
RAPID COMMUNICATIONS

PHYSICAL REVIEW A, VOLUME 61, 010303~R!

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace
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We propose a quantum cryptographic scheme in which small phase and amplitude modulations of cw light
beams carry the key information. The presence of Einstein-Podolsky-Rosen type correlations provides the
quantum protection.

PACS number~s!: 03.67.Dd, 42.50.Dv
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Quantum cryptographic schemes use fundamental pro
ties of quantum mechanics to ensure the protection of
dom number keys@1,2#. In particular, the act of measureme
in quantum mechanics inevitably disturbs the system. F
thermore, for single quanta, such as a photon, simultane
measurements of noncommuting variables are forbidden
randomly encoding the information between noncommut
observables of a stream of single photons any eavesdro
~Eve! is forced to guess which observable to measure
each photon. On average, half the time Eve will gu
wrong, revealing herself through the back action of the m
surement to the sender~Alice! and receiver~Bob!. There are
some disadvantages in working with single photons, part
larly in free space, where scattered light levels can be h
Also it is of fundamental interest to quantum informatio
research to investigate links between discrete-varia
single-photon phenomena and continuous variable, m
photon effects. This motivates a consideration of quant
cryptography using multiphoton light modes. In particul
we consider encoding key information as small signals c
ried on the amplitude and phase quadrature amplitudes o
beam. These are the analogues of position and momen
for a light mode and hence are continuous, conjugate v
ables. Although simultaneous measurements of these
commuting observables can be made in various ways,
example, splitting the beam on a 50:50 beam splitter
then making homodyne measurements on each beam
information that can be obtained is strictly limited by th
generalized uncertainty principle for simultaneous meas
ments@3,4#. If an ideal measurement of one quadrature a
plitude produces a result with a signal to noise of

~S/N!65
Vs

6

Vn
6 , ~1!

then a simultaneous measurement of both quadratures ca
give a signal-to-noise result in excess of

~S/N!sim
6 5S h6Vs

6

h6Vn
61h7Vm

6DS/N6. ~2!

Here Vs
6 and Vn

6 are, respectively, the signal and noi
power of the amplitude (1) or phase (2) quadrature at a
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particular rf frequency with respect to the optical carrier. T
quantum noise that is inevitably added when dividing t
mode isVm

6 . The splitting ratio ish6 andh1512h2 ~e.g,
a 50:50 beam splitter hash15h250.5). The spectral pow-
ers are normalized to the quantum noise limit~QNL! such
that a coherent beam hasVn

651. Normally the partition
noise will also be at this limit (Vm

651). For a classical light
field, i.e., whereVn

6@1 the penalty will be negligible. How-
ever, for a coherent beam a halving of the signal-to-no
ratio for both quadratures is unavoidable when the splitt
ratio is a half. The Hartley-Shannon law@5# applies to
Gaussian, additive-noise, communication channels such
we will consider here. It shows, in general, that if inform
tion of a fixed bandwidth is being sent down a communic
tion channel at a rate corresponding to the channel capa
and the signal-to-noise ratio is reduced, then errors will
evitably appear at the receiver. Thus, under such conditio
any attempt by an eavesdropper to make simultaneous m
surements will introduce errors into the transmission. In
following we will first examine what level of security is
guaranteed by this uncertainty principle if a coherent st
mode is used. We will then show that the level of secur
can in principle be made as strong as for the single qua
case by using a special type of two-mode squeezed state
question of optimum protocols and eavesdropper strategie
complex and has been studied in detail for the single qua
case@6#. Here we only examine the most obvious strateg
and do not attempt to prove equal security for all possi
strategies.

