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1. Introduction 

1.1 Motivation 

Research has revealed the importance of the concepts from the mathematical areas of both 
topology and graph theory for interpreting the spatial arrangement of spatial entities. Graph 
theory in particular has been used in different applications of a wide range of fields for that 
purpose, however not many graph-theoretic approaches to analyse entities within the urban 
environment are available in the literature. Some examples should be mentioned though such as, 
Bafna (2003), Barr and Barnsley (2004), Bunn et al. (2000), Krüger (1999), Nardinochi et al. 
(2003), and Steel et al. (2003). 

Very little work has been devoted in particular to the interpretation of initially unstructured 
geospatial datasets. In most of the applications developed up-to-date for the interpretation and 
analysis of spatial phenomena within the urban context, the starting point is to some extent a 
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meaningful dataset in terms of the urban scene. Starting at a level further back, before 
meaningful data are obtained, the interpretation and analysis of spatial phenomena are more 
challenging tasks and require further investigation. 

The aim of retrieving structured information from initial unstructured spatial data, translated 
into more meaningful homogeneous regions, can be achieved by identifying meaningful 
structures within the initial random collection of objects and by understanding their spatial 
arrangement (Anders et al., 1999). It is believed that the task of understanding topological 
relationships between objects can be accomplished by both applying graph theory and carrying 
out graph analysis (de Almeida et al., 2007). 

1.2 Background 

Starting from initially unstructured geospatial datasets of urban areas (thus, no prior knowledge 
of the spatial entities is assumed), de Almeida et al. (2005, 2007) showed how a graph-theoretic 
approach could be applied towards the analysis of the urban scene spatial topology. 

Urban LiDAR data was used as an example scenario. Topology was initially brought in to the 
original data by generating a triangulated irregular network (TIN - the maximal planar 
description of the given point set’s internal structure, Kirkpatrick and Radke, 1985). A binary 
classification of the TIN facets based upon their gradient – whose thresholding depends on the 
resolution of the initial data – was employed (“flat” and “steep” facets). Eventually, the TIN 
facets were “aggregated” according to the classification above that led to a map of polygonal 
gradient regions (“flat” and “steep” polygons). The authors pointed out how the steep polygonal 
regions in particular were expected to enclose urban features. These steps constitute the 
preliminary preparation process of raw data. 

A network of connectivity throughout the map of flat & steep polygonal regions was then built 
up by applying graph theory, which resulted in a graph of adjacencies: each region in the graph 
is represented by a node; graph edges link up nodes corresponding to adjacent polygons. The 
adjacency graph was processed either through the depth-first (DFS) or the breadth-first search 
(BFS) algorithms. Given the different ways each algorithm operates in traversing a graph, it was 
noted how BFS results are more meaningful in terms of the urban scene: the BFS tree branches 
are connected components of the original graph, and represent the shortest path between the root 
and their leaf (Sedgewick, 2002); it seems that they can be related to potential urban features. 
Thus, the implementation of the graph analysis procedure was based upon BFS. It traverses the 
graph looking for sequential relationships of containment amongst the sequences of adjacency: 
containment-first search (CFS). In fact, where containment occurs within the Useful External 
Border (UEB) – basically, the outer flat enclosing polygon corresponding to the ground – there 
is a high likelihood of an urban feature being present (de Almeida et al., 2005, 2007). 

This paper describes in detail CFS algorithm which was developed for the purposes above. The 
diagram depicted in Figure 1 above illustrates where the algorithm sits within the whole 
methodology proposed for the analysis of urban spatial topology. 
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Figure 1. An overview of the methodology proposed for the analysis of urban spatial topology 
(de Almeida, 2007). 

2. A containment-first search algorithm 

2.1 Preliminaries 

For the purposes of this work, when two polygons share at least one arc, the spatial relation is 
called adjacency; if the two polygons happen to meet at a node, the spatial relation is 
distinguished from the previous one and is called touching (de Almeida et al., 2007; de 
Almeida, 2007). 

As de Almeida et al. (2007) noted, CFS could not be developed simply based on BFS but had to 
be extended in order to be able to detect the spatial relation of containment in a broader sense. 
The spatial relation of touching between steep polygons should be taken into consideration. This 
improvement enabled the derivation of particular cases of containment not explicit in the graph 
of adjacencies, e.g. when a ring of steep polygons meeting at nodes contains a single flat 
polygon - the so-called polygon-ring containments. 

2.2 The analytical analysis method 

The graph-theoretic approach was implemented based on the investigation of the topological 
relationships between objects in the context of the whole spatial scene. This was coded in C 
foreseeing the advantages and potentialities of pointer structures in C for graph analysis (Kelley 
and Pohl, 1990). 

The analysis method can be interpreted as follows. Considering the UEB (recall that this is a flat 
polygon) as the starting point of the search process, the original graph of adjacencies is 
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traversed. When visiting the adjacent steep vertices of the root, the CFS algorithm takes the first 
vertex appearing in the root’s linked list and, starting from this one, traverses the graph of steep-
polygon touchings. Because the graph of touchings is a disconnected graph, the traversal 
process covers only the subgraph that the given steep vertex belongs to. While traversing this 
particular subgraph, the CFS algorithm tags all the steep vertices visited as belonging to the 
same connected unit. This process continues until the first level of adjacency of the graph of 
adjacencies is exhausted. When the CFS comes across a root’s adjacent vertex already tagged as 
belonging to a particular containment unit, this is skipped and the corresponding polygon 
remains intact, belonging to the containment unit already identified. 

