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Abstract 

The ordered probit model is used to examine the contribution of several factors to the injury severity faced by motor-vehicle 
occupants involved in road accidents. The estimated results suggest that motor-vehicle occupants travelling in light-vehicles, at 
two-way roads, and on dry road surfaces tend to suffer more severe injuries than those who travel in heavy-vehicles, at one-way 
roads, and on wet road surfaces. Additionally, the driver’s seat is clearly the safest seating position, urban areas seem to originate 
less serious accidents than rural areas, and women tend to be more likely to suffer serious or fatal injuries than men. 
© 2014 The Authors. Published by Elsevier B.V. 
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1. Introduction 

In 2012, almost 28,000 persons died on European Union (EU) roads due to road traffic accidents. Compared to 
2011, this represents a decrease of about 9% (EC, 2013). The EU strategic target for the period 2011-2020 is to 
halve the overall number of road fatalities by 2020 (EC, 2011). From now on, an average annual reduction of about 
7% will be required in order to achieve the EU target.   

Portugal has been one of the major contributors for the positive results of 2012, by reducing its number of road 
traffic fatalities by more than 15%. In spite of this remarkable progress, the country still is well above the EU 
average number of road fatalities. In 2012, within the 27 Member States, there were on average 55 road fatalities per 
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million inhabitants; in Portugal this number grew up to 71, which placed the country on the bottom rung of the 
ladder (20th position) (EC, 2013).    

Fostered by the unsatisfactory position that the country held within the EU, together with the social and economic 
consequences of road fatalities, the reduction of the number of road traffic fatalities was declared a national 
challenge. Hence, under the framework of the National Road Safety Strategy (ANSR, 2009), a relevant goal was 
established: “to place Portugal among the 10 EU countries with a low number of road fatalities”. This goal should be 
accomplished through the reduction of the number of road traffic fatalities “so as to reach 62 deaths per million 
inhabitants by 2015”, the equivalent to a 12.7% decrease compared to 2012.    

Data from 2011 highlighted that about 36% of the EU road fatalities took place in urban areas. In Portugal this 
share was even higher: according to official statistics, the number of road fatalities occurring at urban 
agglomerations was around 49% in 2011, rising to 50% in 2012 (ANSR, 2012 and 2013).  

This study intends to contribute for a better understanding of the factors that affect the occurrence of accidents 
and, in particular, those that affect its severity. Firstly, a summarized state-of-the-art is presented aiming at 
identifying the more appropriate methodologies and the most significant explanatory affecting the road accident 
severity. Then, and resorting to ordered response models, the ordered probit model is applied to a real database, 
which comprises 4528 records related to road accidents that took place in the municipality of Coimbra, Portugal, 
between 2007 and 2011. 

2. Literature review 

An effective road safety management requires a good insight into the factors that are believed to be related to 
road traffic accidents. Based on this framework, several research studies have been conducted over the years aiming 
at identifying factors that may influence both the frequency and the severity of road traffic accidents. However, as 
pointed out by Savolainen et al. (2011), one has to be aware that the factors influencing accident frequency may 
vary from the ones affecting the severity; hence, it is suggested that their analysis should be performed individually. 

In the area of accident severity research, continuous efforts have been conducted in order to investigate the 
relationship between the level of severity (dependent variable) and a set of explanatory variables, which usually 
include: driver attributes (e.g., age and gender), vehicle features (e.g., body type, vehicle age and number of vehicles 
involved in the accident), road characteristics (e.g., number of lanes, road surface conditions, intersection control 
and types of road), and accident characteristics (e.g., accident’s main cause). Occasionally, the influence of other 
variables on accident severity like speed limit, day of the week, time of the day, average traffic characteristics 
(AADT), weather and traffic conditions have also been scrutinized (Delen et al., 2006; Manner and Ziegler, 2013; 
Torrão, 2013).  

