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ABSTRACT  

Dendrimers are structurally well-defined, synthetic polymers with sizes and physicochemical 

properties often resembling those of biomacromolecules (e.g. proteins). As a result they are 

promising candidates for peptide-based vaccine delivery platforms. Herein, we established a 

synthetic pathway to conjugate a human papillomavirus (HPV) E7 protein-derived peptide 

antigen to a star-polymer to create a macromolecular vaccine candidate to treat HPV-related 

cancers. These conjugates were able to reduce tumor growth and eradicate E7-expressing TC-

1 tumors in mice after a single immunization, without the help of any external adjuvant.  

 

 

 

 

KEYWORDS: peptide subunit vaccine, human papillomavirus, therapeutic anticancer 

vaccine, star-polymer, self-adjuvanting, isodipeptide 
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INTRODUCTION 

Vaccination is one of the most cost-effective public health interventions, and has been 

proposed as a promising strategy for the treatment of cancer.
1
 Cervical cancer results from 

the infection of the cervix with human papillomavirus (mainly HPV type 16) which disrupts 

the cell cycle through interaction between HPV proteins and the host cell.
2
 Prophylactic 

vaccines against HPV have been developed to prevent HPV infection (and by extension, 

cervical cancer), achieving the best results if administered prior to the commencement of 

sexual activity.
3
 However, a large proportion of the global population is already infected, and 

many women will continue to become infected with cervical cancer-associated HPV strains 

until global vaccine coverage is achieved.
4,5

 Furthermore, the long-term efficacy of the new 

HPV vaccines can only be evaluated decades after implementing the existing prophylactic 

vaccination.
6
 Importantly, prophylactic vaccines protect the host against viral infection but 

are not designed to kill tumor cells. These limitations have prompted research into the 

development of therapeutic vaccines that treat HPV-related cancer.
2,7-11

 Therapeutic vaccine 

candidates against HPV-related cancers were usually designed to elicit a cytotoxic T-cell 

response by targeting E7 oncoprotein. This protein is constitutively expressed in cancer cells 

and is required for the induction and maintenance of tumor growth. T-cells recognize tumor-

associated antigen in the form of a defined short peptide sequence (T cell epitope), rapidly 

and specifically killing target cells that display the antigen.
12

 This approach to treating cancer 

overcomes the many disadvantages of classical chemotherapy, and other therapies like 

siRNA, which is severely limited by the instability and poor delivery of siRNA molecules 

into the targeted cells. Therapeutic vaccines use the body's natural fighting system, and have 

minimal risk of side effects. 
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All reported peptide-based therapeutic HPV vaccine candidates required formulation with 

an adjuvant (immunostimulant) to produce the desired immune response.
2
 Not only are there 

a limited number of adjuvants approved for human use, but many of these adjuvants are 

associated with toxicity and low efficacy.
13

 Therefore, the discovery and development of 

novel adjuvants with potent immunomodulatory activities is of significant importance in the 

field of cancer immunotherapy. Specifically, the development of potent and well-defined 

adjuvants without adverse toxicity is crucial to the success of therapeutic vaccines.
14

  

Dendrimers are structurally well-defined, synthetic polymers that can be designed to mimic 

the size and physiochemical properties of biomolecules (e.g. proteins).
15

 Their hyper-

branched structure allows the attachment and presentation of antigen molecules at the 

periphery of the dendrimer, resulting in a highly multifunctional biomacromolecule.
15

 It was 

demonstrated that a Multiple Antigenic Peptide (MAP) system with a poly-lysine core
16

 was 

able to generate high antibody titers as a prophylactic vaccine, but only when co-administered 

with an adjuvant. Similarly, linear polymers with the peptide epitopes randomly conjugated 

along the polymer backbone also generated antibody responses when co-administered with 

the toxic complete Freund’s adjuvant (CFA).
17

 To overcome these disadvantages, well-

defined polymer-based amphiphiles were proposed. Polyacrylate was selected as the most 

promising candidate because polyacrylic acid and its esters were easy to synthesize and had 

little or no toxicity.
18,19

 We recently reported the ability of polyacrylate amphiphilic 

dendrimers (decorated with B-cell epitopes on the dendrimer's periphery) to act as a self-

adjuvanting prophylactic vaccine, and induced a protective (humoral) immunity.
20,21

 

However, while there are a substantial number of self-adjuvanting systems and adjuvants that 

induce humoral immunity, the induction of cellular responses for therapeutic vaccination is 

more challenging. For example, aluminium salts, the only adjuvant that is widely used in 
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humans, is recognized to essentially only stimulate a humoral immunity.
22,23

 Thus, there is an 

urgent need for alternatives that are able to induce cellular immune responses. 

In this work, we hypothesized that a star polymer-based delivery systems might have the 

adjuvanting potency to generate T-cell mediated immunity against cells that produce the E7 

protein, thus could eradicate tumor cells. We designed and synthesized polymer-peptide 

conjugates with the well-known HPV-16 E7 protein epitope 8Q 

(QAEPDRAHYNIVTFCCKCD; E744-62) which contains a CTL epitope (CD8
+
 cytotoxic T 

lymphocytes), and T-helper cell (CD4
+
) and B-cell epitopes (Figure 1).

