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Abstract. The properties of compact stars and their formation processes depend on many physical ingredi-
ents. The composition and the thermodynamics of the involved matter is one of them. We will investigate
here uniform strongly interacting matter at densities and temperatures, where potentially other compo-
nents than free nucleons appear such as hyperons, mesons or even quarks. In this paper we will put the
emphasis on two aspects of stellar matter with non-nucleonic degrees of freedom. First, we will study the
phase diagram of baryonic matter with strangeness, showing that the onset of hyperons, as that of quark
matter, could be related to a very rich phase structure with a large density domain covered by phase
coexistence. Second, we will investigate thermal effects on the equation of state (EoS), showing that they
favor the appearance of non-nucleonic particles. We will finish by reviewing some recent results on the
impact of non-nucleonic degrees freedom in compact star mergers and core-collapse events, where thermal
effects cannot be neglected.

1 Introduction

The properties of compact stars, their formation processes
as well as binary mergers depend on many different phys-
ical ingredients, among them the thermodynamic proper-
ties of the involved matter entering via the equation of
state (EoS). There is an intrinsic connection between the
properties of matter contained in the EoS for the macro-
scopic description of astrophysical objects and the under-
lying fundamental interactions between particles on the
microscopic level. This makes the study of the aforemen-
tioned systems very rewarding as they challenge our un-
derstanding of nature on both scales.

It is not an obvious task to construct such an EoS.
The main difficulty arises from the fact that very large
ranges of (baryon number) densities (10−10 fm−3 � nB �
1 fm−3), temperatures (0 < T � 150MeV) and hadronic
charge fractions (0 < YQ = nQ/nB � 0.7) have to be cov-
ered. nQ here denotes the total hadronic charge density,
which in many cases is just given by the proton density.
Within this range, the characteristics of matter change
dramatically, from an ideal gas of different nuclei up to
uniform strongly interacting matter, containing in the sim-
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plest case just free nucleons and potentially other com-
ponents such as hyperons, nuclear resonances or mesons.
Even a transition to deconfined quark matter cannot be
excluded.

For core collapse matter, the full density, temperature,
and YQ-dependence have to be included within the EoS.
This complexity is the main reason why until recently only
a few hadronic EoSs existed for core collapse simulations.
These are the one by Hillebrandt and Wolff [1], used by
some groups performing supernova simulations, that by
Lattimer and Swesty [2] and finally that by H. Shen et
al. [3]. The two latter, publicly available, are most com-
monly used in core-collapse simulations. They use differ-
ent nuclear interactions, but are based on the same lim-
iting assumptions: they take into account non-interacting
α-particles, a single heavy nucleus and free nucleons in
addition to the electron, positron and photon gas.

In recent years, several new models have been con-
structed, enlarging the variety of nuclear interaction mod-
els. This helps to estimate the uncertainty on astrophys-
ical simulations induced by our limited knowledge about
the interaction in hot and dense matter. Apart from em-
ploying different models, the full nuclear distribution at
sub-nuclear densities has been included within different
approaches (see, e.g., [4–10]), showing considerable dif-
ferences to that obtained via the single nucleus approx-
imation in the standard EoS employed in core collapse
simulations [2, 3].
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Up to now, much less effort has been devoted to
the high-density (nB � n0) and high-temperature (T �
20MeV) part of the EOS, including additional particles,
such as hyperons and mesons or quarks. One reason might
be that the recent observation of two neutron stars with
a mass of about 2M� [11, 12] has triggered intensive dis-
cussion on the composition of matter in the central part
of neutron stars and its EoS, excluding in the standard
picture additional degrees of freedom in super-saturation
matter, i.e. at densities above a baryon number density of
n0 ≈ 0.16 fm−3, since they lead to a considerable softening
of the EoS [13]. This observation, however, does not ex-
clude them, but only puts stringent constraints on the re-
spective interaction (e.g. [14–26]). Different solutions with
hyperonic and/or quark matter have been proposed with-
out any definite conclusion.

In addition, even if it turns out that finally in cold
neutron stars only nucleonic matter is present, in stellar
core-collapse events and neutron star mergers, matter is
strongly heated in addition to being compressed to den-
sities above nuclear matter saturation density. The tem-
peratures and densities reached can become so high that
a traditional description in terms of electrons, nuclei, and
nucleons is no longer adequate. Compared with the cold
neutron star EoS, temperature effects favor the appear-
ance of additional particles such as pions and hyperons
and they become abundant in this regime. A transition to
quark matter is possible, too [27].

The opening of additional degrees of freedom in dense
matter could happen smoothly or could be accompanied
by a phase transition with a considerable effect on the
thermodynamics and the hydrodynamical evolution of the
system, see, e.g. [27]. In this context, the best known ex-
ample is the hadron-quark phase transition, expected to
be first order within the density and temperature range
relevant for compact stars and core-collapse supernovae,
see e.g. the contribution by Sedrakian to this Topical Is-
sue [28]. In practice, anyway, the hadronic and the quark
phases are described within different models, the tran-
sition necessarily shows discontinuities in the thermody-
namic quantities. It is less known that the appearance of
hyperons could be associated with a “strangeness driven”
phase transition, too, similar to the liquid-gas transition in
nuclear matter. A detailed study of the phase diagram of
the n, p, Λ-system was recently undertaken in refs. [29, 30]
within a non-relativistic mean-field model based on phe-
nomenological functionals. It was shown that under these
assumptions first- and second-order phase transition exist,
and are expected to be explored under the strangeness
equilibrium condition characteristic of stellar matter. In
refs. [26, 31] a phase transition at the onset of hyperons
has been discussed for relativistic mean field models, how-
ever in a model with very strong hyperon-hyperon (Y Y )
attraction.

Within this paper, we want to address two aspects of
the EoS of super-saturation matter. First, we will inves-
tigate the influence of a possible phase transition at the
respective hyperonic thresholds on the phase diagram of
super-saturation baryonic matter and discuss possible as-
trophysical consequences. We will not discuss the question

whether hyperonic interactions lead to such a phase tran-
sition or not, see e.g. [32] for a thorough study of that
point, but just assume that it exists and explore the pos-
sible consequences. Second, we will, independently of the
way they appear, discuss different works on the super-
saturation EoS including additional particles with an em-
phasis on thermal effects. The cold neutron star part will
be discussed in other contributions to this issue [33]. We
will mention astrophysical applications, too, discussing in
particular the impact of additional particles on black hole
formation.

This paper is organized as follows: in sect. 2, we review
the main features of the thermodynamic analysis of the
phase diagram of a N -component system, and the phase
diagram of baryonic matter with strangeness is discussed,
in particular, a possible strangeness driven phase transi-
tion and the Coulomb effects on the phase diagram; in
sect. 3 thermal effects on the EoS including non-nucleonic
degrees of freedom are presented, we review relativistic
mean field models for the EoS, including the hyperonic
interaction, and discuss the effect of including hyperons
and pions in the finite temperature EoS; in sect. 4 the im-
pact of additional particles in astrophysical applications
is referred and finally in the last section some conclusions
are drawn.

2 A possible strangeness-driven phase
transition?
2.1 Thermodynamic analysis of the phase diagram

In this section we would like to recall the main features
of the thermodynamic analysis of the phase diagram, see
e.g. [34]. The phase diagram of a N -component system
is, at constant temperature, a N -dimensional volume. If
there are M different coexisting phases, the boundaries
of the phase coexistence domain(s), {nPj

i }; i = 1, . . . ,N ;
j = 1, . . . ,M , are determined by the (N + 1)(M − 1)
conditions of thermodynamic equilibrium between them,(
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where f denotes the free energy density and P the pres-
sure. Within the phase coexistence domain(s), a mixture
of different phases lowers the free energy of the system
as compared with the solutions corresponding to individ-
ual phases. Mathematically, this is equivalent to the pres-
ence of a convexity anomaly of the thermodynamic po-
tential in the density hyperspace, i.e. the free energy cur-
vature matrix, Cij = ∂2f/∂ni∂nj , has at least one nega-
tive eigenvalue. The number of coexisting phases is deter-
mined by the number of order parameters1 or, in terms

1 An order parameter is defined here as the direction in the
observable space corresponding to phase separation, see, e.g.,
ref. [35] for details.
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of local properties, by the number of directions in density
space where spinodal instabilities develop, i.e. where den-
sity fluctuations are spontaneously amplified finally lead-
ing to phase separation. The latter quantity is related to
the number Nneg of negative eigenvalues of Cij , such that
M = Nneg + 1.

If the direction of phase separation is unique, which
corresponds to a one-dimensional–order parameter, then
the problem of phase coexistence in a N -component sys-
tem can by reduced to a problem of phase coexistence
in a one-component system by Legendre transforming the
thermodynamical potential f with respect to the remain-
ing (N − 1)-chemical potentials [36].

