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Abstract: Unsteady flow computations are presented for 

low speed Mach number flow past a combined pitching and 

plunging aerofoil. The Implicit Reynolds-averaged 

Navier-Stokes solver used for obtaining time-accurate 

solutions is based on finite volume nodal point spatial 

discretization scheme with dual time stepping. Results are 

obtained in the form of aerodynamic coefficients, time – 

averaged thrust coefficient and propulsion efficiency which 

agree well with the available results. 

Keywords: unsteady flow, RANS solver, implicit method, dual time 

stepping, pitching and plunging aerofoil. 
 

1. INTRODUCTION 

Unsteady flows are encountered in many aerospace 

applications and prediction of unsteady air loads plays a 

vital role in aircraft and helicopter design 
[1-3]

. Since wind 

tunnel testing of unsteady flow situations is difficult and 

expensive, computational studies of wing stall, dynamic 

stall, blade-vortex interaction of helicopter rotors and 

aeroelastic problems like flutter, buffeting and gust- 

response etc., can provide important design data.  

Flying birds usually flap their wings to generate both lift 

and thrust. Flapping motion of birds has a coupled pitching 

and plunging oscillation with some phase difference 

between them. Recent experimental and computational 

studies investigated the kinematics, dynamics, flow 

characteristics of flapping wings and shed some light on the 

lift, drag, and propulsive power considerations 
[4-5]

. Yang et 

al. 
[6]

 have computed a sinusoidal pitching and plunging 

NACA 0012 aerofoil in a uniform stream of low speeds for 

different motion parameters by using inviscid version of a 

three-dimensional unsteady compressible 

Euler/Navier-Stokes flow solver and optimized for high 

propulsive efficiency and for high time-averaged thrust 

coefficient. Theodorsen 
[7]

 has developed compact 

expressions for forces and moments of a flapping flat plate 

aerofoil for small perturbed inviscid and incompressible 

flow. In the prediction of unsteady pressure distributions 

over aerofoils, the steady-state Kutta-Joukowsky condition 

is assumed. The flow is treated in two classes: the non 

circulating flow due to the aerofoil vertical acceleration and 

the circulatory flow due to the wake vortices. Many 

important features of flapping aerofoil behavior are depicted 
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by the classical linear theory. The thrust force experienced 

by the flapping aerofoil was given by Garrick 
[8]

. Tuncer and 

Platzer 
[9]

 used a compressible Navier-Stokes solver to 

compute the unsteady turbulent flow fields and obtained 

high propulsive efficiency when the flow remains mostly 

attached over the aerofoil oscillated in plunge and pitch. 

Isogai et al. 
[10]

 performed Navier-Stokes simulations of 

flow over a NACA 0012 aerofoil undergoing combined 

pitching and plunging motion at Re = 10
5
. Ramamurti and 

Sandberg 
[11]

 performed numerical simulation of the flow 

over a flapping NACA 0012 aerofoil using a finite element 

incompressible Navier-Stokes solver at a Reynolds number 

of 1100. They found that the critical parameter which 

affects the thrust generation is kh rather than k. They also 

found that maximum thrust is obtained when the pitching 

motion leads the plunging motion by 120
o
 and the 

maximum propulsive efficiency occurs at Ø = 90
o
. 

Anderson et al. 
[12]

 measured the time-averaged thrust 

coefficient, input power coefficient, and propulsion 

efficiency of a NACA 0012 aerofoil undergoing combined 

sinusoidal plunging and pitching motion in the testing tank 

facility at MIT. 

2. IMPRANS SOLVER 

The solver is based on an implicit finite volume nodal 

point spatial discretization scheme with dual time stepping. 

Inviscid flux vectors are calculated by using the flow 

variables at the six neighboring points of hexahedral 

volume. Turbulence closure is achieved through the 

algebraic eddy viscosity model of Baldwin and Lomax.  

The Reynolds-averaged Navier-Stokes equations for 

two-dimensional unsteady compressible flow in a moving 

domain in non-dimensional conservative form are given by 
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Here x and y are the Cartesian coordinates and t is the 

time variable; xt  and yt are the Cartesian velocity 

components of the moving domain. For a fixed domain, the 

grid speeds xt   and yt are zero. U is the vector of conserved 

variables; F, G are inviscid flux vectors and V, W are 

viscous flux vectors.  

The primitive variables are density ρ, velocity 

components u, v in the x and y directions, pressure p, 

temperature T and total energy e per unit volume. The 

non-dimensional variables used in the above equations have 

been obtained by using the following free stream values as 

reference quantities: ρ∞(density),U∞(velocity), µ∞ 

(viscosity), ρ∞U
2
∞(pressure), T∞(temperature), and so on. 

