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PREFACE 
 

I was told that there is a long story behind each doctorate degree. I finally 

understood why when I started to write my own story in 1993. I had just 

received my master degrees in quantitative forestry and applied statistics, 

and I decided to investigate methods to generate hypothetical forests for my 

Ph.D. research at the Faculty of Forestry, State University of New York. In 

1997 I met Professor Juha M. Alho who accepted me as a doctorate student 

at the Department of Statistics, University of Joensuu. Since 2000 I have 

received studentships from the Faculty of Social Sciences and the 

Department of Statistics, University of Joensuu, and the Finnish Graduate 

School in Stochastics. This allowed me to work on my dissertation full time. 

It was a difficult challenge for me to reinitiate the research after having been 

away from academia for nearly six years. However, Professor Alho 

reminded me of the beauty of statistical modeling, and provided me with all 

the resources I needed to complete my study, including long hours of 

tutoring and supervision. I owe a debt of great gratitude to him for his 

continuous encouragement and support. I am also indebted to Professors 

Timo Pukkala and Antti Penttinen, who have offered invaluable comments 

in developing the statistical models. I thank Mr. Tim Green for correcting 

the English of the manuscript. There are many other people who have helped 

me during my study: too many to mention here. I thank you all for your help. 

The story ended with the completion of the dissertation, but this is the start 

of another story. Finally, I dedicate this dissertation to Mrs. Francis 

Farnsworth whose strength, elegance and kindness will always be 

remembered. 

 

Joensuu, November 2003 

 
Chijien Lin

 



 

ABSTRACT 
 

Chijien Lin, Generating Forest Stands with Spatio-Temporal Dependencies. 
Publications in Social Sciences 64. University of Joensuu 2003. 123 p. 
 

Keywords: Hypothetical forest, Spatio-temporal dependencies, 
Inhomogeneity, Ecological processes, Generalized linear mixed models, 
Transformation effect, Iterative simulation, SPATE. 
 

In forestry hypothetical tree populations are commonly generated for 

studying statistical sampling strategies, forest development and management 

planning purposes. The notion of Poisson (random) process has been 

dominant in the construction of hypothetical forests since the 1960s. 

However, spatio-temporal dependencies that result from growth, mortality 

and reproduction processes are not reflected in the generated tree locations 

and characteristics. The objective of this study is to develop methods for 

simulating hypothetical forests with tree characteristics that are dependent on 

the locations, that have arbitrary analytical or empirically estimated 

distributions, and that have an isotropic or anisotropic spatial structure. 

Statistical criteria for evaluating either homogeneous or inhomogeneous 

point pattern are discussed. Transformation effects on correlations of tree 

characteristics are examined. Empirical generalized linear mixed models are 

developed for generating correlated tree characteristics conditioned on tree 

locations. A stand simulator is developed to carry out iterative generation of 

hypothetical forests. As shown in examples, spatio-temporal dependencies 

can be generated through iterative simulation of growth, mortality and 

reproduction processes, as an alternative to reproducing the dependencies via 

covariance functions. In a forestry application, the generated hypothetical 

forests are used to study the accuracy of location independent thinning 

models.

 



 

TIIVISTELMÄ 

 
Chijien Lin, Tila-aika -riippuvien metsiköiden generointi. 
Yhteiskuntatieteellisiä julkaisuja 64, Joensuun yliopisto 2003, 123 s. 
 
Avainsanat: Hypoteettinen metsä, Tila-aika -riippuvuus, Epähomogeenisuus, 
Ekologiset prosessit, Yleistetyt lineaariset sekamallit, Muutoksen vaikutus, 
Iteratiivinen simulointi, SPATE. 
 
Metsätieteissä käytetään hypoteettisia puupopulaatioita tilastollisen otannan, 
metsän suunnittelun ja metsän kasvun tutkimuksen apuvälineenä. 
Hypoteettisten metsien luominen on perustunut 1960-luvulta lähtien 
Poisson-prosessiin. Puiden kasvusta, kuolemasta ja uudistumisesta 
aiheutuvia tila-aika -riippuvuuksia ei ole yleensä otettu huomioon puiden 
sijainneissa eikä ominaisuuksissa. Tämän tutkimuksen tarkoituksena on 
kehittää menetelmiä hypoteettisten metsien simulointiin, joissa puiden 
ominaisuudet ovat riippuvia niiden sijainneista. Ominaisuudet voivat 
noudattaa mielivaltaisia teoreettisia tai empiirisesti estimoituja jakaumia. 
Niillä voi olla joko isotrooppinen tai ei-isotrooppinen spatiaalinen rakenne. 
Pistekuvio voidaan valita homogeeniseksi tai epähomogeeniseksi tilastollisin 
kriteerein. Puiden sijainnista riippuvien ominaisuuksien luontiin käytetään 
empiirisiä yleistettyjä lineaarisia sekamalleja. Hypoteettisten metsien 
iteratiiviseen simulointiin on kehitetty metsikkösimulaattori. Esimerkeissä 
osoitetaan, että tila-aika -riippuvuudet voidaan generoida kasvun, kuolemien 
ja uudistumisen avulla iteratiivisesti vaihtoehtona riippuvuuksien 
tuottamiselle kovarianssifunktioilla. Metsätieteellisessä sovelluksessa 
tutkitaan generoitujen hypoteettisten metsien avulla paikasta 
riippumattomien harvennusmallien oikeellisuutta. 

 



 

中文摘要 

 
林及人，用时空相关性模拟森林林相，社会科学出版系列第64号，芬

兰约恩苏大学 2003，123页。  

 

关键字：虚拟森林，时空相关性，非均衡性，生态过程，广义化的混

合线性模型，变换影响，巡回模拟，SPATE。 

 

在林学上，为了研究统计取样、森林生长和林业经理，普遍地建造虚

拟林木族群。自从1960年以来，波松(随机)程序为主要模拟族群的建

造方法。但是生长、死亡和再繁殖程序所产生的时空相关性并未反应

模拟林木的空间位置及特性。本论文研究的目的是创建虚拟森林的模

拟方法，使林木的特性是依赖其位置并且由理论的或由实验推算出的

统计分布及各向同性与非各向同性所产生的空间结构。论文中讨论了

统计判断的标准以用来选择均衡的和非均衡的点模式，测验了变换效

应对林木特性的依赖性，发展了基于林木的位置来模拟相关的林木特

性的经验概括混合线性模式，首创了用来巡回建造虚拟森林的林分模

拟器。如同范例所示，由巡回模拟生长、死亡及再繁殖过程来产生的

时空相关性可以替代经由协方差函数产生的时空相关性。虚拟森林可

用来检定空间独立疏伐模形的精确性。 
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GLOSSARY OF NOTATIONS 

Mathematical Notations 

� �log y  Natural logarithm of y  for y 0�  
� �exp y  Exponential function; � �� �exp  ylog y �

� �logit y  Logistic function; � � � �� �l  ogit log yy 1 y� �

max A  Maximum of set  A
 
Matrix Notations 

Y   vector; Y  n 1� � �
T

1 nY , ,Y� �

Y   � �
T

1 m, ,Y Y�

I  Identity matrix 
�  Kronecker (direct) product 
 
Notations for Point Processes 

2
�  2-dimensional Euclidean space 
x  Location of a tree;  � �

2
1 2x ,x� �x �

A  A bounded (Borel) set,  2A � �

� �N A  A random variable that represents the number of points in  A
A  The area (Lebesgue measure) of  A
� �� x  Intensity at x  
� �A�  � �A

d�� x x  

� �A�  � �A A�  
X  A finite set of points in  2

�

i j�x x  Euclidean distance between ix  and jx  

n�  A product over pairs  i j , i, j 1, ,n� �x x �

2
�  Dispersion parameter 

� �rU x  A disk of radius  centered at point r x  
� �A r  � �� �rA U A� �x x  

0A  Background area; A A  0 iij A�= \ j

ijA  The j th concentric ring of the th tree i

ij klA
�

 Intersection of concentric rings  and  ijA klA
 

 



 

Notations for Statistical Distributions 

� �Yf y  The probability density function of Y  

YF  The cumulative distribution function of Y  

� �YF y  � � � �
y

YP Y y f x d
��

� � � x  

� �E Y   � �Y Yy f dyy �
��

��
��

� �E Y   � �1 n

T
Y Y,...,� � � Yµ

� �x�  � �
x 21 1

22
exp duu

���
��  

� �G ,µ Σ  A distribution with mean vector  and covariance matrix  µ Σ
� �U 0,1  Uniform distribution 

� �� �Po A�  Poisson distribution with expectation � �A�  

� �Var Y  The variance of Y ; Va  � � 2
Yr Y ��

� �i jCov Y ,Y  � � � �� � i jj Y Y Yi Y YE Y � �� � ��  

YΣ   � �� � �
TE C� �� � �� �Y YY µ Y µ Y �ov

�  Random variable that represents initial heterogeneity 
,� �  Parameters (standard deviation) of initial heterogeneity 
,� �  Random variables that represent environmental effects 
,� �  Parameters (standard deviation) of environmental effects 

�  Regression residuals 
,� �  Probabilities for a Bernoulli random variable that takes values 

0 or 1 

 



 

GLOSSARY OF FORESTRY TERMS 

Allele One of a pair of genes located at the same locus 
in homologous chromosomes and controlling the 
same character. One of a pair of characters 
controlled by such genes and alternative to each 
other in inheritance (Wright 1976, p. 439). 

 
Basal area The cross-sectional area of a tree’s bole measured 

at a predefined point above ground, usually 
breast height (Dunster and Dunster 1996). 

 
Cohort A group of trees regenerating after a single 

disturbance (Oliver and Larson 1990, p. 142). 
 
Current annual increment The growth increment added in the past year, or 

in the past few years, in which case, it would be a 
periodic annual increment (Dunster and Dunster 
1996). 

 
Heritability That portion of the total variance due to genetic 

factors. In a broad sense, that portion of the total 
variance due to all genetic factors. In a narrow 
sense, that portion of the total variance due to 
genes with additive effects and most indicative of 
the superiority that can be transmitted by seed 
(Wright 1976, p. 444). 

 
Low thinning Trees are removed from lower crown classes 

(Smith 1962, p. 64). 
 
Recruitment (synonym of ingrowth) The number of trees or 

the volume of trees that have grown past a 
predetermined threshold in a set period (Dunster 
and Dunster 1996). 

 
Regeneration The renewal of a forest or stand of trees by 

natural or artificial means, or the stand of young 
trees under 1.3 meters high that results (Dunster 
and Dunster 1996). 

 

 



 

Sapling Typically one to two meters tall and two to four 
centimeters in diameter, with vigorous growth, 
no loose, dead bark, and few (if any) dead 
branches (Dunster and Dunster 1996). 

 
Seedling A young tree growing from seed is a seedling 

from the time of germination through to the 
sapling stage (Dunster and Dunster 1996). 

 
Selection thinning To remove dominant trees in order to stimulate 

the growth of smaller trees (Smith 1962, p. 77). 
 
Silvicultural practices The set of field techniques and methods 

implemented to modify and manage a forest 
stand over time to meet defined management 
goals and objectives, which will depend on the 
silvicultural system [type of cuttings, the stand 
treatments, and any intermediate cuttings] being 
used (Dunster and Dunster 1996). 

 
Site An area’s potential for tree growth; site usually 

incorporates an area’s soil and climate conditions 
(Oliver and Larson 1990, p. 1). 

 
Stand A spatially continuous group of trees and 

associated vegetation having similar structures 
and growing under similar soil and climatic 
conditions (Oliver and Larson 1990, p. 1). 

 
Stand development The part of stand dynamics concerned with 

changes in stand structure over time (Oliver and 
Larson 1990, p. 1). 

 
Stand dynamics The study of changes in forest stand structure 

with time, including stand behavior during and 
after disturbances (Oliver and Larson 1990, p. 1). 

 



 

Stand structure The physical and temporal distribution of trees in 
a stand. The distributions can be described by 
species; by vertical or horizontal spatial patterns; 
by size of trees or tree parts, including the crown 
volume, leaf area, stem, stem cross section, and 
others; by tree ages; or by combinations of the 
above (Oliver and Larson 1990, p. 1). 

 
Thinning The removal of selected stems from a developing 

stand in order to salvage potential mortality, and 
promote silvicultural or other objectives 
(enhanced growth in the remaining trees, etc.) 
(Dunster and Dunster 1996). 

 
Tree crown The upper part of a tree or other woody plant that 

carries the main system of branches and the 
foliage (Dunster and Dunster 1996). 
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1. INTRODUCTION 

Computer generation of hypothetical forests for forestry and statistical 

studies has developed rapidly during the last 40 years. For example, Palley 

and O'Regan (1961) were only able to generate a small amount of trees in a 

limited area using early computers, while Mackisack and Wood (1990) were 

able to generate a 1000 ha tract of forest. In those applications, tree locations 

are randomly generated (the so-called Poisson forest) and tree characteristics 

are independently and identically distributed random variables, which are 

independent of location. For management planning (e.g. Ek and Monserud 

1974) and ecological (e.g. Shugart 1984) simulations the generated 

hypothetical forests, which are used to simulate thinning and growth, consist 

of only tree characteristics. 

For single-tree growth simulation models based on tree locations (e.g. 

Adlard 1974; Pukkala 1988; Pretzsch 1997) and on geometrical 

developments of tree crowns (e.g. Ford and Sorrensen 1992; Kellomäki et al. 

1999) are developed to simulate the competition among trees. Stoyan and 

Penttinen (2000, pp. 70-71) reviewed recent applications of forestry growth 

models and stated that 
… single-tree models can be seen as models of spatio-temporal 
point processes. They pose the following statistical problems: (i) 
model validation, i.e. checking that a given single tree model 
produces realistic artificial forests, (ii) construction of 
geometrical models for tree crowns, which will be used as marks, 
(iii) modeling mortality of trees, the main random component in 
many forests and (iv) developing of models for realistic start 
configurations based on a statistical analysis of any forest to be 
used in simulation of its development. 

 
Parallel to the generation of hypothetical forests, point pattern analysis 

methods are used to study spatial arrangement and to generate locations of 

trees (e.g. Newnham 1968). Ripley (1976) introduced the K-function, which 

is used to examine whether the configuration of a mapped point pattern is 
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Poisson, clustered or regular. Tomppo (1986) discussed models and methods 

for analyzing spatial point patterns of trees in forests. Penttinen et al. (1992) 

presented statistical methods, based on the marked point processes, for 

explanatory analysis of interactions among trees. 

From a statistical point of view, tree characteristics depend on location 

and on their marginal distributions, which may follow arbitrary analytical or 

empirical distributions. There may be isotropic or anisotropic spatial 

covariances between the characteristics of neighboring trees. Therefore, 

statistical properties of location and tree characteristics need to be 

considered simultaneously to generate hypothetical tree populations. 

Although there have been attempts to model marginal distributions 

and the covariance structure of tree characteristics, it is still a difficult task if 

tree locations and characteristics are to be specified directly for a single 

point of time. For example, Kokkila et al. (2002) proposed using the Gibbs 

marked point process to generate a spatial configuration for a given set of 

tree characteristics. Tree locations and characteristics (marks) were taken 

into account simultaneously by permuting tree locations within the simulated 

area. As Griffith (1988, p. 229) pointed out, such a permutation procedure 

ignored 
…indirect effects associated with the feedback loops of multi-
directional dependences… and …the realized surface is not 
necessarily the outcome of a homogeneous process operating over 
the planer [2-dimensional] surface in question (stationarity). 

 
The procedure can fail when the desired spatial structure is not within the 

distribution of spatial structures that can be generated from a given set of 

independent random variables through permutation. 
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Forests develop over time via the processes of regeneration 

(reproduction), growth and mortality (Oliver and Larson 1990, Chap. 6). In 

this study we formulate models for locations and for these ecological 

processes and allow these models to interact iteratively. Specifically, the 

objectives of this study are: 

1. To formulate statistical models, which correspond to the 

ecological processes, for simulating tree locations and 

characteristics. 

2. To generate correlated tree characteristics with empirically 

estimated cumulative distribution functions. 

3. To generate hypothetical forests iteratively with spatio-temporal 

dependencies. 

The computer software SPATE (SPAtio-TEmporal stand simulator) is 

developed to implement the simulation. 

This study belongs to the intersection of applied statistics and 

quantitative forestry. We apply techniques of statistics to the generation of 

hypothetical forests that correspond to a given pattern of locations, marginal 

distributions and covariance structures of tree characteristics. The model 

specifications are general and the results can be applied to a wide range of 

forestry and statistical studies (cf. Ripley 1984). 

Statistical criteria, i.e. Poisson regression and Q-function analyses, for 

examining mapped tree patterns are formulated in Chapter 2. These tools 

facilitate the analysis of mapped point patterns without homogeneity 

assumptions. 

Transformation has been used extensively in forestry for stabilizing 

variances or for modeling purposes. However, only a few studies have taken 

into account how transformation affects the correlation structures of tree 

characteristics. This may be a problem, especially when the underlying 

distribution does not have a closed form, as in the case of an empirically 
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estimated density function. We investigate the transformation effects in 

Chapter 3. 

The general formulation of the generalized linear mixed models in 

Chapters 3 and 4 covers a wide range of stochastic (and deterministic) 

models that appear in forestry literature. We discuss how the models can be 

integrated into a global model to iteratively simulate forest development in 

Chapter 5. We show an application of examining errors caused by 

commonly used location independent thinning models in Chapter 6. 
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2. GENERATING INITIAL TREE LOCATIONS 

The goals of this chapter are to develop methods for generating point 

patterns as tree locations, and to formulate statistical measures of point 

patterns. We consider three types of point patterns, namely, Poisson, 

clustered and regular (cf. Tomppo 1986), with homogeneous and 

inhomogeneous intensities. These point patterns are used to generate tree 

locations for one-step (Chapter 3) or for the initial stands of iteratively 

generated (Chapter 5) hypothetical forests. 

In Section 2.1 we discuss the generation of locations using 

homogeneous and inhomogeneous Poisson processes. In Section 2.2 we 

illustrate the generation of clustered locations using the Neyman-Scott 

process. In Section 2.3 we show how to simulate pairwise interaction 

processes that display inhibition and local dependency. In Section 2.4 we 

formulate statistical criteria of spatial patterns and show how to select an 

appropriate model for a point pattern. In Section 2.5 we examine the longleaf 

pine mapped stand data with the statistical criteria developed in Section 2.4 

and show examples of generated point patterns. 