Baryonic matter with hyperons contains eight differ-
ent particle species. Under the condition of equilibrium
with respect to the strong interaction, the number of rel-
evant degrees of freedom is, however, reduced to three,
the densities baryon number density nB , the total bary-
onic (electric) charge density nQ and the total strangeness
density nS . It represents, therefore, a three-component
system in the terminology introduced above2. It is im-
portant to remark here that the use of strangeness as
a relevant degree of freedom does not imply that nS

is conserved throughout the evolution of the system. In
particular, along the strangeness equilibrium trajectory
μS = 0 considered in this study, nS obviously varies.
Upon adding leptonic degrees of freedom in form of elec-
trons and positrons, (electron) lepton number enters as an
additional variable. Due to the strict electrical neutrality
condition, however, charge is no longer an independent
degree of freedom once leptons are included and the sys-
tem remains three-dimensional [30, 38], see also ref. [39],
in terms of the number densities nB , nS and nL. In the
absence of neutrinos, nL, the electron lepton density, de-
notes here the net electron density, nL = ne = ne− − ne+

and charge neutrality gives nL = nQ.
The equilibrium conditions thus reduce the dimension-

ality of the phase space from 8 (9 with electrons), corre-
sponding to the number of different particle species, to
three, described by baryon, lepton and strangeness num-
ber densities. To further reduce the dimensionality for
studying phase coexistence, one may then perform the
Legendre transformation with respect to any set (μB , μS),
(μS , μQ(L)) and (μB , μQ(L)). μQ(L) thereby stands either
for μQ in a purely baryonic systems or for μL if electrons
are included. In practice, we found that the order param-
eter is always one-dimensional. This means that a single
Legendre transformation is enough to spot the thermo-
dynamics provided that the order parameter is not or-
thogonal to the controlled density. The most convenient
framework to easily access the physical trajectories is the
one controlling the nB-density:

f̄(nB , μS , μQ(L))=f(nB , nS , nQ(L))−μSnS −μQ(L)nQ(L).
(2)

Coexisting phases, if any, will then be characterized by
equal values of μB = ∂f̄/∂nB and P and the phase in-

2 See ref. [37] for a discussion of the phase diagram if strong
equilibrium is not assumed.

stability regions will be characterized by a back-bending
behavior of μB(nB)|μS ,μQ(L) .

2.2 The phase diagram of baryonic matter with
strangeness

Due to the large incompressibility of electrons present
to ensure electrical charge neutrality, Coulomb interac-
tions can have a considerable influence on the phase dia-
gram, in particular if charged particles are involved. For
instance, the well-known nuclear liquid-gas phase transi-
tion is strongly quenched by Coulomb effects [36, 40, 41].
On the contrary, in ref. [30] it has been shown that,
if Λ-hyperons are the only strange baryons, the supra-
saturation phase transition occurring in the n, p, Λ + e-
system is only slightly modified by Coulomb interactions
compared with the n, p, Λ-system. The reason is that this
phase transition is “strangeness driven”, i.e. the order pa-
rameter is dominated by nS and has only a small com-
ponent in direction of the charge. On the other hand, if
the hyperonic couplings are such that charged hyperons
are abundant, as predicted by many models favoring neg-
atively charged hyperons, the extension and localization
of phase coexistence domains could be strongly modified
by the Coulomb interaction. In the extreme case, it could
even make it disappear for neutron star matter.

For the present study we will employ the non-relativ-
istic energy density functional developed by Balberg and
Gal [42], which is known to present a rich phase struc-
ture [29, 30]. The total baryonic energy density is then
given by the sum of mass, kinetic and potential energy
density,
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∑
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are thereby given by the Fermi integrals
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with Fν(η) =
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0

dx xν

1+exp(x−η) being the Fermi-Dirac in-

tegral, β = T−1 is the inverse temperature, mi denotes
the i-particle mass and μ̃i the effective chemical potential
of particle species i-species.

The potential energy density proposed by Balberg and
Gal [42] has the following form:
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Table 1. Coupling constants corresponding to the stiffest interaction proposed in ref. [42], called BGI within this paper and
220g3, one of the parameterizations proposed in ref. [20], and those corresponding to the nuclear interaction used by Lattimer
and Swesty [2] supplemented with the Λ-hyperon [30, 46]. In case of BGI, the only hyperon pair with non-vanishing isospin-
component is ΣΣ.

Parameter aNN bNN cNN aΛΛ bΛΛ cΛΛ aΛN bΛN cΛN γNN γΛN γΛΛ

set MeV fm3 MeV fm3 MeV fm3γNN MeV fm3 MeV fm3 MeV fm3γΛΛ MeV fm3 MeV fm3 MeV fm3γΛN

BGI −784.4 214.2 1936.0 −486.2 0 1553.6 −340.0 0 1087.5 2 2 2

LS220Λ −1636.2 214.2 1869.2 −486.2 0 1553.6 −340.0 0 1087.5 1.26 2 2

220g3 −1636.2 214.2 1869.2 −90.0 0 1000.0 −270.0 0 4000.0 1.26 3 3

Parameter aΣN bΣN cΣN aΞN bΞN cΞN aY Y bY Y cY Y γΣN γΞN γY Y

set MeV fm3 MeV fm3 MeV fm3γΣN MeV fm3 MeV fm3 MeV fm3γΞN MeV fm3 MeV fm3 MeV fm3γY Y

BGI −340.0 214.2 1087.5 −291.5 0 932.5 aΛΛ 0/428.4 cΛΛ 2 2 2

220g3 450.0 214.2 250.0 −170.0 0.0 2900.0 aΛΛ 0/430.0 cΛΛ 3 3 3

For simplicity the same functional form is employed in all
channels and a unique value is used for the exponent gov-
ering the short-range repulsion. The values of the coupling
constants, listed in table 1, have been chosen to satisfy the
experimental constraints available at that time, symmetry
arguments or, in the case of the NN -channel, to agree with
popular models. Concerning the latter, the resulting val-
ues are in good agreement with experimental contraints
for the saturation density, n0 = 0.155 fm−3, and energy
per nucleon of symmetric nuclear matter at saturation,
−15.9MeV. The incompressibility modulus with 375MeV
is, instead, largely overestimated. The well depths of var-
ious hyperonic species in uniform symmetric nuclear mat-
ter at saturation density are: U

(N)
Λ (n0) = U

(N)
Σ (n0) =

−26.6MeV, U
(N)
Ξ (n0) = −22.8MeV and the value of Λ-

potential in Λ-matter U
(Λ)
Λ (n0/5) = −12.8MeV. Both, the

ΞN - and ΛΛ-potentials are too attractive in view of actual
experimental data. AGS-E885 data indicate for U

(N)
Ξ (n0)

the value of −14MeV [43]. The value of U
(Λ)
Λ (n0/5) can be

related to the bond energy of double-Λ hypernuclei [44].
Experimental data for 6

ΛΛHe [45] suggest that a much
larger value of U

(Λ)
Λ (n0/5) = −0.67MeV is more realis-

tic. The situation of the ΣN -potential is ambigous but,
very probably, it is repulsive. Alternative values of the
coupling constants which overcome the drawbacks of the
original parameterization have been proposed in ref. [20].

Thermodynamic consistency allows to infer the rela-
tion between the chemical potentials μi ≡ ∂eB/∂ni|nj ,j �=i

and the effective ones μ̃i as μi = μ̃i + mic
2 + Ui, with

Ui = ∂epot/∂ni. All remaining thermodynamic quantities,
such as pressure or entropy can then be derived from the
energy density via standard thermodynamic relations.

2.2.1 The n, p, Y -system without electrons

In order to highlight the effect of the Coulomb interaction,
we will start within this section by analyzing the phase
diagram of pure baryonic matter including the complete
baryon octet, but without electrons. The upper panel of
fig. 1 illustrates the evolution of the baryonic chemical
potential as a function of baryon number density at con-
stant values of μS = 0, μQ = 0 and T = 1MeV (see
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Fig. 1. (Color online) Baryonic chemical potential (top) and
particle abundances (bottom) as a function of baryon number
density for μS = 0 and μQ = 0 at T = 1MeV, employing the
BGI parameterization [42].

footnote3). Three back-bending regions exist, which are
all correlated with a particle threshold, see the bottom
panel of fig. 1 where the corresponding particle abun-
dances are displayed. Since within the model of Balberg
and Gal [42] the hyperon-hyperon (Y Y )-interaction de-
pends only weakly on the particular channel, the order
of the particle thresholds is mainly given by their respec-
tive rest masses and chemical potentials. In the present

3 This temperature value has been chosen for computational
convenience. The presented results are very close to the zero
temperature limit.
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Fig. 2. (Color online) Phase diagram of the n, p, Y -system for
μS = 0 at T = 1MeV as provided by the BGI parameteriza-
tion [42] in the nB-nQ (a) and nS-nQ (b) planes. The arrows
indicate the directions of phase separation. The μQ = 0 trajec-
tory is illustrated with a (red) dashed line. The hatched gray
area corresponds to the strangeness driven phase transition
domain of the simpler n, p, Λ-system studied in ref. [30].

case, μS = μQ = 0, this means that the Λ is the first one
to appear, followed by the almost degenerate Σ-hyperons
and then the Cascades. An investigation of f̄(nB) con-
firms that any back-bending can be cured by a Maxwell
construction and that the mixture of stable phases low-
ers the free energy compared with the individual phases
and corresponds thus to the energetically favored solution.
This means that three distinct phase coexistence regions
exist, induced by the onset of each hyperonic family.

Different thermodynamical conditions, i.e. different
values of (μS , μQ) and T , will obviously change the parti-
cle thresholds, their abundances, and the location of phase
coexistence regions. By varying μS and μQ, the whole 3-
dimensional phase diagram for a given temperature could
be explored. Since we are mostly interested here in astro-
physical systems which can be considered in strangeness
changing weak equilibrium, μS = 0, we will limit the anal-
ysis to this case. The corresponding projections of the
phase diagram on the nB-nQ (panel (a)) and the nS-nQ-
plane (panel (b)) are represented in fig. 2. The arrows
indicate the directions of phase separation. In general, in-
creasing μQ leads to higher values of nQ. The μQ = 0 tra-

jectory considered in fig. 1 is here represented with dashed
lines. For the sake of completeness, also the phase coex-
istence region of the (n, p, Λ) systems at supra-saturation
densities is illustrated as a hatched gray area [29, 30].

Most of the time, the phase coexistence domains re-
lated to the onset of Λ- and Σ-hyperons merge to a single
domain extending over a very large range of baryon num-
ber density, whereas the Cascade thresholds remain sepa-
rated leading to a second distinct phase transition region.
This can be understood as follows: nonzero values of μQ,
positive or negative, lift the degeneracy of the Σ-hyperons,
favoring the appearance of charged ones, negative or pos-
itive depending on the sign of μQ. The corresponding
threshold for Σ+ or Σ− is shifted to lower densities with
increasing absolute value of μQ, closer to the threshold of
neutral Λ-hyperons. At some critical value, the two phase
coexistence regions existing at μQ = 0 merge into one
single domain.