9
 This combination 

makes 8Q an ideal candidate to stimulate long-term vaccine efficacy to kill cancer cells. We 

designed a short series of modified epitopes (Figure 1) to avoid uncontrolled aggregation of 

the cysteine-rich 8Q epitope. These epitopes were conjugated to the dendritic structure that 

resembled a 4-arm star-polymer P(
t
BA37-≡)4 (S4) and self-assembled into particles under 

aqueous conditions. All conjugates produced microparticles when formulated in phosphate 

buffer saline (PBS). A conjugate that contained the 8Qmin epitope was able to reduce tumor 

growth and eradicate E7-expressing TC-1 tumors in mice after a single immunization, 

without help from any external adjuvant. 

 

Figure 1. The amino acid sequence of the original 8Q epitope and its novel derivatives. The 

CTL epitope (CD8
+
 cytotoxic T lymphocytes), T-helper cell (CD4

+
), and a B-cell epitope are 
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highlighted within the 8Q sequence. The immunologically redundant pentapeptide sequence 

is indicated by italic font.  

 

EXPERIMENTAL SECTION 

Materials. Protected L-amino acids were purchased from Novabiochem (Merck Chemicals, 

Darmstadt, Germany) and Mimotopes (Melbourne, Australia). pMBHA resin was purchased 

from Peptides International (Kentucky, USA). Rink amide MBHA resin, N,N’-

dimethylformamide (DMF), dichloromethane (DCM), methanol, N,N’-diisopropylethylamine 

(DIPEA), piperidine and trifluoroacetic acid (TFA) were obtained from Merck (Hohenbrunn, 

Germany). Cu wires were purchased from Aldrich (Steinheim, Germany). t-Butyl acrylate 

(
t
BA, Aldrich, > 99%) was deinhibited before use by passing through a basic alumina 

column, ethyl 2-bromoisobutyrate (EBiB, Aldrich, 98%), tripropargylamine (TPA, Aldrich, 

98 %), dimethyl sulfoxide (DMSO, Labscan, AR grade), N,N,N’,N’,N’’-

pentamethyldiethylenetri-amine (PMDETA, Aldrich, 99%), copper(I) bromide (Cu(I)Br, MV 

Laboratories, INC., 99.999%), copper(II) bromide (CuBr2, Aldrich, 99%) were used as 

recieved. Propargyl nitroxide was synthesized according the previous procedure.
24

 1-(1H-

Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and 2-(1H-7-

azabenzotriazol-1-yl-1,1,3,3-tetramethyl uronium hexafluorophosphate methanaminium 

(HATU) were purchased from Mimotopes (Melbourne, Australia). HPLC grade acetonitrile 

was obtained from Labscan (Bangkok, Thailand). All other reagents were obtained at the 

highest available purity from Sigma-Aldrich (Castle Hill, NSW, Australia).  

Microwave assisted Boc-SPPS was carried out using a SPS mode CEM Discovery reactor 

(CEM Corporation, Matthews, NC, USA). Anhydrous hydrofluoric acid (HF) was supplied 

by BOC gases (Sydney, NSW, Australia). A Kel-F HF apparatus (Peptide Institute, Osaka, 
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Japan) was used for HF cleavage. ESI-MS was performed using a Perkin-Elmer-Sciex 

API3000 instrument with Analyst 1.4 software (Applied Biosystems/MDS Sciex, Toronto, 

Canada). 
1
H nuclear magnetic resonance (

1
H NMR) spectra were recorded with a Bruker 

Avance 300 MHz spectrometer (Bruker Biospin, Germany). Analytical RP-HPLC was 

performed using an Agilent instrument with a 1 mL/min flow rate and detection at 214 nm. 

Separation was achieved using a 0-100% linear gradient of solvent B over 40 min with 0.1% 

TFA/H2O as solvent A and 90% MeCN/0.1% TFA/H2O as solvent B on either a Vydac 

analytical C4 column (214TP54; 5 µm, 4.6 mm x 250 mm) or a Vydac analytical C18 column 

(218TP54; 5 µm, 4.6 mm x 250 mm). Preparative RP-HPLC was performed on Shimadzu 

(Kyoto, Japan) instrumentation (either LC-20AT, SIL-10A, CBM-20A, SPD-20AV, FRC-

10A or LC-20AP x 2, CBM-20A, SPD-20A, FRC-10A) in linear gradient mode using a 10-

20 mL/min flow rate, with detection at 230 nm. Separations were performed with solvent A 

and solvent B on either a Vydac preparative C4 column (214TP1022; 10 µm, 22 mm x 250 

mm) or a Vydac preparative C18 column (218TP1022; 10 µm, 22 mm x 250 mm). Particle 

size was measured by dynamic light scattering (DLS) using a Malvern Zetasizer Nano Series 

with DTS software. Sizes were analyzed using a non-invasive backscatter system. 

Multiplicate measurements were performed at 25 °C with scattering angle of 173° using 

disposable cuvettes and the number-average hydrodynamic particle diameter are reported. 

The average particle diameter in PBS was determined with a ZEISS LSM 510 META 

confocal microscope. The software used for image acquisition was AIM 4.2 (Carl Zeiss, Ltd) 

and Carl Zeiss Zen 2009 was used for image analysis. 

