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ABSTRACT. Semi-parametric methods are introduced to estimate the effort function 

 for unskilled and skilled workers using Finnish cross-sectional industry data from 

1989. Well-defined effort function estimates are obtained only for unskilled workers. 

Non-linear labour demand models are also estimated semi-parametrically. 

Nonlinearities are identified using effort function estimates.  
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1. Introduction  
 
Efficiency wage theories have attracted a lot of attention as a potential explanation for involuntary 

unemployment and other aspects of the labour market. However, testing the theories has been 

remarkably difficult. The common feature in many studies is that the basic element of efficiency 

wage models, the effort function, , is not estimated. Instead, different derived specifications 

that indirectly or directly incorporate the implications of efficiency wage theories have been the 

subject of empirical testing.  

( )e w

 
The approach of Krueger and Summmers (1988) is to analyze observed inter-industry wage 

differentials. However, the evidence is at best indirect, because only the unexplained part of the 

differentials is identified with efficiency wage model predictions. Wadhwani and Wall (1991) and 

Konings and Walsh (1994) use a more direct approach. They show that worker productivity or 

some other performance index is positively related to the wages in a given firm relative to the 

utility the workers could get elsewhere. However finding is consistent with notions of com-

pensating differentials and with bargaining theory (see also Machin and Manning 1992). Thus, the 

results cannot be interpreted as strongly in favour of efficiency wage theory (see also Kitazawa and 

Ohta 2002).  

 
Ackum Agell (1994) carried out an interesting study using Swedish data, in which an estimate for 

effort was measured using time diary information. However, her results generally do not support 

the implications of efficiency wage theories (for similar results, see Fuess and Millea 2002). The 

approach advocated by Kumbhakar (1996) uses system modelling based on translog -production 

function, where the efficiency index of labour is identified with wage level and years of schooling. 

The results find evidence to support the view that wages paid by the farmers in rural India are 

efficiency wages. Goldsmith, Veun and Darity (2000) approach the efficiency wage hypothesis by 

emphasizing the aspects of employee motivation and personality aspects. They find with NLSY 

data that receiving an efficiency wage enhances a person’s effort (see also Kugler 2003). These 

studies can be seen as promising alternatives to model and estimate the efficiency wage function 

directly. However, it is difficult to compare these results with our because of different methods and 

data used.  
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This paper advocates a general approach to estimate the effort function directly. The aim is to 

estimate the effort function as a part of the labour demand model using semi-parametric methods. 

This is done by estimating partially linear labour demand model augmented by a non-linear 

function of wages that gives an estimate for the effort function. Separate estimates are derived for 

both unskilled and skilled workers. Industry- and union-specific factors are controlled with dummy 

variables. Finnish cross-sectional industry data from 1989 is used. The results show that it is 

possible to identify a meaningful effort function only for unskilled workers. This is also supported 

by conducted specifications tests. 

 
The structure of the paper is the following. The specifications to be estimated are derived from 

CES-type production function in Section 2. The CES approach gives analytically simple and 

identifiable solution between labour demand and effort function. Section 3. gives an introduction to 

semi-parametric IV methods used: smoothed splines and series estimators in addition to specifi-

cations tests. The results are presented in Section 4., and Section 5. is a short summary of the paper. 

The appendices give a more detailed description of some of the technical issues and data used.  

 
 
2. The efficiency wage model  
 
The literature suggests many different approaches for efficiency wage modelling. The general 

starting point in all efficiency wage models is the observation that higher absolute or relative 

company wages have positive production effects. This happens e.g. via higher effort performance at 

work, lower turnover rates, and the unemployment discipline effect (see Akerlof and Yellen 1990). 

In this context we use the generic efficiency wage model given by Solow (1979), where the labour 

input in production function is augmented with effort function, ( ( ) )f e w L .  

