real investments follows a continuous stochastic pro-
cess and investors allocate their wealth by maximizing their expected life-
time utility, an equilibrium expected rate of return exists for any contingent
claim together with the market clearing interest rate and total production
and consumption plans. This general equilibrium results as a solution for
the investors’ dynamic stochastic control problems with budget restrictions.
Duffie & Huang (1985) show that there exists dynamic trading strategies for
investors which yield a Radner equilibrium allocation for long-lived securities
and an equilibrium price process for every asset. Huang (1987) proves that
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in the equilibrium investors hold a fixed set of mutual funds rather than the
market portfolio.

The studies referred have shown that if the returns from risky assets
and real production are known to follow certain stochastic processes and
investors behave optimally, an optimal investment strategy exists for every
investor which yields to equilibrium asset prices. The methodology in these
studies is that investors are assumed to maximize a target function with
certain constraints, the demands of risky assets are derived from the first
order conditions of investors’ optimization problems, and an equilibrium in
the asset market is formulated by setting the net demand for every asset
equal to zero. We highly respect the works of these authors which have
stated their rigorous proofs at a very general level. However, there are some
aspects in this framework we like to discuss.

Firstly, the assumption that an equilibrium prevails all the time in the as-
set market requires that every investor continuously recalculates his expected
life-time utility with new prices to find his demands for assets. In contrast to
this, we assume that investors compare their expectations of growth rates of
asset prices and adjust their portfolios when they believe this to be profitable.
New information changes investors’ expectations of future asset prices, and
even with fixed expectations, a change in an asset price changes its expected
growth rate. These factors force a revenue-seeking investor to adjust his
wealth allocation. Our analysis is in line with Fisher (1983 pp. 9-12): “... I
now briefly consider the features that a proper theory of disequilibrium ad-
justment should have ... if we are to show under what conditions the rational
behavior of individual agents drives an economy to equilibrium. ... Such a
theory must involve dynamics with adjustment to disequilibrium over time
modeled. ...the most satisfactory situation would be one in which the equa-
tions of motion of the system permitted an explicit solution with the values
of all the variables given as specific, known functions of time. ... Unfortu-
nately, such a closed-form solution is far too much to hope for. ...the theory
of the household and the firm must be reformulated and extended where
necessary to allow agents to perceive that the economy is not in equilibrium
and to act on that perception. ... A convergence theory that is to provide a
satisfactory underpinning for equilibrium analysis must be a theory in which
the adjustments to disequilibrium made by agents are made optimally.”

Secondly, in the works referred the evolution of asset prices is not modelled
in real time according to demand and supply as Samuelson (1941) proposed.
Rather the equilibrium prices are either solved at every instant of time from
a group of net demand equations set equal to zero, or they continue to follow
an assumed stochastic process. In this we follow Samuelson.

Thirdly, the described general equilibrium models assume that the aim of
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investors is to maximize their life-time flow of consumption, and returns from
financial assets are used to finance this consumption. However, nowadays
the operations in asset markets great enough to affect asset prices are made
by financial firms whose goal is to invest their clients’ money in the most
profitable way taking risks in account. This simplifies the definition for the
target functions of investors so that we can omit consumption from them. We
can thus study asset market in isolation with goods market by assuming that
before their exact consumption plans, consumers fix the amount of money
they will buy or sell assets at every time period.

Fourthly, in the models referred the uncertainty in asset prices results
from the assumed uncertainties in real or financial returns, which are not
modelled. In contrast to this, we model the uncertainty in asset prices by
assuming that investors face a subjective stochastic flow of information con-
cerning future asset prices, and they buy or sell assets on the basis of this
information. A difference in demand and supply changes asset prices con-
tinuously, and in this way the stochastic information flows cause stochastic
dynamics in asset prices.

An increase in any asset price decreases its expected growth rate and vice
versa. This element in our model explains the observed short-term mean
reverting behavior of asset prices; see for instance Lo & MacKinley (1988),
Poterba & Summers (1988) or Risager (1998). According to Hull (1989 p.
216), Geometric Brownian Motion is the most widely used model of stock
price behavior. We show that this model results from the rational buying
and selling behavior of investors under uncertainty.