From previous studies, it is worth mentioning a recent study carried out by Christoforou et al. (2010), mainly 
because it offers a comprehensive literature review on the subject. By crossing the results from 28 studies, the 
authors found that the factors which have consistently shown to be connected to an increased severity were: (1) 
aging; (2) driving while intoxicated; (3) head-on collisions; (4) crashes with heavy-vehicles and motorcycles; (5) 
poor lighting conditions; (6) vertical and horizontal curvature; (7) rural versus urban areas; and (8) speeding. In 
contrast, the use of helmet or seat belt was associated to a high decrease of the severity outcome. Other factors like 
gender, intersection type, road surface conditions, seating position, weather and average traffic characteristics led to 
conflicting findings – in some studies these factors were related to increased severity, while in other studies the 
opposite was concluded.  

In summary, the accident severity investigations attempted to examine the influence of driver attributes, vehicle 
features, accident characteristics, and road, weather, and traffic conditions on the severity outcome. A wide variety 
of methodological approaches have been used to fulfil this propose. Recently, Savolainen et al. (2011) conducted a 
research, which intended to assess the characteristics of road accidents severity data and the methodological 
approaches most commonly used for the analysis of such data. The authors highlighted that the “appropriate 
methodological approach can often depend heavily on the available dataset, including the number of observations, 
quantity and quality of explanatory variables, and other data-specific characteristics”. Still, they found that the 
majority of the modelling approaches were framed in the discrete response models which include: binary response 
models (e.g., binary probit and binary logit), ordered discrete response models (e.g. bivariate ordered probit and 
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generalized ordered logit), unordered multinomial discrete response models (e.g. multinomial logit, Markov 
switching multinomial logit, nested logit, and mixed logit); other less common approaches have also been used and 
include: artificial neural networks, and some data mining techniques such as the classification and regression tree 
(CART) analysis. A complete review of this literature is provided pointing out the strengths and the weaknesses of 
each one of the approaches typically employed for examining accident severity data.  

Despite the methodological evolution registered, which improved the statistical validity of findings, it is worth 
noting that statistical regression models such as the logistic regression model still are broadly employed in the 
identification of contributing factors to accident severity (e.g., Bédard et al., 2002; Konnen et al., 2011). For 
example, Bédard et al. (2002) applied a multivariate logistic regression to assess the independent contribution of 
driver, accident, and vehicle characteristics to fatal injuries sustained by drivers. They found that factors such as 
increased driver age, female gender, blood alcohol concentration greater than 0.30, non-belted drivers, driver side 
impacts, travelling speeds greater than 70 mph, and older vehicles were associated to higher odds of fatal outcomes; 
on the opposite, a 25 cm increase in vehicle size (wheelbase) was translated into a reasonable reduction of the 
fatality risk.  

CART is a non-parametric model that has been pointed out by some authors (e.g., Das et al., 2009; Kuhnert et al., 
2000) as a valid alternative to the frequently used logistic regression models in the analysis of road injury severity. 
Das et al. (2009) applied Random Forests, which are ensembles of individual trees grown by CART algorithm, to 
identify traffic and roadway design, as well as driver and vehicle information significantly related to fatal and severe 
injuries on urban arterials for different accident types. This methodology identified alcohol/drug use, posted speed 
limits, failure to use safety equipment by all drivers, presence of a driver/passenger in the vulnerable group (more 
than 55 years or less than 3 years), slow moving vehicles (cycles/moped), and lower ADT as contributing factors 
leading to an increase of severe outcomes. 

Gray et al. (2008) used ordered probit models to identify specific accident characteristics that increase the 
likelihood of accident severity involving young male car drivers in Great Britain. Slight, serious, or fatal injuries 
were the possible severity outcomes considered. The authors concluded that driving in the darkness, during early 
morning, between Friday and Sunday, on the main roads, during overtaking manoeuvres, and on the single 
carriageway of speed limit 60 mph were the most significant characteristics related to serious and fatal injuries. On 
the other hand, characteristics like driving in daylight, between Monday and Thursday, on roads with a speed limit 
of 30 mph or less, at a roundabout, waiting to move, and when an animal is on the carriageway were associated to 
light injuries.  