 
Assume that the firm has a CES production function with two distinct labour inputs  and   

augmented by concave, positive and continuous effort functions e w  and : 

1L 2L

1
1( ) 2

2( )e w

 
 
                 (2.1)               Q h 1 2

1 1 1 2 2 2[ ( ) [ ( ) ] [ ( ) ] ]e w L e w L /ρ ρ ργ τ δ δ− −= + +x υ ρ− −  
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where 1 2(1 ),  ( )hτ δ δ= − − x

v

 represents some function of a vector of (quasi-fixed) non-labour 

inputs,  gives the degree of homogeneity (non-constancy of returns), γ  is a scale parameter which 

can be used to denote technical efficiency, and ,  1, 2i iδ = ,  are the distribution parameters of 

inputs. The substitution parameter ρ  is equal to (1 ) /σ σ− , where ρ  is elasticity of substitution.  

 

Differentiating with respect to  and using marginal production conditions, 

produce after some manipulations (see e.g. Wallis 1979),  

1 2 1 2, , , and ,L L w w

 
 

              (2.2)                     
1 /

1 /
[ ( )]

v

i ii
i

QA L w
e w

ρ
ρ

ρ

+
− − = i p  ,  

 
 
 

              (2.3)                  
1 /

1 /( )
[ ( )] ( )

iv
i

i ii i
i i

e wQA L
e w e w

ρ
ρ

ρ

+
− − ∂ ∂ 1,=                  

 
 
with  i /1 and 2,  and  v

i iA v ρδ γ −= = . Log-linearizing (2.2) and (2.3) gives, for   1 and 2,i =
 
 
 
             (2.4)              ln  ln( / ) (1 ) ln ( ) (1 / ) lni

i i i iL c w p e w v Qσ σ σ ρ= − − − + +
 
             (2.5)             l   n( / ) 1/ ln ( ) 1/ ln (1 / ) lni i

i i i ie w e w c L v Qσ σ ρ∂ ∂ − = + − +
 
 
                                            ( ) 1/ ln (1 / ) lni i i iH w c L v Qσ ρ+ − +⇔ =  
 
 
Both derived input specifications are non-linear. Equation (2.4) is partially linear, but equation 

(2.5) consists of an unknown complicated solution for . Under the assumption that monotone 

 exists, the following empirical specifications for the data (  is 

proposed:  

iw

1
iH − = iF 1,...., ,  1, 2)j n i= =
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            (2.6)            ln 1
0 1 21ln( / ) ln ( )ij i i ij i ij ijL w p Q g wβ β β= + + + + ε     

 
 
            (2.7)               2(ln , ln )ij i ij i ijw F L Q ε= +  
 
 
where   random errors, and   is some non-linear function of  .  

is an unknown non-linear function.  

1 2 and  are ij ij NIDε ε ( )i ijg w ijw (.)iF

 
No assumption concerning the specific parametric form of   is made. It is only assumed that 

 is concave, continuous and at least twice differentiable in . It will be estimated non-

parametrically. Note that  for all finite 

( )i
ie w

>

( )i
ie w iw

( ) exp[ ( ) /( 1)] 0i
i i ie w g w σ= − ( ) /( 1)i ig w σ − , i.e. 1σ ≠ . 

The economic interpretation of this result is interesting. If the elasticity of substitution between 

inputs is unity ( 1σ = , Cobb-Douglas case), then the effort function  is not identified (see 

also Eq. 2.4). Thus the CES approach is required for the identification of effort function.  

( )ie wi

 
The starting point is the hypothesis that  ( ) 1ie w ≈  , since efficiency wages are not expected to have 

a big role in labour demand. This assumption is tested using specifications tests. The CES 

production function separable in the two types of labour is rather restrictive since it implies equal 

elasticity of substitution. However, the obtained estimates for elasticity of substitution below are 

same magnitude for different labour inputs indicating that the CES assumption is reasonable.  

 
 
 3. Semi-parametric and nonparametric regression models 
 
 Model (2.6) has the following form (the subscript i is left out in order to simplify the notation):  

 

               (3.1)                         ( )T
j j jy g w jε= + +x β , 

 

where for each observation  lnjy jL=   there is four explanatory variables: a vector 

  and scalar . (1 ln( / )   ln )T
j jw p Q=x j jw β , a three dimensional vector of regression coefficients, 

and , a smooth curve,  are to be estimated. ( )jg w jε   is the NID error term.  
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Nonparametric regression techniques are used to model complex relationships between { } 1
N

j jy =  and  

 without restricting  to parametric forms. When 1{ }N
j jw = g 2[ , ],  w a b g W∈ ∈ , where W g  

are continuous, and , it is well known that the solution 

2 '  g g{ :  ,=

2[ ''( ] }
b

a
dw < ∞∫ )g w λg  to the problem with 

fixed β   

                  (3.2)          mi
2 2

1
n ( , ) min{ [N

jg W g W
S g

=∈ ∈
= ∑β 2 2( )] [ ''( )] }

bT
i j j a

y g w g wλ− + ∫− βx dw

)

  

 
 
is a cubic polynomial spline that smooths the data. Note that stated properties of  ensure that a 

valid relationship will exists between it and the effort function  defined in Section 2. l . 