3 The Behavior of an Individual Investor

In order to keep our model as readable as possible, we assume only two
assets in the market: a risky one and a riskless one. We assume that investor
i has a fixed amount of money3 Si ($) to be invested in a particular risky
asset, or to be invested in another asset with risk-free interest rate4 r(t). For
simplicity, the alternative cost of investing in the risky asset is supposed to
be the lost interest returns5. Investor i makes his subjective forecast of the
future asset price, calculates the expected rate of return from this investment

3Measurement units are denoted in braces after the quantities. A system of measure-
ment units for economics is given in de Jong (1967).

4The interest rate (the rate of return of money, i.e. the flow of earned money divided
by the invested capital) is a dimensional quantity measured in units ($/∆t)/$ = 1/∆t,
where ∆t is the time period the flow is measured, see de Jong (1967).

5This assumption is also made in Grossman and Stiglitz (1980). The alternative costs
could also be the lost returns from investing into the next profitable expected asset.
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and compares this with the risk-free interest rate. The planning function of
investor i at time moment t is then

Ri(t) = Zi(t)

(
p̃i(t + ∆it)− p(t)

p(t)∆it
− bi

)
+ [Si − Zi(t)]r(t), (1)

where Ri ($/∆it) is the expected return flow from period ∆it (the investment
period of investor i), Zi ($) the amount of money investor i invests in the
risky asset, Si−Zi the money investor i invests with interest rate r(t) (1/∆it),
p(t) ($/unit) the unit price of one asset at time moment t and p̃i(t + ∆it)
the investor’s subjective expectation of the asset price at moment t + ∆it.
Dimensional constant bi (1/∆it) measures the investor’s attitude toward risk;
situations bi > 0, < 0, = 0, respectively, correspond to a risk-averse, -lower
and -neutral investor. A risk-averse investor thus makes his decision on the
basis of a lower rate of return of the risky asset he actually expects; the
greater the value of bi, the more risk averse the investor6.

Now, Z ′i(t) measures in units $/∆it (time is thus measured in units ∆it)
the instantaneous flow of money by which investor i is willing to buy (or
sell) the studied securities. We assume that the net demand of a certain
asset of any investor is a public offer to buy or sell the corresponding secu-
rities at the prevailing price7 with a fixed amount of money. Assuming that
bi, Si, ∆it, p̃i(t+∆it) are fixed quantities known by investor i at time moment
t, by taking the time derivative of (1) we get

R′i(t) =
∂Ri

∂p
p′(t) +

∂Ri

∂r
r′(t) +

∂Ri

∂Zi

Z ′i(t) = −Zi(t)p̃i(t + ∆it)

p2(t)∆it
p′(t)

+ [Si − Zi]r
′(t) +

(
p̃i(t + ∆it)− p(t)

p(t)∆it
− bi − r(t)

)
Z ′i(t). (2)

The aim of the investor is to increase his returns with time, i.e. to make
R′i(t) > 0. Now, the only variable by which the investor can affect his returns
from period ∆it is Zi, because p and r are outside his control. A revenue-
seeking investor adjusts his portfolio with time so that the two quantities

6If the studied asset is the share of a company, expectations of possible dividends are
assumed to be capitalized in the expected share price so that income from dividends is
not treated separately. The role of dividends becomes the more important the longer
the investment period, and long-term investments do not create short-term asset price
movements we model here

7At stock market the buying and selling offers are made at fixed prices, and trade
occurs when two opposite offers match. We simplify the real world by assuming that the
offers are made at the prevailing price because only those offers get realized.
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multiplied at the third term of Eq. (2) continue to be of equal sign, i. e.

Z ′i(t) > 0 when
p̃i(t + ∆it)− p(t)

p(t)∆it
− bi − r(t) > 0,

Z ′i(t) < 0 when
p̃i(t + ∆it)− p(t)

p(t)∆it
− bi − r(t) < 0 and

Z ′i(t) = 0 when
p̃i(t + ∆it)− p(t)

p(t)∆it
− bi − r(t) = 0.