As expected, the component of the order parameter in
nQ-direction is more important if the number of charged
particles participating in the phase coexistence is large,
i.e. for large values of μQ. In fact, although the total
charge nQ is rather small for large μQ, the abundances
of charged baryons itself are large. For instance, the tran-
sition induced by Λ- and Σ-hyperons shows an almost van-
ishing component in nQ-direction close to μQ = 0, where
three phase coexistence regions exist and the Σ-onset is al-
most degenerate, see fig. 2, whereas it becomes larger with
increasing |μQ|, i.e. in the regions where only two phase
coexistence domains exist. The Ξ-induced phase transi-
tion has an order parameter with important contribution
along nQ whenever both Ξ0 and Ξ− are created as their
total charge cannot vanish. With increasing μQ the Ξ−

production threshold is shifted to higher densities, finally
leaving the considered density domain. Consequently, the
charge dependence of the order parameter becomes very
weak for large nQ.

2.2.2 Coulomb effects on the phase diagram

We now turn to investigate the influence of Coulomb ef-
fects on the phase diagram. For simplicity, we will con-
sider only electrons and neglect other charged leptons
or mesons. The total free energy can be written as the
sum of a baryonic, leptonic and photonic contribution,
f = fB + fL + fγ , where leptons and baryons are coupled
only via the strict electrical neutrality condition, nQ = nL.
Leptons and photons are well described by, respectively,
fermionic and bosonic ideal gases [2]. None of them affects
the phase structure.

In the case of the n, p, Λ-system, where the order pa-
rameter has only a small component in charge direction,
the effect of electrons on the phase diagram is small [30].
As discussed in the previous section, upon including the
full octet with all charged hyperons, the dependence on
the charged component becomes larger and we thus ex-
pect more important Coulomb effects on the phase dia-
gram. This is confirmed by the results, see fig. 3, where
the phase diagram is displayed in the plane nB-nL. As
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Fig. 3. (Color online) Phase diagram of the (n, p, Y, e)-system
at T = 1 MeV for μS = 0 as provided by BGI parameteriza-
tion [42] in the nB-nL-plane. The (red) dashed curve marks the
path corresponding to β-equilibrium. The gray hatched band
marks the phase coexistence region obtained within the simpler
n, p, Λ + e-system [30].

before, the arrows mark the directions of the order pa-
rameter. For the sake of completeness the phase coexis-
tence domain of the simpler (n, p, Λ, e)-system is repre-
sented as a hatched gray area. The qualitative structure of
the phase diagram is similar to the case without electrons
discussed before, see fig. 2. It does not come as a surprise,
however, that the phase coexistence region extents over a
much smaller range in nB , i.e. the phase transition region
is quenched by Coulomb effects, in particular, for low nL-
values, where the number of charged baryons participating
in the phase transition is large. Compared with the case
without electrons, the direction of phase separation is ro-
tated in order to reduce the difference in nL = nQ between
the two phases. The reason is the large incompressibility of
electrons, effectively suppressing electron density fluctua-
tions. For matter in β-equilibrium, relevant for cold neu-
tron stars, a large density domain is actually covered by
phase coexistence, roughly between 0.3 � nB � 0.43 fm−3,
see the dashed line in fig. 3.

As easy to anticipate, for small values of μQ, corre-
sponding to the largest nL-values shown in the figure,
where the Λ and Σ production thresholds are sufficiently
different for the corresponding phase coexistence regions
to be separated, the coexistence domain associated to the
onset of Λs in the complete system sits exactly on the top
of that corresponding to the n, p, Λ+e-system. At smaller
μL values, i.e. for small values of nL, the two systems have
different phase coexistence regions with the one of the full
baryonic octet wider than that of the simpler mixture due
to the participation of Σ-hyperons. In particular, in the
left bottom part of fig. 3 the low-density boundary of the
phase coexistence region of the n, p, Y + e-system is dis-
tinct from that corresponding to the n, p, Λ + e-mixture.
There are two reasons for that. For the lowest considered
nL-values, the low density phase of the restricted system
is purely nucleonic while, upon considering the full bary-
onic octet, the low density phase contains Σ−, too, the
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Fig. 4. (Color online) Electron fraction, Ye, and nB at the
corresponding critical temperature for μS = 0 within the
n, p, Λ + e-system. Figure taken from ref. [30].

first hyperons to appear in that case. At slightly higher
but still low nL-values, the discrepancy arises from the
composition of the high density phase, which contains Σ-
hyperons in addition to nucleons and Λ-hyperons.

It is important to stress that the phase diagram will
obviously depend on the assumed coupling constants in all
channels. For instance, if a repulsive potential is employed
for Σ-hyperons, as suggested by the analyses of (π−,K+)-
spectra, their threshold will be shifted to higher densities
and the associated phase transition will consequently be
shifted.

For the simpler n, p, Λ + e-system, it has been shown
that this phase transition persists in this model at finite
temperature, with a phase separation direction almost in-
dependent of T [30]. Increasing the temperature, the width
of the coexistence region, shown for T = 0 in fig. 3, at low
values of nL shrinks, leading to the appearence of a criti-
cal point above some finite value of T of the order 15MeV
which survives up to very high temperature. It moves to
higher nL-values with increasing temperature, see fig. 4,
where the critical temperature and the corresponding elec-
tron fraction Ye = nL/nB are shown. Since the charac-
ter of the phase transition remains “strangeness-driven”,
we do not expect any qualitative change upon including
the full octet, with quantitative values of the same or-
der. These values are typically reached within the cool-
ing proto-neutron star, meaning that effects of critical-
ity should be experienced if there is a strangeness-driven
phase transition.

In particular, the neutrino mean free path, λ, due to
scattering off baryons should be strongly influenced. In or-
der to explore this point, we show calculations of the lat-
ter including the long-range correlations, essential for the
study of criticality. The linear response approximation is
employed. In addition, since we focus here on the impact of
density fluctuations close to the critical point, where spin-
density fluctuations are expected to be small [47, 48], only
the vector channel will be considered. Then, in the non-
relativistic limit for the baryonic components the mean
free path at temperature T of a neutrino with initial
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Fig. 5. (Color online) (a) Neutrino mean free path for the scat-
tering off n, p, and Λ at T = 20 MeV along a constant-Ye =
0.2981 trajectory in the phase diagram for Eν = μν , μν ± T
as a function of the baryonic density, nB . The result of the
mean-field approximation is compared with a mean-field+RPA
calculation. (b) The ratio of the mean free path within mean-
field+RPA over mean-field approximation is shown. Figure
taken from ref. [30].

energy Eν is given by [49, 50]

1
λ

=
1

λV (Eν , T )

=
G2

F

16π2

∫
(1 + cos θ)SV (q, T )(1 − fν(k3))dk3. (6)

GF denotes here the Fermi constant, θ is the angle be-
tween the initial and final neutrino momentum (= k3), q
is the transferred energy momentum, q = (ω,q), and fν is
the Fermi-Dirac distribution of the outgoing neutrino. SV

represents the dynamical response function in the vector
channel. It is defined as

SV (q, T ) = − 2
π

1
1 − exp(−ω/T )

×
(
cn
V cp

V cΛ
V

)
ΠV (q, T )

⎛
⎜⎝

cn
V

cp
V

cΛ
V

⎞
⎟⎠ , (7)

where ΠV (q, T ) is the vector-polarization matrix for the
three species n, p, and Λ. In mean field approximation
it reduces to the Lindhard functions [51] and in mean-
field+RPA approximation it is the solution of the Bethe-
Salpeter equations [48–50]. The coupling constants, ci

V ,
are −1(n), 0.08(p),−1(Λ) [52]. The residual p-h interac-
tion entering the calculation of the polarization matrix
is closely related to the curvature matrix without elec-
trons [53] and reflects therefore the criticality of the phase
transition.

In fig. 5 we show the calculation within the n, p, Λ+ e-
system4. The depletion of the mean-free path in the vicin-
ity of the critical point is clearly visible. The possible im-
pact of a phase transition on the hydrodynamics of core
collapse will be discussed in sect. 4.

4 Electrons are not relevant for this calculation.

3 Thermal effects on the EoS including
non-nucleonic degrees of freedom

In heavy-ion collisions (HICs), core-collapse supernovae
and neutron star or black-hole neutron star mergers, mat-
ter is strongly heated and thermal effects on the EoS be-
come important. Of course, the conditions are very dif-
ferent in HICs compared with the astrophysical events.
In particular, matter in HICs cannot be considered in
strangeness changing weak equilibrium, but rather the
zero net strangeness of the two colliding nuclei is conserved
during the entire collision due to the very short timescales.
However, thermal effects lead to a considerable production
of non-nucleonic degrees of freedom, hyperons, nuclear res-
onances, strange and non-strange mesons, and in the early
phase probably a quark-gluon plasma. This clearly shows
the importance of thermal effects on the composition of
matter. Therefore in compact star astrophysics, where in
addition to being heated, matter is compressed to densities
above nuclear matter saturation density, n0, non-nucleonic
degrees of freedom are expected to occur, too.

This has been recognized shortly after the first discus-
sions about hyperons and quarks in cold neutron stars,
and EoSs have been developed to study the impact of
additional particles, such as hyperons and mesons, as
well as meson condensate and quark matter formation
on the evolution of proto-neutron stars, see, e.g., [54] for
an early review. Inhomogeneous matter in the outer lay-
ers and the formation of the neutron star crust do not
influence strongly the proto-neutron star evolution, such
that in a first approximation it can be neglected. There-
fore most of the works investigating thermal effects on the
EoS, treat homogeneous matter at some given tempera-
ture or entropy per baryon and hadronic charge fraction,
YQ = nQ/nB , with values relevant for proto-neutron star
evolution, see, e.g. [55–60]. Only recently, some models
have been proposed, including non-nucleonic degrees of
freedom and treating the low-density and low-temperature
inhomogeneous nuclear matter, too, see e.g. [20, 27, 61, 62].