( )g w

( je w 0λ >  

is a smoothing parameter that controls the trade-off between the infidelity to the data, as measured 

by the residual sum of squares, and to the roughness of , as measured by the -norm of the 

second derivate of  (see Craven and Wahba 1979, Yatchew 1998). For any given value of the 

smoothing parameter 

( )g w 2L

( )g w

λ , minimizing ( , )S gβ  in 3.2. will give the best compromise between 

smoothness and goodness-of-fit. When , ( )g wλ → ∞ is linear, and 0λ =   produces a full fit. Thus, 

much depends on the value of the smoothing parameter λ .  

 

The estimation of model (3.2) is directly related to LS methods if the integral part of the model can 

be expressed as some linear structure. This is precisely what the smoothing splines approach does 

(Engle et al. 1986, Green and Silverman 1994, Chapter 2):  

 
 
                (3.3)                 ( ) ( )T Tλ− − − − +β βy X g y X g g Kg    
 
 
where  is a positive semidefinite weight matrix of rank n-2. This can be re-written as a pair of 

simultaneous matrix equations after minimizing in respect to 

K

and β  g :  

 
 
                (3.4a)                                   ( )T T= −βX X X y g    
 
 
                (3.4b)                              ( ) ( )λ+ = − βI K g y X  
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A backfitting algorithm gives estimates for and β   g  respectively converging to penalized least-

square estimate, ˆ , and  smooth curve estimPLSβ  ˆate, g  (for more details, see Appendix 1).  

 
It can be shown that Eqs. (3.4) give a consistent estimator of  g  and T  consistent normal 

estimator for 

1/ 2

β  (for more details, see Yatchew 1998). Different methods are proposed for 

choosing l. In the following, the cross-validation (CV) score  with  ˆ ˆ( (T
j PLS j ))j jRES y= − g w−βx  is 

used  

 

                (3.5)                     1 2
1

( )
1 ( )

( )N j
j

jj

RES
Nλ

λ
−

=
=

−∑ A
CV ,       

 
 
 where jjA   is the diagonal elements of hat matrix A  (see Appendix 1). The CV method is a 

"leave-one-out" approach, where  is obtained by omitting the t  observation. Thus the estimate 

of  at each point   is obtained by estimating the regression using all other observations, then 

predicting the value of  at omitted observation. The target is to find a value of  

ĝ th

g jw

g λ  that minimizes 

CV.  

 
A natural approach in this context is to test the significance of the non-parametric nonlinear 

component   of the model. The  alternative is the pure parametric model, i.e.  does 

not add anything structurally. The tests derived by Hong and White (1995) and Hastie and 

Tibshirani (1990) that are related to the spline smoothing approach are applied here. Both tests 

assume that the smoothing parameter 

( )wg 0H ( )wg

λ  is optimally determined, i.e. ( )MinCV λ  exists.  

 
According to the M- test of Hong and White (1995), 
 
 
 
                (3.8)                              2 1ˆ ˆ( / ) /(2 )N N NM Nm p pεσ= − / 2 ,
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where 1
1

ˆ ˆˆ N
N jj

m N jν ε−
=

= ∑  with ˆˆ ( )T
j j j OLy Sν = − βx  and . ˆˆ ˆ( T

j j j PLSyε = − −x β )jg Np  is a dimen-

sion correction value. 2ˆεσ  is the estimate for the residual variance under the null model. Hong and 

White suggest to use the closest integer of l . In our case l   n   for  N Np n(162)  gives  5.=Np

 
F test of Hastie and Tibshirani (1990) has the following form 
 
 

              (3.9)          
2 2

approx21 1
2 1 22

2 11

ˆ ˆ( )( )
   ( ,

ˆ ( )

N N
j jj j
N

jj

N df
F F df df N df

df df

ν ε

ε
= =

=

− −
= −

−

∑ ∑
∑

∼ )−   , 

 
 
where   represents the degrees of freedom of partial spline model  2df ( (2 ))Ttr −A AA   and, df  is 

the degrees of freedom of OLS model without the non-linear part. Note that big a value of  df   

means a very jagged  

1

2

g  curve.  