2.1 Poisson Forests 

Suppose natural regeneration is underway in a newly harvested forest 

stand. If there are no significant environmental variations, the locations of 

regenerated seedlings can be described by the Poisson distribution (de Vries 

1986, pp. 371-372). 

Let  be a Borel set (Feller 1971, pp. 113-114) with area 

(Lebesgue measure) 

2A � �

A . Define � �N A

A

 to be a random variable representing 

the number of tree locations in . Provided that � �N A  is finite whenever 

A � � , we can think of the collection of random variables 
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� �� �:  is a Borel 2N A A � � set  as a spatial point process, for a rigorous 

theoretical foundation see van Lieshout (2000, pp. 4-8). 

� � � �A
A d� �� � x x

� �� x

� �� �P N A k� �

A �

� �

A

� ��max max |� �� x x

Suppose there is a function � � 0� �x  on . Define 2
�

. A spatial point process is a Poisson process with 

intensity  if 
 

 � �� � � �
kexp A A

k !
� �� ,  k 0,1,...�

 
for all bounded Borel sets  and counts in disjoint sets are 

independent (Rényi 1967). If 

2
�

� �� x �� , we have a homogeneous Poisson 

process. Often this is referred to as the complete spatial randomness (Cressie 

1991, p. 586). In this case A A� �� . 

Realizations from a homogeneous Poisson process can be obtained 

based on the property that, conditionally on � �N A , the points are uniformly 

distributed over . The shape of  need not be restricted to rectangles. For 

example, Lewis and Shedler (1979, p. 411) considered the generation of 

Poisson point patterns in a circular area, and Hsuan (1979) used rejection 

sampling to generate uniformly distributed random locations on a 

polygonally shaped area. 

A

If there are factors (such as soil fertility) that affect the spatial 

distribution of the seedlings, then the intensity may not be constant. In this 

case the seedling locations can be described by an inhomogeneous Poisson 

process with a variable intensity function over  (Diggle 1983, p. 52). 

Suppose 

A

A , realization of such a process can be 

generated by the rejection method (Lewis and Shedler 1979, pp. 411-412): 

��
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1. Generate � �A
max �
N  points from a homogeneous Poisson process of 

intensity . 
2. Generate u U  independently. If �0,1� � � �iu m� �� x ax , 

, reject this point. �i N� �A

The result is a realization of an inhomogeneous Poisson process with 

intensity � �� x . 

2.2 Clustered Forests 

For natural regeneration it is customary to leave mother trees in a 

harvested stand. Consequently we can expect spatial clustering of seedlings 

around the mother trees. The Poisson cluster process can be used to model 

this type of clustered spatial point pattern. 

An early example is the process described by Neyman and Scott 

(1958) that was applied to problems of Cosmology. In the case of a forest 

stand, the ‘cluster center’ and ‘galaxy’ in Neyman and Scott’s discussion 

correspond to mother trees and offspring, respectively. This setting 

corresponds to the seed-tree silvicultural practice in which mother trees are 

left in a harvested stand to produce seeds and they are removed when 

seedlings have established (Smith 1962, pp. 421-436). Note that realizations 

of the Neyman-Scott process consist of the offspring only. 

Boundary conditions affect the generation of offspring locations in a 

bounded area  when mother trees are located near the boundaries. If the 

boundaries of  are defined by ownership rather than by ecological 

boundaries, then we have a spatial process that is not influenced by the 

boundaries. In this case we can generate mother trees and offspring locations 

in , which is clearly larger than  (Ripley 1981, p. 151). In general, 

 can be a polygonally shaped area with reasonably regular boundaries. 

A

A

*A � A A

A
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On the other hand, lakes, ravines, roads, etc. can create ecologically 

significant boundaries such that the spatial process near boundaries differs 

from the spatial process elsewhere. This is a difficult problem and methods 

used to account for such boundary effects (Griffith 1988, Chap. 7) do not 

reflect the full ecological reality. We simply discard the generated offspring 

locations that are outside . A

We use the following procedure to generate realizations of the 

Neyman-Scott process: 

1. Generate mother tree locations ix , i 1  from a 
homogeneous Poisson process in . 

, ,m� �

A
2. For each mother tree, generate a Poisson random number to 

be the number of offspring. 
3. Independently locate offspring around the mother tree 

according to a density function � �g � . 
4. Retain the generated offspring locations inside . A

Taking an inhomogeneous Poisson process in step 1 will produce an 

inhomogeneous Neyman-Scott process (Cressie 1991, pp. 663-664). The 

density function � �g �  can be a radially symmetric function such as the 

normal density function with  and �  offspring dispersion distance 

(Diggle 1983, p. 56). The expected number of mother trees and offspring can 

be determined based on field observations, or estimated using statistical 

methods (e.g. van Lieshout and Baddeley 2001, pp. 5-10) and the statistical 

criteria described in Section 2.4. 

0� � �

2.3 Regular Forests 

Saplings may inhibit others from growing in close proximity. This can 

result in a regular pattern of saplings. Markov point processes provide a 

flexible inhibition mechanism that preserves local dependencies. 
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Following Diggle (1983, pp. 63-64), let � �f �  be the likelihood 

function of the process with respect to a Poisson process of unit intensity. 

Let � 1 �n, ,� x x�X  be any finite set of points in a bounded set . 

Then the likelihood function of the process is 

2A � �

� � � �f exp A�X . For a fixed 

, define  to be neighbors if r � 0 i j,x x A� i j r��x x , where 

� � � �
2

i2 j2x x��
2

i j i1x x� ��x x j1  is the Euclidean distance between 

ix  and jx , and r  is the interaction radius. A Markov point process is a 

Strauss process provided that  

 
 , (2.1) � � n sf ab�X c
 
where  is a normalizing constant,  is the number of points in X , 

, and 

a 0�

0

n

b � s  is the number of distinct pairs of neighbors in . Parameter 

 describes the interaction between pairs of neighboring points. When 

, we have a Poisson process. If , we have a process in which no 

two points in  may be neighbors. When 0 c , we have a non-strict 

inhibition process (Kelly and Ripley 1976). 

X

c

c � 1 c � 0

X 1� �

For a class of pairwise interaction processes such that the interaction 

between pairs of points depends on the distance between them, process (2.1) 

can be generalized as 

 
 � � � �n

i jnf a b h� � �x xX , (2.2) 
 
where � �h � �

i j

0  is bounded and � is the product over pairs n

�x x j �, i, . For example, if 1, ,n� � �h c  for � � i j r� �x x  and 

� �h 1� �  for i j�x x r�  we get (2.1). 
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Denote n �x x  and define X . It follows that � 1 n, ,�

�
� x x� �1

 
 � � � � � �

n 1n
i j in 1 i 1f a b h h�

� �

� �� � �x x xX x . 
 
Suppose we know the locations in . Then the conditional density of �X x  is 
 
 � � � � � �

n 1
ii 1f f b h��

�
� �� x xX X . 

 
It follows that (2.2) can be simulated by randomly deleting a point in  and 

then adding a new point with a density proportional to 

X

� �i
n 1
i 1 h�

�

�� x x . We 

can then let n 1�x  play the role of x  and repeat the procedure. This iterative 

process can be shown to lead to a point pattern with density � �f �  (Ripley 

1977). 

Markov point processes can be simulated using the spatial birth-and-

death process, or the Metropolis algorithm (Cressie 1991, pp. 679-680). We 

use the algorithm due to Ripley (1979), which was developed under the 

spatial birth-and-death process framework. Given an expected number of 

points, an initial set of points can be generated from a homogeneous Poisson 

process. A point is chosen at random and replaced by a point drawn from the 

conditional density given the remaining points. The conditional density is 

proportional to sc  as in (2.1). 

For generating inhomogeneous pairwise interaction point patterns, we 

can transform a homogeneous pairwise interaction point pattern to 

correspond to an inhomogeneous intensity function (Jensen and Nielsen 

2000, pp. 8-11). Instead of attempting to fit a parametric or non-parametric 

model to the inhomogeneous intensity interface, we can transform a regular 

point pattern to an inhomogeneous regular point pattern using estimated 

empirical cumulative distribution functions from generated and data point 

patterns. The transformation involves a probability integral transformation 
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and an inverse transformation (see Section 3.3 for a detailed discussion of 

implementations). We introduce this approach to generate inhomogeneous 

regular point patterns since it is much simpler than the methods used by 

Jensen and Nielsen (2000). We give an example of the transformation in 

Section 2.5. 

2.4 Statistical Criteria for Selecting Patterns of Tree Location 

In general the type of point pattern to be simulated is chosen based on 

prior ecological knowledge, or on the intended use of the simulation results. 

If the goal is to replicate a particular forest stand, then it may be useful to 

have statistical guides for making the choices. We present two procedures. In 

Section 2.4.1 we show how Poisson regression can be used to estimate and 

test both for the intensity surfaces and for type of point patterns. In Section 

2.4.2 we show how measures that are related to the K-function can be used 

to give a refined analysis of point patterns. 

2.4.1 Poisson Regression 

Suppose there is a partition  and let  

be the number of locations in . This information can be obtained, for 

example, from a mapped stand. We write 

1 2A A A A� � � �� q � �iN A

iA

� �� � � �i i iE N A A�� A , where 

� � � �
ii A

A d� �� � x x iA  is the average intensity in . iA � �iN A

A

iA

’s are 

mutually independent because of the definition of the Poisson process. In 

general there are no fixed rules as to how to partition . A common practice 

is to use a regular grid consisting of rectangles  (Diggle 1983, p. 23). In 

this example we can use a log-linear model (McCullagh and Nelder 1989, 

pp. 193-200) to estimate � �iA� . In the simplest case it is of the form 
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� �� �ilog A� � i βv , where � �i i1, l , m�v

� �
T

0 1 2, ,� � �

� �� �

i  depends on the center  of 

 in the grid and . 

� �i il ,m

iA

iA

�β

iE N A iv

� �iN A

1

� �� �
2

iA E N��

2

� � �

r N

2 1�

�
� �

q
2

i 1�
�

i i

i i

ˆN A A
ˆ A A

�

�

�

�̂

� �i
ˆ A � �iA� p

iv

When a log-linear model is used, the expected number of locations in 

 is approximately of the form � �T
iexp A� βv

:0 j

 for some . If 

 is Poisson distributed and independent, we can test for an 

inhomogeneous intensity surface by taking H 0� �

�

 for  and using 

a likelihood ratio test statistic. However, if 

 j �

�iN A  is not Poisson distributed, 

then the test is only approximately valid (McCullagh and Nelder 1989, p. 

200). 

i

Another use of Poisson regression is to examine the under- or over-

dispersion of the tree locations. For the Neyman-Scott process we expect 

more random variability than the Poisson process (i.e. over-dispersion). For 

the pairwise interaction process we expect less random variability than the 

Poisson process (i.e. under-dispersion). A simple way to test for over- and 

under-dispersion is to introduce a scale parameter (McCullagh and Nelder 

1989, p. 194). In what follows we assume that � �iN A ’s are independent. 

Suppose that Va , where �  is the dispersion 

parameter, for the Poisson distribution � , if �  we have over-

dispersion, and if �  we have under-dispersion. The dispersion 

parameter can be estimated using the formula 

� �� A

1�

2

12
�

�i

 

 
� �

, � �

2
iA

q p� �

 
where �  is the estimate of  from the log-linear model and  is 

the dimension of . 
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An approximate test for an inhomogeneous intensity surface is 

obtained as before, but now the estimated dispersion parameter is 

incorporated. To assess whether � , we can use the following 

approximate procedure. We expect that for large 

2 1�

� �iA� , 

� �
2 2 2

q pˆq p � � �
�

� �

2
q p�
�

 (Rao 1973, pp. 392-393). Let the �  quartile of the 

 distribution be , q p�
w
�

. Then 

 

 � �
2 2

2

2,q p 1 ,q p

ˆq pP w w 1
� �

�

�

�
� � �

� ��
� � �� �

� 	
� . 

 
This yields an approximate � �1 ��  confidence interval for �  of the form 2

 

 � � � �

2 2

2 2
2

1 ,q p ,q p

ˆ ˆq p q pP 1
w w

� �

� �

� �

� � �

� �� �
� �� � � �
� �
� 	

. 

 
If the confidence interval includes 1 , we may have a Poisson case. If the 

lower limit of the confidence interval is , we may have a case of over-

dispersion. If the upper limit of the confidence interval is , we may have 

a case of under-dispersion. 

1�

1�

We offer this as an approximate guide only because the true sampling 

distribution of �  under the Neyman-Scott or the pairwise interaction 

processes is unknown. Of course the point pattern could be a realization of 

some other point process as well. Therefore, there is little hope of finding an 

exact test. However, the purpose of this test is merely to act as a guide for 

choosing a point pattern generation method from those introduced in 

Sections 2.1-2.3. 

2ˆ
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2.4.2 K-Function and Related Measures 

In forests tree location distributions are affected by many factors (such 

as soil and competition) and measures based on the homogeneous Poisson 

assumption may not be adequate. Alternative measures are needed to 

identify an appropriate point pattern for simulation purposes. In the 

following we formulate an approach that is also applicable in the case of an 

inhomogeneous intensity surface. 

Consider a disk � �rU x  of radius  centered at any point . Let 

the expected number of points (i.e. trees) in the disk be 

r A�x

� �� �� � �
2

r � �� rE N U U r�x x� � . Define 

� � � �� �� �there is a tree at  *
rK ,r E N U 1� �x x

�

x . This is the expected 

number of other trees in �rU x  given that there is a tree at the center 

(Ripley 1977, p. 190). It follows that � � � � � �� �
* 2

rr K ,r U r� ��x x xQ ,  is a 

measure of the effect of the tree at the center on the number of other trees in 

the disk (cf. Baddeley et al. 2000). 

For a homogeneous Poisson process with intensity , �

� �� � �2 2 *
rU r r K� � ��� � �,rx x , and hence � �Q ,  for all r 1�x x . The 

famous K-function (Ripley 1976) can be defined as � � � �*K �xK r ,r� . As 

pointed out by Cressie (1991, p. 639), if we pick out a random location 

, then we can define A�x � �� � � �E Q ,x r Q r� , where the expectation is 

taken with respect to the intensity of x . The expectation does not depend on 

x , but it may depend on . For clustered processes with intensity  we 

expect that Q r . For regular point patterns we expect that Q r .  

r

� � 1�

�

� � 1�
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Continue to consider the case where � �Q r  does not depend on x . 

Define � � � �� �rA r A U A� � �x x . Then an estimator of the Q-function is 

 

 � �
� �� �

� �� �

� �� �� �i

r i
2

A r r i

N U 11Q̂ r ˆN A r U r� ��

�

� �
x

x
x

, 

 
where � � �� r i

ˆ U �x  is the estimated average intensity. It can be estimated 

using a parametric model such as the log-linear models discussed in 2.4.1, or 

using non- and semi-parametric kernel estimation methods (Baddeley et al. 

2000). In the homogeneous Poisson case � �� � � �r i
ˆ U N A� �x A . The plot 

of Q r  against  provides a heuristic estimate of whether tree locations in 

a mapped stand display a random, clustered or regular configuration. 

�ˆ � r

Although the Q-function can be a useful tool for analyzing point 

patterns, it is sensitive to  and the model for . For example, in the log-

linear model case the chosen grid size and the order of the model will affect 

the behavior of Q r . This also applies to the non-parametric cases with the 

choice of kernel function and bandwidth (cf. Cressie 1991, p. 660). It is 

possible that two identical Q-function plots could result from very different 

’s (Baddeley and Silverman 1984). 

r �̂

� �ˆ

�̂

2.5 Examples of Forests with Locations 

We will analyze the mapped longleaf pine data (Appendix B.1) and 

then use the analysis results to simulate tree locations. The mapped stand is 

partitioned into a grid and the counts in the grid cells are fitted with a 

constant and a log-linear models. The results are listed in Table 2.1. The 

deviance difference 38.11 

5 5�

� �150.62 112.51� �  is greater than 

, which indicates that the log-linear model fits significantly 0.05, 2w 5.� 99
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better. The estimated regression coefficients and standard errors indicate that 

the intensity surface increases with 1x , which suggests inhomogeneity. 

Because the lower bounds of the confidence interval for �  for both models 

are greater than 1, there is over-dispersion (clustering) in the point pattern. 

2ˆ

ˆ ˆr K

� �� � � �r i N

r

Figure 2.1 shows the estimated Q-function and the transformed K-

function with variable-width edge correction, i.e. � � � �L r �� � r , 

where � � � �� � � �� ��
i A rK̂ r A N U 1 N A r A
�

� �� x x

1

10

 (Cressie 1991, 

p. 616). The Q-function plot indicates a clustered point pattern for longleaf 

pine. Thus, we can conclude that the longleaf pine mapped stand is an 

inhomogeneous clustered point process; the same conclusion was drawn by 

Baddeley et al. (2000). We can see from Figure 2.1 that, as  increases, the 

Q-function plot decreases steadily towards , which is the theoretical value 

if the intensity surface is homogeneous, and the plot flattens out at around 

 m. We may take this as an approximate cluster radius. r �

�

Although the statistical analysis agrees with qualitative observations 

(Platt et al. 1988, p. 505) that 
…juveniles and subadults were highly aggregated, occurring 
in discrete, widely separated clumps…, 
 

the underlying ecological processes that generate the stand are in neither 

T
d
(
 

able 2.1 List of coefficients (and their standard errors), deviance, estimated 
ispersion parameter (� ) and confidence interval for dispersion parameter 
CI) of the fitted intensity surface models of a mapped longleaf pine stand. 

2ˆ

Explanatory variable and 
model statistics Constant model Log-linear model 

Intercept –4.22 (.04) –4.68 (.12) 
1x  ― .0045 (.0008) 
2x  ― –.00034 (.00073) 

Deviance 150.62 112.51 2
�̂  6.21 5.66 
CI (3.47, 11.80) (3.16, 10.75) 
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case the ones we have discussed so far. The reason is that the juvenile and 

subadult trees are in clumps due to inhibition by the adult trees. In addition 

the mapped stand data excluded other species, which account for about one 

quarter of the mapped longleaf pine trees (Platt et al. 1988, p. 493). This 

means that there might be other undetected point processes interacting with 

the juvenile and subadult trees (cf. Högmander and Särkkä 1999). 