Some characteristic length such as chord c of an aerofoil is 

chosen as the length scale. 

M∞ and Re∞ are the free stream Mach number and 

Reynolds number respectively; γ is the ratio of specific 

heats and Pr is the Prandtl number. In addition, the viscosity 

coefficients λ and µ given by the Stokes relation  

3λ+2μ=0 (5) 

and the Sutherland’s law of viscosity 
3/2
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For turbulent flows, the laminar viscosity coefficient µ  

is replaced by µ + µt , and µ/Pr  is replaced by µ/Pr+µt/ Prt ; 

the turbulent viscosity coefficient µt  and the turbulent 

Prandtl number Prt are provided by a turbulence      

model. Finally the system is closed using the perfect    

gas equation of state in non-dimensional form as  
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The Euler equations for inviscid flow are obtained from 

the Navier-Stokes equations by setting 

0
1


Re

 

A. Computational method 

Applying Euler’s implicit time differencing formula 
[13] 
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to the governing (1), we obtain 
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Here U
n
 = U (t) = U (n ∆t) is the solution vector at time 

level n and ∆U
n 
= (U 

n+1 
-
 
U

n
) is the change in U

n 
over time 

step ∆t. In order to facilitate the finite volume formulation, 

the above equations are written in the integral form as 
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where Ω is any two-dimensional flow domain and Γ is 

the boundary curve. 

In the nodal point finite volume approach 
[14-15]

, the flow 

variables are associated with each mesh point of the grid 

and the integral conservative equations are applied to each 

control volume obtained by joining the centroids of the four 

neighbouring cells of a nodal point. Application of nodal 

point spatial discretization to (10). leads to the following 

equations for the computational cell Ωij 
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Linearzing the changes in flux vectors using Taylor’s 

series expansions in time and assuming locally constant 

transport properties, (11). can be simplified to  
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Here A, B, R and S are the Jacobian matrices which are 

given by 

1 2, , and 
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This RANS solver has been extensively validated for 

computing unsteady flow past pitching aerofoils and wings 
[16]

, helicopter rotor blades 
[17-18]

, wind turbines 
[19]

 etc.  

Here, the solver has been applied for computing 

two-dimensional unsteady compressible viscous flow over 

combined pitching and plunging NACA 0012 aerofoil. 

 

3. GRID GENERATION 

For all present computations, the structured C-type grid, 

of size 247×65 (stream-wise × normal) moving with 

combined pitching and plunging NACA 0012 aerofoil is 

used which is shown in Fig. 1. The grid points are properly 

clustered near the leading, trailing edges and wall normal 

direction. The close-up view of the grid is shown in Fig. 2. 
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Fig.1. C- Grid around the NACA 0012. 

 
Fig.2. Close-up view of the aerofoil grid. 

4. FLAPPING MOTION OF THE AEROFOIL 

The sinusoidal motion of combined pitching and 

plunging aerofoil is defined by the following expressions. 

The plunging motion of the aerofoil is  

y (t) = y sin (t) (14) 

where t is physical time,  and y are the angular 

frequency and the amplitude of the plunging oscillation 

respectively, y is positive in the upward direction. The 

non-dimensional time, τ = U∞ t / c, amplitude in plunge, ha 

= y / c, and the reduced frequency, k = c / 2U∞. Then the 

instantaneous non-dimensional plunging velocity of the 

aerofoil is given by 

ֹy / U∞ = 2kha cos (2kτ) (15) 

The coupled pitching oscillation is defined as rotating 

about a pivot point on the aerofoil chord which is shown in 

Fig. 3 (a). The instantaneous angle measured clockwise 

from the mean chord is α (t) which is given by  

α (t) = αm + αo sin (t + Ø) (16) 

The instantaneous non-dimensional pitching velocity of 

the aerofoil is given by 

ֹα / U∞ = 2kαo cos (2kτ + Ø) (17) 

where αo is the amplitude of pitching oscillation, αm is 

the mean angle of attack and Ø is the phase angle ahead of 

the plunging motion which is shown in Fig. 3 (b).  

 
(a) 

 
Fig.3. (a) Aerofoil in combined pitching and plunging motion (b) Aerofoil 

in combined pitching and plunging motion for a phase angle Ø = 90°. 