 
The M test is asymptotically normally distributed. However, it is not supposed to perform 

optimally in small samples, like any procedure based on nonparametric regression. The 

approximation for F test given by Hastie and Tibshirani is not necessarily a good one in all cases. 

They suggest to use different moment corrections to obtain more reliable approximation to F-

distribution. However, they are difficult to compute. Thus, the test distributions in this contexts are 

derived by bootstrapping the model residuals under the null alternative with 10,000 replicates and 

estimating semiparametric model (for more details, see Section 4.2).   

 
Different estimators for residual variance 2

εσ  are proposed in the literature (see Green and 

Silverman 1994, Chapter 3.4). One alternative is  

 
 

                (3.10)                                   
2

12ˆ .
( ( )

N
jj

RES

traceεσ
)λ

==
−

∑
I A

               

 
 
The pointwise standard error bands are computed using ] under the assumption 

that the errors of model (3.1) are normal. Note that any residual-based 'diagnostic' tests are valid in 

2ˆ2[ ( )]Tdiagεσ± AA 1/ 2
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the partial linear model. This means that standard residual normality and heteroskedasticity tests, 

for example, can be carried out without modifications.  

 
A closer look at the economic model in Eqs. (2.4) and (2.5) reveals that the wage rate  is an 

endogenous variable like labour input . Output variable Q is assumed to be exogenous. At the 

disaggregated level output is demand constrained and imperfect competition is the natural market 

form. The consistent estimation of the wage equation demands non-linear instrumental variable 

estimation. However, the wage function is a non-linear unknown function of its arguments (see Eq. 

2.5 and 2.7). Andrews (1991) and Newey (1990) showed that, in such a model, non-parametric 

methods give asymptotically efficient and normally distributed estimators. The case is also valid for 

the series estimator used here. The series estimator is  

w

L

 
 
                (3.11)                  WS ˆIV µ= Z ,    where    
 
 
                                                  1ˆ ( )µ −= TZ Z ZT y     with   1 2.... k= ⊗ ⊗Z x x x  , 
 
 
where  2(1    )T

r r rx x=x  for all r   exogenous instrument variables in the system (1,...,= k ⊗  stands 

for the Kronecker product and   is a unit variable). i y  is WS , vector of the observed wage rates. 

This means that matrix that includes all possible combinations of 1st and 2nd degree terms 

of  's.  

  is aZ   

rx

 
Note that the nonparametrically estimated WS  is used in two places to estimate the 

semiparametric model. First, WS  is an instrument for the knot values in function 

IV

IV g . Secondly, it 

is one of the instruments for estimating parameter 1β   for the linear wage variable  in the 

labour demand model (2.6). This prevents endogeneity bias in semiparametric estimations of  

ln( / )w p

1β  

and  .  g
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4. The results   
 
 4.1. Data  

Officially published cross-sectional data from Finnish industry for the year 1989 (with lowest digit 

levels) was used (Industrial Statistics, Central Bureau of Statistics in Finland). The sample 

consisted of 162 observations. The following variables were used for all different industries for 

: wage rate  , number of hired persons 1  and  2i = ( )WS ( employment)L =  and output . It was 

not possible to get separate data for output price, 

( )Q

p , for the different industries. This means that no 

industry-specific price effects were allowed for in the estimations. They were buried in the nominal 

variables . Note that this question is not relevant for the effort function estimation as 

workers' effort decisions are sensitive to real consumption wages. This means that all the wage 

observations should be deflated with same value of consumer price index. However, this type of 

scaling would not change the estimates for effort function since we are working with cross-section 

data from year 1989. Any other relevant variables obtained from the databases were used as 

instruments in IV estimation. Appendix 2. gives a more detailed description of the variables and the 

data set.  