The ordered probit modelling methodology was also used by Abdel-Aty (2003) in an attempt to analyse the 
driver injury severity levels at several roadway entities. Three separated models were developed for signalized 
intersections, roadway sections, and toll plazas. Older and male drivers, those not wearing a seat belt, drivers of 
passenger cars (i.e., vehicle type), vehicles struck at driver’s side (i.e., point of impact/accident characteristics), and 
those who speed revealed a higher probability of a severe injury in all the models. Other variables were found 
significant only in specific models: alcohol, dark lighting conditions, and the existence of horizontal curvatures 
affected the likelihood of injuries in the roadway sections’ model; a driver’s error was significant in the model for 
signalized intersections; vehicles equipped with an electronic toll collection affected the likelihood of higher injury 
severity in the toll plazas’ model; lastly, both signalized intersections and roadway sections models revealed higher 
probability of injuries in rural areas. Furthermore, the author tested other modelling approaches, namely a 
multinomial logit and a nested logit with different nesting structures, and compared the results produced by those 
models with the results provided by the ordered probit model. This comparison showed that the ordered probit 
model, besides being simpler, has also produced better results than the multinomial logit; by comparing the ordered 
probit model with the best nesting structure of the nested logit model, the author recommended the former to model 
driver injury severity because, in spite of the similarity found in the results provided by both models, the latter has 
introduced considerable complexity in the modelling process.   

Using a combination of different methodologies is a common practice in accident severity studies (Torrão, 2013). 
Not only to compare the performance of different models, as in the case of Abdel-Aty (2003), but also to extract 
partner relationships between variables and to overcome data complexity, as presented, for example, by Kuhnert et 
al. (2000) and O’Donnell and Connor (1996).  

O’Donnell and Connor (1996) assessed the probability of four levels of injury severity sustained by motor-
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vehicles occupants as a function of occupant, vehicle and accident attributes. For that purpose they used two ordered 
response models, specifically the ordered probit model and the ordered logit model. The results showed that the 
probability of serious injuries and deaths widens with increases in speed, age of the vehicle, age of the occupant, and 
time of the accident. They also found that the left-rear seating position, female gender, alcohol levels greater than 
0.08, non-use of seatbelt, driving light-duty trucks (i.e., vehicle type) and head-on collision (i.e., type of 
collision/accident) were factors related to increased severity outcomes.   

Many of the results described in the previous studies were replicated in Christoforou et al. (2010), thus 
confirming the consistency of a number of factors contributing to the injury severity outcomes. Nevertheless, the 
factors that affect the frequency and the severity of the accidents depend on drivers’ behaviour, as well as the 
vehicle fleet and the legal frame that differ from country to country. Therefore, the development of further 
investigation on this subject is still pertinent, namely if addressed to the specifications of each country. 

3.  Methodological approach 

Accounting for the ordinal nature of injury data is an important consideration in road accident severity modelling 
(Savolainen et al., 2011). Unordered response models, such as the multinomial logit and probit models, or the nested 
logit model, regardless of accounting for the categorical nature of the injury data, would fail to account for the 
ordinal nature of the injury classes (Green, 2002). Furthermore, the multinomial logit model is associated to 
undesirable properties, such as the independence of irrelevant alternatives (Ben Akiva and Lerman, 1985) and the 
multinomial probit is related to a lack of a closed-form likelihood (Greene, 2002). Alternatively, ordered response 
models, namely the ordered probit (OP) or logit (OL) models have increasingly been employed for modelling injury 
severity when it is recorded in multiple ordinal categories (Eluru et al., 2008). Both formulations give very similar 
results, although the OP is more often selected than the OL. In this study, the modelling methodology used to 
analyse the injury severity sustained by non-motorists is the OP model. The OP model is especially appropriate to 
model injury severity because, besides identifying statistically significant relationships between explanatory 
variables and a dependent variable, it also discerns unequal differences between ordinal classes in the dependent 
variable (Duncan et al., 1998). Additionally, it also requires smaller samples when compared to unordered response 
models (Ye and Lord, 2014).  