The risk-corrected expected rates of return of the two investment possibili-
ties are the benefits and costs the investor considers in his decision-making.
Multiplying the above inequalities by p(t)∆it they become as

Z ′i(t) > 0 when p̃i(t + ∆it)− [1 + (bi + r(t))∆it]p(t) > 0 etc.

The adjustment behavior of the investor can be expressed mathematically as

Z ′i(t) = f
(
p̃i(t + ∆it)− [1 + (bi + r(t))∆it]p(t)

)
, f ′ > 0, f(0) = 0, (3)

where f is any function with the above requirements. The first order Taylor
series approximation of function f in the neighborhood of the equilibrium
point p̃i(t + ∆it)− [1 + (bi + r(t))∆it]p(t) = 0 is

f(x) ≈ f(0) + f ′(0)(x− 0) = f ′(0)x.

With this approximation we can write Eq. (3) as

Z ′i(t) = f ′(0)
[
p̃i(t + ∆it)− [1 + (bi + r(t))∆it]p(t)

]
, 0 ≤ Zi ≤ Si, (4)

where f ′(0) is a positive constant. If we now denote f ′(0) = 1/mi, where
mi is a positive constant with unit ∆it/unit, we can interpret mi as the
inertial factor (‘mass’) of investment of investor i. The numerical value of
mi measures the sensitivity of the monetary flow Z ′i(t) with respect to the
‘force’ p̃i(t + ∆it) − [1 + (bi + r(t))∆it]p(t) acting upon the net demand of
investor i of the studied asset8. All potential investors are assumed to behave

8The term bip(t)∆it in the ‘force’ with unit $/unit has the same role as static friction
has in physics. If bi > 0, the expected monetary returns from one risky asset must exceed
the risk-free alternative by factor bip(t)∆it before the investor becomes active in buying.
The risk-averseness of investors thus discourages them in buying and encourages them
in selling risky assets. In economics, this friction term has been usually identified as
transaction costs, but concept ‘friction’ may contain also other factors than costs, such as
rigid manners, laziness, risk-averse behavior etc.
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as described by Eq. (4), although their expectations of the future asset price
and planning time horizons may vary.

The above defined investment behavior is unstable, because the amount
of money investor i is willing to invest in the securities increases without limit
with time when p̃i(t+∆it)−[1+(bi+r(t))∆it]p(t) > 0 and vice versa. This is
one explanation for the observed volatility of stock market as compared with
goods’ market, where decreasing marginal utility limits consumers’ willing-
ness to buy goods. The investment flows caused by investor i are restricted
by the following constrains: Z ′i(t) can be positive only when Zi < Si and
negative when Zi > 0. These conditions could be released by allowing short-
selling and lending. Allowing lending would, however, complicate the situa-
tion by bringing the interest costs of loans in the decision-making, which is
the reason we assume the above viability conditions.

4 The Behavior of the Stock Market

We assume only one kind of investors in the market, who at certain moments
are asset buyers and at other moments sellers. We study the price dynamics
of only one asset, but because this can be any of the existing securities,
the model can be applied to them all. If some securities are expected to
be equally profitable, splitting wealth into these assets does not affect the
expected returns, but decreases the risk of the portfolio in the case of non-
perfectly correlated returns. This is a clear reason for splitting wealth.

The connection between micro- and macro-level modelling is made here
so that macro-level equations are formulated by adding the adjustment equa-
tions of all investors with investor specific weights. We assume n potential
investors in the market, and the weight of investor i is denoted by a di-
mensionless number wi,

∑n
i=1 wi = 1. Multiplying the investors’ portfolio

adjustment equations by weights wi and adding them, we get
n∑

i=1

wimiZ
′
i(t) =

n∑
i=1

wi

[
p̃i(t + ∆it)− [1 + (bi + r(t))∆it]p(t)

]
. (5)

This is the macro version of Eq. (4); the right hand side is ‘the market force
acting upon the net demand of the risky asset’. We can approximate the left
hand side of (5) as

n∑
i=1

wimiZ
′
i(t) ≈ mZ

n∑
i=1

Z ′i(t) = mZZ ′(t), (6)

where constant mZ =
∑n

i=1 wimi with unit ∆t/unit is a weighted average of
inertia of all investors, Z(t) =