 and QWS

 

4.2. Model estimations   

The industry statistics are quite uninformative about industry-specific factors that have an impact 

on labour demand. This was controlled as follows. Eleven dummy variables were constructed 

corresponding to the separate unions acting on different non-overlapping industries. At the same 

time, the dummies corresponded quite closely to the different aggregate industry output categories 

(food, clothing, printing, metals, etc.). Thus, aggregate industry-specific union and product effects 

were filtered away through OLS regression on l  with dummy variables . The fits 

of these models, 

n iL 1, 2,..., 11D D D

ln DD
iL , are used below as a second endogenous variable. The estimated model is 

now  

 

 

______________________ 

1) All the calculations below were programmed with GAUSS -program. (The code is obtained from 

the author by request, see also Linden 1999).  
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               (4.1a)                 1
1 2ln ln ln ( )DD i

ij i ij i j ij ijL WS Q g WSβ β ψ= + + +  

 

               (4.1b)                   WS 2(ln , ln ) .ij ij j ijF L Q ψ= +  

 

1iβ  in equation (4.1a) is estimated with IV method and (4.1b) is estimated with IV series estimator 

with  as defined in (3.11) containing also some auxiliary variables obtained from the data base 

(see Appendix 2). The partial spline method is also used to estimate with . The 

following approach was used to build the knot values in 

Z

( )ijg WS IV
ijWS

ig : the values WS  in the order of 

smallest to largest (according to which the data is sorted). 

IV
ij

 

Before the final estimations were made the value of the smoothing parameters was determined. A 

search procedure among values   was run in order to find the 0.001(1.1) , 1,..., 200k kλ = = optλ  

value that gave (local) minimum values for CV score. The unique values were 1 45λ =  (skilled 

workers) and 2 90λ =  (unskilled workers).  

 

The curves in Figure 1. give the effort functions with a 95% -confidence intervals for skilled and 

unskilled workers. The functions are equal to ( )i
ie w 1̂ˆexp[ /(| | 1)]iβ −ig . The solution for skilled 

workers is imprecise at both ends because only few separate observations can be used for the end 

smoothing. When the four largest  observations were excluded from the sample, the 

minimum for 

IV
ijWS

1λ  was 2500. This value produced a very flat unjagged effort function estimate which 

specification tests rejected. The curves on the lower part represent the plots of whole wage 

functions, i.e. the semiparametric estimates of the wage function  

 

                (4.2)                         ln 1
1 ln ( ) .DD IV

ij i i ijL c Q G WS ijψ= + +  

 

The non-parametric curve estimates G  give at same time the total wage effects on labour 

demand, i.e. there is no distinction between the linear and non-linear parts. This is an estimate for 

( )IV
iWSi
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the labour demand curve as a function of wages, i.e. . The nonlinear parts are easily seen in 

the  curves (for similar results with consumer gasoline demand, see Hausman and Newey 

1995). 

( )D
i iL w

( )D
i iL w

 

            FIGURE 1. EFFORT AND LABOUR DEMAND FUNCTION ESTIMATES  
                                WITH 95% CONFIDENCE INTERVALS FOR SKILLED AND 
                                UNSKILLED  INDUSTRIAL WORKERS, 1989 
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The estimate for unskilled workers is steeper and more jagged than the  estimate for skilled 

workers if no attention is paid to the last six observations on the latter curve. Evidently, the non-

linearities can be identified with the estimated effort functions. Note that the same 

( )DL w

optλ  values as 

above may be used for e w  estimations, because the spline smoothing is not affected by the 

presence of the linear parts of the labour demand equation. 

( )

 

Table 1. gives the parametric part of the semiparametric estimation. The specification tests for the 

semiparametric parts of the models gave interesting results. The small sample test distributions 

were derived with bootstrapping (10,000 replicates) the model residuals under the null hypothesis 

that , and by estimating model (4.1a). In practice, the bootstrap test distributions were 

derived in the following way. New  values were calculated with model , where 

 is the re-sampled residuals with a replacement. The bootstrap  residuals were obtained 

with estimating the IV and the spline models with , i.e. v y

0i =g

*
jy * *ˆ

j IVy vβ= +T
jx

*
j

* * ˆˆ j j

j

*
IV

*
jv *ˆ ˆand  j vε

*
jy β= − T

jx  and  

. Some bias correction methods suggested by Davison and Hinkley (1997) 

did not altered the results. 