A further investigation was conducted by analyzing the point patterns 

of juvenile, subadult and adult size classes (Figure B.2). We repeat the Q-

function analysis and the results are shown in Figure 2.2 and Table 2.2. The 

results show that at least two different point processes co-exist in the stand. 

Therefore, attempting to fit a single clustered point process to the mapped 

pattern will not yield reasonable parameter estimates. 

As an example we generate an inhomogeneous clustered point pattern, 

which is used as an initial point pattern for generating one-step stands in 

Chapter 3. We use the intensity surface estimated from adult trees for 

generating mother tree locations. From the Q-function plot (Figure 2.2) we 

choose the clustering distance to be 10 m. Judging from the stand map for 

juveniles there are approximately 10 trees per cluster. 

or ˆ ˆQ L

1
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6

7

0 10 20 30 40 50 60

Figure 2.1 Estimated Q-function (circles) and transformed K-function  
(triangles) of the longleaf pine data. Both functions are computed with an 
increment of 2 m. 

� �L̂ r
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Distance (m)

Q̂  

Figure 2.2 Q-function plots for combined (circles), juvenile (squares), 

subadult (triangles) and adult (crosses) size groups of longleaf pine data. 

Note that the first five estimated Q-functions for juvenile longleaf pine data 

are 27.6, 15.2, 10.2, 7.8 and 6.4, which are not plotted. 

T
d
(
 

able 2.2 List of coefficients (and their standard errors), deviance, estimated 
ispersion parameter (� ) and confidence interval for dispersion parameter 
CI) of the fitted intensity surface models of a mapped longleaf pine stand. 

2ˆ

Explanatory 
variable and 

model statistics 
Juvenile Subadult Adult 

Intercept –7.809 (.2940) –6.312 (.240) –4.418 (.153) 
1x  .0100 (.0155) .0060 (.0015) .00060 (.00107) 

2x  .0097 (.0016) .0012 (.0014) –.00713 (.00113) 
Deviance 169.05 124.89 28.19 

2
�̂  7.48 6.30 1.30 
CI (4.84, 16.45) (4.07, 13.85) (.84, 2.85) 

Intensity 
surface Inhomogeneous Inhomogeneous Inhomogeneous 

Point pattern Clustered Clustered Poisson 
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After a few experiments we choose the number of mother points to be 

64 to generate a total number of offspring locations that is close to the actual 

number of trees in the longleaf pine stand. For example, the average number 

of offspring locations in this example is 587 with 1200 simulation runs. An 

example of the generated mother and offspring locations are shown in Figure 

2.3. 

In fact, the above analyses only deal with tree locations without 

considering tree characteristics and environmental factors, such as soil and 

relief. Cressie (1991, p. 618) suggested that the longleaf pine point pattern 

results from the dynamics of the ecological processes of growth, mortality 

and reproduction. Thus, it is preferable to consider point processes and the 

dynamics of ecological processes jointly. In the following chapters we 

introduce an integrated ‘marked point process’, which iteratively simulates 

locations and tree characteristics (marks). 

Figure 2.3 Example point patterns of generated inhomogeneous mother tree 
locations (left) and offspring locations (right) using the Neyman-Scott 
process. 
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As mentioned at the end of Section 2.3, an inhomogeneous regular 

point pattern can be generated through transformation. For illustration 

purposes we arbitrarily defined an empirical cumulative distribution function 

(edf), which assumes that a slope on the x-axis has introduced the 

inhomogeneity to transform a homogeneous regular point pattern of Strauss 

process with interaction potential  and interaction radius  m. 

The generated point patterns and corresponding edf are shown in Figure 2.4. 

c .3� r 10�
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Figure 2.4 Simulated homogeneous regular point pattern (top-left) and its 
edf (lower-left) versus transformed inhomogeneous regular point pattern 
(top-right) using an arbitrarily defined edf (lower-right). 
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3. EMPIRICAL MODELS FOR TREE 
CHARACTERISTICS 

Simplified descriptions of tree populations can be given in terms of 

means, variances, covariances and marginal distributions of tree 

characteristics. In general the moments may vary due to environmental 

differences, genetic differences and their interactions. In this chapter we 

introduce empirical models for the mean and variance, and show how to use 

that information to generate tree characteristics that depend on their 

locations. 

We describe the location-scale family of distributions for modeling 

tree characteristics in Section 3.1. We discuss marginal distributions of tree 

characteristics in Section 3.2. We show methods to investigate the effect of 

transformations on correlations in Section 3.3. We formulate mixed linear 

models for tree characteristics in Section 3.4. We explain the sources of 

variation via variance components and their statistical properties in Section 

3.5. We discuss between-tree and within-tree correlations of the random 

effects in Sections 3.6. We show methods to examine stand structure in 

Section 3.7. We show examples of generated tree characteristics with given 

locations in Section 3.8. 

3.1 Location-Scale Representation 

Define Y , Y , where Y  is an independent 

random variable (r.v.), which represents a tree characteristic, with 

cumulative distribution function (cdf) 

� �
T

1 nY , ,Y� �

n
� � i

� �F � . We assume that tree 

characteristics belong to the location-scale family of distributions (Lehmann 

1991, pp. 19-22). That is, the marginal distribution of the characteristic Y  at i
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location ix  is � � � �i i iF y P Y y� � i , which is of the form 

� � � �� �i ii Y Yy � �� �i iF y G , where  is a known distribution with density G

� �g �  such that � �yg y dy 0�

��

��  and � �
2

- y g y dy 1�

�

�

� �1 n

T
Y Y, ,� ��

�

�Y

. We use the 

notation Y µ , where  and 

. 

~ G( , )Y YΣ µ

� � � �
T� ��� �Y Y YY µ Y µE� �Σ

� � �Numn ber of   that are1F Y , ,Y�y | Y

y�� � � �

� �nF y | Y

In forestry applications tree characteristic measurements are strictly 

positive. Therefore, we transform the observed values to the logarithmic 

scale and perform the location-scale transformations, empirical marginal 

distribution estimations and random variable generations. Then the generated 

random numbers (tree characteristics) can be transformed back to the 

measurement scale. 

3.2 Marginal Distributions 

In general we do not know the true distribution functions of tree 

characteristics. However, we can define an empirical cumulative distribution 

function (edf) �n y n� � , for 

. We can obtain a continuous version of an edf by joining the 

midpoints of successive steps of  with straight lines (Dudewicz 

and Mishra 1988, pp. 197-201). Alternatively, we can fit the midpoints with 

cubic spline interpolation (Press et al. 1992, pp. 107-110) to obtain a 

smoothed edf. 

A problem may arise in the estimation of edf when cut-off sampling 

(Särndal et al. 1992, pp. 531-533) is applied. For instance, the smallest 

measured tree in the Finnish national forest inventory permanent plots is 4.5 

cm at breast height (1.3 m above ground) (Metsäntutkimuslaitos 1985, p. 

59). The resulting inventory data consist of trees with diameters between 4.5 
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cm and the diameter of the largest sampled tree. This determines the support 

of the edf (Lehmann 1991, p. 25). 

3.3 Transformation of Empirical Distribution with Dependencies 

One of the objectives of this research is to generate dependent r.v.’s 

from the edf of mapped stand data. In general we cannot generate dependent 

r.v.’s directly from an estimated cdf because we do not know the form of the 

corresponding joint probability density function. However, we can generate 

dependent r.v.’s in the normal case and then transform them to match the edf 

(Lakhan 1981). 

Define  and �
T

1 2X , X�X � 1
1
�

�
� �� � �� �

Σ , 1� � . The procedure for 

generating dependent r.v.’s is: 

1. Generate independent and identically distributed 
� �i N 0,1X � ,  using the Box-Muller method (Box 

and Muller 1958). 
i 1,2�

2. Compute � �N ,� X 0 Σ�Z L , where  and  
is a lower triangle of the Cholesky decomposition of  
(Griffith 1988, pp. 227-228). 

�
T

1 2Z ,Z�Z �

�

L
Σ

3. Transform Y G  so that � ��
1

i iZ�
�

� � �G ,0 Σ�Y , where 
 is an arbitrary inverse cumulative distribution function. 1G�

 
� ��

1
iY G Z�

�

� �i  is a composite function of � �i i��U Z , , iZ � �

� �iU 0,1�  and � ��  is the standard normal cdf (the probability integral 

transformation) and Y G ,  (the inverse transformation). 

�

� �1
i iU�

� iY � �

A problem arises because a nonlinear transformation alters the 

covariances in step 3 of the procedure. We will investigate the effects of 

transformations in three steps: (1) we study a special case where analytical 

results are available; (2) we use the Taylor-series based approximations to 

evaluate the transformation effects; and (3) we show how to evaluate the 

effects using simulation. 
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Define � �i iexpY X� , i  and let 1,2� � �2 1N , 1
� �

�
� �
� � � �
� � � �� � �

X �

�
. 

Using the characteristic function of the normal distribution (Rao 1973, p. 

519), one can show that � � � �2
�

1
2� �i exp�E Y , � � � �22�2

iE exp 2Y �� � , 

and � � � �� �2exp 2� �1 2E Y Y 1 �� � � . Therefore, 

 

 � �
� �� � � �
� � � �

2 2

1 2 2 2

exp 1 exp
Corr Y ,Y

exp 2 exp

� � �

� �

� �

�

�

. (3.1) 

 
In the lognormal case the explicit forms of the expectations are known. The 

explicit forms may not be available for other distributions, but 

approximations to the moments of functions of r.v.’s can be derived using 

the Taylor-series based approximations (Dudewicz and Mishra 1988, pp. 

263-264). 

Using a second order Taylor-series we get the approximation 

 

 � �
� � � �

� � � �

2 21
2

1 2 21
2

f x f x
Corr Y ,Y

f x f x
� �� ���

�
� ���

, (3.2) 

 
where � �f x  is the lognormal transformation function (see Appendix A for 

the derivations). Although using a higher order Taylor-series approximation 

can yield a more precise approximation, the formula expands drastically. For 

our purposes a second order approximation balances the precision and the 

computational costs. Let � � � �f X exp X� , then an approximated formula 

for � �1Y , 2YCorr  corresponding to (3.1) is 

 

 � � � �� �
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2
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�
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Figure 3.1 illustrates the graphs of .9� �  with � , .50 ,  

and 1 . In the case of an affine transformation, correlations do not change 

and this is shown by the reference line in Figure 3.1. We can see from the 

graphs that the effects of the logarithmic transformation on correlations is 

limited when �  and 

� .25 .75

.5� .4� � . For instance, when � , .25� � � .4� , 

, .2 , and .4 , the corresponding .2� �̂  are , � ,  and .393 , 

respectively. In practice, the range 

.383� .193 .195

� �.2,.4  might be the most relevant in 

forestry applications. We see that in this case the transformed correlations 

are approximately 2% smaller than the original correlations. 

The above findings have direct implementations in forestry since we 

expect that at the logarithmic scale, tree characteristics typically have a 

–.2
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Figure 3.1 Graphs of analytically computed (solid lines) and approximated 

(dot or dash lines) correlations. 
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standard deviation less than .5 . For example, let X  be a r.v. that represents 

tree height and assume that a forest has a median tree height of 20 m and one 

standard deviation is 5 m, and that the logarithm of tree height is 

� � � �2
Y YY log X N ,� �� � . Then � � � � � �2 2

Y YYexp exp exp 5� �� � �2 . 

Taking � �Y log 20� � , we get � . In practice the variations of tree 

measurements may be even smaller than this. 

X .24�

Let  as earlier, but with  and � . Define 

, and W t  is the 

inverse cdf of the Weibull distribution 

�
T

1 2X , X�X

� � �1
i iX W �

�

� �

�

i �

X 0� �

log�� �

X 1�

� �� �iX �

�
�

�� �Y f X � � �
11 1�

�

� � � �� �W t , 1 exp� � t �

��

� �t 0,� �� , � �, 0,� � � ��  (Johnson and Kotz 1970, pp. 250-252). We can 

apply (3.2) to calculate the approximated � �1 2r Y ,YCor  with various � , � , 

and �  (Appendix A). 

In general the accuracy of the Taylor-series based approximations 

may depend on the order of the series and � �f x

2

. We may investigate the 

accuracy via simulation experiments to compute the exact correlation 

between Y  for various �  and � . As an example, approximated and 

simulated correlations for �  and �  are listed in Table 3.1. The 

results show that the transformation of r.v.’s from the normal to the Weibull 

distributions does affect correlations. However, the effects are not crucial 

when compared with the potential errors associated with the assumptions 

and simplifications for modeling tree characteristics. Notice that the 

transformation effects vary with some other combinations of �  and � . 

i

1� �

The methods discussed above can be extended to evaluate the effect of 

inverse transformations on correlations for an edf. A restriction of the 

Taylor-series based approximation is that the inverse cdf (and composition 

functions) must be differentiable. Simulation, on the other hand, provides the 
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exact consequence of the transformation effects given that the sample size is 

sufficiently large. For example, we need to make one million simulation runs 

to obtain one standard error of approximately .0  for 01 �̂  (Afifi and Azen 

1979, pp. 140-141). 

Another problem may occur in step 3 of the transformation procedure 

when we generate tree characteristics at the logarithmic scale, and we need 

to transform them back to the measurement scale. We cannot directly use 

exponential transformation for two reasons. First, the joint distribution will 

no longer be normal, and it may be highly skewed after having been 

manipulated by the growth, mortality and reproduction processes (Chapter 

4). Thus the inter-relations between normal and lognormal r.v.’s (Patil et al. 

1984, pp. 98-100) do not apply. Second, the marginal distribution of the 

T
 

able 3.1 The approximated and simulated correlations of the Weibull r.v.’s. 

Actual Correlation Correlation of Taylor-series 
based approximation 

Simulated 
Correlation 

–.9 –.859 –.855 
–.8 –.765 –.761 
–.7 –.671 –.668 
–.6 –.577 –.573 
–.5 –.482 –.480 
–.4 –.386 –.382 
–.3 –.291 –.287 
–.2 –.194 –.193 
–.1 –.097 –.095 

.0 .000 .002 

.1 .098 .100 

.2 .196 .199 

.3 .295 .300 

.4 .394 .395 

.5 .494 .493 

.6 .594 .593 

.7 .695 .695 

.8 .796 .797 

.9 .898 .898 
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transformed random variables should follow a distribution that is observed in 

real forests. Therefore, without taking into account the joint distribution of 

generated tree characteristics, exponential transformation does not produce 

correct marginal distributions that correspond to tree characteristics in real 

forests. 

To account for the two aspects above, we can use the composite 

function as in step 3, but replace both analytical cdf with edf. For example, if 

we take an exponential transformation of a generated log-diameter of , we 

get a transformed diameter of  cm. However, if we take an edf 

transformation for the same log-diameter, we get a transformed diameter of 

 cm (Figure 3.2). 

4

54.6

45.8

The edf of the generated tree characteristics is computed from all 

generated values. For example, the total number of generated log-diameters 

is the expected number of trees multiplied by the number of simulation runs. 

In principle we can sort the log-diameters and find the corresponding 

percentiles. However, this will require considerable computer resources. 

Alternatively, we can divide the support into intervals that are chosen to 

balance the numerical precision needed and required computer resources. 
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f

.0

.2

.4

.6

.8

1.0

2.0 32.0 62.0
Diameter (cm)

Figure 3.2 Illustration of transformation using edf. Arrows show the 

corresponding log-diameter and diameter in cm. 
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3.4 Mixed Linear Models for Tree Characteristics 

Assuming that tree characteristics are linear combinations of fixed 

effects and random effects, we can write a mixed linear model for one tree 

characteristic of the form (Searle 1971, pp. 384-385) 

 
 � �� � � �Y X β τ ξ ε

�

, (3.3) 
 
where Y x  is a column vector of a tree characteristic 

for n  trees, 

� � � ��
T

n1Y , ,Y� x�

� �iY x  represents a tree characteristic of the th tree at location i

ix , � �jkX� j 1, ,n� �

� �
T

1 p, ,� ��

� �
T

1 n,� ��

X

�

�

, , k 1 , is a  design matrix, 

 is a column vector of regression coefficients, 

 is a random vector of initial heterogeneity,  

is a random vector of environmental effects, �  and �  are parameters that 

represent the scales for, respectively,  and ξ , and  is the 

error term representing the lack-of-fit of the model. We assume that the 

random components follow the normal distribution. To simplify the 

notations, we use 

, , p� �

τ

n p�

ε

β

τ � �
T

1 n, ,� ��ξ �

� �
T

1 n, ,� ���

� �iY x  and Y  interchangeably. i

The elements jkX  of the design matrix can be other measured tree 

characteristics, site indices, soil characteristics, and geographical 

information such as elevation (e.g. Lappi and Bailey 1988; Hasenauer et al. 

1998). Competition indices derived from locations and tree characteristics 

can also be included (Pukkala 1988). 
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To complete the model formulation, we assume 

 
 � �E �τ 0 , � �Cov

�
� �τ Σ I , 

 � �E �ξ 0 , � � � �� �i j,Cov Cov � �� �ξΣξ  

  with � �iVa 1� , r �

 � �E �ε 0 , , � � 2Cov
� �

�� �ε Σ I

 
 
where  is a symmetric and positive definite matrix, and �Σ

 
 � �E �Y Xβ , . � �

2 2 2Cov � �� � �� � �Y I Σ I
 

When there is more than one tree characteristic, we can write (3.3) in 

its multivariate version (cf. Rao 1973, p. 544) 

 
 � � � � � �Y X β α τ γ ξ ε , (3.4) 
 
where � �

TT T
1 m, ,� Y Y�

Y , 

1
2

m

� �
� ��
� �
� �� �

X 0 0
0 X 0X
0 0 X

�

�

� � � �

�

, 

� 1 m

TT T, ,�β β β� �  is a matrix of coefficients, and  denotes the Kronecker 

product. For example, . Finally, 

�

Tτ� �
TT

1 m, ,� �� �α τ τ �

� �
TT T

1 m, ,�ε ε ε�  

and � �Cov , where 
�

� �ε Σ I � �� �i j,Cov
�

� ��Σ , , 

represents the dependencies between characteristics of the same tree. The 

covariance of tree characteristics in (3.4) is expressed by 

i, j 1, ,m� �

 
 � �

T TCov � �� � � � � �Y αα I γγ Σ Σ I . (3.5) 
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Notice that (3.4) reduces to the univariate case if . If  and 

, (3.4) reduces to the so-called seemingly unrelated regressions 

(Zellner 1962). We do not constrain the matrices 

m � 1 �τ 0

�ξ 0

iX  to be equal, and 

therefore, different explanatory variables can be used for different 

characteristics. When the same set of predictors is used for all tree 

characteristics, the design matrix has the form � �X I X . 