Quark matter formation is very interesting in this con-
text, in particular if the transition occurs during the early
post-bounce phase, since then the related phase transition
is visible in the supernova neutrino signal [27]. Such an
early phase transition requires, however, a low transition
density and therefore a relatively soft EoS which seems
difficult to be reconciled with a maximum cold neutron
star mass above ∼ 2M� in agreement with recent observa-
tions [11, 12], see ref. [63]. In the contracting and partially
deleptonized proto-neutron star, higher densities and tem-
peratures are reached, and the conditions are, therefore,
more favorable for quark matter to appear. Such a tran-
sition could explain some gamma-ray bursts or, via the
scenario of so-called “quark-novae”, some unusual super-
nova light-curves, see the discussion in ref. [64] and refer-
ences therein. In addition, quark matter at not too high
temperatures has a very rich phase structure related to
different color superconducting phases with consequences
for compact star phenomenology, for instance on neutron
star cooling, see, e.g. [65] for a review.
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Here, we will concentrate on hadronic degrees of free-
dom, i.e. hyperons and mesons, and present some selected
EoS in order to illustrate thermal effects on the appear-
ance of these particles. Due to the computational com-
plexity, only some microscopic calculations exist, see, e.g.
the BHF calculations of [66–68]. Most models employ phe-
nomenological interactions, non-relativistic or relativistic
mean field (RMF) ones. In the following section we will,
therefore, briefly introduce the latter, the former has al-
ready been discussed in sect. 2.2.

Pions, and to less extent kaons, have already been con-
sidered twenty years ago as possible candidates for the hot
and dense matter in supernova cores and proto-neutron
stars, see, e.g. [55, 56, 69]. The authors of ref. [69] argue
that the temperature of the supernova core could be in-
creased by the presence of pions. As a consequence, the
number of electron neutrinos would increase resulting in
a higher neutrino luminosity favoring a successful explo-
sion. However, the employed pion-nucleon interaction is
probably too attractive, and a more realistic interaction
decreases the number of pions eventually present in super-
nova cores and thus the effect on the neutrino luminosity.
For cold neutron stars, it is now commonly assumed that
there is an s-wave πN repulsion, preventing pions from
forming a Bose-Einstein condensate. Most recent works
on the EoS for hot and dense matter neglect for simplic-
ity any interaction and use a free pion gas [20, 46, 61, 62].
This will be the case for the results shown below, too. At
least for the high temperatures and low densities thermal
effects should dominate and the interaction should be less
important. Let us mention that in ref. [61] it is shown
that a parameterized s-wave πN repulsive interaction al-
lows to avoid pion condensation at low temperatures but,
since the effects of the interaction on the EoS are only im-
portant at low temperatures, and pionic effects are gener-
ally not the dominant contribution to the EoS, the model
dependence of the results becomes very weak.

3.1 Relativistic mean field models for the EoS

The literature on phenomenological RMF models is large
and many different versions exist (see, e.g., [70]). The basic
idea is that the interaction between baryons is mediated
by meson fields. These are not real mesons, but introduced
on a phenomenological basis with their quantum numbers
in different interaction channels. Earlier models introduce
non-linear self-couplings of the meson fields in order to
reproduce correctly nuclear matter saturation and prop-
erties of nuclei, whereas more recently density-dependent
couplings between baryons and the meson fields have been
widely used. The Lagrangian of the model can be written
in the following form:

L =
∑
j∈B

ψ̄j (iγμ∂μ − mj + gσjσ + gσ∗jσ
∗

+ gδjδ · Ij − gωjγμωμ − gφjγμφμ − gρjγμρμ · Ij) ψj

+
1
2
(∂μσ∂μσ − m2

σσ2) − 1
3
g2σ

3 − 1
4
g3σ

4

+
1
2
(∂μσ∗∂μσ∗ − m2

σ∗σ∗2)

+
1
2
(∂μδ∂μδ − m2

δδ
2)

− 1
4
W †

μνWμν − 1
4
P †

μνPμν − 1
4
R†

μν · Rμν

+
1
2
m2

ωωμωμ +
1
4
c3(ωμωμ)2

+
1
2
m2

φφμφμ +
1
2
m2

ρρμ · ρμ, (8)

where ψj denotes the field of baryon j, and Wμν , Pμν , Rμν

are the vector meson field tensors of the form

V μν = ∂μV ν − ∂νV μ. (9)

σ, σ∗ are scalar-isoscalar meson fields, coupling to all
baryons (σ) and to strange baryons (σ∗), respectively. δ
induces a scalar-isovector coupling.

In mean field approximation, the meson fields are re-
placed by their respective mean-field expectation values,
which are given in uniform matter as

m2
σσ̄ + g2σ̄

2 + g3σ̄
3 =

∑
i∈B

gσin
s
i (10)

m2
σ∗ σ̄∗ =

∑
i∈B

gσ∗in
s
i (11)

m2
δ δ̄ =

∑
i∈B

gδit3in
s
i (12)

m2
ωω̄ + c3ω̄

3 =
∑
i∈B

gωini (13)

m2
φφ̄ =

∑
i∈B

gφini (14)

m2
ρρ̄ =

∑
i∈B

gρit3ini, (15)

where δ̄ = 〈δ3〉, ρ̄ = 〈ρ0
3〉, ω̄ = 〈ω0〉, φ̄ = 〈φ0〉, and t3i rep-

resents the third component of isospin of baryon i with the
convention that t3p = 1/2. The scalar density of baryon i
is given by

ns
i = 〈ψ̄iψi〉 =

1
π2

∫
k2 M∗

i√
k2 + M∗2

i

{f [εi(k)]+f̄ [εi(k)]}dk,

(16)
and the number density by

ni = 〈ψ̄iγ
0ψi〉 =

1
π2

∫
k2(f(εi(k)) − f̄(εi(k)))dk. (17)

f and f̄ represent here the occupation numbers of the
respective particle and antiparticle states with the single-
particle energies, εi(k) =

√
k2 + M∗2

i , which reduce to a
step function at zero temperature. The effective baryon
mass M∗

i depends on the scalar mean fields as

M∗
i = Mi − gσiσ̄ − gσ∗iσ̄

∗ − gδit3iδ̄, (18)
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Table 2. Nuclear matter properties of the models considered in this study for symmetric nuclear matter at saturation, except
for the last column where the energy per baryon of neutron matter at n0 is given with the neutron mass subtracted.

K Esym n0 B L E/A(n0)

[MeV] [MeV] [fm−3] [MeV] [MeV] [MeV]

GM1 300 32.5 0.153 16.3 94 18.6

TM1 281 36.9 0.145 16.3 111 21.1

TM1-2 282 37.2 0.146 16.4 111/55 21.8/17.1

DD2 243 31.7 0.149 16.0 55 18.2

DDHδ 240 25.1 0.153 16.3 44 10.6

LS220 220 28.6 0.155 16.0 74 14.4

and the effective chemical potentials, (μ∗
i )

2 = (M∗
i )2+k2

Fi,
are related to the chemical potentials via

μ∗
i = μi − gωiω̄ − gρi t3iρ̄ − gφiφ̄ − ΣR

0 . (19)

The rearrangement term,

ΣR
0 =

∑
j∈B

(
∂gωj

∂nj
ω̄nj + t3j

∂gρj

∂nj
ρ̄nj +

∂gφj

∂nj
φ̄nj

− ∂gσj

∂nj
σ̄ns

j −
∂gσ∗j

∂nj
σ̄∗ns

j − t3j
∂gδj

∂nj
δ̄ns

j

)
, (20)

is present in density-dependent models to ensure thermo-
dynamic consistency.

In the present paper we consider a set of models fre-
quently used in the literature that succeed in describ-
ing a 2M� neutron star. In particular, we will show re-
sults for three non-linear models, GM1 [71], TM1 [72] and
TM1-2 [73], and two density-dependent ones, DDHδ [74,
75] and DD2 [76]. For the GM1 parameterization, c3 = 0,
and the δ-field is absent in GM1, TM1, TM1-2 and DD2.
The TM1-2 parametrization has properties similar to TM1
at saturation but is stiffer at large densities. TM1-2 has
a quite large symmetry energy slope L at saturation
(L = 110MeV), therefore we have consired a modifica-
tion with a smaller slope, L = 55MeV, by including a ωρ
mixing term which allows us to discuss the influence of the
density dependence of the symmetry energy on the results.
In table 2 we show two parametrizations for TM1-2 cor-
responding to the two values of L. The density-dependent
models assume g2 = g3 = c3 = 0 (no non-linear terms)
and the couplings become density-dependent,

gi(nB) = gi(n0)hi(x), x = nB/n0. (21)

There exist different parameterizations employing mostly
the same functional forms. Within the DDHδ and the DD2
parameterization, the following forms are assumed for the
isoscalar couplings:

hi(x) = ai
1 + bi(x + di)2

1 + ci(x + di)2
, (22)

and
hi(x) = ai exp[−bi(x − 1)] − ci(x − di), (23)

for the isovector ones. In the following we will show re-
sults for extensions of the STOS [3] and the statistical
model EoS by Hempel and Schaffner-Bielich [6] (BHB
model), that have as underlying parametrizations, respec-
tively, TM1 and DD2, and for the non-relativistic EOS,
LS220 [77]. As extra degrees of freedom pions, Λ-hyperons,
or all hyperons of the baryonic octet have been considered,
and accordingly, we will add the termination π, Λ or Y to
the name othe EoS. The original references are given in
table 3, together with the hyperonic interaction employed.