The mean thrust coefficient and propulsion efficiency 

are computed using the following expressions  

The mean thrust coefficient is defined as         

(C̅t) = - C̅d + (Cd)stat (18) 

where C̅d is the mean drag coefficient, averaged for one 

flapping period. (Cd)stat is the steady drag of the non-moving 

wing at its present mean angle of attack.  

The propulsion efficiency can be calculated from the 

ratio between power output and power input, in this case 

which is given by   

(ηprop) = (C̅t) / (C̅p) (19) 

 where Cp instantaneous power input coefficient is 

given by  

Cp =-(Cl . ֹy / U∞+ Cm . c ֹα  / U∞) / U∞ (20) 

5. RESULTS AND DISCUSSION 

The computations have been carried out for 

two-dimensional unsteady viscous flow over a combined 

pitching and plunging aerofoil at low Mach number. For all 

simulations, steady state solutions are first obtained. After 

steady state convergence is reached, the aerofoil is then 

undergoes a prescribed sinusoidal motion, both pitching 

about half chord and plunging motion. Five consecutive 

cycles were computed to obtain periodic solutions. 

Computation is carried out for 0
o 

mean angle of attack 

with M∞ = 0.1, Re∞ = 2.41 x 10
6
, k = 0.27, α0 = 30

o
, 

non-dimensional plunge amplitude of 1.25 and with a 

leading phase angle of 90
o
 between pitching and plunging 

motion. The time step △t = 0.005 was used for all 

computations. Fig. 4 and Fig. 5 represent the instantaneous 

lift, pitching moment and thrust coefficient versus y/c for a 

pitching-plunging NACA 0012 aerofoil. The computed 
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loops of the aerodynamic coefficients clearly demonstrate 

the hysteretic property existing between the up-stroke and 

down-stroke. The lift and the pitching moment values are 

higher during down stroke than during up stroke. The thrust 

coefficient values are smaller during the first half of up 

stroke compared to the second half of down stroke and 

become higher during the second half of up stroke than 

during the first half of down stroke. The difference in 

predicted values and the values of Euler solutions of   

Yang et al. 
[6]

 is probably due to the presence of viscous 

effect in the present simulations. For further validation we 

have computed two cases as Case 1 and Case 2. The 

time-averaged thrust coefficient and propulsion efficiency 

values for both the cases are compared with the available 

results, which are discussed in the following sections. 

 
Fig.4. The variation of lift and moment coefficients with heave distance for 

NACA 0012 aerofoil at 0o mean angle of attack. 

 
Fig.5. The variation of thrust coefficient with heave distance for NACA 

0012 aerofoil at 0o mean angle of attack. 

 

Case 1: (ha=0.75, α0=30 ͦ, a=1/3, M∞=0.1)  

Table 1 and Table 2 show the comparison of the time- 

averaged thrust coefficient and propulsion efficiency 

computed by the present RANS solver with the available 

Euler 
[6]

 and Navier – Stokes 
[20]

 results respectively. The 

highest time-averaged thrust coefficient of 0.7219 with a 

propulsion efficiency of 61.34% is obtained. Fig. 6 

represents the coefficient of lift, drag and moment versus 

the non-dimensional time for the five consecutive cycles.  

The Mach number contour at different instants of time for 

one complete cycle of flapping motion of the aerofoil is 

plotted in Fig. 7.  

TABLE 1 

THRUST COEFFICIENT VALUES FOR CASE 1 

Reduced 

frequency k 

Phase 

angle Ф 

Present 

(RANS) 

Euler 

[6] 

nviscid 

Euler [6] 

Friction 

corrected 

Navier- 

Stokes 

[20] 

0.67 75 ͦ 0.3535 0.491 0.478 0.52 

0.78 90 ͦ 0.7219 0.863 0.850 
Not 

available 

TABLE 2 

PROPULSION EFFICIENCY VALUES FOR CASE 1 
Reduced 

frequency 

k 

Phase 

angle 

Ф 

Present  

(RANS) 

Euler [6] 

nviscid 

Euler [6] 

Friction 

corrected 

Navier- 

Stokes  

[20] 

0.67 75 ͦ 65.89% 78.6% 76.5% 87% 

0.78 90 ͦ 61.34% 64.5% 63.5% 
Not 

available 

 

 
Fig.6. The coefficient of lift, drag and moment versus the non dimensional 

time for five cycles at h=0.75, α0=30 ͦ, a=1/3, M∞=0.1, k=0.67, Ф=75°. 