The covariance parameterization of (3.5) accounts for spatial 

autoregressive models (Griffith 1988, pp. 82-106), geo-statistical models 

(Keitt et al. 2002, pp. 617-618) and space-time models (Cressie 1991, pp. 

449-452). The choice of various models depends on the sources of variation 

and correlation between and among trees (see Section 3.5), on how the 

modeler thinks (Cressie 1991, p. 408) and on the available data (Rennolls 

1997). Alternatively, criteria (such as the predictive residual sum of squares) 

are used to select from simple to complicated models (Gelfand et al. 1998). 

Note that parameters �  and �  are tuning instruments that allow us to scale 

the source of variation based on the ecological knowledge and the data 

measured in real forests. 

3.5 Sources of Variation 

Benjamin and Hardwick (1986, p. 765) wrote 
…environmental-induced variation in plant relative growth rate 
must be due to variation between plants either in the availability of 
resources or to variation in the ability of different plants to 
translate those resources into biomass. 

 
We can think that the initial heterogeneity (� ) represents the ability of 

different plants to utilize the available resources and the environmental 

effects (� ) represent the availability of resources. 
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In forestry applications the net effects of �  and �  are often estimated 

as one variance component (Gregoire 1987). Nevertheless, it is reasonable to 

allow separate random effects so that we can use the existing biological 

information (such as genetic variation) in simulations. However, without 

additional assumptions we are not able to separate the variance components 

relating to �  and � . 

The initial heterogeneity is a highly simplified form of the genetic 

source of variation (Namkoong 1981, pp. 3-6). We can think that it consists 

of: (1) characteristics that mother trees may transmit to their offspring; and 

(2) the interactions between alleles that influence the quality of the offspring. 

Not knowing the genetic variation, we may utilize the available information 

(e.g. the narrow sense heritability (Zobel and Jackson 1995, p. 35)) to get a 

lower bound and eventually come up with an educated guess of the 

proportion of variation that can be attributed to genetic sources. 

The environmental effects � ��  may be a function of: (1) available 

resources for a tree when there are neighboring trees sharing the available 

resources; (2) the distance between a tree and its neighbors; or (3) the �  of a 

tree and its neighbors. We expect �  to vary from tree to tree since 

microenvironment (such as growing space, shading conditions, soil fertility, 

etc.) varies for trees at different locations. 

In principle interactions between initial heterogeneity and 

environment effects may change the performance of trees differently in 

different environments. However, Zobel and Jackson (1995, pp. 45-46) 

suggested that the interaction is relatively small unless the differences 

between the environments are very large. Our models will not include such 

interaction. 
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The random component  represents the residual variation due to the 

failure of simplified model assumptions concerning 

ε

Xβ  and the joint 

distributions of  and  (i.e. τ ξ � �E | ,� �Y Y τ ξε , where 

� � YE | , � �Y τ ξ µ τ ξ� � � ). 

3.6 Between- and Within-Tree Correlations 

The between-tree correlations are represented by the off-diagonal 

elements of the covariance matrix . Cressie (1991 pp. 20-23) suggested 

that  is generally not known and must be parameterized for estimation. 

Commonly assumed models for covariance structure include moving 

average and autoregressive models, and a distance-decaying exponential 

family of functions (Richardson et al. 1992). 

�Σ

�Σ

A possible parametric correlation function can be of the form 

� � � �i j i j1 2,corr exp� � � � �� � x x , where , � �
T

1 2,� ��θ 1 2, 0�� �  (cf. 

Cook and Pocock 1983, pp. 365-366). Because � �ir 1� �Va , the proposed 

correlation function is also a covariance function and we get 

� � � �i j1 2
ˆ ˆ ˆˆ exp� � � �� � x xΣ θ

3
�

1
�

. This covariance function is positive 

definite in , and thus in  and � , since it satisfies 2
� �c 0  and 0�'

� � � �i j i jc � ��x x x x'' ''' ic x x j� 0� , where � �c �'

i j�

 is the first 

derivative, etc. (Christakos 1984, p. 256). In the case , � �1exp �  is the 

so-called nugget effect, which represents the correlation of two trees when 

the distance between them decreases to zero. Notice that although the 

covariance function is positive definite, some combinations of � ’s may still 

produce non-positive definite covariance matrices in some configurations of 

� �1 n, ,x x� . 
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The within-tree correlations are represented by  and the diagonal 

elements of  and . The initial heterogeneity may affect different tree 

characteristics in different ways. For  tree characteristics we have a total 

of 

Tαα

�Σ �
Σ

m

� �m m � 1 2

i

 combinations of � � , where i j , , when �  

differs for the th and the 

i j � i, j � 1, ,m�

j th tree characteristics. In other words, � �  

introduce interactions between tree characteristics. 

i j

If the initial heterogeneity effects on different tree characteristics are 

the same, then  reduces to � , where 1  is a n-dimensional column 

vector with all elements 1. The same argument applies to the environmental 

effects. Assuming homoscedasticity, we can express the within-tree 

correlations by � � . Similar to the case for the between-tree 

correlations, we can think that � �  and � �  represent the interactions 

between tree characteristics. 

Tαα

i j

2 T11

i j� �
�

i j

i j� �� �

i j

3.7 Stand Structure Evaluation 

The goal of this study is to generate hypothetical forests with spatio-

temporal dependencies. Therefore, we need to corroborate the simulation 

results with mapped forest stand data (Swartzman and Kaluzny 1987, pp. 

209-215). In forestry literature, mean diameter, basal area and diameter 

frequency distribution are used to describe and compare stand structures. 

Because of the transformation method we implemented (Section 3.3), these 

descriptive statistics computed from simulated stands are guaranteed to 

match those from mapped stand data. In fact, these descriptive statistics do 

not show the discrepancies between stand structures of random and 

correlated tree characteristics since they are location independent statistics. 
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To examine locations and tree characteristics simultaneously, we can 

use regression analysis and empirical correlation plot (Ripley 1981, p. 51) to 

summarize spatial patterns of trees. Regression analysis using competition 

indices as explanatory variables shows the scale of local competition effects. 

Empirical correlation plots show the correlation structure of tree 

characteristics given their locations. 

By simulating a large number of hypothetical stands we can construct 

Monte Carlo distributions of the regression coefficients and empirical 

correlations. We can compute regression and empirical correlation 

coefficients from the mapped stand data and compare these with Monte 

Carlo distributions of simulated coefficients to calculate empirical p-values. 

The empirical p-values show the likelihood of the models and input 

parameter values meeting the objective of mimicking the stand structure of 

real forests. 

A small p-value, say .01 , indicates that the modeled real forest is a 

rare event among the simulated forests. Because we are using models to 

predict the behavior of stand development processes, a p-value of  does 

not automatically mean that we have correct models and input parameter 

values. This is because a wrong model together with a specific set of 

parameter values may accidentally produce a similar stand structure as in the 

mapped stand data. We can reparameterize the models and calibrate the 

model parameters according to the hypothesis (or knowledge) of stand 

development processes. However, mapped stand data may contain very 

limited information for us to do so. 

.5
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3.8 Examples of One-Step Hypothetical Forest 

A common practice in forestry is to fit the Weibull distribution 

(Section 3.3) to the diameter frequency distribution (Bailey and Dell 1973). 

For the longleaf pine data the parameter estimates are �  and 

. Notice that the fitted Weibull distribution (Figure 3.3) does not 

match well with the longleaf pine data since the longleaf pine diameter 

frequency distribution exhibits a multi-modal distribution. Alternatively, we 

use cubic spline to fit the edf of longleaf pine diameters. The smallest and 

largest measured diameters in the mapped longleaf pine data are, 

respectively, 2 cm and 76 cm. This is the support of the edf. 

33.8�

1.04� �

The transformation effects of using the Weibull distribution and edf 

are examined through simulations. The results (Figure 3.4) show that the 

simulated correlations using edf are about 5% smaller than the original 

correlation at the .1 - .4 interval. The transformation effects from the Weibull 

distribution at the same interval are 2.5 times higher. When the original 
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Figure 3.3 Diameter frequency and fitted Weibull distributions (left) and the 
edf and its fitted cumulative distribution function using cubic spline 
interpolation method (right) of longleaf pine diameters. 
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correlation is .7 , the transformation effect using edf is 3% smaller. This 

suggests that if we want to introduce autocorrelation of  (as in the 

residuals of log-diameters), then we need to use  as the original 

correlation for the edf, or .75  for the Weibull distribution to carry out the 

transformation. 

.7

.72

 

-.9

-.7

-.5

-.3

-.1

.1

.3

.5

.7

.9

-.9 -.7 -.5 -.3 -.1 .1 .3 .5 .7 .9
Original correlation

Tr
an

sf
or

m
ed

 c
or

re
la

tio
n

Normal Edf Weibull

Figure 3.4 Transformation effects using edf and Weibull distributions. 
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able 3.2 Regression coefficient estimates of competition indices for the 

ongleaf pine diameter at the logarithm scale. 

Explanatory 
Variable Coefficient Standard Error 

Intercept 2.52 .19 
Density -39.90 2.67 

Average distance .13 .02 
ean square error =  R-square  =  .63 .37
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In this example, we generate tree characteristics (diameters) for the 

locations that were generated in Section 2.5. Distance dependent competition 

indices (i.e. density of trees in � �rU x  and average distances from 

neighboring trees to a target tree) are used as explanatory variables to obtain 

the estimated effects of neighboring trees. Regression analysis results (Table 

3.2) indicate that the clustering of trees has negative effects on log-

diameters, and that a tree has a larger log-diameter when its neighboring 

trees are further away. 

We use the method-of-moment method to estimate � ,  and � . 

Let e Y

2 2
�

2
�

ˆ � � Xβ  and � � � �i j1 2
ˆˆ ˆ ˆexp�� � �� ��θ x x . Setting 

� �T ˆˆˆ ˆ
�� � �� �ee Σ θ

2

1.74�

E

2
�̂

, we can apply the least squares principles to estimate  

and �  (Searle 1971, p. 450; Richardson et al. 1992, pp. 541-543). For 

example, a set of estimated parameter values are � , �  and 

. This leads to a negative estimate for � � . 

θ

51
ˆ

� �

�

.14 2
ˆ .8� �

2 2
�

As suggested by Searle (1971, pp. 407-408), the negative variance 

component estimate is an indication that either � , or we have a wrong 

model. In fact, if we consider that there are three cohorts in the stand (see 

Section 2.5), we would need three estimates of  for each cohort. Also 

Nelder (1954) showed that if the intra-cohort correlation is less than inter-

cohort correlation, then a negative covariance component estimate can 

appear. Indeed the empirical correlation for juveniles is .55 (within a 

neighboring distance of 8 m), which is higher than the overall empirical 

correlation of .43. 

2 0�

�̂
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We generate four types of one-step hypothetical forests: (1) mean 

fixed effect with uncorrelated random components (MFUR); (2) mean fixed 

effect with correlated random components (MFCR); (3) trend fixed effect 

with uncorrelated random components (TFUR); and (4) trend fixed effect 

with correlated random effects (TFCR). The estimated parameters for 

generating the initial tree characteristics are listed in Table 3.3. The total 

number of simulation runs is 1200, which is determined so that there are 

sufficient observations in the tails of the simulated distributions for the 95% 

Monte Carlo confidence interval. Note that we introduce environmental 

effects to generate the spatially correlated diameters, although the above 

analysis shows no environmental effects. The simulated mean diameter, 

basal area (sum over 4 ha area) and regression coefficients are listed in Table 

3.4, and diameter frequency distributions are shown in Figure 3.5. 

As expected, the coefficients for density and average distance indices 

for the stands generated with trend fixed effects (TFUR and TFCR) and the 

coefficients for the mapped stand are not significantly different. The 

empirical correlation plots (Figure 3.5) show that the simulated MFCR and 

TFCR stands have spatial structures corresponding to the specified 

Table 3.3 Initial tree characteristics parameter estimates for generating one-

step hypothetical stands. 

 
Fixed effect Parameter estimate 

Mean 
0 2.92� �  

Trend 0 2.52� � ,  and  1 39.9� � � 2 .13� �

  
Random effect Parameter estimate 
Uncorrelated 1.0

�
� �  

Correlated .78� � , �  and �  1 .13� � 2 .22� �

Symbols: 0  is intercept, 1  and 2  are coefficients for density and 
average distance competition indices, respectively, �  is residual standard 
deviation, �  is environmental effect parameter, and �  are 

� � �

�

and 1 2�

parameters for the covariance function.
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correlation function. However, they do not match the stand structure of 

longleaf pine. 

When experimenting with various sets of  to match the estimated 

correlations to the mapped stand correlation structure, non-positive definite 

covariance matrices were occasionally detected. Because of this we allowed 

the estimated correlations to decrease more rapidly than the empirical 

estimate correlations. Notice that the short distance negative correlations that 

appear in the MFUR and TFUR empirical correlation plots are the so-called 

spurious autocorrelations since the covariance matrices for generating log-

diameters were diagonal, and the log-diameters were randomly allocated to 

the locations (Haining et al. 1983, p. 253). 

θ̂

T

e

e

 

able 3.4 Mean diameter (cm), basal area (m2) and regression coefficient 

stimates of mapped stand and simulated stands. The values in ( ) are 

mpirical p-values. 

Explanatory variable Stand 
type 

Mean 
diameter  Basal area Intercept Density Average 

distance 
Mapped 

stand 26.89 193.75 2.52 –39.90 .13 

MFUR 26.77 (.57) 193.08 (.53) 2.90 (.20) –.1 (.00) .0 (1.0) 
MFCR 26.80 (.51) 193.79 (.50) 2.90 (.14) –.09 (.00) .0 (1.0) 
TFUR 27.01 (.48) 193.38 (.49) 2.69 (.27) –42.81 (.81) .12 (.69) 
TFCR 27.00 (.49) 193.47 (.51) 2.67 (.35) –44.68 (.78) .1 (.59) 
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Figure 3.5 Diameter frequency distributions (top) and empirical correlation 

plots (bottom) of simulated forests and the longleaf pine mapped stand. The 

abbreviations are: TF for trend fixed effect; MF for mean fixed effect; CR 

for correlated random effect; and UR for uncorrelated random effect. 
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The negative variance component estimates raise the question of 

whether the model and parameter values for simulating the spatially 

correlated diameters are appropriate. Since we only have 583 trees in the 

longleaf pine data, there is not sufficient data to further analyze the spatial 

structure. Furthermore, the simulated forests do not take into account the 

ecological processes that produced the longleaf pine forest. Therefore, it is 

unlikely that the one-step approach will yield a stand structure that matches 

all aspects of the ecologically produced structure. 

In fact, generating correlated tree characteristics on an inhomogeneous 

plane (such as forest land) via modeled covariance function are extremely 

difficult since correlations among trees result from simultaneous spatio-

temporal processes. In the following chapter we formulate growth, mortality 

and reproduction models, which are structured to introduce spatial and 

temporal dependencies iteratively. The iterative simulation enables us to 

simulate growth, mortality, and reproduction processes simultaneously while 

working with each process individually. This is illustrated with two 

examples in Chapter 5. 
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4. GROWTH PHASE 

Spatio-temporal dependencies in forests result from growth, mortality 

and reproduction processes over time. A natural way to reproduce the 

dependencies is to generate an initial forest and let the forest undergo a 

growth phase and reach the desired state of forest development (Goreaud et 

al. 1997, p. 169). In the following sections we formulate generalized linear 

mixed models for growth (4.1) and mortality (4.2) processes, and a model of 

relative intensity for the reproduction process (4.3). Examples follow at the 

end of each section. 

4.1 Growth 

Let t  be the index of iterations (or period of time) and � �n t  be the 

number of trees at the end of the t th iteration. The number of trees may 

differ at different iterations due to mortality and reproduction. In order not to 

complicate the notation unnecessarily, we will re-index tree index number at 

each iteration. Re-indexing does not alter tree locations. 

Model (3.4) becomes a yield model (cf. Vanclay 1994, pp. 106-108) 

with the following modifications 

 
 t t 1 t t t t t t

Y
�

� � � � � � �Y µ X β α τ γ ξ ε t

0

. (4.1) 
 
We discussed the case when t  in Chapter 3. When , � t 0�

� �� �t t t 1
i idiag , �

�X X Y , . We assume that the variance 

components are independent between iterations except that �  remains the 

same for each individual tree. 

i 1,� ,m�
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Because the modeling and simulation are carried out at the logarithm 

scale, we can rewrite (4.1) as 

 
 t t 1 t t t t t t

Y
�

� � � � � � �Y µ X β α τ γ ξ ε t . (4.2) 

 
It follows that the left-hand side of (4.2) is the relative growth from time 

 to , and that the right-hand side represents the increment (Rao 1973, 

pp. 212-213). In forestry this corresponds to current (or periodic) annual 

increment, which depends on t . 

t 1� t

Model (4.2) is similar to the general forms of growth equations that 

appear in forestry literature. For example, Zeide (1993, p. 604) showed that 

most of the growth equations could be simplified and linearized as 

 
 � � � � � �t t 1

0 1 2i ilog log log aY Y� � ��

� � � , (4.3) 

 
where Y  is the increment of tree characteristics (diameter, height or 

volume),  and ,  and  is age. An alternative formulation 

of (4.3) is to replace 

t
i

0� 1 0� � 2 0� � a

� �lo  with . Note that notations in (4.3) are 

modified from the source reference to follow the notation conventions used 

in this thesis. 

g a a

In general tree age is difficult to determine, especially in uneven-aged 

(-sized) forests (Schreuder et al. 1993, pp. 262-263). The restriction on  

limits the applicability of (4.3). For example, mean diameter increment 

increases with age for young longleaf pine trees (Platt et al. 1988, p. 502). In 

addition, there are only two explanatory variables in (4.3), but we may 

include random effects and explanatory variables in (4.2) other than past 

yield and age. 