Synthesis of 8Q Peptide. 8Q epitope (QAEPDRAHYNIVTFCCKCD; E744-62) was 

synthesized on pMBHA resin (substitution ratio: 0.45 mmol/g, 0.2 mmol scale, 0.44g) using 

HBTU/DIPEA Boc-chemistry by Microwave-Assisted Solid-Phase Peptide Synthesis (MW-

SPPS). The temperature was set at 70 ºC (at 20 Watt, 10 min) for amino acid coupling except 
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 9

for His, Cys and Asp, which were coupled at 50 ºC (at 20 Watt, 15 min). Each amino acid 

coupling cycle consisted of Boc-deprotection with neat TFA (2 × 1 min, at rt), a 1 min DMF 

flow wash, followed by 10 min coupling with the preactivated amino acid. Amino acid 

activation was achieved by dissolving Boc-amino acid (0.84 mmol, 4.2 equiv.), in a 0.5 M 

HBTU/DMF solution (1.6 mL, 0.8 mmol, 4.0 equiv.) followed by the addition of DIPEA 

(0.22 mL, 1.24 mmol, 6.2 equiv.). Amino acids were preactivated for 1 min prior to their 

addition to the resin. For peptides containing His(DNP) residues, the DNP (2,4-dinitrophenyl) 

group was cleaved by treating the resin with 20% (v/v) β-mercaptoethanol and 10% (v/v) 

DIPEA in DMF for 2 × 1 h treatments prior to peptide cleavage. Upon completion of 

synthesis and removal of the dinitrophenyl (DNP) protecting group, the resin was washed 

with DMF, DCM, and MeOH, then dried (vacuum desiccator). The peptide was cleaved from 

the resin using HF, with p-cresol and p-thiocresol as scavengers. The cleaved peptide was 

precipitated, filtered, and washed thoroughly with ice-cold Et2O and dissolved in 50% 

MeCN/0.1% TFA/H2O. After lyophilization, the crude peptide was obtained as an amorphous 

powder. The product was purified by preparative RP-HPLC on a C18 column with a solvent 

gradient of 0-50% solvent B over 50 min. HPLC analysis (C18 column): tR = 19.18 min, 

purity > 95%. Yield: 12%, ESI-MS: m/z 2213.2 (calc 2213.5) [M+H]
+
; 1107.7 (calc 1107.2) 

[M+2H]
2+

; 738.5 (calc 738.5) [M+3H]
3+

; MW 2212.49.  

Synthesis of Azidoacetic Acid (N3CH2CO2H).  Azidoacetic acid was synthesized using a  

similar method to published procedure.
25
 Sodium azide (6.0 g, 92.3 mmol, 3.0 equiv.) was 

dissolved in H2O (10 mL) and bromoacetic acid (4.3 g, 30.8 mmol, 1.0 equiv.) was added. 

The reaction was stirred continuously in an ice bath for 24 h and subsequently acidified with 

32% HCl (10 mL). The product was then extracted with Et2O (4 x 50 mL), dried over 

anhydrous MgSO4 and the solvent was evaporated under vacuum. The final product was 

obtained as a colorless oil (2.95 g, 95%) after prolonged evaporation under vacuum to 
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 10

remove organic solvent and the last traces of water. 
1
H NMR (300 MHz, CDCl3) δ 10.60 (br 

s, 1H, OH), 3.98 (s, 2H, CH2). 
13

C NMR (100 MHz, CDCl3) δ 50.0, 173.7. 

Synthesis of Boc-Thr(Fmoc-Val)-OH. The isopeptide unit was synthesized according to 

published procedure.
26-28

 

Synthesis of 1,3-di(hydroxymethyl)-5-(prop-2-ynyloxy)benzene. This compound was 

prepared as previously described.
29,30

 
1
H-NMR (300 MHz, CD3OD): δ 2.52 (t, J = 2.4 Hz, 

1H, CH2C≡CH), 4.68 (bs, 4H, 2xCH2OH), 4.71 (d, J = 2.4 Hz, 2H, CH2C≡CH), 6.92 (bs, 2H, 

ArH), 7.00-6.98 (m, 1H, ArH).  

Synthesis of polyacrylate P(
t
BA37-≡≡≡≡)4. The alkyne-functionalized 4-arm poly(t-butyl 

acrylate) star (S4) was synthesized by atom-transfer radical polymerization. Star-polymer 

P(
t
BA37-Br)4

21
 (Mn=14900, PDI=1.05; 0.700 g, 3.68 x 10

-5
 mol), propargyl nitroxide (0.078 

g, 3.72 x 10
-4

 mol), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA, 0.043 g, 2.48 x 

10
-4

 mol)  were dissolved in 6 mL of DMSO/toluene mixture (1:2, vol). The mixture was 

purged with argon for 20 min before the addition of CuBr (0.033 g, 2.32 x 10
-4

 mol). The 

reaction was stirred at R.T. for 30 min, then diluted by THF and passed through an activated 

basic alumina column. The solution was concentrated and the polymer was recovered by 

precipitation into a MeOH/water (50:50 vol) mixture and then filtered. The polymer was 

further purified by preparative GPC. GPC: Mn=15730, PDI=1.06. 
1
H NMR (CDCl3) : δ 1.11-

1.21 (m, 15H, methyl group of core and TEMPO ring), 1.45 (b, methyl protons of t-BA 

repeat units), 1.81, 2.21 (b, methylene and methine protons of polymer backbone), 2.40 (s, 

4H, (-OCH2-C≡≡≡≡CH)4), 3.76, (b, 4H, methine proton on TEMPO ring), 3.80-4.25, (b, 20H, 

(methylene protons of the core, methine proton of t-BA unit close to the alkoxyamine 

linkage, methylene protons of propargyl group). 