∑n
i=1 Zi(t) and Z ′(t) is the aggregate of net
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investment flows of all investors on the studied asset. The right hand side of
(5) can be approximated as

n∑
i=1

wi

[
p̃i(t+∆it)−[1+(bi+r(t))∆it]p(t)

]
≈ p̃(t+∆t)−[1+(b+r(t))∆t]p(t), (7)

where
∑n

i=1 wi∆it = ∆t is a weighted average of investors’ time horizons,
dimensionless quantity

∑n
i=1 wibi∆it is approximated by b∆t, where b =∑n

i=1 wibi is an average measure for the risk-averseness of the investors and
p̃(t + ∆t) =

∑n
i=1 wip̃i(t + ∆it) is the market expectation of the asset price

at moment t + ∆t.
We assume that p̃i(t + ∆it) consists of a finite expected value pi

(
t +

∆it; Bi(t)
)

and variance σi
2(t), i = 1, . . . , n, where Bi(t) is the set of infor-

mation investor i uses at moment t in formulating his forecast. The expected
value and variance of p̃(t + ∆t) are then

E[p̃(t + ∆t)] =
n∑

i=1

wipi

(
t + ∆it; Bi(t)

)
, var[p̃(t + ∆t)] =

∑
i<j

wiwjcij(t),

where cij(t) is the covariance between expectations of investors i and j.
With these assumptions, there exists at every time moment a unique mea-
sure corresponding to the market expectation of the future asset price and
a well-defined distribution viewing its variability. The market expectation is
a weighted average of a finite sum of random variables. Assuming that the
weight of every investor is the same wi = 1/n, i = 1, . . . , n — which holds
approximately when there are enough investors — we can write

var

(
1

n

n∑
i=1

p̃i(t + ∆it)

)
=

1

n2

n∑
i=1

σ2
i (t) +

2

n2

∑
i<j

cij =
nσ2

n2
+

n2 − n

n2
cij,

where σ2 and cij are the average values of σ2
i (t) and cij(t), respectively,

∀ i, j, i 6= j. If the investors’ expectations are independent, that is cij(t) =
0 ∀ i, j, i 6= j, the market expectation gets more concentrated around its
mean with the number of investors. The market expectation of the future
asset price is thus more uncertain in a thin than in a wide market. Investors
can utilize this information in two ways: 1) In terms of the efficient mar-
ket hypothesis, investors can believe that current prices are more accurately
priced in wide than in thin markets; later we show that an ‘equilibrium asset
price’ reflects the market expectation of its future price. 2) The knowledge of
1) motivates investors to search for information of fundamentals of assets in
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thin markets, because it is more likely that there exists a potential for abnor-
mally high returns. If, however, the investors’ expectations are correlated,
this may distort the asymptotic accuracy of the market expectation when cij

is great enough; this is in line with the Keynes’s remark quoted above.
The asset price is assumed to react to the macro-level net demand as

p′(t) = g(Z ′(t)), g′ > 0, g(0) = 0, (9)

where p′(t) measures in units ($/unit)/∆t the velocity of the security price
and g is any function with the above requirements. Taking the Taylor series
approximation of function g in the neighborhood of the equilibrium point
Z ′(t) = 0, we get

p′(t) = g′(0)Z ′(t) where g′(0) > 0 is constant. (10)

Next we denote g′(0) = 1/mp and interpret the positive constant mp (unit)
as the ‘inertia of the asset price’. It measures the sensitivity of the asset price
with respect to the ‘force acting upon the asset price’ Z ′(t). The number of
the corresponding assets in circulation is one suitable measure for mp because
excess demand raises security prices inversely related to their scarcity. Eq.
(10) is a linear representation of the law of demand and supply formulated
by Samuelson (1941) written in a net form.

5 Asset Price Dynamics

Substituting (5) into (10) by taking account (6) and (7) gives the following
equation for the dynamics of the asset price

mZmpp
′(t) = p̃(t + ∆t)− [1 + (b + r(t))∆t]p(t), t ≥ 0. (11)

Now (11) is the general form for our model, and it can explain various kinds
of processes depending on investors’ expectations. We suggest below a few
conjectures for p̃(t+∆t) to study their implications. These should be under-
stood as tests for these assumptions and not as rigorous attempts to describe
real world behavior.