To illustrate the concept implemented, let us take a simpler scene pictured in Figure 2. Let us 
suppose that steep polygons 3,…,11 (in dark green) are constituent parts of the rings of steep 
polygons enclosing flat polygons 12 and 13 (vd. Figure 2a); in other words, there is a sub-graph 
of the graph of steep-polygon touchings that consists of vertices 3 to 11. 
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enclosing separate containment units, due 
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Figure 2. The containment-first search process: a) before polygon-ring containments are 
detected; b) after polygon-ring containments are detected 

When vertex 2 is visited in the adjacencies graph, the algorithm takes the vertex at the top of 2’s 
adjacency list, vertex 10, and the graph of steep-polygon touchings is traversed starting from 10; 
all the steep vertices belonging to the same sub-graph as that of 10 are tagged accordingly, 
indicating a potential containment unit. When vertex 10 is exhausted in the graph traversal, CFS 
moves on to visit vertex 9; this is now skipped since it was previously tagged as belonging to an 
containment unit already identified. And so on so forth until vertex 3 is visited, and the 
containment unit is complete. Visually, the translation of the facts above is accomplished by 
assigning the same colour to all steep (hashed pattern) and flat (solid colour) polygons within 
the same containment unit (vd. Figure 2b). 
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3. Proof of concept 

3.1 Generation of synthetic data 

Before tests with real initial unstructured urban data of are undertaken, this section describes an 
experiment carried out with synthetic idealised spatial data relating to urban objects. A map of 
binary classified gradient regions was created simulating a map of higher-level urban scene 
objects. This was derived from building polygons from OS Master Map data2

As Figure 3 shows, steep polygons shape both buildings standing on their own and higher-level 
structures; the enclosed flat polygons simulate building roofs. For topological reasons, an outer 
polygon - distinct from the Universe Polygon - had to be considered so as to simulate the 
ground polygon. 

. 

 

Figure 3. Simulated map of gradient regions: binary classification of the polygons generated 
into “steep” polygons (dark colour) and “flat” polygons (light colour). 

Polygon and associate arc attributes were accessed in order to retrieve gradient-region 
adjacencies (ESRI, 1995; Rigaux et al., 2002; ESRI, 2005). The graph of adjacencies was 
generated. The main characteristic of this graph when dealing with clean data is the fact that all 
relationships of adjacency are also of containment. This is far more complex when dealing with 
real world data: it is not guaranteed beforehand that a spatial relation of adjacency is also of 
containment (de Almeida et al., 2007). 

As typically happens with real world data, there are no steep polygons meeting at nodes in this 
case (i.e. steep-polygon rings, enclosing single containment units, are not split into different 
entities), and hence the touchings graph is a null graph. 

                                                 
2 Made available by the Department of Geomatic Engineering of the University College London for 
academic purposes. Ordnance Survey ©Crown Copyright, all rights reserved. 



 6 

3.2 Spatial topology analysis 

Figure 4 depicts the results of the spatial topology analysis for the simulated map of gradient 
regions. Polygon 2 (corresponding to the ground polygon, mapped in white), with 45 adjacent 
regions, was chosen as the UEB. 

 
Figure 4. Spatial topology analysis and the different containment units identified. 

It can be seen that the algorithm indeed detected individually all the urban features simulated as 
separate containment units (different colours represent each one). In fact, sequences of 
adjacencies/containments were correctly detected as so by the algorithm (vd. Figure 4): solid 
colours correspond to flat polygons; coloured hashed patterns correspond to steep polygons. 
Moreover, individual simulated spatial features, closely standing next to one another but not 
actually juxtaposed, were detected separately. This confirms that in theory the algorithm is even 
capable of detecting single buildings standing on their own. 
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Figure 5. Branches of the breadth-first search tree directly relate to spatial features. 

(Detail of Figure 3; the numbers on the map are polygon labels in insert) 

4. Summary and conclusions 

Further to our prior work, this paper showed how the spatial relation of touching between steep 
polygons was taken into consideration in order to extend the CFS procedure to be able to detect 
polygon-ring containments. A flowchart of the algorithms implemented was provided, and an 
illustration of how CFS procedure works was also given. 

Proof of concept was carried out. For the purpose, synthetic data was generated and a map of 
gradient regions, simulating urban scene objects, was created. The analysis of the spatial 
topology was undertaken, and conclusions were drawn in terms of the assertions made when 
designing the algorithms. The results obtained demonstrated that, in the absence of noise and 
error, the algorithms do indeed make the urban spatial topology more explicit. In particular, the 
results support the assumption that each BFS tree’s branch does relate to a single containment 
unit within the initial map of gradient regions (e.g. tree branch starting at vertex 76 in Figure 5). 
Moreover, sequences of containment relationships do relate to higher-level urban scene objects. 

The concepts drawn in the research described and the algorithm implemented should serve as 
the basis for automatic analysis of spatial datasets, such as: analysis of image data; analysis of 
settlement structures; automation of land use mapping for urban areas. Furthermore, the results 
obtained particularly with LiDAR data reveal that the methodology proposed has also promised 
as a tool that could be extended to be applied in the automatic classification of raw LiDAR data. 
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