The model, originally proposed by McKelvey and Zavoina (1975) as an alternative to the ordinary linear 
regression, is usually built around the notion of a latent underlying injury risk propensity occurring from a road 
accident that determines the observed ordinal injury severity level. The general specification is (Washington et al., 
2003): 

iii εβXz                     (1) 

where zi denotes the latent injury risk propensity for accident victim i, β is the vector of parameters to be estimated, 
Xi  is the vector of observed non-random explanatory variables measuring the attributes of accident victim i, and εi is 
the random error term following standard normal distribution. Accordingly, the mean and the variance of εi are 
normalized to zero and one, respectively. Since the dependent variable, zi, is unobserved, standard regression 
techniques cannot be applied to compute Eq. (1). Yet, as suggested by O’Donnell and Connor (1996), one can 
reasonably assume that a high risk of injury, denoted by zi, is related to a high level of observed injury, denoted by 
yi. This relationship can be translated as follows (Ye and Lord, 2014): 

1if
if,
if1,

Ki

ki1k

1i

i

μz,K
μzμk

μz
y                                                                                                                              (2) 

where 1Kk1 μ,,μ,,μμ  are the threshold values for all injury severity levels that define yi, corresponding to 
integer ordering, and K is the highest ordered injury severity level. In turn, the probability that accident victim i 
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faces an injury severity level k is equal to the probability that the latent injury risk propensity, zi, assumes a value 
between two fixed thresholds. In other words, given the value of Xi, the probability that the injury severity faced by 
accident victim i belongs to each injury severity level is: 
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where Φ is the cumulative normal distribution function. For estimation, Eq. (3) can be written as (Washington et al., 
2003): 

)XβΦ(μ)XβΦ()kP(y ikik 1                                                                                                        (4) 

where kμ  and 1kμ  denote the lower and upper thresholds for the injury severity level k, respectively. For all the 
probabilities to be positive, the thresholds values must satisfy the restriction 1Kk1 μμμ . Computation 
of these probabilities allows the understanding of the effect of individual estimated parameters. Indeed, a positive 
value of βi implies that an increase in Xi will clearly generate the increase (respectively, decrease) of the 
probabilities of the highest (respectively, lowest) ordered injury severity levels. However, it is not obvious what 
effect a positive or negative βi will generate on the probabilities of the intermediate levels. For this reason, the 
computation of marginal effects for each level is suggested (Washington et al., 2003). These marginal effects 
provide the direction of the probability for each level as follows: 

β)XβΦ(μ)XβΦ(X)kP(y iKik 1                                           (5) 

In the specific case of a categorical variable, the computation of Eq. (5) is not appropriate since it only makes 
sense if the variable is continuous. Instead, the probabilities that result when the variable changes from 0 to 1, 
holding all other variables values at their means, should be compared. That is, for a categorical variable Xi, the 
corresponding marginal effect is (Green, 2007): 

)Xky(P)Xky(PX iii 01                               (6) 

The thresholds μ are unknown parameters to be estimated jointly with the model parameters β. Here, both are 
estimated through the maximum likelihood method (see, for example, Green (2002) for detailed information on the 
method), using the LIMDEP software (Green, 2007).  

4. Dataset characterization  

In Portugal, the National Road Safety Authority (ANSR – Portuguese abbreviation) is responsible for managing 
the database of the national road accidents. Whenever a road accident results in at least one injury, police officers 
are in charge of filling an accident bulletin, so called Boletim Estatístico de Acidentes de Viação (BEAV), which is 
then sent to the ANSR to be validated. The BEAV is organized into six information categories, namely 
identification of the accident, external circumstances, nature of the accident, vehicles involved, drivers involved, and 
severity outcomes. The bulletins are well structured, which gives the possibility of extracting information that has 
proved to be very useful on road accident severity modelling.  