2�
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Growth is treated in model (4.2) as a spatio-temporal process in two 

aspects. Firstly, spatial component ξ  and within tree variation t tε  are 

subject to the changes of � �n t , whereas temporal component  remains the 

same throughout the simulation. Parameters  and γ  balance the 

magnitude and interactions between initial heterogeneity and environmental 

effects. Secondly, tree characteristics at time  are included in the design 

matrix at time . This propagates the history of fixed and random effects in 

the system. Hence, we will build up spatio-temporal dependencies as the 

iterations go on. 

tτ

tα

t �

t

1

t

4.1.1 Source of Growth Variation 

Variation in the Mean Due to Soil Characteristics. Tree growth 

depends on many factors, but soil characteristics play an important overall 

role (Kozlowski 1971, p126-139). If soil and geographical information is 

available, we can use this information to model the mean and generate tY  

depending on tree locations. If we do not have explicit knowledge of the soil 

characteristics, we can think that the variations due to different soil 

characteristics are captured in . The magnitude of the variations is given 

by . However, we may still include available explanatory variables that 

are related to soil characteristics in the design matrix. 

tξ
tγ

 
Competition for Light, Nutrients and Water. Trees react to the changes 

of growing resources and we refer to the reactions as competition (cf. Mou et 

al. 1993, p. 2180). We can treat competition as fixed effects by including 

stand characteristics (e.g. stand density) and competition indices in the 

design matrix. Alternatively, we can consider competition between trees as 

random effects that are described by . In this case  corresponds to the t
�Σ

tγ
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magnitude of competition effects. When  increases due to the shortage of 

growing resources, α  may decrease until trees can react to the 

environmental changes (Zobel and Jackson 1995, p. 37). 

tγ

t

t

r �

 
Temporal Variation Due to Temperature and Precipitation. Temporal 

climatic variations play an important role in tree growth and earlier growth 

significantly affects current growth. In (4.2) we can introduce the variations 

in the mean due to temperature and precipitation by including climatic 

variables and indices in the design matrix. In this case τ  will play the role 

of the random component in time-series models (cf. Jordan and Lockaby 

1990) and  represents the magnitude of climatic variations. We exclude 

the cases of the extreme temperature and precipitation conditions (e.g. 

storms), which would kill trees. The effects of extreme weather conditions 

on trees are discussed in Section 4.2. The effects of temperature and 

precipitation on tree growth are difficult to separate from other 

environmental effects. We can think that the temperature and precipitation 

conditions affect ξ  as a multiplier (Phipps 1979) and that γ  is determined 

with all other environmental factors fixed. However, we are not able to fix 

any part of environmental effects for estimation purposes. Therefore, γ  

represents the magnitude of mixed climatic and other environmental effects. 

t

tα

t

t

4.1.2 Example of Growth Modeling 

There are no growth increment data for the mapped longleaf pine data. 

Therefore, we use external data sources to study location dependent tree 

growth patterns. The relative growth of Norway spruce in Alkkianvuori plot 

8 and 9 data (Appendix B.2) is analyzed using the diameters (measured in 

1989) at the logarithmic scale (log-diameters) and competition indices listed 

in Table 4.1, with  m, as explanatory variables. To avoid edge effects, 10

 



 

61

trees within a 10 m zone around the borders are excluded after competition 

indices have been calculated. 

Regression analyses suggest that distance dependent indices do not 

significantly explain differences in growth rates, but the tree characteristic 

dependent competition indices do (Table 4.2). The results indicate that the 

relative growth decreases as log-diameters increase and when there are more 

neighboring large trees within 10 m, and that the relative growth increases 

when target trees are larger than the neighboring trees. 

Note that these explanatory variables have captured most of the 

variations in the residuals. Therefore, we can conclude that the variation in 

the residuals of relative growth has been explained by the competition 

indices and the past yield. The small amount of variation may be due to the 

initial heterogeneity and/or unpredictable variations. 

The silvicultural practice for Alkkianvuori plot 8 was selection 

thinning, which resulted in an uneven-sized stand structure. The regression 

analysis is repeated with plot 9 data, which was an even-sized stand that 

T

l

 

able 4.1 Competition indices and their computational formulas for the tree 

ocated at ix . 

Competition 
Index Computational formula 

Density � �� � � �i r i r iC N U U� � x x  

Average-
distance � �� �� �

� �� �

� �
r i

i

N U

a i j r i j
j 1

C N U 1 ,
�

� � � ��
x

r iUx x x x x  

Inverse distance 
� �� �

� � � � � �
r i

i

N U

jI i j j r i i
j 1

C 1 , U ,Y Y
�

� � � ��
x

xx x x x x  

Mark-sum � �
� �� �

� �
r i

i

N U

s j j r i
j 1

C Y , U
�

� ��
x

x x x  
Mark-
difference � � � �

� �� �

� �
r i

i

N U

d i j j
j 1

C Y Y , U
�

� � ��
x

r ix x x x  
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resulted from low thinning. The aim is to examine how different stand 

structures affect competition pattern. 

Interestingly, the mark-sum index rather than mark-difference 

becomes significant for the trees in an even-sized stand (Table 4.2). This 

suggests that the relative growth is higher when there are more large trees in 

the neighborhood. A possible interpretation is that the mark-sum index 

reflects the availability of growth resources; in other words, the larger the 

mark-sum index the more growth resources are available. In this case the 

mark-sum index is behaving in a similar way to the fertility index (Pukkala 

1989, p. 104). Unfortunately without site condition information (e.g. soil 

map) and a larger data set, we will not be able to verify the interpretation. 

 
 
T
s
c
 

R
 

R

able 4.2 Estimated coefficients of growth increment regression analysis for 
pruce trees in Alkkianvuori data with centered explanatory variables. Y  
orresponds to the log-diameter in 1989.  

t 1�

Alkkianvuori plot 8 
Explanatory 

variable Min. Max. Coefficient Standard 
error 

Intercept 1.00 1.00 .144 .001 
 –1.03 .98 –.008 .003 

Inverse distance –4.42 6.72 –.004 .001 
Mark-difference –.12 .15 .823 .066 

oot MSE = .01, Adjusted R-Sq = .98 

Alkkianvuori plot 9 
Explanatory 

variables Min. Max. Coefficient Standard 
error 

Intercept 1.00 1.00 .141 .003 
 –.69 .71 –.040 .010 

Inverse distance –2.12 2.79 –.029 .003 
Mark-sum –.46 .59 .037 .013 

oot MSE = .02, Adjusted R-Sq = .85 

t 1Y �

t 1Y �
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For comparison purposes, the mean growth increments (in cm) of 

longleaf pine and Norway spruce under different silvicultural treatments are 

plotted in Figure 4.1. We can see that, for diameter  cm, both tree 

species follow a similar growth pattern. Notice that Norway spruce trees had 

a growth period of 10 years, while longleaf pine was 4 years. The size (and 

age) of the longleaf pine trees are larger than the Norway spruce trees, which 

means that we do not know the effects of past yield and competition on 

relative growth of large longleaf pine trees. Nevertheless, for simulation 

purposes we can take the estimated regression coefficients from the Norway 

spruce stands as initial guesses and calibrate them to mimic the longleaf pine 

growth pattern. 

20�

A problem may arise when we apply those parameter estimates in 

simulating growth: the marginal distributions of initial tree characteristics 

(i.e. Y ) follow the normal settings of model (3.4) in Section 3.4, but we do 

not know the marginal distributions for the log-diameters of mapped Norway 
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Figure 4.1 Mean diameter growth increment (cm) by 5 cm size class for 

Longleaf pine and Norway spruce (Alkkianvouri plot 8 and 9). The longleaf 

pine diameter increments (1979-1983) are interpreted from Figure 6 of Platt 

et al. (1988, p. 503). 
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spruce trees. In the cases when the log-diameters of mapped Norway spruce 

trees are marginally normally distributed, we can calibrate the parameter 

estimates for simulating longleaf pine growth. For example, the approximate 

p-values of the Kolmogorov-Smirnov test for normality are  for the 

log-diameters from Alkkianvuori plots 8 and 9. Therefore, the parameter 

estimates are applicable in the normal settings of the initial characteristic 

model. However, we may need to carry out transformations before 

estimating the parameters if the empirical distribution of Norway spruce log-

diameters deviates from the normal case. 

.15�

4.2 Mortality 

Mortality in forests may arise from aging, competition, forest damage 

and silvicultural practices. There are also many deaths occurring in forests 

that cannot be satisfactorily explained. In the following, we will distinguish 

tree death due to poor growth as ‘regular mortality’, which is due to 

competition and aging during stand development, and ‘irregular mortality’, 

which is due to forest damage, silvicultural treatments and unexplained 

causes (Oliver and Larson 1990, p. 213). 

In the previous section we assume that the growth increment (i.e. 

) is normally distributed. When simulating growth, negative 

relative growth can occur if the fixed effects are negative (which indicates 

trees are severely stressed by competition), or initial heterogeneity is at the 

lower tail of the standard normal distribution, or both. For simulating regular 

mortality we can simply kill-off (remove) trees in Y  that have a negative 

relative growth. However, this method may not be appropriate for species 

(e.g. Norway spruce) that tolerate shade (Vanclay 1994, pp. 176-178). 

t t
Y
�

�Y µ 1

t
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Logistic regression is often used in forestry to model the probability of 

irregular mortality. There are two main problems in modeling mortality, 

namely, data availability and difficulties in identifying the cause of tree 

mortality. These problems make the mortality modeling difficult and 

increase the uncertainty of the model predictions. However, a mortality 

model that incorporates understandings of the ecological processes that 

affect mortality in forests has an increased likelihood to perform well. A 

series of studies to test the assumptions and applicability of the model are 

required to examine the model performance (Hamilton 1990). 

Define � �� �
Tt t t

1 n tY , ,Y� �Y  that represents tree mortality, and let Y  

be a Bernoulli random variable which takes value  if tree i  dies at the t th 

period and 0  otherwise. Define 

t
i

1

� �t t
i iE Y P Y 1� � �� �X Xt

i� � t
i

t
i� , where 

� �t
i i1 ipx , , x i�X �  is the th row of the design matrix that consists of p  

explanatory variables. We can write a mixed logistic regression model of the 

form (cf. McCullagh and Nelder 1989, pp. 432-437) 

 
 � �t t t t t

i i ilogit � � �
t
i� �� � �X β , (4.4) 

 
where �  is the initial heterogeneity, � , i � �t

i N 0, 1� � �t t
i jCov , 0� � � , 

represents the environmental effects, and � �  are the parameters of 

the corresponding random effects (cf. Lesaffre and Spiessens 2001, p. 327). 

The estimation of the parameters can be achieved using, for example, the 

empirical Bayes analysis (Carlin and Louis 1996, pp. 330-348). 

t t, � �

In general competition indices and site variables can be included in 

. If mortality probability is higher near the stand edge (see for example, 

Peltola and Kellomäki 1993) we can either include an indicator variable in 

t
iX
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t
iX  to flag edge-trees or take the distance of a tree to the stand edge, where 

higher mortality probabilities occurs, as an explanatory variable. 

�

We can think that t
i�  describes the spatial variation of mortality at 

different t  and that �  signifies the levels of damage and occurrence 

frequency. For example, rare catastrophic hurricanes can destroy forests but 

the damage may be restricted to particularly wind-prone sites, whereas 

windstorms cause frequent tree falls of a few trees per ha per year in much 

smaller impact areas (Waring and Schlesinger 1985, pp. 213-217).  

t

We can use the rejection-sampling method to kill-off trees in 

generated forests. Given a uniform random number u , Y , if , 

and Y  otherwise. Once the dead trees are identified, we remove them 

from the simulated tree population and re-index tree numbers. 

t
i � 1

0

t
iu ��

t
i �

4.2.1 Cause of Mortality 

Mortality Due to Self-thinning. The term ‘self-thinning’ is used to 

describe the density-dependent regular mortality that occurs in crowded 

even-aged forests. We can model this mortality by � �� �t t t
i jCov ,� � ��Σ , 

, i j � �i, , where j 1, ,n t� � � �t t
i j,Cov � �  may be a parameterized 

covariance function of the stand structure, or of the pattern determined by 

the causal agents. The initial heterogeneity determines the competitiveness 

of a tree. If a tree has ‘good’ initial heterogeneity, then we can expect this 

tree to survive from competition. On the other hand, if the tree is under 

environmental stress, then it may die along with neighboring trees. We can 

think that covariances between t
�  describe the inhomogeneity of self-

thinning rate over the forest area. The role of �  is to indicate the scale of 

self-thinning. The assumptions about self-thinning may apply to even-aged 

t
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monoculture forests, but not in the uneven-aged and mixed forests (Vanclay 

1994, pp. 175-176). 

 
Mortality Due to Forest Damage. Abiotic forest damage agents (such 

as storms) often cause fatal mechanical injuries (such as stem breakage). 

Usually trees are first damaged by abiotic causes and later killed by biotic 

agents (such as insects). The infected trees may initiate epidemics in a forest. 

In this case, the number of trees infected and killed in a particular area will 

be higher than surrounding areas (Smith 1970, pp. 243-246). We can use t
i�  

to represent the correlated irregular mortality due to forest damage that 

happens at the t th iteration and �  to adjust the degree of the damage. We 

may include explanatory variables that are closely linked to the causal agents 

in the model. For example, Kellomäki and Peltola (1998, p. 77) showed that 

snow and wind damage was closely related to the ratio between diameter and 

height. If the irregular mortality occurs as a chance event, we can use �  to 

represent the vigor of the tree and the trees with ‘bad’ initial heterogeneity 

will die. 

t

i

 
Mortality Due to Silvicultural Practices. Silvicultural practices (such 

as thinning) are regularly executed in managed forests. There are some ‘rules 

of thumb’ as to how to carry out thinning. For example, Davis (1966, pp. 42-

43) gives a rule to calculate the desired between tree spacing in terms of tree 

diameter and number of trees per acre from a stocking guide. Alternatively, 

tree diameter and density can be used as explanatory variables in the logistic 

regression. In the case when different thinning methods are used on forests 

that are sufficiently inhomogeneous (the so-called free thinning method) 

(Smith 1962, pp. 89-90), we can use �  to represent the decision of the field 

workers, and �  to represent the degree of thinning they carry out. We may 

t
i

t
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observe different harvesting patterns in the forests, which can be represented 

by �Σ . The magnitude of the pattern is then given by . t
�

50-

4.2.2 Example of Mortality Modeling 

We use the mapped longleaf pine data in this example. For a complete 

mortality analysis, we ought to have the disturbance data (e.g. storm strength 

and duration, harvesting path, etc.), geographical variation data, other tree 

characteristics (e.g. vigor status), surface vegetation and other species 

information. However, we have very limited information from the longleaf 

pine data to model the mortality probability properly. Therefore, the 

following analysis should be seen as a preliminary examination of the 

longleaf pine mortality based on the competition indices that are computed 

from the mapped stand data. 

According to Platt et al. (1988, pp. 501-502), the annual mortality of 

longleaf pine varied by diameter size classes (Figure 4.4). Yearly mortality 

was correlated with tree size and, partly, with the annual mortality of trees in 

the large size classes. They noted that lightning strikes and windfalls 

accounted for at least 54% and 31%, respectively, of all death among trees 
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Figure 4.2 Observed mortality, by size class, in the mapped longleaf pine 

stand during 1979-1987. 
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larger than 30 cm, and that mortality increased progressively as diameter 

increased. The mortality of juvenile trees was mainly due to competitions 

from neighboring sub-adult and adult trees (see also Grace and Platt 1995). 

The annual mortality rate of juvenile trees was about 4-5% in the Wade 

Tract mapped forest. 

Based on the above observations, we analyze the mortality of longleaf 

pine using logistic regression with competition indices (Table 4.1) and log-

diameter as explanatory variables. To examine the possible edge effects on 

the parameter estimation, trees in � �A r

25�

 (Section 2.4) with r , 15, 25 and 

35 m are used to compute competition indices. The mortality rate of the 

mapped stand and the four variable-edge stands, by size classes, are listed in 

Table 4.4. Notice that the mortality rates at  m have the largest 

change, indicating that the edge effect may affect the mortality modeling. 

This is reflected in the estimated logistic regression coefficients (Table 4.3). 

Otherwise, the estimated coefficients of full data sets (the ‘No edge’ entries 

in Table 4.4) and reduced data sets are rather consistent with the compatible 

models at different neighborhood radii. We see this as an indication that 

edge effects are negligible for  m. 

5�

r 35�

r

T

r

 

able 4.3 Mortality rates (number of trees) of full and reduced data sets by 

adius and size classes. 

Radius for 
reduced data set Juvenile Subadult Adult 

5 m 51.3% (145) 7.7% (143) 8.6% (243) 
15 m 50.8% (128) 8.2% (135) 8.4% (191) 
25 m 52.3% (109) 8.9% (124) 9.1% (143) 
35 m 56.8%   (88) 10.3% (107) 6.1% (115) 

Full data set 51.0% (155) 8.3% (157) 10.3% (271) 
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Table 4.4 Estimated logistic regression coefficients (standard error) with 

centered competition indices, by size classes, for the longleaf pine data. 