Conjecture 1. Let p̃(t + ∆t) be a deterministic function of time. Then
(11) is an ordinary differential equation with solution

p(t)=e
−

∫ t
0

(
1+(b+r(s))∆t

mpmZ

)
ds

(
p(0)+

∫ t

0

e
∫ s
0

(
1+(b+r(h))∆t

mpmZ

)
dh p̃(s+∆t)

mpmZ

ds

)
, 0≤s≤ t.

This solution is stable if p̃(t + ∆t) → p̃(∞ + ∆t) and r(t) → r(∞) when
t→∞, the convergence is monotonous and p̃(∞+∆t) and r(∞) are bounded
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positive quantities. Assuming p̃(t + ∆t) = p̃ and r(s) = r to be constants,
the above solution becomes in a more easily interpreted form

p(t) =
p̃

1 + (b + r)∆t
+

(
p(0)− p̃

1 + (b + r)∆t

)
e
−

(
1+(b+r)∆t

mpmZ

)
t
, t ≥ 0.

The dynamic process is stable and the equilibrium price p̃/[1 + (b + r)∆t]
positively depends on the future price expectation, and negatively on the
interest rate and the average risk-averseness of investors. The explanation
for stability is that an increase in the asset price decreases the right hand
side of Eq. (11) and vice versa; a price increase thus negatively affects the
force acting upon the asset price. The equilibrium asset price balances the
two growth rates so that the equilibrium state corresponds to zero force,

lim
t→∞

p(t) ≡ p∞ =
p̃

1 + (b + r)∆t
⇒ p̃− p∞

p∞∆t
− b = r.

In order to get another content for Eq. (11), we write it as follows

p′(t) = − [1 + (b + r(t))∆t]

mpmZ

(
p(t)− p̃(t + ∆t)

1 + (b + r(t))∆t

)
. (12)

Eq. (12) is known as Error Correction form in econometrics. In (12) the
force is similar to that obeying Hooke’s law in physics F = −ky, where
y is the deviation of the moving body from its equilibrium position and
constant k measures the strength of the spring causing the motion. In our
case p(t) − p̃(t + ∆t)/[1 + (b + r(t))∆t] is the deviation of the asset price
from its equilibrium value, and the magnitude of constant [1+(b+r)∆t]/mZ

measures the strength of the ‘spring’ causing the motion in the asset price.
Conjecture 2. Considering the market expectation p̃(t + ∆t) as the

position of a Brownian particle, various stochastic differential equations can
be presented for p(t). First we suppose that the expectation of every investor
i, i = 1, . . . , n, of the growth rate of the asset price is

p̃i(t + ∆it)− p(t)

p(t)∆it
= a(t) +

σ(t)ξi

p(t)∆it
√

dt
.

The expected growth rate consists of a deterministic component a(t) mea-
sured in units 1/∆t — which can be interpreted as the growth rate corre-
sponding to the known fundamentals of the asset — and an investor specific
component σ(t)ξi/(p(t)∆it

√
dt), where normally distributed stationary ran-

dom variable ξi ∼ N
(
0, 1/(nw2

i )
)

represents the subjective information of
investor i of the growth rate of the asset price; the greater the weight of
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investor i in the market expectation, the lower the variance of his subjective

information. Parameter σ(t) with unit $×
√

∆t/unit characterizes the state
of the market9. These assumptions give

p̃(t + ∆t) =
n∑

i=1

wip̃i(t + ∆it) =
n∑

i=1

wip(t) +
n∑

i=1

wia(t)p(t)∆it

+
σ(t)√

dt

n∑
i=1

wiξi = p(t) + a(t)p(t)∆t +
σ(t)ξ√

dt
, (13)

where ξ =
∑n

i=1 wiξi is normal with expected value and variance as

E[ξ] = E
( n∑

i=1

wiξi

)
= 0, var[ξ] = var

( n∑
i=1

wiξi

)
=

n∑
i=1

1/n = 1,

where ξi are assumed independent, i = 1, . . . , n. Substituting (13) to (11)
gives the following stochastic differential equation