For this study, the ANSR supplied information about all road accidents occurred in the municipality of Coimbra 
from 2007 to 2011. During this period, a total of 3158 road accidents were recorded, involving 5021 drivers, 1183 
passengers, and 548 pedestrians. Since the main purpose of this study relies on the analysis of the injury severity 
sustained by motor-vehicle occupants, the records about pedestrians, cycles, moped, and motorcycle occupants were 
ignored. In the end, a total sample of 4528 observations was considered.  
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The observed injury severity sustained by motor-vehicle occupants is distributed as follows: no injury (41.63%); 
slight injury (56.85%); serious injury (1.10%); and fatal injury (0.42%). It is worth noting that removing the most 
vulnerable road users from the original dataset has decreased the shares of the two most severe injury outcomes. For 
that reason, the serious and the fatal injuries were aggregated into a single injury severity level. Hence, the 
dependent variable considered in this study is the level of injury sustained by motor-vehicle occupants, divided into 
three categorical levels: no injury (y=1); slight injury (y=2); and serious or fatal injury (y=3).  

Along with the level of injury sustained by motor-vehicle occupants (dependent variable), each observation 
comprises a number of attributes (explanatory variables) related to the accident victim, vehicle, and roadway and 
environmental conditions. Table 1 presents the definition of each explanatory variable together with its mean (M) 
and standard deviation (SD) values. All of these variables, with the exception of the variable age of the motor-
vehicle occupant, are binary/dummy variables with means between 0 and 1. Since OP models may not converge if 
the variables have not similar scales (Green, 2007), the variable age of the motor-vehicle occupant (continuous 
variable) has been scaled (dividing by 100) to have mean with the same scale as those of the binary/dummy 
variables.  

Table 1 – Explanatory variables  

Explanatory variables Type Coding Mean SD 

Age of motor-vehicle occupant  Continuous Continuous variable  0.395 0.170 

Gender of motor-vehicle occupant  Binary 1 if male, 0 if female 0.575 0.494 

Vehicle type  Binary 1if light-vehicle, 0 if heavy-vehicle 0.972 0.166 

Worn restraint system Binary 1 if worn, 0 if not worn 0.970 0.170 

Seating position 

Driver vs. Passenger 
Front vs. Rear 

 

Binary 
Binary 

 

1 if driver, 0 if passenger 
1 if front, 0 if rear 

 

0.785 
0.922 

 

0.411 
0.267 

Day type  Binary 1 if weekday, 0 if weekend 0.753 0.431 

Road environment  Binary 1 if urban, 0 if rural 0.765 0.424 

Lighting conditions  Binary 1 if daylight, 0 if darkness 0.761 0.427 

Road surface conditions Binary 1 if dry, 0 if wet 0.647 0.478 

Traffic type  Binary 1 if two-way, 0 if one-way 0.616 0.487 

Roadway alignment  Binary 1 if segment, 0 if curve 0.634 0.482 

Accident type 

Head-on-collision 
Rear-end collision 
Side collision 
Rollover 
Run-of-road 
Fixed-object collision 
Multivehicle collision 
Other type of collision 

 

Dummy 
Dummy 
Dummy 
Dummy 
Dummy 
Dummy 
Dummy 
Dummy 

 

1 if head-on collision 
1 if rear-end collision 
1 if side collision 
1 if rollover 
1 if run of road 
1 if fixed-object collision 
1 if multivehicle collision 
1 if other type of collision 

 

0.127 
0.248 
0.244 
0.053 
0.143 
0.086 
0.072 
0.027 

 