Consider the setup depicted in Fig. 1. A possible proto
is as follows. Alice generates two independent rand
strings of numbers and encodes one on the phase quadr
and the other on the amplitude quadrature of a bright coh
ent beam. Bob uses homodyne detection to detect eithe
amplitude or phase quadrature of the beam when he rece

FIG. 1. Schematic of the coherent light cryptographic setup. A
is an amplitude modulator while PM is a phase modulator.
©1999 The American Physical Society03-1
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it. He swaps randomly which quadrature he detects. O
public line Bob then tells Alice at which quadrature he w
looking at any particular time. They pick one quadrature
be the test and the other to be the key. For example,
may pick the amplitude quadrature as the test signal. T
would then compare results for the times that Bob was lo
ing at the amplitude quadrature. If Bob’s results agreed w
what Alice sent, to within some acceptable error rate, th
would consider the transmission secure. They would then
the undisclosed phase quadrature signals, sent while Bob
observing the phase quadrature, as their key. By rando
swapping which quadrature is key and which is test throu
out the data comparison an increased error rate on e
quadrature will immediately be obvious.

To quantify our results we will consider the specific e
coding scheme of binary pulse code modulation, in wh
the data is encoded as a train of 1 and 0 electrical pulses
are impressed on the optical beam at some rf frequency u
electro-optic modulators. The amplitude and phase sig
are imposed at the same frequency with equal power. Le
now consider what strategies Eve could adopt~see Fig. 2!.
Eve could guess which quadrature Bob is going to meas
and measure it herself@Fig. 2~a!#. She could then reproduc
the digital signal of that quadrature and impress it on ano
coherent beam that she would send on to Bob. She wo
learn nothing about the other quadrature through her m
surement and would have to guess her own random strin
numbers to place on it. When Eve guesses the right qua
ture to measure, Bob and Alice will be none the wiser; ho
ever, on average 50% of the time Eve will guess wro
Then Bob will receive a random string from Eve unrelated
the one sent by Alice. These will agree only 50% of the tim
Thus Bob and Alice would see a 25% bit error rate in the t
transmission if Eve were using this strategy. This is ana
gous to the result for single quanta schemes in which
type of strategy is the only available.

FIG. 2. Schematics of three eavesdropper strategies. Only~a! is
available in single quanta schemes.
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However, for bright beams it is possible to make simul
neous measurements of the quadratures, with the cavea
there will be some loss of information. So a second strat
that Eve could follow would be to split the beam in ha
measure both quadratures, and impose the information
tained on the respective quadratures of another cohe
beam that she sends to Bob@Fig. 2~b!#. How well will this
strategy work? Suppose Alice wishes to send the data to
with a bit error rate~BER! of about 1%. For bandwidth lim-
ited transmission of binary pulse code modulation@7# the
BER is given by

B5
1

2
erfc

1

2
A 1

2 S/N. ~3!

Thus Alice must impose her data with aS/N ratio of about
13 dB. For simultaneous measurements of a coherent s
the signal-to-noise ratio obtained is halved@see Eq.~2!#. As
a result, using Eq.~3!, we find the information Eve intercept
and subsequently passes on to Bob will only have a BER
6%. This is clearly a superior strategy and would be le
easily detected. Furthermore, Eve could adopt a third st
egy of only intercepting a small amount of the beam a
doing a simultaneous detection on it@Fig. 2~c!#. For ex-
ample, by intercepting 16% of the beam, Eve could g
information about both quadratures with a BER of 25
while Bob and Alice would observe only a small increase
their BER to 1.7%. In other words, Eve could obtain abo
the same amount of information about the key that she co
obtain using the ‘‘guessing’’ strategy, while being very d
ficult to detect, especially in the presence of losses.

The preceding discussion has shown that a cryptogra
scheme based on coherent light provides much less sec
than single quanta schemes@8#. We now consider whethe
squeezed light can offer improved security. For examp
amplitude squeezed beams have the propertyVn

1,1,Vn
2 .

Because the amplitude quadrature is sub-QNL, greater d
radation ofS/N than the coherent case occurs in simul
neous measurements of amplitude signals@see Eq.~2!#. Un-
fortunately the phase quadrature must be super-QNL; t
there is less degradation ofS/N for phase signals. As a resu
the total security is in fact less than for a coherent bea
However, in the following we will show that by using tw
squeezed light beams, security comparable to that achie
with single quanta can be obtained.