Synthesis of N-terminus Model Azide. N-terminus model azide (N3CH2CO-Phe-Cys-NH2) 

was synthesized by manual stepwise SPPS on rink amide MBHA resin (substitution ratio: 
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 11

0.59 mmol/g, 0.2 mmol scale, 0.34 g) using HBTU/DIPEA Fmoc-chemistry. Amino acid 

activation was achieved by dissolving Fmoc-amino acid (0.84 mmol, 4.2 equiv.), in 0.5 M 

HBTU/DMF solution (1.6 mL, 0.8 mmol, 4.0 equiv.) followed by the addition of DIPEA 

(146 µL, 0.84 mmol, 4.2 equiv.). Coupling cycle consisted of Fmoc deprotection with 20% of 

piperidine in DMF (twice, 10 and 20 min), a 1 min DMF flow-wash, followed by coupling 

with 4.2 equiv. of preactivated Fmoc-amino acids (2 × 2 h). The attachment of azidoacetic 

acid (4.2 equiv.) was achieved using HBTU (3 equiv.)/DIPEA (4.2 equiv.) at room 

temperature (2 × 2 h). Upon completion of synthesis, the resin was washed with DMF, DCM, 

and MeOH, then dried (vacuum desiccator). The cleavage of model azide was carried out by 

stirring the resin in the solution of TFA (99%)/triisopropylsilane/water (95:2.5:2.5) for 4 h. 

The cleaved peptide was precipitated, filtered, and washed with ice-cold Et2O. After 

lyophilization the crude peptide was obtained as an amorphous powder. The product was 

purified by preparative RP-HPLC on C18 column with solvent gradient 0-50% solvent B 

over 50 min. HPLC analysis (C18 column): tR = 18.4 min, purity > 95%. Yield: 96% ESI-

MS: m/z 702.1 (calc 701.8) [2M+H]
+
; 351.7 (calc 351.4) [M+H]

+
; MW 350.40.  

Synthesis of N-terminus 8Q Azide. 8Q azide peptide epitope (N3CH2CO-

QAEPDRAHYNIVTFCCKCD-NH2) was synthesized according to the above procedure. 

Fmoc deprotection of Thr, Val and Ile were performed with 2% of 1,8-Diazabicycloundec-7-

ene  (DBU) in DMF (twice, 5 and 10 min) instead of 20% piperidine in DMF. HPLC analysis 

(C18 column): tR = 17.5 min, purity > 95%. Yield: 17%. ESI-MS: m/z 1148.8 (calc 1148.8) 

[M+2H]
2+

; 766.2 (calc 766.2) [M+3H]
3+

; MW 2295.54.  

Synthesis of N-terminus 8Qmin Azide. 8Qmin azide peptide epitope (N3CH2CO-

QAEPDRAHYNIVTF-NH2) was synthesized according to the above procedure. Fmoc 

deprotection of Thr, Val, and Ile were performed with 2% DBU in DMF (twice, 5 and 10 

min) instead of 20% piperidine in DMF. HPLC analysis (C18 column): tR = 18.3 min, purity 
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> 95% (Figure S1). Yield: 42%. ESI-MS: m/z 1743.3 (calc 1743.8) [M+H]
+
; 872.3 (calc 

872.4) [M+2H]
2+

; MW 1742.85.  

Synthesis of N-terminus 8QSer Azide.  

Method A: 8QSer azide peptide epitope (N3CH2CO-QAEPDRAHYNIVTFSSKSD-NH2) was 

synthesized according to the above procedure. Fmoc deprotection of Thr, Val, and Ile were 

performed with 2% DBU in DMF (twice, 5 and 10 min) instead of 20% piperidine in DMF. 

HPLC analysis (C18 column): tR = 16.66 min, purity > 95%. Yield: 14 %. ESI-MS: m/z 

1124.8 (calc 1124.7) [M+2H]
2+

; 750.2 (calc 750.1) [M+3H]
3+

; MW 2247.34.  

Method B:  The isopeptide 8QSer azide peptide epitope was synthesized according to the 

above procedure. Boc-Thr(Fmoc-Val)-OH was used to introduce Thr and Val. Fmoc 

deprotection were performed only with 20% piperidine in DMF (twice, 10 and 20 min). 

Isopeptide 8QSer azide was cleaved from resin (tR = 15.82 min, C18), lyophilized and 

dissolved in 50% aqueous MeCN. Ammonia solution (25%) was added dropwise until the pH 

was 8-9. The reaction mixture was stirred for 2 h to form the desired migrated 8QSer azide.  

HPLC analysis (C18 column): tR = 16.66 min, purity > 95% (Figure S1). Yield: 55%. ESI-

MS: m/z 1124.8 (calc 1124.7) [M+2H]
2+

; 750.2 (calc 750.1) [M+3H]
3+

; MW 2247.34.  

Synthesis of N-terminus 8QLys Azide. 8QLys azide peptide epitope (N3CH2CO-

QAEPDRAHYNIVTFSKKKK-NH2) was synthesized according to the above procedure. 