Juvenile 
Explanatory variable Radius Intercept Mark-difference 

5 m .05 (.17) –.29 (.09) 
No edge .05 (.17) –.27 (.09) 
15 m .07 (.18) –.10 (.02) 
No edge .05 (.20) –.10 (.02) 
25 m .05 (.17) –.03 (.01) 
No edge .11 (.20) –.03 (.01) 

Radius Intercept Inverse distance 
35 m .05 (.17)  .24 (.02) 

Radius Intercept Log-diameter Density Mark-sum 
No edge .48 (.26) –11.30 (4.83) 1012.7 (419.8) .12 (.06) 

 

Subadult 
Explanatory variable Radius Intercept Log-diameter 

5 m –2.82 (.40) –3.25 (1.10) 
No edge –2.93 (.44) –3.34 (1.20) 
15 m –2.82 (.40) –3.25 (1.10) 
No edge –2.85 (.44) –3.33 (1.20) 
25 m –2.82 (.40) –3.25 (1.10) 
No edge –2.72 (.43) –3.17 (1.19) 
35 m –2.82 (.40) –3.25 (1.10) 
No edge –2.53 (.42) –3.08 (1.18) 

 

Adult 
Explanatory variable Radius Intercept Log-diameter 

5 m –2.54 (.26) 4.93 (1.09) 
No edge –2.72 (.30) 4.72 (1.23) 
15 m –2.54 (.26) 4.93 (1.09) 
No edge –2.82 (.36) 5.14 (1.46) 
35 m –2.54 (.26) 4.93 (1.09) 
No edge –3.12 (.52) 4.67 (2.09) 

Radius Intercept Log-diameter Density 
25 m (1) –2.77 (.30) 4.26 (1.15) –132.45 (47.64) 
No edge –3.23 (.52) 4.71 (1.81) –138.96 (79.87) 

Radius Intercept Log-diameter Mark-sum 
25 m (2) –2.74 (.30) 4.58 (1.14) –.017 (.006) 
No edge –3.16 (.50) 5.27 (1.79) –.023 (.010) 
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For juveniles, the mark-difference index is significant for  m. 

The mortality probability increases with increasing surrounding large trees, 

but it decreases when the target tree is larger than the surrounding trees. The 

effects of this index are similar in both full and reduced data sets. Grace and 

Platt (1995, p. 102) suggested that the effects of large trees on juvenile 

mortality might extend up to 15 m. Although we come to a similar result in 

our analysis, the age (and size) of juveniles in Grace and Platt were much 

younger than those we analyzed. 

r 25�

For subadults, the mortality probability is explained by the size of 

trees (i.e. the mortality probability decreases with increase in log-diameters). 

This result is similar to that reported in Rathbun and Cressie (1994, p. 1172). 

However, they used a neighborhood distance of  m and a 50 m wide 

guard region around the borders of the mapped stand to avoid edge effects. 

We can see from Table 4.5 that the effects of size (log-diameter) on subadult 

mortality are similar despite the neighborhood conditions. 

r 50�

For adult trees, larger trees have a higher mortality probability. At 

 m, higher density or mark-sum indices would reduce the mortality 

probability. Although density is a location dependent index and mark-sum is 

a location and tree characteristic dependent index, they seem to have similar 

effects on adult tree mortality. 

r 25�

Rathbun and Cressie (1994, p. 1172) concluded that mortality within 

adults was clustered and that an adult tree had a higher mortality probability 

if one or more of its neighbors had died. We recompute the competition 

indices using only adult trees for . Logistic regression results show 

that the mortality probability is affected by the size (log-diameter) only. This 

indicates that the adult mortality, when all trees are included in computing 

competition indices, is affected by both the adults and the younger 

generations, which contradicts the findings in Rathbun and Cressie. In fact, 

large subadult trees can reach a height of 20-25 m and the average height for 

r 25�
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adult trees is about 30 m. Thus, they can provide similar kinds of protection 

to adult trees from storm and lightning damage. 

Platt et al. (1988, p. 502) observed that the mortality of juvenile and 

subadult trees was correlated with the mortality of large trees. The 

correlation between mortalities of different size classes may be explained by 

environmental effects. Although we can assume a covariance structure (or 

models, see the discussion in Section 3.6) for modeling such correlation, we 

do not have sufficient information, or long periods of records on individual 

tree mortality, for empirically estimating the parameters.  

The coefficients in Table 4.5 are estimated from the diameters and 

locations of longleaf pine trees in 1979. Since we do not know the time 

(year) when mortality occurred, the computed competition indices may 

include trees that died right after 1979. These trees would have much less 

effect on juvenile mortality than the ones that survived until 1987. 

4.3 Reproduction 

Reproduction, which includes regeneration and recruitment, normally 

occurs when open spaces are made available due to mortality. New trees are 

those that have out-competed other individuals from undergrowth. The 

number of reproduced new trees depends on factors such as regeneration 

method used, site conditions, climate conditions, etc. In addition, conditions 

that are suitable for regeneration may not be suitable for recruitment (Coates 

2002). The complicated relationships among these factors make the 

modeling and simulation of reproduction difficult. 

Nevertheless, we can use information such as field observations to 

construct a simplified model for simulation purposes. For example, the 

density of naturally regenerated new trees is low near large mother trees (or 

old trees) due to lack of growth resources. The density of new trees increases 

as the influence of mother trees decreases, and then density decreases as the 
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maximum seed dispersal distance is reached (T. Pukkala, personal 

communication, March 2002). 

There are three steps for simulating reproduction. First, we need to 

know the number of new trees to be generated. The number of new trees can 

be either obtained from field measurements or estimated from models (see 

for example, Kellomäki et al. 1987). Second, we need to generate the 

location of new trees given the locations and characteristics of old trees. 

Third, we need to generate new tree characteristics. We can use the mixed 

linear model (Chapter 3) to generate characteristics for new trees, given the 

locations and characteristics of old trees. A remaining question is how to 

generate new tree locations at the second step. 

4.3.1 Generating New Tree Locations 

Our goal is to find a method to generate locations of new trees that is 

simple to implement with limited data and information. An important 

consideration of the methodological development is the balance between 

forestry and statistical modeling. In forestry the influence of old trees on 

reproduction has been seen as competition effects, which are often modeled 

using the competitive influence-zone principle (Bella 1971), or the 

ecological field theory (Kuuluvainen and Pukkala 1989). These approaches 

attempt to model the mechanism of competition, which arises in our 

simulation through iteratively growth and mortality processes. 

In statistical modeling, marked point processes have been used to 

model and simulate similar directional influences of old tree locations 

influence on new tree locations, but not the other way around (Högmander 

and Särkkä 1999). The disadvantage of this approach is that the model can 

produce unpredictable outcomes if the process exhibits attractions (Särkkä 

1993, p. 21), which is the case in reproduction. 
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Rathbun and Cressie (1994) used a non-stationary Cox process to 

model the recruits of juvenile longleaf pine trees given the fixed locations of 

subadult and adult trees. They used distance to model interactions between 

juvenile and neighboring trees and a Gaussian random field to represent the 

effects of unknown or random sources of environmental variation. This 

approach is close to what we are searching for, but the model specification 

and parameter estimation are not suitable for simulation purposes. 

Inspired by these studies, we propose a simpler approach to model the 

relative intensity of new tree locations within concentric rings around old 

trees. Suppose , , where  is the number of 

concentric rings centered at 

ij 0ijA A� ��

i

A j 0, ,q� � q

x , , and let 0 iAjijA A �= \ � �ijAN  be the 

expected number of new trees that are in the j th ring around the i th old tree 

(Figure 4.3). Note that  represents tree bole area and i0A � �i0A �N 0 . In 

general the shapes of  are not restricted. We have ijA

� � � �� �ijAN P� ij ijA Ao � , where � � � �
ij

ij A
� � ijA Adx x� �  (see Section 

2.4.1). 

 
i1A i2A i3A0A

Figure 4.3 Hypothetical conditions of concentric rings around old trees. 
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Define � �0A�  to be the background intensity (i.e. the intensity surface 

for  without the influence of old trees) that represents the environmental 

effects on new tree locations. For a homogeneous case 

0A

� � � �0 0NA A� 0A� . 

For an inhomogeneous case we can use the partitioning method introduced 

in Section 2.4.1 to obtain an estimated inhomogeneous intensity surface (see 

also Rathbun and Cressie 1994, p. 1166). 

We can model the relative intensity � � � �ij 0A A� � of  with ijA

 
 � � � �� �ij 0 iA Alog � � � �X β j� , (4.5) 
 
where � �i i11, X , , X�X �

� �
T

0 p, ,� ��

ip  is the i th row of design matrix, 

 and �β j�  is the j th ring effect. The parameters β  and j�  

can be estimated from the concentric rings using Poisson regression. This 

approach introduces modeling error in the intersection areas of . 

However, we can use either a rule to allocate the intersection areas (see Ford 

and Sorrensen 1992, pp. 376-387), or a model to summarize the effects of 

old trees on the intersection areas (Figure 4.4). Following Kuuluvainen and 

Pukkala (1989), we assume a multiplicative model for the intensities of the 

intersection areas. For example, suppose the relative intensity of  and 

ijA

12A

Figure 4.4 Hypothetical cases of average intensities in three ring-

overlapping conditions: intersection (a), dominant (b) and shared (c). 
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23A  are � �1exp ��X β 2  and � �2 ��X β 3exp , respectively. Then the relative 

intensity of  is 12 23A
�

� �� �1 2 �� �X X β

n
i 0�

2 �� 3exp . 

� �� x
x
� �1 i0A�x0,� �

1� �

A disadvantage of this modeling approach is that the parameters need 

to be estimated from non-intersection rings. If the data for parameter 

estimation consist only a few non-intersection rings, partially intersection 

rings may have to be used to estimate the parameters, which may introduce, 

hopefully negligible, bias in the estimates. However, the advantage of this 

modeling approach is that both attraction and inhibition point processes can 

be modeled with the same method. 

The procedure to generate new tree locations is similar to the 

procedure for an inhomogeneous Poisson process, except that points are 

added instead of thinned. We propose the following procedure: 

1. Generate a Poisson number , with intensity , to be the number of 
new trees to be located. Set . 

�

2. Generate x  and compute , which is equal to intensity in 
the area where  is located. 

3. Generate u U . If  and � �u , accept 
this point and set i i . Repeat steps 2 and 3 until . 

� x
i n�

�

 
After the locations are generated, we can use (3.4) to generate tree 

characteristics. We assume that the reproduced trees are not yet competing 

with each other, but their characteristics depend on the surrounding old trees. 

Therefore, the competition indices in Table 4.1 need a further condition that 

jx ’s are the locations of existing trees. Since we are generating � �iY x , the 

mark-difference index cannot be used. 

4.3.2 Example of Reproduction Modeling 

As discussed previously, we assume a log-linear model for the relative 

intensity of non-intersection rings and a multiplicative model for the 

intersection ring areas. Following Platt et al. (1988, p. 508), we determine a 
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three-ring model with equal ring widths of 3 m. For each ring, the number of 

juvenile trees that fall into the rings and the log-diameter of the old tree are 

recorded. This applies to the partially intersection rings. Juvenile trees not 

falling into any ring or intersection areas belong to the background area. 

Then β  and j� ’s can be estimated simultaneously by classifying 

background area � �0A  and rings � �ijA  as factors using Poisson regression 

(see for example, Crawley 1993, pp. 226-264). In this example, we consider 

a homogeneous � �0A�  due to lack of information and a few partially 

intersection ring data are included in the analysis. 

The results (Table 4.5) show that juvenile locations are inhibited 

around old trees for a radius of up to 6 m. Then they have a higher 

probability of establishment up to 9 m around the old trees when compared 

to the background area. Notice that the coefficient for log-diameter is 

negative, which means that the intensity is even lower when the juvenile 

trees are near larger trees. The analysis agrees with the field observations 

made by Grace and Platt (1995, p. 104) that 
…cohorts of seedlings entering the old-growth stand on the Wade 
Tract are most likely to be reduced in numbers, with patches of 
surviving juveniles located in areas where interference is reduced. 

 

T

r

 

able 4.5 Estimated parameter values for 3-ring effects using Poisson 

egression. 

Explanatory variable and ring effect Coefficient 
Background intensity –5.15 

Log-diameter –.28 
1�  –1.19 
2�  –.54 

3�  .50 
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Similar to the procedure for generating initial tree characteristics, we 

can compute competition indices using the adult and subadult trees, and then 

estimate parameter values of the mixed linear model (3.4) for newly 

recruited juvenile trees. The estimated regression coefficients (Table 4.6) 

indicate that the size of juvenile trees decreases when the density and inverse 

distance indices increases. Similar to the explanations in Section 4.1.2, the 

mark-sum index represents the site conditions and tree size increases as the 

mark-sum increases. 

Notice that in the generated stands it is not necessary for the size of 

old trees to be larger than the new trees. In the longleaf pine case, the 

threshold diameter values for distinguishing size classes are arbitrarily 

defined. Therefore, the lower tail of the distribution of the existing trees may 

overlap with the upper tail of the distribution of new trees. 

It should be noted that when using the reproduction model for 

simulation purposes, the population growth rate should match the 

recruitment rate at different stages of stand development. Furthermore, the 

population growth and mortality rates need to be balanced so that the forest 

structure remains feasible. For example, Platt et al. (1987, p. 514) suggested 

that, at a low disturbance rate, a longleaf pine population size could reach an 

upper bound where there would be no space left for recruitment. In this case 

the expected number of new trees is zero. 

T

w

w

M

able 4.6 Estimated regression coefficients for juvenile longleaf pine trees 

ith the competition indices computed by including subadult and adult trees 

ithin a 15 m radius. 

Explanatory 
variable Min. Max. Coefficient Standard 

Error 
Intercept 1.00 1.00 1.46 .03 
Density –.03 .02 -17.68 5.26 

Inversed distance –2.76 7.26 –.09 .02 
Mark-sum –32.47 49.65 .02 .004 

ean square error = .41, Adjusted R-Square = .26.
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5. STRUCTURAL SPATIO-TEMPORAL ITERATION 

The purpose of this chapter is to show how to structure the models 

introduced in the earlier chapters to iteratively generate hypothetical forests 

with spatio-temporal dependencies. We explain how to structure models to 

iteratively simulate forest development in Section 5.1. We describe a 

computer program, SPATE, that implements the iterative simulation in 

Section 5.2. We show two examples of iteratively generated hypothetical 

forests using SPATE in Section 5.3. 

5.1 Structured Iterative Simulation 

In the models for growth, mortality and reproduction processes, tree 

characteristic distributions are conditioned on tree locations and 

characteristics of the previous iteration. These models are conditionally 

independent of each other. This allows us to decompose the complicated 

spatio-temporal processes into a set of simpler processes, which can be 

represented using generalized linear mixed models. Then they can be 

structured to become a global model (Cressie 1991, p. 618). 

At the initial iteration, simulated stands can consist of seedlings, 

saplings and/or trees. We will call them initial stands and they correspond to 

time  (Section 4.1). The simulated initial stands may be the end 

products of one-step simulations, or they can be a starting configuration for 

iterative simulations. 

t 0�

If mapped stands or inventoried sample plot data are available, we can 

use the statistical criteria introduced in Section 2.5 to choose a point process 

(Sections 2.1-2.3) for generating tree locations for the initial stand. Tree 

characteristics can be modeled using locations and available explanatory 

variables from the data. In most cases mapped stand data are collected from 
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mature stands (see for example, Oderwald et al. 1980). If we use these data 

for modeling, then the state of the generated ‘initial’ stands is already in 

maturity and the ecological processes that produced the mapped forest are 

ignored. This can affect the modeling of growth and mortality significantly. 

For example, Varmola (1996, p. 286) wrote 

…the location of a tree in a stand is determined by the genetic 
properties of the tree, microsite variation in the soil, the spacing 
resulting from the regeneration method used and the interspecific 
competition between trees. 

 
Thus, we may observe a smooth growth pattern from aggregated data 

(Shugart 1984, p. 49-52), but there will be a large variation in the growth of 

individual trees (see also a cautionary remark by Kozlowski 1971, p. 38). In 

other words, we may have an incorrect spatio-temporal dependency model 

for the initial stands if we ignore (or do not know) how trees have developed 

over time. As shown in the examples in Section 3.8, the simulated stands 

may display the introduced correlation structure, but may not match the 

stand structure as a whole. 

A drawback of modeling dependency via covariance functions is that 

the assumptions of stationarity (and isotropy) are needed to enable modeling 

of the spatial process by its mean and covariance matrix (cf. Griffith 1988, p. 

17-19). Arbia (1989, p. 49) remarked that stationarity is a useful property of 

a stochastic process, but often unrealistic. Bennett (1979, p. 489) suggested 

that a non-stationary process could be treated as if it was stationary so that a 

representative model could be achieved to give a good description of the 

process. However, the outcomes of simulations using stationary models will 

inherit the stationarity properties, which conflict with real forests. We can 

take advantage of iterative simulation so that the simulated forests are no 

longer stationary and isotropic, although the processes in the global model 

are. 
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If we have sufficient forest inventory data, we may try a long 

sequence of iterations and hope that the initial stand structure will not 

influence the final stand structure, as in the Markov process. However, the 

initial stand structure is often measured at the stem exclusion or stand 

reinitiation stages (Oliver and Larson 1990, pp. 142-157), or it may not be 

known. Thus, we may still not be sure of generating the correct spatio-

temporal dependencies. However, we can validate the assumptions and 

calibrate the models during the iteration simulations. This allows us to study 

the effects of individual processes in the global model and to reproduce the 

desired dependencies. 

We can use iterative simulation to replicate the ecological processes 

so that new trees appear successively after major disturbances (Kellomäki et 

al. 1987). After we have generated an initial stand, we can iteratively grow 

and kill-off generated trees, and add new trees through reproduction. This 

allows us to simulate forest stands at any stage of forest development, and to 

introduce spatio-temporal dependencies to match the stand structure of real 

forests. Examples of hypothetical stands using iterative simulation are given 

in Section 5.3. 

5.2 Simulation Using SPATE 

SPAtial and TEmporal stand simulator (SPATE) has been developed 

to implement the methods. SPATE was written in standard Fortran 90 

programming language. The structure of SPATE is shown in Figure 5.1. 

Boxes on the right-hand side display the required input parameters, which 

may come from empirical data analysis, prior knowledge or assumptions, or 

a combination of the above. The current version of SPATE simulates 

locations and diameters in a square area. A DOS version of SPATE and 

technical details are available at 

 http://www.joensuu.fi/statistics/lin/spate.html 
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Growth phase 
 

Initiation of 
SPATE 

Initial stand phase 
Generating initial stand tree 
locations and characteristics 

Parameter estimates for 
intensity surface model 

and estimates of 0β , 0
� , 

0
� , 0

�
�  and 0θ  for the 

mixed linear model 

Parameter estimates of 
tβ , r , t

� , t
� , t

�
�  and 

tθ  for the mixed linear 
growth model 

Growth

Mortality 

Reproduction

Termination 
of SPATE

Parameter estimates of 
β , � , � , and θ  for the 

mixed logistic regression 
model

Parameter estimates of β  
and �  for the Poisson 
regression model and 

parameter estimates of β , 
r , � , � , 

�
�  and θ  for 

the mixed linear model 

Compute relative growth
Yes 

Final transformation phase 

Kill-off trees and re-
ordering tree records

Yes

No 

Continue previous 
simulation?