dp(t) = K

(
p(t)[a(t)− b− r(t)]∆t +

σξ√
dt

)
dt, p(0) = p, t ≥ 0,

where K = 1/(mpmZ) is a positive constant with unit 1/∆t; for simplicity

σ(t) = σ is assumed constant. Next we define ξdt/
√

dt = ξ
√

dt = dN(t),
where N(t) is a stochastic process following the Brownian motion; the in-
crements dN(t) are independent of the past behavior of p(t) with N(0) = 0,
E[N(t)] = 0, E{[dN(t)]2} = dt, E[dN(t)dt] = E[(dt)2] = 0. The weighted
average of investors’ subjective information of the future asset price scaled
by factor

√
dt thus follows the Brownian process. These assumptions give

dp(t) = K∆tp(t)[a(t)− b− r(t)]dt + KσdN(t), p(0) = p, t ≥ 0.

The obtained stochastic process is of Ornstein-Uhlenbeck form with solution

p(t)=peK∆t
∫ t
0 [a(s)−b−r(s)]ds+Kσ

∫ t

0

eK∆t
∫ t

s [a(u)−b−r(u)]dudN(s), 0 ≤ s ≤ t.

The first term is the deterministic and the second the stochastic component of
the solution. If a(s)− b− r(s) = 0, 0 ≤ s ≤ t, the deterministic component

9When modelling the dynamics of molecules as Brownian particles, Einstein (1905)
treated the parameter σ2 as a dimensional constant which depends on various physical
macro-level quantities characterizing the state of the system; temperature (the phase of
the business cycle), friction coefficient and viscosity of the resisting medium (inertia of
investors), Avogadro’s number (number of investors and assets circulating) etc.
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equals p and price changes take place only due to new information. The
anticipated asset price at time moment t is

E[p(t)] = peK∆t
∫ t
0 [a(s)−b−r(s)]ds since E

[∫ t

0

eK∆t
∫ t

s [a(u)−b−r(u)]dudN(s)
]

= 0,

and the anticipated growth rate of the asset price is

dE[p(t)]/dt

E[p(t)]
= K∆t[a(t)− b− r(t)] =

[a(t)− b− r(t)]∆t

mpmZ

.

Interest rate and the average measure of risk-averseness thus negatively affect
the anticipated growth rate. Quantity a(s)− b− r(s) measures the expected
risk-corrected excess rate of return for investors from the risky investment.
The greater this quantity the higher the anticipated growth rate of the asset
price. This feature of the model — expectations fulfill themselves — is
common in models with rational expectations. Assuming that a(s) − b −
r(s) > 0, s ≤ t, which holds for all ‘attractive’ risky assets, the smaller the
inertial factor mpmZ the greater the anticipated growth rate.

Using the basic isometry of Ito Integrals (Øksendal 1989 p. 18), we can
write the variance of the asset price as

var[p(t)] = K2σ2E
[∫ t

0

eK∆t
∫ t

s [a(u)−b−r(u)]dudN(s)
]2

=
σ2

(mpmZ)2

∫ t

0

e

(
2∆t

mpmZ

) ∫ t
s [a(u)−b−r(u)]du

ds.

The variance positively depends on σ and quantity a(u)− b−r(u), s ≤ u ≤ t
and if a(u) − b > r(u), s ≤ u ≤ t, then the variance negatively depends on
the inertial factor mpmZ .

Conjecture 3. Suppose the market expectation of the asset price is

p̃(t + ∆t) = p(t) +

(
a(t)∆t +

σ(t)ξ√
dt

)
p(t),

where a(t) and ξ are as before but now parameter σ(t) characterizing the

market situation is measured in units
√

∆t. This corresponds to the following
market expectation of the growth rate of the asset price

p̃(t + ∆t)− p(t)

p(t)∆t
= a(t) +

σ(t)ξ

∆t
√

dt
.