The setup is shown in Fig. 3. Once again Alice encod
her number strings digitally, but now she impresses them
the amplitude quadratures of two, phase locked, amplit
squeezed beamsa andb, one on each. Ap/2 phase shift is
imposed on beamb and then they are mixed on a 50:50 bea
splitter. The resulting output modesc andd are given by

c5A 1
2 ~a1 ib !,

~4!
d5A 1

2 ~a2 ib !.

These beams are now in an entangled state that will exh
Einstein-Podolsky-Rosen~EPR! type correlations@9,10#. Lo-
cal oscillator beams~LO’s! of the same power as, and wit
3-2
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their polarizations rotated to be orthogonal to,c and d are
then mixed with the beams on polarizing beam splitters
rapidly varying random time delay is imposed on one of
beams. Both mixed beams are then transmitted to Bob,
uses polarizing beam splitters to extract the local oscilla
from each beam. Bobcannotremix the signal beams (c and
d) to separatea andb because the random time delay intr
duced between the beams has destroyed their coheren
the signal frequency. However, because each beam h
corresponding local oscillator that has suffered the same
delays, Bobcan make individual, phase-sensitive measu
ments on each of the beams and extract either the infor
tion on a or the information onb by amplifying the local
oscillators and using balanced homodyne detection. N
that the noise of the LO’s is increased by amplification, b
balanced homodyne detection is insensitive to LO noise.
randomly chooses to either~i! measure the amplitud
quadratures of each beam and add them together, in w
case he obtains the power spectrum

V15^u~ c̃†1 c̃!1~ d̃†1d̃!u2&

5Vs,a1Vn,a
1 , ~5!

where the tildes indicate Fourier transforms~thus he obtains
the data string impressed on beama,Vs,a , imposed on the
sub-QNL noise floor of beama,Vn,a

1 ); or ~ii ! measure the
phase quadratures of each beam and subtract them, in w
case he obtains the power spectrum

V25^u~ c̃†2 c̃!2~ d̃†2d̃!u2&

5Vs,b1Vn,b
1 , ~6!

i.e., he obtains the data string impressed on beamb,Vs,b ,
imposed on the sub-QNL noise floor of beamb,Vn,b

1 . Thus
the signals lie on conjugate quadratures butboth have sub-
QNL noise floors. This is the hallmark of the EPR corre
tion @11#.

Consider now eavesdropper strategies. First, like B
Eve cannot remixc andd optically to obtaina andb due to
the randomly varying phase shift@f(t)# introduced by the

FIG. 3. Schematic of squeezed light cryptographic setup. S
and sqzb are phase-locked squeezed light sources. Rna and R
independent random number sources. Bs and pbs are nonpola
and polarizing beam splitters, respectively. Half-wave plates to
tate the polarizations are indicated byl/2 and optical amplification
by A. The p/2 phase shift is also indicated. HD stands for hom
dyne detection system.
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time delay. For small phase shifts beamc becomesc85(a
1 ib)(11 if). Mixing c8 andd on a beam splitter will pro-
duce outputs with amplitude power spectra

Vc81d5Vs,a1Vn,a
1 1a2Vf ,

~7!
Vc82d5Vs,b1Vn,b

1 1a2Vf ,

wherea2 is proportional to the intensity of beamsa and b
and Vf is the power spectrum of the phase fluctuations
f(t) has a white power spectrum over frequencies from w
below to well above the signal frequency, the signals will
obscured. It is not possible to directly control the phase sh
without similarly suppressing the signals. However, t
phase shifts are also present on the LO copropagating
c8. Mixing the two LO’s will produce an output with ampli
tude power spectra

V1LO511E2Vf , ~8!

whereE2 is proportional to the intensity of the LO’s and th
‘‘one’’ is from the quantum noise of the LO’s. It is possibl
to use this output to control the phase noise on the mi
signal beams, giving~ideally! the amplitude power spectra

Vc81d
C

5Vs,a1Vn,a
1 1

a2

E2 ,

~9!