No 

Yes 

Iteration number 
reached?

Yes 
Compute mortality 

probability

Generating new tree 
locations and 
characteristics

Yes 

No 

No 

No

Figure 5.1 Flow chart of the procedures of and required information for the 

stand (SPATE). Note that β has different meanings for different processes in 

the chart. 
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SPATE carries out simulations in three phases: initial stand, growth, 

and final transformation. The outcome of the initial stand phase is either a 

one-step stand (e.g. the hypothetical forests of Section 3.8) or a stand for 

further growth. In the latter case SPATE proceeds iteratively with growth, 

mortality and reproduction. In both cases SPATE will write the generated 

log-diameters, and x- and y-coordinates to a file for each simulation run. The 

first two phases are repeated until the number of simulation runs is reached. 

In the final transformation phase SPATE transforms the generated 

log-diameters to the measurement scale (e.g. cm) using cubic spline 

interpolations. The interpolations require empirical cumulative distribution 

functions (edf) from the generated log-diameters and data. SPATE can either 

compute edf from the generated stands and measured data, or take computed 

edf from external files. The edf in external files can come from earlier 

simulations, or they can be approximated from analytical cumulative 

distribution function. The transformed diameters and coordinates are written 

to another file. The transformation is repeated until the number of simulation 

runs is reached. At this point SPATE has completed the simulation. 

For evaluating the simulated stand structure, a subroutine is included 

to compute stand structure statistics from tree records in the transformed 

stand files. The statistics to be computed are discussed in Section 3.7. 

5.3 Examples of Iteratively Generated Hypothetical Forests 

In this section we demonstrate how to use SPATE to simulate 

hypothetical forests. The goal is to reproduce the stand structure of the 

longleaf pine mapped stand (Appendix B.1). We have concluded in Section 

2.5 that point pattern of the longleaf pine stand exhibits inhomogeneity. We 

use inhomogeneous background intensities for reproduction processes to 

recreate the inhomogeneity. 
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In general the design of a simulation strategy for carrying out iterative 

simulations should be based on the observed process in real forests. The 

number of iterations corresponds to a specific time frame. In practice it may 

be determined by the intervals between successive forest inventories. In any 

case the chosen number of iterations should correspond to the available 

information and assumptions made. At the end of iterative growth phase, the 

cdf of generated tree characteristics should match the cdf of mapped stand 

data. The assumptions made for the processes in the early iterations may 

affect the later iterations.  

Inspecting the histogram of longleaf pine diameters (Figure 3.3) and 

the stand maps of adults, subadults and juveniles (Figure B.2), we identify 

cohorts with mean log-diameters that correspond to the three size classes. 

We assume that diameters of each cohort follow a lognormal distribution. In 

addition, young and mature trees are identified within cohorts. We assume 

that: (1) new generations are inhibited by existing mature trees; (2) young 

trees have higher probabilities to be reproduced in certain areas in the 

simulated stands; and (3) later cohorts have smaller log-diameters than the 

previous cohort. 

We show two strategies for simulating longleaf pine stand. The first 

strategy (the artificial strategy) is to generate tree locations by artificially 

superimposing cohorts without considering growth and mortality. The 

second strategy (the ecological strategy) is to mimic ecological processes to 

generate hypothetical stands. 

5.3.1 Artificial Strategy 

The parameter values for background and relative intensity models are 

listed in Table 5.1. The distribution of the tree characteristic (i.e. log-

diameter) is shown in Table 5.2 and log-diameters are randomly assigned to 
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the generated locations. The assumed inhomogeneous intensity surfaces are 

shown in Figure 5.2. 

 
Initial Iteration. There are two steps needed to generate the adults. 

The first step is to generate an initial stand (the first cohort) with a 

homogeneous Poisson point pattern and randomly assigned log-diameters to 

the locations. 

 

T

l

 

able 5.1 Input model parameter values of initial stand and reproduction 

ocation point processes for artificial strategy. 

Cohort Initial iteration 
1 Homogeneous Poisson point pattern 

First iteration 

2 

Reproduction location model: 
Background intensity: � �� � 10log 6.5 .02xA� � � �  
Relative intensity: 

� � � �� � t 1
ij i j0Alog .3YA� �

�

� � �

1 1.0� � �

� .4, for Y 3 , 
 (15 m) and �  (5 m) 

t 1
i
�

�

.5� �2

Second iteration 

3 

Reproduction location model: 
Background intensity: 

� �� � 1 20
2 2
1 1 2

log 10.2 .08x .001xA
.0004x .000046 x x .00002x

� � � � �

� � � 2
 

Relative intensity: 
� � � �� � t 1

ij i j0Alog .5YA� �
�

� � �

1 1.5� � �

� .4, for Y 3 , 
 (15 m) and �  (5 m) 

t 1
i
�

�

1.5� �2

Third iteration 

4 

Reproduction location model: 
Background intensity:  

� �� � 1 20
2 2
1 1 2

log 8.0 .047 x .035xA
.0003x .0006 x x .0004x

� � � � �

� � � 2
 

Relative intensity: 
� � � �� � t 1

ij i j0Alog .5YA� �
�

� � �

1 1.5� � �

� .4, for Y 3 , 
 (10 m) and �  (5 m) 

t 1
i
�

�

.5� �2
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Table 5.2 Input parameter values for tree characteristics (log-diameter) in 

the reproduction processes for the artificial strategy. 

 

Target Iterative reproduction processes 
Cohort 

Log-diameter 
distribution 

No. of trees 
(4 ha) Log-diameter Distribution 

Initial iteration 
1  100  

First iteration 
1  100  
2  100  

Second iteration 
1  100   
2  100   
3  150  

Third iteration 
1  100   
2  100   
3  150   
4  233  � �N 1.5,.009� �N 1.5,.009

� �N 3.0,.004
� �N 3.75,.0025
� �N 4.1,.01

� �N 3.0,.004� �N 3.0,.004
� �N 3.75,.0025
� �N 4.1,.01

� �N 3.75,.0025 � �N 3.75,.0025
� �N 4.1,.01

� �N 4.1,.01 � �N 4.1,.01

 
 
Figure 5.2 Inhomogeneous background intensity surfaces on  m 

areas for generating new tree locations of the second (left), third (middle) 

and fourth (right) cohorts of the artificial strategy. 

200 200�
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First Iteration. The next step is to generate the second cohort of trees 

that have smaller mean log-diameters than the first cohort, and that are 

inhibited by the trees of the first cohort. 

 
Second Iteration. The second cohort is reproduced on the left-hand 

side of the simulated stands, which creates space for subadult and juvenile 

reproductions on the right-hand side of the simulated stands. The subadults 

(the third cohort) are reproduced with the inhibition effects from adult trees 

and mostly distributed near the middle of the stand. The combination of 

inhibition effects and the assumed inhomogeneous background intensity 

surface forces the subadults to be located in clumps as in the mapped stand. 

 
Third Iteration. Finally, the juveniles (the fourth cohort) are generated 

near the lower-right corner of the simulated stand. Notice that the juveniles 

are in the top right hand side corner of the mapped longleaf pine stand. We 

assume that only trees with log-diameter > 3.4 have inhibition effects. This 

will allow juveniles to be located near the young subadult trees, but away 

from mature trees in the first three cohorts.  

5.3.2 Ecological Strategy 

For this strategy, we apply growth, mortality and reproduction 

processes iteratively by considering the observed longleaf pine stand 

dynamics. Platt et al. (1988, p. 506; p. 517) suggested 
…spatial structure of this [longleaf pine] population consisted of a 
mosaic of discrete clumps of juveniles and subadults superimposed 
upon a background matrix of widely spaced adults… and 
…recruitment within this population thus appears to occur 
primarily within open spaces created by the death of large trees. 

 
Therefore, we first generate an adult cohort and kill-off trees in this cohort 

iteratively to create space for recruitment. The input parameter values for the 

ecological strategy are listed in Table 5.3. Table 5.4 lists the target number 
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of trees and the log-diameter distributions of each cohort. Log-diameters are 

randomly assigned to locations. 

 
Initial Iteration. Trees in the first cohort are generated at the initial 

stand phase with an inhomogeneous Poisson pattern. The strategy is to 

allocate this cohort on the right side of the stand to create space for 

recruitment when they are killed-off. 

 
First Iteration. In the first iteration about 30% of the first cohort trees 

are killed-off to create openings for later cohorts. The second cohort (adult) 

trees are generated with a homogeneous background intensity surface and 

they are inhibited by the first cohort trees. The inhibition effects extend to 35 

m around the first cohort trees so that sufficiently large spaces will be 

created later. 

 
Second Iteration. To produce the ‘background matrix of adult trees’, 

we generate more adult trees (the third cohort) in the second iteration with an 

inhomogeneous background intensity surface, which force these trees to be 

located on the left-hand side of the simulated stands. Because the third 

cohort trees are densely populated, recruitment of subadult (fourth) and 

juvenile (fifth) cohorts is inhibited from this area. 

 
Third Iteration. About 35% of the remaining first cohort trees are 

killed-off to create more openings for juveniles (the fifth cohort). Subadults 

(the fourth cohort) are generated in this iteration. The simulated background 

intensity surface for subadults is similar to that for the third cohort in the 

artificial strategy. Subadult trees are inhibited by the mature trees in the first 

three cohorts, and they are expected to be located in the space created in the 

first iteration. 
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Table 5.3 Input model parameter values for initial stand and iterative 

processes of the ecological strategy. 

 
Cohort Initial iteration 

1 
Inhomogeneous Poisson point process model for initial point 
pattern:  

First iteration 
1 Mortality model: l ,  m 

2 

Reproduction location model: 
Background intensity: lo  
Relative intensity: 

, for Y 3 , 
 (30 m) and  (5 m) 

Second iteration 

3 

Reproduction location model: 
Background intensity: l  
Relative intensity: 

, for Y 3 , 
 (5 m) and �  (2 m) 

Third iteration 
1 Mortality model: l ,  m 

4 

Reproduction location model: 
Background intensity: 

 

Relative intensity:  
, for Y 3 , 

 (20 m) and �  (5 m) 
Fourth iteration 

1 Mortality model: l  

3 Mortality model: l ,  m 

4 
Growth model: Y  
Mortality model: l ,  m 

 

� �� �i 1ilog 10.0 .02x .005x� � � � �x

� �i iogit .65 100.0C�� � � � r 20�

� �� �0g 6.5A� � �

� � � �� � t 1
ij i j0Alog .3YA� �

�

� � �

1 2.5� � �

t 1
i
�

�

2 1.5� � �

� �� � 10og 6.5 .02xA� � � �

� � � �� � t 1
ij i j0Alog .5YA� �

�

� � �

1 2.0� � �

t 1
i
�

�

2 1.5� �

� � iiogit .65 200.0C�� � � � r 20�

� �� � 1 20
2 2
1 1 2

log 17.0 .13x .005xA
.00045x .000026 x x .000045x

� � � � �

� � �

� � � �� � t 1
ij i j0Alog .5YA� �

�

� � �

1 1.5� � �

t 1
i
�

�

.5� �2

� �iogit 10.0� �

� � ii iogit 50.0C�� � r 10�

i
t 1

i i s i1.0 .5Y .025C , .18
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Fourth Iteration. We assume that something (e.g. a storm) killed all 

the largest trees (the first cohort) and half of the third and fourth cohort trees 

in the fourth iteration. The second cohort trees are been protected by the 

third cohort trees. For the adult trees, the density competition index is 

included in the mortality model. For subadult tree, the mortality probability 

is determined by the mark-difference index. We select these competition 

indices and initial parameters based on the mortality modeling results in 

Section 4.3. During the fourth iteration, the subadult trees are grown by 50% 

of the size from the previous iteration. We assume that trees that have a 

higher past yield and mark-sum competition index values grow better. The 

fifth cohort, which consists of juveniles, was reproduced in this iteration. 

The assumed inhomogeneous background intensity was similar to the one 

that was used to generate locations for the fourth cohort (subadults). 

However, the inhibition distance is extended to 45 m for the juveniles and 25 

m for subadults. We used log-diameter of 3.6 as the cut-off value for mature 

trees to introduce inhibition effects. Therefore, subadults and juveniles might 

be inhibited by the same trees, but the inhibition effects are different. This 

forces the juveniles to be more concentrated than subadults in the same areas 

created by the mortality of the first cohort trees. 

T
 

able 5.3 (Continued) 

Cohort Fourth iteration 

5 

Reproduction location model: 
Background intensity: 

 � �� � 1 20
2 2
1 1 2

log 18.0 .145x .0025xA
.00045x .000026 x x .000045x

� � � � �

� � � 2
Relative intensity: 
, for Y 3 , 

 (40 m) and �  (5 m) 
� � � �� � t 1

ij i j0Alog .5YA� �
�

� � �

1 2.5� � �

t 1
i
�

�

1.5� �2

� .6
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Table 5.4 Target number of trees and distributions for cohorts of the 

ecological strategy. 

 
Target  Iterative processes 

Cohort Log-diameter 
distribution 

No. trees 
(4 ha) Growth Mortality

Reproduction 
log-diameter  
Distribution 

Initial iteration 
1 �N 4.4,.0001�  20    

First iteration 
1 �N 4.4,.0001�  13  .35  
2 � �N 4.0,.01  90   � �N 4.0,.01  

Second iteration 
1 �N 4.4,.0001�  13    
2 � �N 4.0,.01  90    
3 � �N 3.7,.01  330   � �N 3.7,.01  

Third iteration 
1 �N 4.4,.0001�  9  .35  
2 � �N 4.0,.01  90    
3 � �N 3.7,.01  330    
4 � �N 2.0,.01  340   � �N 2.0,.01  

Fourth iteration 
1 �N 4.4,.0001�  0  1.0  
2 � �N 4.0,.01  90    
3 � �N 3.7,.01  165  .5  
4 � �N 3.0,.055  170 1.0 .5  
5 �N 1.7,.1225�  160   � �N 1.7,.1225  
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5.3.3 Simulation Results and Discussion 

We carried out 1200 simulation runs for each strategy. The stand 

structure statistics discussed in Section 3.7 were used to evaluate simulated 

stand structure. The execution times for both strategies are listed in Table 

5.5. The output stand files took about 70 megabytes hard disk space to store. 

The non-spatial stand structure statistics and regression analyses 

results are listed in Table 5.6. The 95% Monte Carlo confidence intervals of 

the empirical correlation coefficients of the simulated stands and the 

empirical correlation coefficients computed from the mapped stand data are 

plotted in Figure 5.3. Examples of simulated stands are shown in Figure 5.4. 

Table 5.5 Execution times for the examples in Section 5.3. 

 
Type of computer Artificial strategy Ecological strategy 

Pentium II (200 MHz) 140 minutes 230 minutes 
Pentium 4 (1.75 GHz) 38 minutes 65 minutes 
SGI Origin 2000† 23 minutes 38 minutes 

† SGI Origin 2000 is a UNIX mainframe computer at the Scientific 
Computing Ltd., Helsinki, Finland, and technical specifications can be found 
at http://www.csc.fi/metacomputer/cedar.html.en 

Table 5.6 Mean diameter, basal area of the mapped longleaf pine stand and 

simulated stands and their empirical p-values. 

 

Variable Mapped 
stand 

Artificial strategy 
(p-value) 

Ecological strategy  
(p-value) 

Mean diameter (cm) 26.89 26.69 (.61) 26.68 (.60) 
Basal area (m ) 2 193.75 192.48 (.53) 194.19 (.48) 

Intercept 2.92 2.89 (.72)  2.89 (.75)  
Density –24.43 –25.32 (.57) –25.59 (.57) 

Inverse distance –.09 .00 (.05) –.03 (.12) 
Mark-difference .07 .08 (.06) .07 (.41) 
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Similar to the results in Section 3.8, the mean diameters and basal 

areas of the simulated stands agree well with the mapped stand. However, 

the spatial stand structure statistics show that the resulting stand structures of 

the strategies differ in other respects. The regression analysis results suggest 

that density and inverse distance indices computed using the artificial 

strategy do not conform well to the mapped stand data, although they are 

within the approximated confidence intervals. The ecological strategy that 

follows the observed stand dynamics produces better results than the 

artificial strategy. This is also shown in Figure 5.3 where the empirical 

correlations of ecological strategy stands match better, on average, with the 

longleaf pine data. 

We expected that the coefficients computed from mapped stand data 

would be close to the median of the distribution of the coefficients computed 

from simulated stands. However, there is discrepancy between the 

expectations and the simulation results. Possibly, the inhomogeneity that we 
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Figure 5.3 Empirical correlation plot of the mapped stand (solid line), lower 

and upper bounds of 95% Monte Carlo confidence intervals (dashed lines) 

of the simulated stands from artificial strategy (left) and ecological strategy 

(right). 
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introduced may deviate from the inhomogeneity on the mapped stand, which 

may have been caused by the interaction between longleaf pine and other 

species, by the annual ground fires and storm damages, and by salvage 

operations (Platt et al. 1988). Further experimentation with SPATE may 

reveal whether the shortcoming is due to inherent limitations of SPATE (and 

the global model), or whether an alternative strategy will achieve the 

expectations. 

During the parameter calibration we noticed that a small change in 

one of the input parameter values could have a significant impact on the 

whole system. Thus, the ecological strategy required substantially more 

effort to calibrate the input parameter values compared with the artificial 

strategy. However, the parameter calibration process allowed us to validate 

the input parameter values against the observed ecological phenomena. 

Figure 5.4 Examples of transformed stands of artificial strategy (left) and 

ecological strategy (right). 
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6. AN APPLICATION 

In this chapter we demonstrate a potential use of the iterative 

hypothetical forest generation procedure. In conventional forest management 

planning, models that depend on stand characteristics (e.g. dominant height 

and number of trees per ha) are used to simulate tree populations and to 

project future yields. Location independent thinning models are often used to 

select trees for intermediate thinnings (see for example, Gadow and Hui 

1999, pp. 53-60). However, in real forests field workers often select trees to 

be harvested based on local stand conditions (such as density). Location 

independent models do not take into account such factors. Thus, models may 

not match with reality. We can examine the modeling errors by comparing 

two thinning rules, namely, the size class and the neighborhood dependent 

rules. The criterion for thinning is basal area (cf. Isomäki and Niemistö 

1983). 