Fmoc deprotection of Thr, Val, and Ile were performed with 2% DBU in DMF (twice, 5 and 

10 min) instead of 20% piperidine in DMF. HPLC analysis (C18 column): tR = 15.9 min, 

purity > 95% (Figure S1). Yield: 18% ESI-MS: m/z 1172.3 (calc 1172.3) [M+2H]
2+

; 781.9 

(calc 781.9) [M+3H]
3+

; 586.9 (calc 586.6) [M+4H]
4+

; 469.8 (calc 469.5) [M+5H]
5+

;  MW 

2342.61.  

Copper-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) Reaction - model studies. To 

determine the optimal conditions to avoid disulfide formation during the CuAAC reaction, 
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model azide and 1,3-di(hydroxymethyl)-5-(prop-2-ynyloxy)benzene were employed. The 

reactions were conducted by using different copper sources (Cu wires, CuSO4, CuI), with or 

without adding reducing agent (ascorbic acid, tris(2-carboxyethyl)phosphine), different 

solvents (solvent B (90% MeCN/0.1% TFAH2O), DMF), and stirring at 50 °C or room 

temperature. Briefly, model azide (1 equiv.) and 1,3-di(hydroxymethyl)-5-(prop-2-

ynyloxy)benzene (1 equiv.) were dissolved in DMF (1 mL), and the copper source added. 

The air in the reaction mixture was removed either by nitrogen or argon bubbling. The 

reaction mixture was covered and protected from light with aluminum foil and stirred at 

either 50 °C or room temperature under nitrogen or argon atmosphere. During the reaction, 

samples (30 µL) were frequently taken and analyzed by analytical HPLC and ESI-MS to 

monitor the progress of reaction. 

Synthesis of Vaccine Candidate P(
t
BA37-≡≡≡≡)4-8Qmin (S4-8Qmin). 8Qmin azide peptide epitope 

(1.8 mg, 1 µmmol, 10 equiv.) and P(
t
BA37-≡)4 (1.9 mg, 0.10 µmol, 1.0 equiv.) were dissolved 

in DMF (1 mL). Copper wires (60 mg)—treated with concentrated sulphuric acid (3 min), 

subsequently washed with distilled water, methanol and dried under reduced pressure—were 

added into the mixture. The mixture was bubbled with nitrogen to remove the air. The 

reaction mixtures were covered and protected from light with aluminum foil and stirred at 50 

°C in a temperature controlled oil bath under nitrogen atmosphere for 8 h. The wires were 

filtered off from the warm solution and washed with 1 mL of DMF. Millipore endotoxin-free 

water (7 mL) was slowly added to the solution (0.005 mL/min). Particles formed through the 

self-assembly process were exhaustively dialyzed against endotoxin-free water (pH = 6.8) 

using presoaked and rinsed dialysis bags (Pierce Snakeskin, MWCO 3K). The resulting 

particles were self-assembled into particles with diameters above 1 µm as observed by 

dynamic light scattering. 

Synthesis of Vaccine Candidate P(
t
BA37-≡≡≡≡)4-8QSer (S4-8QSer). S4-8QSer was synthesized in 
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 14

the same manner as above. 8QSer azide peptide epitope (2.5 mg, 1 µmmol, 10 equiv.) and 

star-polymer p(
t
BA37-≡)4 (1.9 mg, 0.10 µmmol, 1.0 equiv.) were dissolved in DMF (1 mL). 

The reaction was terminated after 12 h. The resulting particles were self-assembled into to 

yield diameters of around 150 nm and 700 nm as observed by dynamic light scattering. 

Synthesis of Vaccine Candidate P(
t
BA37-≡≡≡≡)4-8QLys (S4-8QLys). S4-8QLys was synthesized 

in the same manner as above. 8QLys azide peptide epitope (2.9 mg, 1 µmmol, 10 equiv.) and 

star-polymer p(
t
BA37-≡)4 (1.9 mg, 0.10 µmmol, 1.0 equiv.) were dissolved in DMF (1 mL). 

The reaction was terminated after 12 h. The resulting particles were self-assembled into 

particles with a 26 nm diameter as observed by dynamic light scattering.  

Mice and cell lines. Female C57BL/6 (6-8 weeks old) mice were used in this study and 

purchased from Animal Resources Centre (Perth, Western Australia). TC-1 cells (murine 

C57BL/6 lung epithelial cells transformed with HPV-16 E6/E7 and ras oncogenes) were 

obtained from TC Wu.
31

 TC-1 cells were cultured and maintained at 37 °C/5% CO2 in RPMI 

1640 medium (Gibco) supplemented with 10% heat inactivated fetal bovine serum (Gibco) 

and 1% nonessential amino acid (Sigma-Aldrich). The animal experiments were approved by 

the University of Queensland Animal Ethics committee (DI/034/11/NHMRC) in accordance 

with National Health and Medical research Council (NHMRC) of Australia guidelines. 