 

Case 2: (ha = 1.0, α0 = 4
 o
, a = 1/4, Ф = 90

 o
, M∞ = 0.3) 

The time-averaged thrust coefficient and propulsion 

efficiency obtained by the present calculations are listed in 

Table 3 and Table 4 along with the Euler solutions of Yang 

et al. 
[6]

 and Neef et al. 
[21]

 respectively. In these cases, the 

highest time-averaged thrust coefficient is 0.197 with a 

propulsion efficiency of 80.5% is obtained. Fig. 8 shows the 

coefficient of unsteady surface pressure distribution for 

NACA 0012 aerofoil for one complete cycle. The 

corresponding pressure contour plots at different instants of 

time for one complete cycle of flapping motion of the 
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aerofoil is shown in Fig. 9. 

 
Fig.7. The Mach number contour at different instants of time for one cycle 
of flapping motion of aerofoil at h=0.75, α0=30 ͦ, a=1/3, M∞=0.1, k=0.67, 

Ф=75°. 

TABLE 3 
THRUST COEFFICIENT VALUES FOR CASE 2 

Reduced 

frequency k 

Phase 

angle 

Ф 

Present 

(RANS) 

Euler (Yang 

et al. [6]) 

Euler (Neef et 

al. [21]) 

0.1 90 ͦ 0.05604 0.0681 0.048 

0.172 90 ͦ 0.16065 0.197 Not Available 

TABLE 4 

PROPULSION EFFICIENCY VALUES FOR CASE 2 

Reduced 

frequency k 

Phase 

angle 

Ф 

Present 

(RANS) 

Euler (Yang 

et al. [6]) 

Euler (Neef et 

al. [21]) 

0.1 90 ͦ 88.08% 89.5% 89% 

0.172 90 ͦ 77.77% 80.5% Not Available 

6. CONCLUDING REMARKS 

The lift, pitching moment, thrust coefficient and 

propulsion efficiency for a combined pitching and plunging 

NACA 0012 aerofoil has been computed by the Implicit 

Reynolds-averaged Navier-Stokes (IMPRANS) solver. In 

case1, the time-averaged thrust coefficient of 0.7219 with a 

propulsion efficiency of 61.34% is obtained. In case 2, the 

higher time-averaged thrust coefficient of 0.197 with a 

propulsion efficiency of 80.5% is obtained. From the above 

results we can conclude that the highest propulsion 

efficiency and the highest thrust coefficient do not occur at 

the same reduced frequency, higher efficiency usually 

occurs at lower reduced frequency and higher thrust 

coefficient occurs at higher reduced frequency. 

 
Fig.8. The coefficient of unsteady surface pressure distribution on the 
NACA 0012 aerofoil for one complete cycle at h=1.0, α0=4°, a=1/4, 

M∞=0.3, k=0.1, Ф=90°. 

 
Fig.9. The pressure contour at different instants of time for one cycle of 

flapping motion of aerofoil at h=1.0, α0=4°, a=1/4, M∞=0.3, k=0.1, 
Ф=90°. 
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7. PARAMETER INDEX TABLE 

 αo Amplitude of pitching oscillation 

 αm Mean angle of attack 

 α (t) Instant angle of attack or incidence 

 ֹα / U∞ Non-dimensional pitching velocity 

 γ Ratio of specific heats 

 λ, µ Viscosity coefficients 

 µ∞ Free stream viscosity 

 µt Turbulent viscosity coefficient 

 ρ∞ Free stream density 

 τ Non-dimensional time  

  Non-dimensional angular frequency 

 Ø Phase angle between pitching and plunging motion 

 Γ Boundary curve 

 Ωij Control volume surrounding the nodal point (i, j) 

of the curvilinear grid 

 ∆t Real or physical time step 

 c Aerofoil chord       

 e Energy   

 f Pitch or plunge physical frequency           

 ha Non-dimensional amplitude in plunge  

 ijh  Area of quadrilateral 

 k Non-dimensional reduced frequency   

 n Time level 

 p Pressure 

 t Physical time  

 u, v Velocity components  

 x, y Cartesian coordinates  

 yo Amplitude of plunge or heave  

 y (t) Instant Plunge distance of the aerofoil 

 y / U∞ Non-dimensional plunging velocity 

 A, B, R, S Jacobian matrices 

 Cd Drag coefficient 

 Ct Thrust coefficient 

 Cp Surface pressure coefficient 

 Cl Lift coefficient  

 Cm Moment coefficient 

 F, G Inviscid flux vectors 

 V, W Viscous flux vectors  

 M∞ Free stream Mach number 

 Pr Prandtl number 

 Re∞ Free stream Reynolds number  

 U Vector of conserved variables 

 U∞ Free stream velocity 
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