* *
jε = *

j- x *ˆ ˆIVPLS jy β *g−ˆ j

 

The bootstrapped p-values for the approximate F-test suggested by Hastie and Tibshirani show that 

estimated effort curve is significant at a 10% level for unskilled workers. A 5% significance level is 

obtained using Hong and White's test. However, both tests reject the skilled workers' effort 

function. The wage elasticities are quite close to each other, implying that the CES assumption used 

here may not be too restrictive. The t-tests for the equality of estimates of elasticity of substitution, 

1, 1 1,
ˆ ˆ

skilled unskilledβ β= , confirm this. The test value was below 1.2.  Wage elasticities are relative large, 

-1.99 for skilled workers and -2.17 for unskilled. The evident reason is the large absolute value of 

elasticity of substitution between inputs. The 1987-1989 boom in Finnish industry led to an 

increase in labour demand. Other inputs were extensively substituted for labour.  

 

The estimated effort function estimates may be interpreted as follows. The efficiency wages seem 

to play a role only for unskilled workers. The estimated effort function for unskilled workers has 

two different peaks and a notable downward trend. This means that effort performance is highest at  
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            TABLE 1.  Semiparametric instrumental variable estimation of  
                            labour demand equation  
 
                            ln 1

1 2ln ln ( )DD i
i i ij i j ij ijL WS Q g WSβ β µ= + + + +  

            _________________________________________________________ 
                                                  SKILLED           UNSKILLED  
 
                                  lnWS             -2.186**              -2.561** 
                                                       (0.315)                  (0.327) 
 
                                     lnQ              0.769**               0.831** 
                                                        (0.042)                (0.042) 
 
            Wage elasticity: 
              (1 1̂)Li iS β−                          -1.995                 -2.171  
             _________________________________________________________ 
 
            Specification tests  (p-values calculated using bootstrapping  residuals)   0H
   
                                               (Hong & White 1995)   
                                M-test               3.164                  5.912 **  
                              (p-value)           (0.311)                (0.026) 
 
                                            (Hastie & Tibshirani 1991) 
                                 F-test               0.764                  1.319*   
                              (p-value)           (0.482)                (0.091) 
 
             Diagnostics 
                                     2R                0.676                   0.715 
                                    SE                 0.692                   0.603 
                                               2.391                   2.610 2 (2)Nχ
                                  )            1.272                   1.584 2 (1)Hχ
 
                               **) significant at 5% level  *) significant at 10% level  
            ____________________________________________________________ 
 
                         Heteroskedasticity consistent standard errors in parenthesis 
                        : A test for normality (Jarque-Bera 1980).        2 (2)Nχ
                       : A test for heteroskedasticity (Koenker 1981).  2 (1)Hχ
            ____________________________________________________________ 
 
 

 13



the lowest wage levels, but that there is another local maximum at higher wage level too. Thus, 

among unskilled workers, two wage category classes exist which have distinct effort function 

regimes. The result may reflect a case where unskilled workers with lowest wages have the biggest 

threat of dismissal (the 'first in, first out' argument). This is the unemployment threat effect of 

efficiency wages. Thus, the unskilled workers with higher wages are the only group for which the 

Solow type of efficiency wage model is valid.  

 

Another explanation for the observed effort function is the fact that unskilled workers in Finnish 

industry are typically young or female workers who are less likely to be unionized compared to 

skilled (male) workers. Unskilled jobs are often temporary and tasks are unspecified. A union 

membership is based on specific task and professional skill requirements performed in permanent 

jobs. The wages are not set at firm level but on the centralized level between unions and industry.   

 

The rejection of the effort function for skilled workers implies that if effort extraction takes places, 

it does so with methods other than efficiency wages. Alternatively, any need for effort management 

among skilled workers can be redundant because their tasks and jobs are highly productive in 

themselves. Generally one may expect that firms have greater incentives to pay wage premia to 

skilled workers in order to keep the cost of turnover low. Thus, wage premia or drift may exists 

even if an effort function is not found.  