The wealth of nuclear data allows to constrain rea-
sonably the parameter values of the interaction between
nucleons. The corresponding parameter values of the dif-
ferent models can be found in the above references and the
resulting nuclear matter properties are listed in table 2. In
addition to standard properties of isospin symmetric nu-
clear matter, the energy per baryon of pure neutron mat-
ter at saturation density is given, too, for which recently
a range

14.1 � E/A(n0) � 21.4MeV. (24)

has been derived from microscopic calculations within chi-
ral nuclear forces [78]. This quantity is particularly inter-
esting for the EoS of compact stars, completing the infor-
mation about symmetric matter, since very asymmetric
matter close to pure neutron matter is encountered. Ex-
cept for the DDHδ-model, for which the value is too low,
the employed models lie within the indicated range. The
symmetry energy Esym and its slope, L, containing infor-
mation about the isospin dependence of the EoS, too, are
as well important in this respect. For instance, it is well
known that the radius of compact stars is very sensitive to
L [79–81]. The models considered here span a wide range
of values of L, with some of them being at the upper end
of possible values [82].

Hyperonic data are scarce and it is therefore very dif-
ficult to obtain information on the interaction parameters
in the hyperonic sector. Many recent works, see e.g. [18,
23, 83], use a procedure inspired by the symmetries of the
baryon octet to reduce the number of free parameters.
The individual isoscalar vector meson-baryon couplings
can then be expressed in terms of gωN and a few addi-
tional parameters, α, θ, z = g1/g8, see e.g. [84] for details,
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Table 3. Summary of coupling parameters used within the different models. The nuclear interaction is indicated in the second
column and those of hyperons in columns 3–7. The couplings to the isoscalar vector mesons are defined with respect to the
respective SU(6) values and the couplings to σ∗ are defined with respect to gσN . The coupling parameters of the two non-
relativistic models, LS220Λ and 220g3 are given in table 1. In addition, the values of the hyperon single-particle potentials in
hyperon matter at n0/5 are given for information. The last column indicates the reference(s) to the original work. The models in
the upper part thereby consider only Λ-hyperons whereas those in the lower part allow all hyperons to have nonzero abundances.

Model Nuclear Rσ∗Λ Rσ∗Ξ Rσ∗Σ RωY RφY U
(Λ)
Λ (n0/5) U

(Ξ)
Ξ (n0/5) U

(Σ)
Σ (n0/5) Reference(s)

interaction [MeV] [MeV] [MeV]

BHBΛ DD2 0 – – 1 0 −5 – – [23]

BHBΛΦ DD2 0 – – 1 1 7 – – [23]

STOSΛ TM1 0 – – 1 0 6 – – [85]

LS220Λ LS220 – – – – – −5 – – [30, 46]

STOSY TM1 0.67 1.23 0.67 1 1 −11 −8 5 [61]

GM1 Y 6 GM1 0 0.55 0 2 2 −7 −10 13 [26]

TM1-2 Y1 TM1-2(111) 0 0 0 1 1 1.7 21.1 16.2 [26]

TM1-2 Y2 TM1-2(55) 0 0 0 1 1 1.7 21.1 16.2 [26]

TM1-2 Λ4 TM1-2(111) 1.68 1.68 1.68 1.5 2 −41.1 36.0 −21 [26]

TM1-2 Λ6 TM1-2(55) 1.58 1.58 1.58 1.5 2 −33.7 44.4 −12.8 [26]

DDHδ Y4 DDHδ 1.03 0 0 1.5 0.85 −5 79 62 [26]

220g3 LS220 – – – – – −2.73 −2.73 −2.73 [20]

as follows:

gωΛ

gωN
=

1 − 2z√
3
(1 − α) tan θ

1 − z√
3
(1 − 4α) tan θ

,

gφΛ

gωN
= −

tan θ + 2z√
3
(1 − α)

1 − z√
3
(1 − 4α) tan θ

,

gωΞ

gωN
=

1 − z√
3
(1 + 2α) tan θ

1 − z√
3
(1 − 4α) tan θ

,

gφΞ

gωN
= −

tan θ + z√
3
(1 + 2α)

1 − z√
3
(1 − 4α) tan θ

,

gωΣ

gωN
=

1 + 2z√
3
(1 − α) tan θ

1 − z√
3
(1 − 4α) tan θ

,

gφΣ

gωN
=

− tan θ + 2z√
3
(1 − α)

1 − z√
3
(1 − 4α) tan θ

,

gφN

gωN
= −

tan θ + z√
3
(1 − 4α)

1 − z√
3
(1 − 4α) tan θ

. (25)

The following values are commonly assumed: tan θ =
1/
√

2, corresponding to ideal ω-φ-mixing, α = 1, and
z = 1/

√
6. The latter value reflects an underlying SU(6)-

symmetry, and only recent studies in view of the observa-
tion of high-mass neutron stars have relaxed this assump-
tion, for example [18, 22, 61, 83], or even varied freely the
hyperonic isoscalar vector couplings, see e.g. [26].

In the isovector sector, not the same procedure is ap-
plied, since this would lead to contradictions with the
observed nuclear symmetry energy. gρN is therefore left
as a free parameter, adjusted to the desired value of the

symmetry energy, and the remaining isovector vector cou-
plings are fixed by isospin symmetry.

For the scalar sector, different methods are applied.
In ref. [21] a symmetry inspired procedure is discussed to-
gether with the constraints imposed by hypernuclear data.
In [85], the value of the σΛ-coupling is taken from a fit of
the binding energies of single Λ-hypernuclei resulting in
RσΛ = 0.621. In many other works, see e.g. refs. [18, 23, 26,
61], the information from hypernuclear data on hyperonic
single-particle mean-field potentials is used to constrain
the coupling constants. Let us emphasize that almost no
information is available on the hyperon-hyperon (Y Y )-
interaction apart from a few light double-Λ hypernuclei,
that constrain only the low density behavior. Therefore,
the corresponding couplings, within the RMF models, in
particular σ∗ and φ are very poorly constrained. In most
recent models φ-mesons are added in order to be com-
patible with the 2M� neutron star, whereas often σ∗ is
neglected (see, e.g. [16, 18, 23]). This leads, however, to a
very repulsive Y Y -interaction already at very low densi-
ties [26, 61, 86] which does not appear very realistic in view
of the double-Λ-hypernuclear data. In table 3 we sum-
marize the coupling parameters used within the different
models employed here. We list, in addition, the values of
the corresponding hyperonic single particle potentials in
hyperonic matter. Data on the bond energy of double-Λ-
hypernuclei can be reinterpreted in terms of the Λ poten-
tial in Λ matter at the average density of Λ inside those
nuclei [44, 87]. Mean-field calculations have shown that in
light nuclei (from He to C) the average Λ density is close
to one fifth of the saturation density [44, 87]. We have
therefore chosen this density for the reference values of
the hyperonic potentials.
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Fig. 6. (Color online) Mass-radius relation of a spherically symmetric cold β-equilibrated neutron star for different EoS including
hyperons and/or pions and the corresponding purely nuclear EoS.

The model LS220Λ presents a strangeness-driven
phase transition at the onset of Λ-hyperons [29, 30], see
sect. 2. Among the relativistic models, the parameter sets
TM1-2Λ4/TM1-2Λ6 are chosen at the limit of presenting a
thermodynamic instability at the onset of Λ-hyperons and
stable with respect to all other hyperons [26]. The other
models do not show any instability related to the onset of
hyperons. To summarize, we believe that the large set of
employed models and coupling constants gives a represen-
tative estimate of the present theoretical uncertainties in
the high-density EoS modelling at finite temperature.

3.2 Hyperons and pions in the finite temperature EoS

Let us start with some comments on the EoS of cold β-
equilibrated neutron stars including non-nucleonic degrees
of freedom, for more details see [33]. By simple arguments
based on the Pauli principle, for a system composed of
fermionic particles, additional degrees of freedom tend to
soften the EoS. In turn, this reduces the neutron star max-
imum mass, eventually being in contradiction with the re-
cently observed masses [11, 12]. The way out is of course
that the interaction must be much more repulsive at high
density than presently assumed. This is true for hyperons
and quarks. On the quark side, this leads to the problem
of reconfinement, i.e. the hadronic EoS becomes again en-
ergetically favored at some very high density [88], and on
the hyperonic side the additional repulsion leads in gen-
eral to a very low strangeness content of neutron stars [18],
see [26] for models with higher strangeness content.

As observed in ref. [89], another point is that in many
models with hyperons compatible with the neutron star
mass constraint, see e.g. [16, 18], relatively large radii of

about 14 km for a non-rotating spherical neutron star
with the canonical mass of 1.4M� are obtained, well
above some recently suggested values, see e.g. [90]. Ra-
dius determinations are difficult and they are presently
far from being as reliable as the mass observations from
refs. [11, 12]. The main problem is that the extraction of
radii from observations is much more model-dependent
and the low radii are not uncontested. A summary and
discussion of different observational radius determinations
can be found, e.g. in ref. [89]. Anyway, concerning hyper-
ons in neutron stars, there are some examples with lower
radii [15, 21, 23, 26].

Following the above remarks, we have chosen for our
discussion of thermal effects different models with very dif-
ferent behavior for cold β-equilibrated neutron stars. As
can be seen from of fig. 6, where the mass-radius relations
for a non-rotating spherically symmetric neutron star are
shown, the obtained range in radii for intermediate masses
is relatively large. The onset of the additional degrees of
freedom is clearly visible in the different curves as an evi-
dent change in the slope. In the models where only hyper-
ons as non-nucleonic degrees of freedom are present, the
radius at a gravitational mass of M = 1.4M� is mainly
determined by the nuclear part of the EoS, thus strongly
influenced by the parameter L, see table 2, since hyper-
ons appear only at densities above the central densities
of these stars. If pions are included, on the other hand,
they show up already at roughly saturation density and
lower the radii already for neutron stars with masses below
1.4M�. A solution in order to obtain lower radii could thus
be that a mesonic contribution should not be neglected.
We should, however, be careful with a definite conclusion
here, since the models for including pions shown here are
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Fig. 7. (Color online) Strangeness fraction profiles of the maxi-
mum mass configurations within some of the EoS models shown
in fig. 6.

very crude, see above, and the pion-nucleon interaction is
neglected.