Assuming this, Eq. (11) takes the form

dp(t) = Kp(t)

(
[a(t)− b− r(t)]∆t +

σ(t)ξ√
dt

)
dt, p(0) = p, t ≥ 0, (17)
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where K = 1/(mpmZ) is as before. Assuming ξdt/
√

dt = ξ
√

dt = dN(t) as
before and σ(t) = σ to be a constant, Eq. (17) takes the form

dp(t) = K∆tp(t)[a(t)− b− r(t)]dt + Kp(t)σdN(t), p0 = p, t ≥ 0.

This Geometric Brownian process has solution

p(t) = pe
K

∫ t
0

(
[a(s)−b−r(s)]∆t−σ2K

2

)
ds

eσKN(t), 0 ≤ s ≤ t.

The stochastic component of the solution is now multiplicative while previ-
ously it was additive. The anticipated asset price and its growth rate are

E[p(t)] = peK∆t
∫ t
0 [a(s)−b−r(s)]ds,

dE[p(t)]/dt

E[p(t)]
=

[a(t)− b− r(t)]∆t

mpmZ

.

These results are identical as in the previous case, but variance is now

var[p(t)] = p2e2K∆t
∫ t
0 [a(s)−b−r(s)]ds

(
eK2σ2t − 1

)
.

The variance positively depends on p and σ, and if a(s)−b ≥ r(s), 0 ≤ s ≤ t,
then the variance positively depends also on K = 1/(mpmZ).

Conjecture 4. Our final conjecture is that the market expectation is
made by extrapolating the current price movement till time moment t + ∆t
corrected by term σ(t)p(t)ξ/

√
dt, which represents the subjective information

of investors. This corresponds to the following market expectation of the
future asset price and its growth rate

p̃(t + ∆t) = p(t) +
dp(t)

dt
∆t + σ(t)p(t)ξ

√
dt ⇔

p̃(t + ∆t)− p(t)

p(t)∆t
=

dp(t)/dt

p(t)
+

σ(t)ξ

∆t
√

dt
.

Assuming ξdt/
√

dt = ξ
√

dt = dN(t) as before and σ(t) = σ to be constant,
Eq. (11) takes the form

dp(t) = σHp(t)dN(t)− [r(t) + b]∆tHp(t)dt, p(0) = p, t ≥ 0,

where H = 1/(mpmZ − ∆t) is a constant with unit 1/∆t. The solution of
this Geometric Brownian process is

p(t) = pe
−H

∫ t
0

(
[r(s)+b]∆t+σ2H

2

)
ds

eσHN(t), 0 ≤ s ≤ t.
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The anticipated asset price and its growth rate are now

E[p(t)] = pe−H∆t
∫ t
0 [r(s)+b]ds,

dE[p(t)]/dt

E[p(t)]
= − [r(t) + b]∆t

mpmZ −∆t
.

Now the anticipated behavior of the asset price critically depends on the sign
of H. If mpmZ − ∆t > 0, H is positive, and the asset price is anticipated
to decrease with time. If H is negative, the asset price has the above given
anticipated positive growth rate. The explanation for these results is the
same as for hyper-inflation. It occurs in an inflationary economy when people
rush to buy goods with raising prices. Similarly, if investors buy (and sell)
assets on the basis of their observed price velocities, assets with the greatest
(positive) price velocities are most wanted. This will speed up their price
velocity. On the other hand, assets with low or negative price velocity will
have a negative net demand which still decreases their price velocity.

In which direction the above described unstable process starts depends
on the difference between the length of the average investment period and
the magnitude of the inertial factor mZmp. We can understand this as a
battle between the magnitude of price inertia and the length of the investors’
average investment horizon. The shorter the investors’ average investment
horizon and the higher the price inertia, the more certain it is that this price
will decrease with time and vice versa.

The variance of the asset price

var[p(t)] = p2e−2H∆t
∫ t
0 [r(s)+b]ds

(
eH2σ2t − 1

)
positively depends on p and σ, but the effect of H on it is ambiguous.