In vivo tumor treatment experiments. To test the efficacy of polymer-peptide conjugates as 

a therapeutic vaccine against established tumors, groups of C57BL/6 mice (5 per group) were 

first challenged subcutaneously in the right flank with 1×10
5
/mouse of TC-1 tumor cells. On 

the third day after tumor challenge, the mice were injected subcutaneously at the tail base 

with 100 µg of polymer-peptide conjugates in a total volume of 100 µL of sterile-filtered 

phosphate buffered saline (PBS) or control formulations. Polymer-peptide conjugates 

consisted of S4-8Qmin, S4-8Qser and S4-8QLys. Positive control received 30 µg of 8Q 

emulsified in a total volume of 100 µL of Montanide ISA51 (Seppic, France)/PBS (1:1, v/v). 
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 15

Three negative control groups were administered PBS, 70 µg of 4-arm star-polymer alone 

(S4), or 4-arm star-polymer (70 µg) + 8Q (30 µg) physical mixture (S4 + 8Q) in total volume 

of 100 µL PBS. The mice were given a single immunization only. The size of the tumor was 

measure by palpation and calipers every two days and reported as the average tumor size 

across the group of five mice or as tumor size in individual mice.
32,33

 Tumor volume was 

calculated using the formula V (cm
3
) = 3.14 × [largest diameter × (perpendicular 

diameter)
2
]/6.

33
 The mice were euthanized when tumor reached 1 cm

3
 or started bleeding to 

avoid unnecessary suffering. 

Statistical Analysis. All data were analyzed using GraphPad Prism 5 software. Kaplan-Meier 

survival curves for tumor treatment experiments were applied. Differences in survival 

treatments were determined using the log-rank (Mantel-Cox) test, with p < 0.05 considered 

statistically significant.  

 

RESULTS AND DISCUSSION 

Synthesis and characterization of the polymer-peptide conjugates. Copper-

catalyzed alkyne–azide 1,3-dipolar cycloaddition (CuAAC) “click” reaction
34

 was used to 

synthesize  vaccine candidates against HPV-associated cancers. These candidates possessed a 

hydrophobic polymeric core and multiple copies of a peptide epitope derived from the HPV-

16 E7 oncoprotein. The 8Q epitope and its new analogues were applied as antigens, while the 

polyacrylate 4-arm star-polymer served as a delivery platform. All the peptides contained 

CTL, T-helper, and B-cell epitopes. 

First, the alkyne-functionalized 4-arm poly(t-butyl acrylate) star (S4) was synthesized 

by atom-transfer radical polymerization (ATRP) and end-group functionalization with a very 

narrow molecular-weight distribution (polydispersity index of less than 1.06). 8Q epitope and 

its azide (N3CH2CO-QAEPDRAHYNIVTFCCKCD-NH2) were synthesized using 
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 16

microwave-assisted Boc- and Fmoc-SPPS, respectively. During the initial synthesis, a so-

called “difficult” sequence
35-37

 inside 8Q epitope was identified to be composed of β-

branched amino acids (the IVT tripeptide). It was reported that the presence of these 

sequences predisposed the peptide to aggregate on the resin via β-sheet formation and 

inhibited completion of Fmoc group deprotection.
38,35

 Indeed, a significant amount of amino 

acid deletion products were detected during 8Q synthesis, resulting from incomplete 

deprotection of the Fmoc group. Complete deprotection was achieved by replacing piperidine 

with DBU for the removal of Fmoc groups after coupling isoleucine, valine and threonine.  

To examine the 'click' reaction, simple model compounds were designed, in which an 

alkyne (1) and a dipeptide azide possessing single thiol functionality (2) were coupled using 

copper-wires as the catalyst (Scheme 1).
21,39-41 

Analysis of the reaction showed that instead of 

the desired 'click' product 3, a disulfide bond-mediated dimer of 2 was exclusively produced. 

Subsequently, this dimer reacted with alkyne 1 producing disulfide bond-mediated dimer of 

compound 3 (Figure S2). Thus, formation of the single product could not be expected during 

conjugation of S4 core with 8Q peptide which possessed multiple thiol groups. In an effort to 

eliminate disulfide bond formation, we investigated alternative CuAAC 'click' reaction 

conditions by changing the copper source (copper wire, copper sulfate, copper iodide), 

reducing agents (ascorbic acid, tris(2-carboxyethyl)phosphine), solvents (DMF, 

acetonitrile/water/trifluoroacetic acid, 90/10/0.1) and temperature (50 °C, RT). Regardless of 

the experimental conditions, we were unable to obtain compound 3 (Figure S3). 
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 17

 

Scheme 1. The CuAAC reaction was examined using the model compounds 1 and 2. 

 

These observations prompted us to modify the 8Q peptide. Three new epitopes were 

designed (Figure. 1):  8Qmin (QAEPDRAHYNIVTF) which lacked the CCKCD sequence; 

8QSer (QAEPDRAHYNIVTFSSKSD) where the cysteine moieties were replaced with their 

structural analog, serine; and 8QLys (QAEPDRAHYNIVTFSKKKK) in which the whole 

hydrophilic pentapeptide CCKCD was replaced with an SKKKK sequence derived from a 

“solubilizing moiety” incorporated in Pam2Cys/Pam3Cys-based vaccine candidates. 

Pam2Cys/Pam3Cys are popular adjuvants used to stimulate an immune response in peptide-

based vaccines.
15

  

8Qmin was conjugated to 4-arm star-polymer to produce S4-8Qmin (Scheme 2). The 

product, S4-8Qmin, was self-assembled into particles via the solvent replacement method 

(DMF/water) followed by dialysis against water to remove the organic solvent, excess of 

unreacted peptide and copper. Formation of the conjugate was confirmed by elemental 

analysis,
21

 which showed a significant increase in the nitrogen/carbon ratio (N/C = 0.085) 

compared with that of S4 (N/C = 0.004), due to presence of a nitrogen-rich peptide. A high 

conjugation efficacy was obtained (3.5 peptide epitopes per polymer, 88% substitution). The 

substitution ratio was calculated based on comparison of the observed and theoretical N/C 

ratio. DLS analysis showed that only large particles with diameters over 1 µm were formed 
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(Figure S4).  