0.333 
0.432 
0.429 
0.225 
0.350 
0.280 
0.259 
0.163 

5.  Model estimation results  

The modelling procedure started with the assessment of the presence of multicollinearity in the dataset. Indeed, 
the correlation matrix (which is not presented here due to space limitations) showed that the two variables associated 
to the seating position of motor-vehicle occupants (i.e., driver vs. passenger and front vs. rear) were strongly 
correlated to each other (presenting a r ca. 0.6). In fact, since both the driver and most of the individual passengers 
travel in front seats, this is not an independent relationship. In order to warrant meaningful model estimations, not 
only in terms of the statistically significance of the estimated coefficients, but also to ensure reasonable magnitudes 
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and signs for those coefficients, it is advisable that one of those variables should be excluded from the model. The 
selection of the variable to be removed from the model was based on the condition that the model fit will not vary 
significantly. Thus, the variable front vs. rear was chosen to be removed. The same procedure was followed for the 
pair head-on collision - side collision (r ~ 0.5). In this case, the variable side collision was the one excluded from the 
model. At this point, it is worth mentioning that the prior analysis of the correlation matrix contributed to the final 
coding of some explanatory variables. For example, as a first attempt, the use of a restraint system has been divided 
into two variables: (1) worn seat belt and (2) worn child restraint system. However, these variables were found to be 
strongly correlated to each other (r ~ 0.7); instead, both variables were aggregated into a single variable (worn 
restraint system). On the other hand, accident types were disaggregated into more categories than those initially 
thought aiming at minimizing the degree of correlation amongst some pairs. 

After the multicollinearity problem solved, all the variables figuring on Table 1, excluding the variables front vs. 
rear and side collision, were included in the model, and the backward selection process was used in such manner 
that only the variables significant at the 0.05 significance level were retained. The resulting model is shown in Table 
2. The variables such as age and worn restraint system, which were consistently pointed out in several earlier studies 
as factors that were related to increased and decreased injury severity outcomes, respectively, were not found to be 
statistically significant in this study. Also, the variables roadway alignment (i.e., straight or curve) and day type (i.e., 
weekday or weekend) were not significant.  

Along with the maximum likelihood estimates of the model parameters β and the thresholds values μ (together 
with their statistical significance), two goodness-of-fit measures are provided – the adjusted log likelihood ratio 
index (adjusted ρ2) and the classification accuracy (CA). The former establishes how well the model fits the data and 
the latter examines the prediction accuracy of the model. For a detailed description of these goodness-of-fit 
measures see Ben-Akiva and Lerman (1985). The calculated adjusted ρ2 is 0.224, which is a notable value when 
compared to the values reported in similar studies (e.g., Kockelman and Kweon (2002) reported an adjusted ρ2 value 
of 0.045; Abdel-Aty (2003) reported adjusted ρ2 values ranging from 0.093, to 0.15, and to 0.20). In terms of 
prediction accuracy, the model predicts correctly 74% of the overall injury severity outcomes, which is similar to the 
CA value reported by Saleh and Pai (2008). It is worth mentioning that when dealing with unbalanced datasets, it is 
expected that the less represented outcome tends to be predicted very poorly.  

Table 2 - Ordered probit model estimation results 

   Marginal effects 

Variable Coefficient t-Ratio No injury Slight injury Serious/fatal injury 

Constant 1.241 8.270    

Gender of motor-vehicle occupant  -0.476 -11.291 0.1754 -0.1714 -0.0039 

Vehicle type  0.416 3.278 -0.1629 0.1611 0.0017 

Seating position      

Driver vs. Passenger  -1.449 -22.755 0.4187 -0.3753 -0.0434 

Road environment  -0.289 -5.788 0.1053 -0.1027 -0.0026 

Lighting conditions  -0.182 -3.881 0.0673 -0.0658 -0.0015 

Road surface conditions 0.117 2.747 -0.0443 0.0435 0.0008 

Traffic type  0.121 2.788 -0.0458 0.0450 0.0008 

Accident type      

Head-on collision 0.520 8.186 -0.1785 0.1718 0.0067 
Rollover  1.221 12.467 -0.3239 0.2798 0.0441 
Run-off road 0.949 15.103 -0.2944 0.2746 0.0198 
Fixed-object collision 0.634 8.667 -0.2085 0.1985 0.0100 
Multivehicle -0.206 -2.544 0.0793 -0.0782 -0.0011 
Other type of collisions 0.388 3.230 -0.1341 0.1294 0.0047 

Threshold parameters      
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μ2 3.183 45.298    