Depending on the hyperonic interaction chosen, the
models give very different maximum masses —not all
are compatible with the recent constraints— and the
strangeness content, see the examples shown in fig. 7, cov-
ers a wide range, too. A summary of the zero temperature
results can be found in table 4. Concerning the EoS with
non-nucleonic degrees of freedom, which have been ex-
tended to finite temperature, there are only a few which
are compatible with the 2M� constraint, see e.g. [59].
In particular, the existing EoS covering the whole range
of temperature, electron fraction and density relevant for
core-collapse supernovae and binary mergers either con-
tain only Λ-hyperons [23, 30, 46, 85] or maximum cold neu-
tron star masses well below 2M� are obtained [61]. Here
we will show first results extending the models of ref. [26],
compatible with existing constraints, to finite tempera-
ture and matter not necessarily in β-equilibrium, i.e. for
different electron fractions, Ye = (ne− − ne+)/nB .

As we will see, thermal effects favor the appearance of
additional particles and with increasing temperature the
effect of the interactions becomes less important. The rea-
son is that the purely kinetic thermal part dominates if the
density does not become too high. Let us stress that all
the models we are showing here are based on phenomeno-
logical models with parameters fixed to zero temperature
properties of nuclear matter, nuclei, nucleons and other
hadrons. It could be that these effective couplings depend
on temperature, although there are indications that this is
not the case. In ref. [91] a RMF-model is compared with
finite temperature microscopic Dirac-Brueckner-Hartree-
Fock calculations, showing the thermal modifications of
the effective couplings is almost negligible. Similar conclu-
sions are obtained with non-relativistic phenomenological
Skyrme-type models [92, 93].

In fig. 8 the fractions Xi = ni/nB of Λ, Σ− and Ξ−

are shown as a function of the electron fraction which
equals the hadronic charge fraction for a constant temper-
ature of T = 25MeV and two baryon number densities:
nB = 0.15 fm−3 (left) and 0.3 fm−3 (right). This value of
the temperature has been chosen since it corresponds in all

Table 4. Results calculated within different models at zero
temperature: maximum mass of a cold spherical symmetric
neutron star in β-equilibrium, radius at a fiducial mass of
M = 1.4M�, the total strangeness fraction, fS , representing
the integral of the strangeness fraction Ys/3 over the whole
star as in ref. [18], and the central baryon number density. In
the upper part purely nucleonic models are listed and in the
lower part those containing hyperons and/or pions are given.

Model Mmax R1.4 fS n
(c)
B

[M�] [km] [fm−3]

GM1 2.39 13.7 0 0.84

DD2 2.42 13.2 0 0.84

TM1 (STOS) 2.23 14.5 0 0.82

TM1-2 (L = 111) 2.31 14.3 0 0.81

TM1-2 (L = 55) 2.24 13.3 0 0.86

DDHδ 2.16 12.6 0 0.98

LS220 2.06 12.7 0 1.11

GM1 Y 6 2.29 13.8 0.04 0.85

BHBΛ 1.96 13.2 0.05 0.95

BHBΛΦ 2.11 13.2 0.05 0.95

STOSΛ 1.91 14.4 0.04 0.88

STOSY 1.65 14.4 0.07 0.67

STOSYπ 1.66 13.6 0.05 0.81

TM1-2 Y1 1.95 14.6 0.15 0.86

TM1-2 Y2 1.94 13.4 0.12 0.91

TM1-2 Λ4 2.13 14.6 0.16 0.90

TM1-2 Λ6 2.09 13.4 0.11 0.92

DDHδ Y4 2.05 12.7 0.04 0.99

LS220Λ 1.91 12.4 0.06 1.37

LS220π 1.95 12.2 – 1.27

220g3 1.95 12.7 0.005 0.98

present models to an entropy per baryon sB between 1 and
3 kB , values which are often cited as typical conditions for
proto-neutron stars, see e.g. [54, 59, 94]. Other hyperonic
particle fractions are not shown since they are much lower.
The temperature is still low compared with the chemical
potentials, so that the abundances are dominated by the
latter. However, for the lower density, the temperature ex-
plains the appearance of the hyperons, which at zero tem-
perature would not be present in matter. Therefore, the
large negative charge chemical potential in matter with
low charge fractions favors negatively charged particles
resulting in very low abundances for the neutral and posi-
tively charged hyperons, except for the Λ-hyperons. Here,
the lower mass compared with Σ-hyperons and Cascades
compensates the effect of the charge chemical potential.

All hyperonic fractions decrease with increasing Ye.
The reason is that not only the charge chemical poten-
tial increases, but at the same time the baryon number
chemical potential decreases due to the fact that the total
baryon number remains constant: the proton fraction is
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Fig. 8. (Color online) Fractions of different hyperons as a function of the electron fraction at a temperature of 25 MeV and for
nB = 0.15 fm−3 (left) and nB = 0.3 fm−3 (right) corresponding roughly to once and twice nuclear matter saturation density.
The fractions of Σ0,+, Ξ0 are not shown since they are always much smaller.

larger, and nuclear matter becomes more symmetric for
Ye close to 0.5, and, therefore the onset of hyperons is not
favored. The effect is more pronounced for the charged
particles than for the neutral Λ due to the effect of μQ.
Qualitatively, all models show a similar behavior. The
quantitative differences due to the different interactions
are obviously more pronounced at higher density (right
panel), than at lower density (left panel) where temper-
ature is playing a larger role. We may also see how the
hyperon fractions are sensitive to the density dependence
of the symmetry energy: a softer symmetry energy favor
the nucleonic degrees of freedom and the hyperon fractions
are smaller. This is clearly seen comparing TM1-2 Y1 and
Y2, Y1 having a harder symmetry energy and favoring
larger fractions of hyperons. This effect is more visible for
nB = 0.3 fm−3 (right panels), where the temperature has
a less important role.

No imprint of the strangeness-driven phase transition,
see sect. 2, is visible in the presented curves for LS220Λ
or TM1-2Λ4/6. The reason is that the critical density lies
above nB = 0.3 fm−3, the highest density shown here.

In fig. 9 the pressure, the internal energy with respect
to the neutron mass and the total lepton fraction under
the assumption of β-equilibrium are shown within differ-

ent EoS models. Comparing the purely nuclear models
(solid lines) with their counterparts containing additional
particles, it is evident that for given densities and a fixed
temperature, the pressure is lowered by the additional par-
ticles. As can be seen by comparing STOSΛ with STOSY,
the more degrees of freedom present, the lower the pres-
sure. The two curves start to show a difference upon onset
of other hyperons than Λ-hyperons.

At a temperature of 25MeV, the abundances of the ad-
ditional particles are still low, see above, such that the ef-
fect is not very pronounced. The difference in pressure in-
creases with decreasing Ye since the abundances increase.
Already at saturation density, due to thermal effects, there
is a small reduction in pressure, but the effect becomes ob-
viously stronger with increasing density. At twice nuclear
matter saturation density there are still no hyperons in the
zero temperature EoS, but thermal effects induce a clear
effect on the EoS. Comparing the different hyperonic in-
teraction models, in particular the different versions based
on TM1-2, it can be seen that the interaction plays some
role in determining the pressure.

In the middle panels, the internal energy defined as

ε =
ε

nBmn
− 1, (26)



Page 14 of 22 Eur. Phys. J. A (2016) 52: 50

4

5

6

7

8

0.1 0.2 0.3 0.4

p 
(M

eV
/fm

3 )

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5

BHBΛ

HS(DD2)

BHBΛφ

0.05

0.1

0.1 0.2 0.3 0.4

DDHδ, Y4

TM1-2 (110)

TM1-2 Λ4

TM1-2 (55)

TM1-2 Λ6

ε/
(m

n 
n B

)-
1

0.05

0.1

0.15

0.1 0.2 0.3 0.4

TM1-2 Y1

TM1-2 Y2

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4

LS220Λ
LS220
STOSY
STOSΛ
STOS

220g3

Ye

Y
L

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4
Ye
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middle ones the internal energy per baryon with respect to the neutron mass and the lower ones the electron lepton fraction
YL = Ye + Yνe under the assumption of β-equilibrium. No neutrinos are included in pressure and energy.

with ε denoting the total energy density, is displayed.
In contrast to the pressure, which is decreased for given
densities and temperatures if hyperons are included, it is
—slightly for the conditions shown in fig. 9— increased
due to the presence of hyperons. This is understandable
since hyperons are more massive than nucleons, thus for a
given baryon number density, if a nucleon is replaced by
a hyperon, the energy density is increased.

In the lower panels, the total electron lepton fraction
is shown, YL = Ye + Yνe , assuming β-equilibrium with
neutrinos. This means that the neutrinos follow a Fermi-
Dirac distribution with a chemical potential equal to the
electron lepton number chemical potential. The latter can
be calculated as

μνe = μL = μe + μQ = μe + μp − μn, (27)

with the electron chemical potential μe and the charge
chemical potential μQ, given by the difference of proton
and neutron chemical potentials. The neutrino chemical
potential is increasing with increasing Ye, such that in all
models the neutrino fraction increases with Ye. At this

temperature only very small differences can be observed
comparing the purely nucleonic models with the models
including non-nucleonic degrees of freedom. Only at very
low Ye, a slightly higher YL is obtained within the latter
models. sB of 1 ∼ 2 kB together with trapped neutrinos
and a value YL = 0.4 are typical values inside a proto-
neutron star, see for instance ref. [54]. In all the models
shown here this would correspond to charge fractions be-
tween 0.3 and 0.4 with no appreciable difference between
the nucleonic models and the others.