 

 

Figure 2. HPLC chart of crude 8QSer (a) synthesized by standard SPPS and (b) O-acyl 

isopeptide method. 

 

Scheme 2. Synthesis of polymer-peptide conjugates. 

8QSer and 8QLys azide derivatives were synthesized using the method developed for 
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synthesis of the 8Q epitope. Despite the use of DBU for removal of the protective Fmoc 

group, 8QSer
 
azide was obtained in relatively poor yield after tedious purification. The 

isopeptide method developed by Kiso and coworkers was previously applied to the synthesis 

of peptides containing a "difficult" sequence.
42-45

 Thus, isodipeptide unit (Boc-Thr(Fmoc-

Val)-OH) was synthesized in a similar manner to the reported procedure,
26-28

 and applied to 

the synthesis of 8QSer azide (Scheme S1) to avoid aggregation of the peptide during SPPS.
44

 

The final compound was obtained after O-N acyl migration of the O-acyl isoform, with 

significantly improved purity and yield (Figure 2). Both epitopes (8QSer and 8QLys) were 

coupled to S4 to produce the desired conjugates (Scheme 2). The coupling for S4-8QSer and 

S4-8QLys was calculated to be (on average) 3.0 (75%) and 3.0 (74%) epitopes per S4, 

respectively. Conjugation of peptides to the polymer followed by self-assembly and dialysis 

was repeated several times, producing virtually identical products. 

 Both compounds (S4-8QSer and S4-8QLys) were self-assembled in DMF/water and 

dialyzed against water. DLS analysis indicated that S4-8QSer formed large nanoparticles (~ 

530 nm; Figure S4). In contrast, the size distribution of S4-8QLys particles was narrow, and 

smaller nanoparticles (26 nm) were detected (Figure S4). To prepare samples for in vivo 

experiments, S4-8Qmin, S4-8QSer and S4-8QLys were formulated in PBS. All of the 

conjugates formed a milky suspension upon addition of the buffer (pH = 7.4). Confocal 

images were used to visualize microparticles and their aggregates (Figure S5). We were 

unable to quantitatively determine particles size distribution using DLS, TEM, and analytical 

ultracentrifugation.   

In vivo tumor treatment. To evaluate the therapeutic effect of polymer-peptide 

conjugates against established HPV tumor using the newly designed epitopes, mice were 

immunized on day 3 post-tumor implantation
46,47

 with S4-8Qmin, S4-8Qser, S4-8QLys or 

control groups (8Q emulsified with IFA-like adjuvant (Montanide ISA51), physical mixture 
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of S4 and 8Q, S4 alone and PBS). Mice were monitored every two days for evidence of 

tumor growth by palpation and calipers for 60 days.  

 

Figure 3. In vivo tumor treatment experiments. C57BL/6 (5 per group) were inoculated 

subcutaneously in the right flank with 1×10
5
/mouse of TC-1 tumor cells (day 0) and 

vaccinated with different immunogens on day 3 without additional boost. (a) Survival rate 

monitored over 60 days post implantation and time to death plotted on a Kaplan-Meier 

survival curve. Mice were euthanized when tumor volume reached 1 cm
3
 or started bleeding. 

The survival rate of each group was compared to the negative control (PBS) and was 

analyzed using the log-rank (Mantel-Cox) test (**p < 0.01). (b) Mean tumor volume (cm
3
) in 
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different groups of mice over 60 days post implantation. Tumor volume (cm
3
) in individual 

TC-1 tumor-bearing mice treated with (c) S4-8Qmin, (d) S4 + 8Q physical mixture, (e) S4 

alone or (f) PBS shown only up to day 21 of the experiment.  

 

The Kaplan-Meier survival curve (Figure 3a) showed that 100% of mice treated with 

physical mixture (S4 + 8Q), S4 alone and PBS were moribund (i.e. mice were sacrificed due 

to tumor burden) by day 28, 33 and 33, respectively. In contrast, the survival rate in the mice 

treated with S4-8Qmin, S4-8Qser and 8Q + ISA51 was 60%, 20%, and 40% over two months, 

respectively. Among the tested formulations, only S4-8Qmin and positive control showed 

significantly better survival compared with tumor-bearing mice treated with negative control 

(p < 0.0027). 