Vc82d
C

5Vs,b1Vn,b
1 1

a2

E2 ,

where the remaining penalty arises from the quantum no
of the LO’s. If E2@a2 ~as is normally the case for a LO!
then this penalty can be made negligible, thus retrieving
signals. This is why it is essential that the LO’s have t
same power as the signal beams at the point where the p
fluctuations are imposed. This makes the ratio of the co
lated phase noise to the independent quantum noise the
for the LO and the signal beam. This cannot be changed
Eve. WithE25a2 the penalty is at the quantum limit. As w
shall see in a moment this is sufficient to reveal Eve.

Eve can still adopt the guessing strategy by detectin
particular quadrature of both beams and then using a sim
apparatus to Alice’s to resend the beams. As before she
only guess right half the time, thus introducing a BER
25%. Suppose instead she tries the second strategy of si
taneous detection of both quadratures on each beam. She
obtain the following power spectra for the summed amp
tude quadratures and the differenced phase quadratures

V15
1

2
~Vs,a1Vn,a

1 11!

V25
1

2
~Vs,b1Vn,b

1 11!. ~10!

The signal-to-noise ratio is reduced as predicted by Eq.~2!,
but where the noise power for both quadrature measurem
is sub-QNL @12#. This leads to improved security. For ex
ample, with 10-dB squeezing (Vn,a5Vn,b50.1) the signal-
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to-noise ratio in a simultaneous measurement will be redu
by a factor of 0.09. As a result, assuming initialS/N of 13
dB and using Eq.~3!, we find the information Eve intercept
and subsequently passes on to Bob will now have a BER
about 24%. In other words, the security against an ea
dropper using simultaneous measurements is now on a
with the guessing strategy. The third strategy is also now
no use to Eve, as small samples of the fields carry virtu
no information. For example, with 10-dB squeezing, int
cepting 16% of the field will give Eve virtually no informa
tion ~a BER of 49.5%! while already producing a 5% BER i
Bob and Alice’s shared information.

In any realistic situation losses will be present. Loss
tend in general to reduce security in quantum cryptograp
schemes@13#. The problem for our system is that losses for
Alice to increase her initialS/N in order to pass the infor
mation to Bob with a low BER. Eve can take advantage
this by setting up very close to Alice. Nevertheless, reas
able security can be maintained with sufficiently high lev
of squeezing. For example, with 10-dB squeezing and 1
loss, strategy two will result in a 15% BER in the shar
information. Also Eve must intercept 29% of the light
obtain a 25% BER using the third strategy that will caus
20% BER in Alice and Bob’s information. With 6-dB
es

n
ud

t
th
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squeezing and 20% loss the second strategy penalty is
duced to a BER of 7.5%, similar to that of the coherent st
scheme. However, for the third strategy, Eve must still int
cept 29% of the light to obtain a BER of 25% and this w
cause an 11% BER in Alice and Bob’s shared informatio
much larger than for the coherent case. Although these
sults demonstrate some tolerance to loss for our continu
variable system it should be noted that single quanta sche
can tolerate much higher losses@14# making them more prac
tical from this point of view.

In summary we have examined the quantum cryp
graphic security of two continuous variable schemes, o
based on coherent light, the other based on two-m
squeezed light. While the coherent light scheme is clea
inferior to single quanta schemes, the squeezed light sch
offers, in principle, equivalent security. The quantum se
rity is provided by the generalized uncertainty relation. It
also essential that the coherence between the two sque
modes is destroyed. More generally this system is an
ample of a new quantum information technology based
continuous variable, multiphoton manipulations@15#. Such
technologies may herald a new approach to quantum in
mation.
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