Depending on the progenitor, in the early post-bounce
phase of a core-collapse event, much higher temperatures
can be reached, of up to 100MeV, see e.g. [46, 95, 96].
Therefore, in fig. 10, the hyperonic particle fractions are
displayed as function of temperature, again for nB = 0.15
(left) and nB = 0.3 fm−3 (right) and in fig. 12 the corre-
sponding pressure, internal energy and YL. The electron
fraction has been fixed to a low value of Ye = 0.1. As dis-
cussed before, the hyperonic abundances become smaller
for larger value of Ye and typical values in the hot newly
formed proto-neutron star are more of the order 0.3, while
the neutrino free mean path is small and neutrinos are
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Fig. 10. (Color online) Same as fig. 8 but as a function of temperature for an electron fraction Ye = 0.1 and for nB = 0.15 fm−3

(left) and nB = 0.3 fm−3 (right).

trapped inside the star. We have nevertheless chosen this
low value to maximize the impact of non-nucleonic de-
grees of freedom, it corresponds to a scenario when the
star becomes transparent to neutrinos.

In the upper panels of fig. 10 the Λ, in the middle pan-
els the Σ−, and in the lowest panels the Ξ− fractions are
shown. They obviously increase all with temperature and
XΛ can reach more than 20% at 100MeV even at satura-
tion density. At saturation density, all hyperons start to
show up at roughly 25MeV, independently of the model,
whereas at nB = 0.3 fm−3, differences are visible and in
some models, Λ-hyperons exist already at very low tem-
peratures.

The models allowing only Λ-hyperon states to be pop-
ulated have considerably higher XΛ than those including
the whole baryon octet. The reason is simply, since the
baryon number density is fixed, if other hyperons appear,
they replace the Λ’s. Indeed, adding up all the hyperon
fractions, the total strangeness fraction is similar within
all models shown here. Again, as expected, the interaction
dependence is more pronounced at higher density. The Ξ−

and Σ− abundance in the DDHδ-model is probably much
lower than in all other models due to the very strong Y Y -
repulsion in these channels for the given parameterization,
see table 3. Again, the role of the symmetry energy be-
comes clear comparing the Σ− and Ξ− fractions of TM1-2

Y1 and Y2: for the harder symmetry energy the onset of
hyperons occurs at smaller temperatures.

In fig. 11, the fractions of π− are shown within the
two models considered here which contain pions. π0 and
π+ have much lower abundances, the fractions stay below
1% except above 80MeV and are therefore not shown. At
nB = 0.15 fm−3, i.e. roughly saturation density, the π−-
fraction exceeds 1% at about 25MeV and increases up
to about 20%. At twice this density, the fraction is less
temperature dependent and remains between 5 and 15%.
Despite this non-negligible abundances, the impact on the
EoS is less important than for hyperons, see below.

At which temperature do the non-nucleonic particles
start to considerably influence the EoS? In order to answer
this question we display in fig. 12 the pressure and the
internal energy as function of temperature for the same
Ye and nB as before. They clearly show the impact of
the appearance of non-nucleonic degrees of freedom. The
softening due to the additional degrees of freedom is again
visible in the pressure and the internal energy is increased
upon their onset. Again, at nB = 0.15 fm−3, the particle
content of the EoS has more influence on the behavior
of the thermodynamic quantities than the details of the
interaction, whereas, at twice this density, the different
parameterizations result in different values for pressure
and internal energy.
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Concerning the lepton fraction assuming β-equilibrium
displayed in the lower panels, in the EoS with non-
nucleonic degrees of freedom systematically higher val-
ues are obtained. The reason is that the presence of ad-
ditional particles increases the charge chemical potential.
The strong drop in YL occurs at higher temperatures, too.
The reason for this drop is that the neutrino chemical
potential is decreasing with increasing temperature in all
models, much stronger in the purely nucleonic models due
to the lower μQ than in the others.

Another interesting point about including non-nucle-
onic degrees of freedom is the fact that for a given entropy
per baryon and electron fraction the temperature is signif-
icantly lower within an EoS including hyperons and/or pi-
ons than in a purely nuclear one, see, e.g., [94]. This can be
observed from fig. 13, where for a fixed entropy per baryon,
sB = 2kB , and constant electron fraction Ye = YQ = 0.1
the temperature is shown as a function of baryon number
density within different EoS used within this paper. Upon
the onset of the additional degrees of freedom, i.e. about
saturation density if pions are included and at a slightly
higher density if only hyperons are allowed, the tempera-
ture curves considerably deviate from the purely nuclear
EoS and increase much less stringently with density. As
pointed out before, a softer symmetry energy gives rise to
smaller hyperon fractions, and, as a consequence the tem-
perature increases faster with density for a fixed entropy
per baryon. The more degrees of freedom included, the
lower the temperature. This can be understood looking at
the temperature of a multicomponent Fermi gas at fixed
entropy. For degenerate Fermi particles, i.e. for low tem-
peratures compared to the Fermi energies of the system
components, it is given by [97]

T ∼ s

π2

⎛
⎝

∑
i p3

Fi∑
i pFi

√
p2

Fi
+ (m∗

i )2

⎞
⎠ , (28)

where pFi and M∗
Fi are, respectively, the Fermi momen-

tum of component i and corresponding effective mass, and
s is the entropy per particle of the system. It is obvious
that, increasing the number of degrees of freedom makes
the temperature increase more slowly because the Fermi
momenta of the system components decrease. This is a
trivial thermodynamic effect: the appearance of hyperonic
species implies that the energy is shared among an in-
creased number of degrees of freedom, with consequently
reduced thermal excitations for each of them.

This qualitative result does not depend very much on
the value of Ye and is confirmed for trapped neutrinos,
too [94]. Assuming that in the region enclosed by the
shock at early post-bounce times, the entropy profile is
only weakly dependent on the EoS, this would mean that
the non-nucleonic degrees freedom considerably lower the
temperature with obviously important consequences for
the neutrino distribution and the neutrino heating mech-
anism. The authors of ref. [69] argue, however, that the
presence of negatively charged particles other than elec-
trons lowers the net electron number, releasing the elec-
tron degeneracy energy and resulting finally in a higher
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Fig. 11. (Color online) Same as fig. 10, showing Xπ− within
the models where they are present at nB = 0.15 fm−3 (upper
panel) and nB = 0.3 fm−3 (lower panel).

temperature of the supernova core. Without performing
realistic simulations, including neutrino transport to de-
termine the electron fraction of the EoS, this question can-
not be definitely answered.

Non-nucleonic degrees of freedom impact the maxi-
mum mass of a hot proto-neutron star, too. In general,
compared with the cold β-equilibrated neutron star max-
imum mass, it is generally found that at typical early
proto-neutron star conditions of sB = 2kB and a fixed
lepton fraction, YL = 0.4, the maximum mass is increased
for all EoS [54, 98]. Thermal effects are, however, at this
entropy value less important than the effect of trapped
neutrinos which induce a shift to higher YQ with respect
to the cold neutrino-less β-equilibrium case. Indeed, in-
specting the upper panels of figs. 9 and 12, the pressure
is more strongly influenced by a shift of Ye ∼ 0.1 to ∼ 0.3
than between zero temperature and roughly 25MeV for
all EoS shown there. An exception are the EoS with a
kaonic BEC considered in refs. [55, 56].

Since the abundances of hyperons and pions increase
with decreasing Ye = YQ, during the deleptonisation of the
hot proto-neutron star the softening of the EoS with re-
spect to the purely nucleonic one due to the additional de-
grees of freedom becomes more pronounced, see fig. 9. This
could give rise to metastable lepton-rich proto-neutron
stars, see e.g. [54, 55, 68, 99–101], and sect. 4.2, too.

4 Impact of additional particles in
astrophysical applications

Since we are mainly interested in thermal effects on an
EoS not necessarily in β-equilibrium, we will, within this
section, not consider any impact of hyperons or pions on
properties of old and cold neutron stars, neither consider
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Fig. 13. (Color online) Temperature as a function of baryon
number density at constant entropy per baryon s = 2kB and
constant YQ = 0.1. Models including hyperonic degrees of free-
dom are compared with their purely nucleonic counterparts.

their cooling process. These points will be discussed else-
where within this volume. As already mentioned earlier,
the two systems predestinated to be influenced by the
presence of non-nucleonic degrees of freedom are compact
star binary mergers, neutron star-neutron star (NS-NS)

and neutron star-black hole (NS-BH) mergers as well as
BH formation in a core collapse supernova and the early
post-bounce proto-neutron star evolution. Under some
conditions, in particular —as mentioned earlier— a very
soft EoS not compatible with a 2M� neutron star [63], the
dynamics of an exploding supernova could be influenced,
too. In ref. [27] it has been shown that a phase transition to
quark matter in the early post-bounce phase could induce
a second shock wave, helping the supernova to explode.
In general, densities and temperatures are, however, not
high enough for non-nucleonic degrees of freedom to be
considerably populated and to have a noteworthy impact
on an exploding supernova. We will therefore not discuss
this scenario further here.

Since, despite recent efforts, only a few EoS with hy-
perons and/or pions are presently available covering the
full range of thermodynamic variables necessary to per-
form realistic simulations of the above cited events, this
field is under current development and we only want to
give some hints on interesting results here.

4.1 Binary mergers

Coalescing relativistic binary systems containing compact
objects, either NSs or black holes, receive a great interest
since they are important sources of gravitational waves
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(GW), potentially detectable with next-generation detec-
tors such as advanced LIGO/VIRGO or KAGRA. In addi-
tion, they are believed to produce short gamma-ray bursts
and they may represent a major source of heavy r-process
elements. For more details, see e.g. the reviews [102–104].

The most promising track to obtain information on
the EoS at high densities, i.e. containing potentially non-
nucleonic degrees of freedom, is the post-merger phase. If
the EoS supports the formation of a hypermassive neu-
tron star, the frequencies of its normal modes are sensi-
tive to the EoS and visible in the GW signal. The mea-
surements of their frequencies could tightly constrain NS
masses and radii since they are strongly correlated. It
could even be possible to give an estimate for the NS max-
imum mass [105–109].