As shown in Figure 3b, tumor-bearing mice treated with S4-8Qmin showed slower 

tumor growth over time than the other polymer-peptide conjugates and was similar to the 

mice treated with positive control. Treatment with S4-8Qmin eradicated tumor by day 21 post-

tumor implantation in three mice, while an initial tumor reduction was observed in remaining 

two mice after 14-17 days (Figure 3c). It is noteworthy that an initial reduction in tumor size 

was observed in four groups including positive control and all conjugates (see Figure 3c and 

Supporting Information, Figure S6a-c). Remission of tumor growth was observed after 19 

days, especially in the group immunized with S4-8QLys. Thus, S4-8Qmin showed similar 

efficacy to the positive control while the antitumor efficacy of other conjugates was not 

statistically significant. No adverse side effects or allergic responses were observed in mice 

immunized with the conjugates, while one mouse from the group immunized with an 

adjuvant (8Q + ISA51) developed an adverse reaction (scratching resulting in patchy hair 

loss). Chemical conjugation of epitopes with a polymer core was essential to elicit a 

therapeutic effect since S4 + 8Q failed to induce an antitumor immune response. The three 
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conjugates (S4-8Qmin, S4-8Qser and S4-8QLys) demonstrated different antitumor activity, 

which might be associated with the ability of antigen presenting cells to correctly process and 

display different epitopes. Correct antigen processing is essential to trigger the desired 

cellular response. While 8Qmin is a native fragment of the HPV-16 E7 protein, both 8QSer and 

8QLys are chemically altered epitopes where the CTL epitope is flanked with a foreign 

peptide on its C-terminal. This alteration might impair antigen processing and consequently 

may have reduced the cellular immune response.
48-50

 In addition, size can play important role 

in immune responses, while some groups reported that immune responses were significantly 

stronger for small nanoparticles (less than 100 nm),
51,52

 others claimed that microparticles are 

required for strong activation of the immune system.
53,54

 Small nanoparticles can easily 

migrate to lymphatic nodes for antigen presentation, whereas large particles are transported to 

lymphatic nodes by dendritic cells and the immunity induced by large particles is often 

related to the depot effect.
55

 Interestingly, T- cell activation is often facilitated by the 

extended presence of antigen through depot-forming adjuvants.
54

 The three conjugates form 

microparticles and have the tendency to aggregate further. This observation may suggest that 

the differences in the conjugates antitumor activity are not related to particle size. 

Polymer-peptide conjugate S4-8Qmin demonstrated self-adjuvanting activity because 

it induced a therapeutic effect against tumor cells without help of any external adjuvant. This 

delivery system overcomes the poor immunogenicity of peptide-based vaccines and the 

common toxic side effects associated with external adjuvants. Self-adjuvanting properties of 

the polymer-based delivery system can be explained by particle-attributed activation of the 

immune system.
16,56,57

 Particulate vaccines potentially cross-present the antigen, and antigen 

cross-presentation is especially important to induce the priming of the CD8
+
 T-cell immune 

responses that naturally play a crucial role for therapeutic vaccines against cancer. This 

delivery system also exploits the depot effect (i.e. retaining the antigen at the injection site), 
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thus increasing the duration of vaccine exposure to the immune cells. In addition, as particles 

are covered by multiple copies of the same peptide antigen, they should possess the 

advantages of a MAP system. Furthermore, formulation of antigens into particles provides 

some protection against enzymatic degradation, which is important for highly susceptible 

peptide antigens. Noticeably, in contrast to many previously reported peptide-based vaccine 

candidates,
33,46,47,58

 S4-8Qmin demonstrated a therapeutic effect after a single immunization.  

 

Conclusion 

In conclusion, we established a synthetic pathway to produce polymer-peptide 

conjugates as macromolecular vaccine candidates against HPV-related cancers. The synthesis 

of peptide epitopes was greatly improved by the change of standard SPPS procedure and 

application of the isopeptide method. Modification of the immunogenic epitope allowed the 

elimination of undesirable disulfide bond-based aggregation/polymerization of the polymer-

peptide conjugates.  

Chemical alteration of 8Q epitope allowed us to find the most effective epitope 

(8Qmin).  Polyacrylate star-polymer conjugated with this epitope produced a robust 

therapeutic effect against a tumor without the help of any external adjuvant. This delivery 

system overcomes the poor immunogenicity of peptide-based vaccines. In contrast to many 

previously reported vaccine candidates, the conjugates demonstrated therapeutic effect after 

only a single immunization. Thus, we have developed the first self-adjuvanting delivery 

system for a therapeutic peptide-based vaccine against cervical cancer.  
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The amino acid sequence of the original 8Q epitope and its novel derivatives. CTL epitope (CD8+ cytotoxic T 
lymphocytes), T-helper cell (CD4+) and a B-cell epitope are highlighted within the 8Q sequence. The 

immunologically redundant pentapeptide sequence is indicated by italic font.  
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HPLC chart of crude 8QSer (a) synthesized by standard SPPS and (b) O-acyl isopeptide method.  
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In vivo tumor treatment experiments. C57BL/6 (5 per group) were inoculated subcutaneously in the right 
flank with 1×105/mouse of TC-1 tumor cells (day 0) and vaccinated with different immunogens on day 3 

without additional boost. (a) Survival rate monitored over 60 days post implantation and time to death 
plotted on a Kaplan-Meier survival curve. Mice were euthanized when tumor volume reached 1 cm3 or 
started bleeding. The survival rate of each group was compared to the negative control (PBS) and was 
analyzed using the log-rank (Mantel-Cox) test (**p < 0.01). (b) Mean tumor volume (cm3) in different 

groups of mice over 60 days post implantation. Tumor volume (cm3) in individual TC-1 tumor-bearing mice 
treated with (c) S4-8Qmin, (d) S4 + 8Q physical mixture, (e) S4 alone or (f) PBS shown only up to day 21 

of the experiment.  
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The CuAAC reaction was examined using the model compounds 1 and 2.  
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Synthesis of polymer-peptide conjugates.  
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