 

5. Conclusions  

 
A direct method was introduced to estimate effort functions e(w) for unskilled and skilled workers. 

Partially linear models including non-parametric functions of wages were estimated with PLS 

method. The data consisted of cross-sectional industry observations from the year 1989 in Finland. 

The effort function estimate based on partial smoothing splines was not rejected for unskilled 

workers by the specification tests used. However, the shape of the function demands a more 

detailed analysis that pays attention to the different wage categories among unskilled workers. The 

effort function for skilled workers was rejected by the data. The semiparametric labour demand 

estimates showed clearly non-linear curvatures identified with the effort functions.  
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APPENDIX 1.  Partial smoothing spline estimation  

A function  is defined on intervals ( ,g 1 ) [ , ]i it t a b− ∈  as a natural cubic spline if i)  is a cubic 
polynomial in each interval , ii) the polynomial pieces fit together at points t  in 
such a way that  itself and at least the first two derivatives are continuous at each knot t , and, iii) 

g

1 2t t< < ..... nt< i

g i

g'  and g''  are zero at the end points . Thus (see Green and Silverman, 1994, Chapter 2):   and  a b
 

           (A1.1)             12 1 1
1

1

''( ) [ ]
b n i i i i

iia
i i

g g g g
g t dt

h h
γ− + −

=
−

− −
= −∑∫  

 

                                                   
1

T T T

T T

γ γ γ

−

=

= T

Q g = R

g QR Q g = g Kg
 

            
                                  iff    T γ=Q g R , 
 
where Tg  is vector  ( , and , a vector of  for  

 are band matrices defined as weighted inversions of 
1   .... )ng g 2(  ..... )T

nγ γ γ −= 1

R
''( )itg

 for  it
2,..., 1.i n= −

..., 1n  and  Q 1 1,i ih t i+= − = − . 
 
This construction enables the penalized least square to be written as 
 
              (A1.2)                 ( , ) ( ) ( )T TS β λ= − − − − +g y X g y X g g Kgβ β   
 
Now the fit of the model and the hat matrix are ( (  1)λ −=S I + K )
 
                (A1.3)              ˆˆ ˆβy = Ay = X + g , where   
                (A1.4)             1( ) [ ( ) ] ( )T T−= − − −A S + I S X X I S X X I S  
                (A1.5)             1ˆ [ ( ) ] ( )T Tβ −= − −X I S X X I S y  
                (A1.6)             ˆˆ ( - )β=g S y X .   
 
 
A semiparametric IV estimation is conducted with  
 
                (A1.7)              1ˆ ( )IVβ −= T TZ X Z y ,  
 
where ( )−T

IV IZ = X I S V
T. IVX  is a set of instrumental variables and IVS  is calculated using WS . IV
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APPENDIX 2. The data and variables used  
 
 i = 1 (skilled worker), i = 2 (unskilled worker).  
 
Skilled workers in a firm are persons whose jobs and tasks need some special training or human 
capital to be performed succesfully. Unskilled workers' tasks need no general training or schooling. 
The workers may have some firm-specific training, but in general they are perform manual, non-
professional (blue-collar) jobs.  
 
               = employment in industry j.  ijL
              Q   = output in industry j.  j

             WS   = (wage sum + social security payments)/ (   ,  ij
1/ 2)IJ ijL H

                   where  = hours worked in industry j.  ijH
              
In addition, the statistical resources used allowed for the following variables: Export rate (EXPRi  = 
Exports/Output), gross investment (INVi ), productivity (PRij = ln(Qi/Lij)), and measure of 
concentration (TPRi = number of firms in industry/ employment), j = 1,..,162. However, only 
EXPRij  and TPRi turned out to be significant in the preliminary estimations of labour demand 
equations. Thus only these two variables were used as auxiliary IV variables in the estimations.  
 
The nonparametric instrumental series estimate, WS 1( )IV −= TZ Z Z ZT y , was calculated using the 
instrument vector  
 
                           , where  1 2= ⊗ ⊗Z x x x3

 
                             2(   ln   (ln ) )i Q Q=T

1x
                             2(   ln   (ln ) )i TRP TRP=T

2x
                                and  2(   ln   (ln ) )i EXPR EXPR=T

3x
                              WS=y
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