Other possibilities to constrain the EoS are the GW
signal from the late inspiral, where the tidal deforma-
tion depends on the EoS [103, 104, 110] or the sGRB rate
which depends on the maximum mass supported by the
merger remnant [111, 112]. r-process nucleosynthesis de-
pends critically on the EoS and matter composition [113,
114], too.

4.2 Black hole formation

It is well established that a massive star, after having con-
sumed all its fuel, becomes gravitationally unstable, lead-
ing to a so-called core-collapse event. The iron core of
the progenitor star collapses, bouncing back if the central
density reaches roughly nuclear matter saturation density
due to the stiffening of the EoS related to nuclear forces. A
shock is formed, propagating outwards and at the center
remains a hot lepton-rich proto-neutron star. The follow-
ing evolution is less well understood, see e.g. [115] for a
detailed review. If the ejected material is successfully un-
bound after bounce, a neutron star is formed in a super-
nova explosion. If, however, the expanding shock is not
able to break through the infalling material, the accre-
tion pushes the proto-neutron star over its maximum mass
which subsequently collapses to a black hole (BH). Due to
larger accretion rates, such failed supernovae reach higher
densities and temperatures than their exploding counter-
parts, which makes them an interesting tool to explore the
EoS at high temperatures and supra-saturation densities.
Alternatively to this BH formation scenario in a failed su-
pernova during the first second after bounce, a BH could
equally well be formed at later times in the so-called de-
layed formation process, either because the proto-neutron
star becomes unstable or because ejected material falls
back and causes the collapse to a black hole.

Independently of the detailed scenario, the time until
BH formation turns out to be sensitive to the underly-
ing EoS. In spherical simulations, see e.g. [116, 117], the
neutrino emission is abruptly stopped upon BH formation
with a clear imprint in the observable neutrino signal. The
time until BH formation, however, not only depends on
the EoS, but on other factors, too, such as for instance the
structure of the progenitor star or the rotation rate [118]
such that the interpretation of such a signal would not be

free of ambiguities although it presents a promising track
to learn about the EoS of hot and dense matter.

Let us start now the discussion with the delayed BH
formation. We have already mentioned that the hot proto-
neutron star with trapped neutrinos is lepton-rich and
that hyperons and/or pions are less abundant than in
cold neutron stars with very low Ye. The same is true
for EoS with a kaon condensed phase or with a transition
to quark matter [55, 56, 98, 99, 116]. Thus imagine that we
start from a proto-neutron star with few non-nucleonic de-
grees of freedom and a baryon mass above the maximum
mass of a cold neutron star with these degrees of free-
dom. During cooling the proto-neutron star deleptonizes,
and more and more additional particle states are popu-
lated until eventually the star exceeds its mass-limit and
collapses to a BH, see e.g. [116, 119, 120].

Recently, some simulations of BH formation in failed
supernovae have been performed employing EoS with pi-
ons and hyperons [46, 61, 95, 96, 121] or pions and quarks
[122, 123]. All simulations show that the time until BH
formation is sensitive to the underlying EoS and that the
softening due to the additional degrees of freedom, be
it hyperons, pions or quarks, considerably shortens the
time until collapse to a BH. Since additional particles ap-
pear only deep inside the proto-neutron star, the neutrino
signal is changed mainly by the duration of the signal
compared with a purely nuclear EoS, see e.g. the detailed
comparison in ref. [96]. This could be different if the on-
set of the additional particles is accompanied by a phase
transition, be it hyperons as in the LS220Λ EoS [46] or
quarks [122, 123]. A phase transition sufficiently modifies
the dynamics to induce an observable difference in the
neutrino signal. In this context, ref. [124] discusses the
possibility that the QCD critical point could be reached
in BH formation of core collapse.

An interesting correlation concerning the time until
BH in a failed supernova has been raised in refs. [125,
126]. They performed core-collapse simulations with a set
of purely nuclear EoS starting from a 40M� progenitor
with solar metallicity. They observed that the maximum
mass of an isentropic proto-neutron star at sB = 4kB

in neutrino-less β-equilibrium can be correlated with the
time until BH formation. In fig. 14 we display the grav-
itational mass of such a proto-neutron star as a func-
tion of the central density for a set of different EoS dis-
cussed within this paper. In table 5 in addition to the
corresponding maximum mass, the central baryon num-
ber density, the highest temperature reached and the in-
tegrated strangeness content of the different models are
given. It is obvious that the maximum mass varies dras-
tically between different EoS and shows in particular a
strong reduction for the hyperonic EoS with respect to the
purely nuclear ones. This can be understood since rather
high temperatures are reached and the strangeness con-
tent of these proto-neutron stars is very high. Therefore,
if the correlation with the time until BH formation is con-
firmed within a larger set of different EoS containing non-
nucleonic degrees of freedom, too, then it could become
a very interesting tool to constrain thermal properties of
the EoS.
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Fig. 14. Mass-central baryon density relations for isentropic
spherical stars with s = 4 in neutrino-less β-equilibrium em-
ploying different EoS discussed in the text.

5 Summary and conclusion

Within this paper we have discussed the appearance of
non-nucleonic degrees of freedom in dense and hot mat-
ter relevant for the description of neutron stars, compact
binary mergers and core-collapse supernovae. These non-
nucleonic degrees of freedom could, thereby, be hadronic,
i.e. hyperons or mesons or nuclear resonances, or quarks.
We have put the emphasis on hyperons and mesons and
discussed mainly two aspects.

The opening of hyperonic degrees of freedom in dense
matter could happen smoothly or could be accompanied
by a phase transition with a considerable effect on the
thermodynamics and the hydrodynamical evolution of
the system. We have presented here a complete study of
the low temperature phase diagram including the entire
baryon octet within the phenomenological non-relativistic
Balberg and Gal model [42]. We have shown that the dif-
ferent hyperonic thresholds may be associated with ther-
modynamic instabilities, leading to first-order phase tran-
sitions. These transitions can merge into a wide coexis-
tence zone if the production thresholds of different hy-
peronic species are sufficiently close. As a consequence, a
huge part of the phase diagram might correspond to phase
coexistence between low-strangeness and high-strangeness
phases. In contrast to the nuclear liquid-gas phase transi-
tion which is strongly quenched, this result is only slightly
affected by Coulomb effects upon adding electrons and
positrons to fulfill the charge neutrality constraint. As well
as the phase transition to quark matter [27], this phase
transition could affect the dynamics of core collapse [46].
In addition, at finite temperature a critical point associ-
ated with this strangeness-driven phase transition shows
up, which might have sizable implications for the neutrino
propagation in core-collapse supernovae.

There exist plenty of EoS models for cold neutron
stars discussing the composition in the core and the pos-
sible appearance of hyperons, mesons, nuclear resonances
or quarks. This does not hold for matter at finite tem-
perature, where much less models exist, in particular if
EoS models are excluded whose cold β-equilibrated ver-

Table 5. Results calculated within different models: maximum
mass of an isentropic star with entropy per baryon sB = 4kB in
β-equilibrium without neutrinos. Several quantities are listed
for the maximum mass configuration: (a) The total strangeness
fraction, fS , representing the integral of the strangeness frac-
tion Ys/3 over the whole star as in ref. [18]. (b) The central
baryon number density. (c) The highest temperature reached.
In the upper part, purely nucleonic models are listed and in the
lower part those containing hyperons and/or pions are given.

Model Ms=4
max fS n

(c)
B Tmax

M� [fm−3] [MeV]

DD2 2.50 0 0.53 118

TM1 (STOS) 2.57 0 0.45 109

TM1-2 (L = 111) 2.56 0 0.50 104

TM1-2 (L = 55) 2.53 0 0.52 109

LS220 2.12 0 0.74 123

BHBΛ 2.20 0.15 0.56 105

BHBΛΦ 2.24 0.14 0.57 104

STOSΛ 2.23 0.13 0.43 72

STOSY 2.06 0.15 0.41 75

TM1-2 Y1 2.17 0.15 0.51 84

TM1-2 Y2 2.14 0.16 0.56 89

TM1-2 Λ4 2.31 0.18 0.58 95

TM1-2 Λ6 2.30 0.16 0.60 99

LS220Λ 1.85 0.15 1.06 122

LS220π 2.00 – 0.83 108

sion is not stiff enough to reproduce a 2M� neutron star.
However, even if it turns out that finally, all these com-
ponents are absent from cold neutron stars, they could
be populated at finite temperature due to thermal ef-
fects. Within this paper, we have discussed results for
several phenomenological EoS models containing hyper-
ons and/or pions at finite temperature and for various
hadronic charge fractions YQ.

The models behave very differently concerning the cold
neutron star EoS. They cover a large range of neutron star
radii, maximum masses —not all of them are compatible
with a maximum mass of 2M�— and strangeness content.
In particular, we have extended some recent RMF pa-
rameterizations from ref. [26] to finite temperature which
contain the complete baryon octet and which give radii of
the order 12–13 km for a star with M = 1.4M�, maximum
masses above 2M� and a relatively important strangeness
content.

Qualitatively similar results are obtained within all
EoS models, independently of the underlying interaction.
Major outcomes are that hyperons and/or pions can be-
come abundant already at saturation density if the tem-
perature exceeds roughly 25MeV. Their abundance in-
creases with decreasing YQ, too, leading to the possibility
of meta-stable hot proto-neutron stars and a delayed col-
lapse to a black hole, see e.g. [116]. Let us emphasize that
a more quantitative analysis of these results allowing to
clarify the composition and thermodynamic properties of
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hot and dense baryonic matter would need additional con-
straints from future experimental data on hyperonic inter-
actions and/or ab initio calculations of baryonic matter
with hyperons and mesons.
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