From this section we can conclude that the described evolution of the asset
price may be stable or unstable. Unstable behavior results if the observed
velocities of asset prices have a role great enough in investors’ expectations
of future asset prices. Any rational investor investing in a risky asset must
expect a higher rate of return from this investment compared with a risk-free
alternative (a premium from taking the risk). The expected growth rate of
the price of a risky asset should thus be great enough to attract investors.
The greater the expected risk premium of a risky asset, the higher anticipated
growth rate its price will have. The variability of our results implies that more
information of the expectation-making process of investors is needed for more
accurate results. Moreover, the assumption of Gaussian distribution for the
subjective information of individual investors can be replaced by any other
distribution, if we have evidence that the stochastic processes asset prices
follow are not Brownian.
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6 Conclusions

We analyzed the dynamics of one asset price and showed the existence of
‘economic forces’ which either push the price toward its equilibrium value, or
keep the price in motion with time. The equilibrium asset price equates the
investors’ average expectation of the rate of return of holding these securities
as compared with other investment possibilities. The evolution of the asset
price was analyzed as a stochastic process where the randomness originates
from investors’ information and beliefs concerning the future asset price.
Asset prices may or may not have a deterministic trend, and the randomness
of the process causes deviations from this trend.

According to our model, the evolution of an asset price eliminates in-
vestors’ expected profit-making potential concerning this asset, and trading
takes place as long as there are investors believing this potential remains. At
the equilibrium state there may exist investors willing to invest in this asset
and those willing to sell these assets, and the sum of these monetary flows
equals zero. The steady state is thus a flow equilibrium where the opposite
flows (forces) cancel each other, and no force is acting upon the price. In the
modelling we did not specify the variables investors apply in making their
expectations of asset prices. We can believe that these sets contain measur-
able and non-measurable firm, industry and economy level quantities with
investor-specific weights, assumptions of other investors’ decisions etc. It is
a subject for empirical studies to specify the information sets.

Our model explains the observed mean reverting behavior of asset prices
and the negative relation between interest rate and asset prices. Our model
has also three explanations for the observed positive correlation between
rates of return of holding shares of various companies (the basic assumption
of the CAP -model): 1) Investors adjust their portfolios with time so that
securities with highest expected rates of return are most wanted. Because
security prices adjust according to their net demands, price changes equalize
the rates of return of holding any securities. 2) An increase in interest rate
decreases the net demand of all securities thus reducing their prices. 3) If
various investors keep the same macro-variables — the growth rate of GDP,
the effective exchange rate of domestic currency etc. — in their information
sets, then, for example, a general expectation of the growth of GDP positively
affects the net demand of various shares thus increasing their prices.
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Appendix

The force acting upon the net demand of a particular asset can also be
formulated according to the neoclassical tradition. Investor i is assumed to
buy securities when he expects this to be profitable. This occurs when he
expects that the rate of return during time period ∆it from buying k > 0
assets at price p(t) exceeds the interest returns for this money. The rule to
make this decision is

k[p̃i(t + ∆it)− p(t)] > rkp(t)∆it.

On the left hand side are the expected monetary returns from the investment,
and on the right hand side are the lost interest returns for the invested money
kp(t) at period ∆it. We can transform the above inequality as

p̃i(t + ∆it)− p(t)

p(t)∆it
− r > 0,

which quantity we used as the ‘force acting upon the net demand of a risky
asset’ of a risk-neutral investor.

We get the above decision rule also in the case of an infinite investment
horizon. Let time be divided into intervals of length ∆it. Suppose that
investor i believes a constant change Ei[∆p] = p̃i(t + ∆it)− p(t) in the asset
price and a fixed interest rate r during period ∆it throughout the infinite
future. The expected present value Sl ($) from investing into k > 0 securities
during l time periods is then

Sl =
l∑

j=1

(
1

1 + r∆it

)j

kEi[∆p] = kEi[∆p]
l∑

j=1

(
1

1 + r∆it

)j

.

Letting l →∞, the infinite sum of this geometric series becomes

lim
l→∞

Sl = kEi[∆p]

(
1

1+r∆it

1− 1
1+r∆it

)
=

kEi[∆p]

r∆it
.

This investment is profitable, if the present value of expected income from
the investment exceeds its costs kp(t). This corresponds to

kEi[∆p]

r∆it
> kp(t) ⇔ Ei[∆p]

p(t)∆it
> r,

which inequality we derived above. The decision-making of an investor can
thus be formulated by assuming him to hold the assets he buys for an infinite
time, if dividend returns are assumed to be capitalized in the asset price.
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