In Section 6.1 we describe a logistic regression model for thinning 

probabilities. In Section 6.2 we explain the size class dependent thinning 

rule. In Section 6.3 we explain the neighborhood dependent thinning rule 

and associated thinning strategies. In Section 6.4 we explain the methods for 

estimating thinning probability. In Section 6.5 we show the growth models 

for simulating growth after thinning. In Section 6.6 we examine the errors 

caused by the size class dependent thinning rule through simulations. 

A program called ‘SPATE_thinning’ was developed to carry out the 

thinning simulation. The technical details of the thinning software are 

available at the same Web address for SPATE. SPATE_thinning carries out 

thinnings on the transformed stands (diameters in cm) and produce thinned 

stands (log-diameters). The thinned stands can be readmitted to SPATE for 

growth simulation. 
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6.1 Logistic Regression Model for Thinning Probability 

Consider a stand . Let 2A � � s  be the number of thinning classes. 

In our application they correspond to size classes defined in terms of 

diameter. Let T  be the set of trees in the th thinning class, , and 

let 

i i i 1, ,� � s

� �in T

ij

 be the number of trees in T . Let  be the neighborhood radius 

relevant for class i . Define �  as the thinning probability of a tree located 

at 

i ir

ij

x , ij T� . We assume a logistic model for the thinning probability, i.e. 

 
 � � � �� � � �� �iij iji0 i1 rlogit U A� � � � �� � �x , 

 
where  represents the level of thinning and  determines the effect of 

local density compared to stand density, 

i0� i1�

� �A�  is the stand density, and 

� �� � � �� � � �ii i ijrijr r UU N U� �ij xx x . This is a highly simplified model, 

which may not reproduce all aspects of real thinning practices. However, it 

is sufficient for illustration purposes. 

We assume that the areas outside stand edges have recently been 

harvested and no edge correction is imposed on the density calculation. In 

addition, ingrowth and mortality caused by thinning operation are not 

considered. 

6.2 Size Class Dependent Thinning Rule 

The size class dependent thinning rule (SCD) states that trees in each 

thinning class are thinned uniformly. For each thinning class a constant 

thinning probability is determined by the thinning rate, which corresponds to 

the thinning probability model with  only. For trees in T , if i0� i

� �ij u U 0,1� � �  then the tree located at ijx  is thinned. 
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Size class dependent thinning is commonly used in forest management 

planning studies. This rule does not depend on tree locations. For example, if 

two trees are in the same thinning class then they have the same thinning 

probability even though one tree is under competition stress caused by 

surrounding trees and the other is standing alone (T. Pukkala, personal 

communication, March 2003). 

6.3 Neighborhood Dependent Thinning Rule 

For the neighborhood dependent thinning rule (ND), the thinning 

probability is determined by  and , which takes into account the 

relative density 

i0� i1�

� �� � � �i ijrU� x A�� . Neighborhood dependent thinnings can 

be carried out in a similar way as in the previous section. However, trees that 

have higher relative intensities are more likely to be thinned. Obviously, the 

number of trees that are thinned depends on the model parameters and it may 

differ from SCD. 

To mimic the selection process of thinning inspectors, we include 

three strategies, namely, DEterministic thinning (NDDE), Stochastic 

thinning with Fixed thinning probabilities (NDSF), and Stochastic thinning 

with Adjustable thinning probabilities (NDSA). To implement these thinning 

strategies a Poisson random number ip  is generated, based on the thinning 

rate of T  and i � �in T , to be the number of trees to be thinned. Thinnings 

begin from the largest thinning class and move toward smaller classes. 

 
Deterministic Thinning Strategy. For NDDE, �  is ranked in 

descending order, and the first 

ij

ip  trees are thinned. This thinning strategy is 

deterministic because there is no random mechanism in the selection of trees 

to be thinned (cf. Pukkala and Miina 1998). We can think that NDDE 
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mimics the decision making of a thinning inspector who is able to rank 

thinning probabilities of trees based on the local density. 

 
Stochastic Thinning Strategy with Fixed Thinning Probability. By 

chance, a tree with the highest thinning probability may not be selected at 

the first inspection. The aim of NDSF is to mimic a process in which 

(inexperienced) thinning inspectors may accidentally mark trees that have 

smaller thinning probabilities. To implement this thinning strategy at each 

thinning run, the tree that has the largest thinning probability is identified 

and checked if � �ij u U 0,1� �� . If � , then this tree is marked to be 

thinned and the next thinning run begins. Otherwise, the tree with the second 

largest thinning probability is found and a check is made if � . The 

above checking process continues until a tree is selected or . This 

check-and-thin procedure is repeated 

ij u�

i

ij u�

� ij n T� �

p  times. 

 
Stochastic Thinning Strategy with Adjustable Thinning Probability. In 

principle NDSA is similar to NDSF except that after a tree is thinned, 

thinning probabilities for trees in � �ir ijU x  are recomputed. This strategy 

reflects a thinning inspector’s ability to picture the surroundings of a target 

tree with respect to marked trees (which will be removed later) within the 

neighborhood defined by . Notice that in NDDE the number of trees to be 

thinned is fixed, but the number may vary in NDSF and NDSA. In an 

extreme case, no tree is thinned, but on average the number of trees to be 

thinned should be the same. 

ir
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6.4 Thinning Probability Estimation 

We arbitrarily determine a hypothetical curve (the dotted line in 

Figure 6.1), which represents an ideal regularly all-sized diameter frequency 

distribution in a managed forest for the longleaf pine data (cf. Lähde et al. 

2001). Judging from Figure 6.1, simulated thinnings will be applied to the 

longleaf pine mapped stand for trees with diameter larger than 30 cm to 

reduce the amount of adult trees to a desired level. Three thinning classes, 

namely, 30 - 45 cm, 45 - 55 cm and �  cm, are identified. The proportion 

of the number of trees to be thinned and neighborhood radius for these 

thinning classes are shown in Table 6.1. 

55

In general  and  might be estimated from empirical thinning 

data. However, we do not have such data. Therefore, we make educated 

guesses for the parameter values. The rationale is that the estimated thinning 

probabilities should cover a reasonable range of relative intensities obtained 
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Figure 6.1 Histogram of longleaf pine diameters (cm) and a hypothetical 

curve that represents an ideal regularly all-sized diameter frequency 

distribution. 
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from the longleaf pine data (Table 6.2). We choose  and, since  

discriminates the thinning probability, three levels of , namely, 50, 100 

and 200, for each thinning classes. For example, the thinning probabilities of 

the three levels of  for the thinning class with diameter  cm are 

shown in Figure 6.2. 

i0 .5� �

i1�

�

i1�

30

i1� 55

6.5 Tree Growth after Thinnings 

Platt et al. (1988, p. 502) suggested that during a 4 years period the 

growth increment was approximately 10% of the past period for trees  

cm in diameter, and diameter increment decreased sharply among larger 

trees. Because young trees in the simulated stands are in clumps, we will 

consider that the growth of these trees is similar to the even-sized Norway 

spruce growth pattern (Table 4.3). 

�
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able 6.1 Thinning rate and neighborhood radius for the selected thinning 

lasses. 

Thinning class Thinning rate Neighborhood radius (m) 
30 - 45 cm .55 10 
45 - 55 cm .65 20 

> 55 cm .55 25 

able 6.2 Minimum, maximum and mean of relative density for the selected 

hinning classes. 

Thinning class Min. Max. Mean 
30 - 45 cm –.015 .040 –.001 
45 - 55 cm –.013 .011 –.005 

> 55 cm –.013 .011 –.004 
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For a growth period of 10 years the growth model for young trees is 

 with �  and a 

neighborhood radius of r  m. Note that Y  are log-diameters in the 

thinned stands. The growth model for mature trees (i.e. diameter larger than 

30 cm) is Y  with �  and a neighborhood 

radius of r  m. 

i i
1 0 0

i i i I sY Y .2 .05Y .001C .0005C �� � � � � �

6�

0
i

i
1 0

i i I iY .01 .005C �� � � �
�

30�

i .02
�
�

02.0�

6.6 Results and Discussions 

Size class dependent (SCD) and neighborhood (ND) thinning rules are 

applied to the 1200 simulated stands for the ecological strategy (Section 

6.5.3). Then we grow trees in the thinned stands using SPATE. The removal 

and growth of trees, in terms of basal area (m2), of each simulated stand (4 

ha) are recorded. The resulting mean removal, growth and correlation 

between removal and growth are listed in Table 6.3. Note that removal 

differs for SCD and ND thinning rules because trees have a fixed thinning 
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Figure 6.2 Thinning probabilities of  (squares),  

(diamonds) and  (triangles) plotted against various relative 

intensities for the largest thinning class (diameter  cm). 
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probability with SCD thinning rule, but the thinning probability depends on 

the relative intensity of a target tree with ND thinning rule (strategies). 

Comparing the results of SCD and ND thinning rules, we notice that 

there are three errors made by applying the SCD thinning rule: 

1. Variance of simulated removals is under-estimated. 

2. Growth increment is over-estimated. 

3. Removal and growth are either uncorrelated or weakly 

positively correlated when the SCD rule is applied, but they 

are weakly negatively correlated when the ND thinning rule is 

applied. 

T

t

r

 

S
C
(
F
A

able 6.3 Simulated removal and growth of basal area (m2) over 4 ha 

hinned stands. The mean, standard deviation (Std) and correlation between 

emoval and growth are computed over 1200 simulation runs. 

Removal  Growth Thinning 
strategy Mean Std Mean Std 

Correlation 
(p-value) 

 
SCD 100.66 9.00 14.25 1.01 –.008 (.794) 

NDDE 99.87 11.26 14.19 1.01 –.093 (.001) 
NDSF 99.85 11.26 14.19 1.01 –.091 (.002) 
NDSA 100.03 11.25 14.19 1.01 –.094 (.001) 

1 100� �  
SCD 100.69 8.99 14.25 1.00 .019 (.505) 

NDDE 99.65 11.41 14.20 1.02 –.117 (.000) 
NDSF 99.64 11.41 14.20 1.02 –.117 (.000) 
NDSA 99.82 11.39 14.20 1.02 –.121 (.000) 

1 200� �  
SCD 100.57 8.76 14.24 1.01 .012 (.668) 

NDDE 99.89 11.35 14.19 1.01 –.061 (.034) 
NDSF 99.81 11.30 14.20 1.01 –.061 (.035) 
NDSA 99.84 11.29 14.20 1.01 –.057 (.048) 

ymbol: 1  is the coefficient for relative intensity; SCD stands for Size 
lass Dependent thinning; NDDE stand for Neighborhood Dependent rule 

ND) with DEterministic strategy; NDSF stand for Stochastic strategy with 
ixed thinning probability; and NDSA stand for Stochastic strategy with 
djustable thinning probability. 

�

1 50� �
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Thus, by applying SCD thinning simulations forest owners or policy 

makers may be mislead into thinking that a heavier thinning may yield better 

growth afterwards, and thus to overestimate the future yield. Instead, ND 

thinning simulations reveal that the mean removal is smaller and has a 

higher variance, and that the future growth is not so high. The implication of 

the weakly negative correlation between removal and growth is that if a 

forest owner decides to carry out a heavy thinning to get more cash income 

now, then the future income will be lower than expected, or the owner will 

have to wait longer for the trees to grow. 

Mäkelä et al. (2000, p. 296) pointed out 
…methods of decision-making and analysis in forest management 
are gradually moving toward a more general, causal-oriented 
approach. 

 
We have demonstrated that the model specifications are general and the 

iterative procedure is causal-oriented. In principle modules for other 

potential applications can be integrated in SPATE for more complex 

simulation studies. 
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APPENDIX A: TAYLOR-SERIES APPROXIMATION FOR 
CORRELATIONS 

Define , where  and � � �T
1 2 N ,X , X�X µ Σ�

�

� � �
T,� ��µ

2

2
�

� �

� �
� � �� �

Σ , 1� � . The second order Taylor-series based 

approximation of the function of random variable X  is 

 
� � � � � �� � � �� �

21
2f f f X f XX � � � �� ��� � � � � � . 

 
Using the characteristic function of the bivariate normal distribution, we can 

show that 

� � � �2 2 2
1 2 1 2E X X E X X 2�� � �� �� � �

2 3
� , 

and that 
� �2 2 4 4 2 2 2 2 2

1 2E X X 2 2 4� � � � � � � �� � � � �
4

� . 
 

Therefore, the approximate moments of � �f X  are 

 
� �� � � � � �

21
i 2E f X f f� ���� � � , 

� �� � � � � � � � � � � �
2 22 2 42 3

i 4E f f f f ff X � � � � � � � ��� � ��� � � �
2 , i , 1,2�

and 

� � � �� � � � � � � � � �

� � � �

2 2 2 2
1 2

2 24 4 21 1
4 2

E f X f X f f f f
f f

� � � �� � �

� � � � �

�� �� � �

�� ��� �
. 

 
Define � � � �� �f G � �� � , where � ��  is the standard normal 

cumulative distribution function (cdf), and 

 is the inverse cdf of the Weibull 

�

�� �� �
1

�

� �
�

� ���G log 1� � �� � � �

 



 

106

distribution � � � �� �W t , 1 exp t �

�� � � � �t 0,� �� , � �, 0,� � � ��

�

. Notice 

that we use  in replace of W  (see Section 3.3) to simplify the notations 

below. 

G 1�

0� � 1� �0 .5�

� � 0 0� � �f 0

� �
1

.5 �
�

� �� �

f G

� �� �

log� � �

� �� �

1
g .5

2 log .5

�
�

0� �

� � � �

� �� �

� �� �

� �� �
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1 1 1

2 2

0
4 log .5

og .5 log .5� �
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�
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.5

� �
�

�

� �iY

� �

�

� �
22 2

1 2 ��

� �
� �

� �

22 2

2 21 2Y
��

�
�

In the case of  and � , we know that � , 

� �0 1 2� �  and � �� . Then the equations for the ��  and its 

first two derivatives are 

 
� � � �� � � �00 � � , 

 

� � � �
lof 0 G 0 2�
��

�
� � �� � �   

and 
 

� � � �� � � � � �� �

� �� �

� �� �2

f 0 G 0 0 G 0
4 log . 4 log .5

2 llog

� �

� � � �

� �

�� �� � � ��� �
� �� � �
� �� �
� �
	 


. 

 
Therefore, the variances of the transformed random variables are 

 
� � � �2 21

2Var f f0 0� �� � , 

 
and their covariance is 

 
� � 1

2Cov Y ,Y f f0 0�� �� � . 

 
Finally, we can calculate the correlation with respect to �  and �  as follows 

 
� �

� �

1
2
1
2

f f0 0Corr Y ,
f f0 0

�� ��

� ��
. 
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APPENDIX B: DATA SETS 

B.1 Longleaf Pine Mapped Stand Data 

The mapped longleaf pine (Pinus palustris) data (Figure B.1) was 

downloaded (June 2000) from http://www.stat.uga.edu/faculty/RATHBUN/ 

and was posted on the Web by Dr. Stephen L. Rathbun at the Department of 

Statistics, University of Georgia. The dataset consists of 583 trees in a 4 ha 

area (  m) with locations (x- and y-coordinates in meters), 

diameter at breast height (cm) and mortality. For analysis, the trees were 

separated into three size classes: juvenile (diameter  10 cm); subadult (10 

cm  diameter  30 cm); and adult (diameter > 30 cm) (Figure B.2). 

200 200�

�

�

�

The data were collected from Wade Tract, southern Georgia, which is 

an old-growth longleaf pine forest. Wade Tract is part of a plantation 

established in the early 1800s, which has not been cleared or used for 

Figure B.1 Longleaf pine mapped stand (Rathbun and Cressie, 1994). The 

size of the circles is proportional to diameters and the lines indicate salvage 

paths in 1979. Reproduced with permission from The Journal of the 

American Statistical Association. Copyright 1994 by the American Statistical

Association. All rights reserved. 

 



 

108

agriculture, but selective logging has possibly been conducted. A study area 

of 39.4 ha within the Wade Tract was surveyed in 1979. All trees with 

diameter  cm were tagged and measured. Salvaging of pines damaged by 

lightning and windthrow were carried out in the 1960s and the 1970s; the 

salvage paths are indicated by the solid lines in Figure B.1. Stand 

characteristics and population dynamics were described in Platt et al. (1988). 

Other than longleaf pine, there were 17 additional species surveyed (about 

one quarter of the total mapped trees), but the locations and measurements 

are not available. 

2�

B.2 Alkkianvuori Experimental Plot Data 

These experimental plot data have been made available to this study 

by Drs. Olavi Laiho (Parkano Research Station) and Erkki Lähde (Vantaa 

Research Center), Finnish Forest Research Institute. The Alkkianvuori stand 

(Parkano, Finland) was naturally regenerated in the 1940s with seed trees 

felled in 1960-61. The stand is a mixed Norway spruce (Picea abies) stand. 

Norway spruce dominated the stand until the first thinning in 1985-86. To 

examine the effects of low- and selection thinning methods, experimental 

Figure B.2. Longleaf pine stand maps of the adult (left), subadult (center) 

and juvenile (right) size classes. Note that the circles are proportional to 

tree diameter and the ratio is adjusted in different maps. 
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plots (  m) were established in 1990. Tree coordinates, relative relief, 

tree species, tree crown area, mortality and diameter were recorded. 

50 50�

Tree diameters were measured in 1990, 1994 (before treatment) and 

1998. Alkkianvouri plot 8 and 9 data are used in Chapter 4. Selection 

thinning was applied to plot 8 and low thinning was applied to plot 9 in 1994 

(Figure C.3). A buffer zone of 5 m wide around the mapped area received 

the same treatment, but trees were not measured. 

 

 

Figure B.3 Maps of Alkkianvuori experimental plot 8 (left) and 9 (right) for 

Norway spruce trees which have survived in 1998. The circles are 

proportional to diameters in 1990. 
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