Log-likelihood with constant only -3394.46 Overall CA 73.8%  

Log-likelihood at convergence  -2621.328 CA for no injury 73.7%  

Degrees of freedom 13 CA for slight injury 75.8%  

Adjusted  ρ2 0.224 CA for serious/fatal injury 0%  

In the following paragraphs, the magnitudes and in particular the signs of the estimated parameters are discussed. 
It is worth remembering that a positive (negative) value of a parameter β, combined with an increase in the 
corresponding variable X, will increase (decrease) the probability of the highest ordered injury severity level (i.e., 
serious or fatal injury) and decrease (increase) the probability of the lowest ordered injury severity level (i.e., slight 
injury). In other words: the estimated parameters that are greater (lesser) than zero imply that increases in the 
corresponding variables tend to augment (diminish) the injury risk propensity, zi, as translated by Eq. (1). Given 
that, the explanatory variables whose parameters have a positive sign are: vehicle type, road surface conditions, 
traffic type, head-on collision, rollover, run-off road, fixed-object collision, and other type of collisions. It means 
that motor-vehicle occupants who travel in a light-vehicle, or on dry road surfaces, or at two-way roads are more 
likely to be involved in a serious or fatal road accident. In addition, the average injury risk is increasingly 
aggravated by rollover-type accidents, followed by run-off-road accidents, collisions against fixed-objects, and 
head-on collisions. In fact, the largest positive parameter listed in Table 2 is the one associated to the variable 
rollover. This means that a rollover-type accident is the most critical factor, increasing significantly the average risk 
of injury faced by a motor-vehicle occupant. 

By comparing the estimated coefficients of all the variables mentioned above, one can rank the influence of each 
variable on the average injury risk, concluding that the rollover-type of accident apparently has the greatest impact 
on injury risk (β=1.221) while the road surface condition appears to have the smallest impact (β=0.117). In terms of 
magnitude, for example, the injury risk faced by a motor-vehicle occupant involved in a rollover-type accident is 
about 2.4 times higher than the injury risk faced by a motor-vehicle occupant involved in a head-on collision 
(β=0.520), all remaining variables being equal. 

Moreover, the set of variables associated to negative parameters include: gender, seating position, road 
environment, lighting conditions, and multivehicle. It means that the average injury risk decreases when a motor-
vehicle occupant is travelling on an urban environment, or at daylight, or is involved in a multivehicle accident. 
These results are in agreement with the known Portuguese tendencies. In reality, though the majority of the 
Portuguese road accidents occur within urban areas (about 70%) the seriousness of rural accidents is higher. The 
estimated parameters also show that the probability of suffering no injury increases whether the accident victim is a 
male or a driver. Actually, the variable seating position is associated to the largest negative parameter presented in 
Table 2, which means that the average risk of injury will decrease significantly if a motor-vehicle occupant is seated 
at the driver’s position. In fact, this might mean that, in an imminent risk situation, the driver anticipates the 
occurrence of the accident. Consequently, the driver adopts earlier defensive measures, whilst the passenger is more 
easily surprised and produces later and less effective defensive reactions.  

As one should expect, the computation of the marginal effects for each variable, also presented in Table 2, 
confirms the previous findings on the direction of the probabilities of the lower and upper injury severity levels. In 
addition, based on those indicators, some considerations concerning the effect of the explanatory variables on the 
intermediate injury severity level (i.e., slight injury) can be provided. For example, it can be found that men or 
drivers are less likely to be involved in a slight injury accident than women and passengers (in both cases the 
corresponding marginal effect is lesser than zero). On the opposite, the probability of a motor-vehicle occupant 
being involved in a slight injury accident will increase weather travelling at a two-ways road, or on a dry road 
surface when compared to one-way roads or wet road surfaces, respectively (in these cases, the marginal effects are 
greater than zero). The influence of the remaining variables on the slight injury outcome can be interpreted in this 
way.  
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6.   Conclusion  

In this study, the ordered probit model was used to examine the influence of a number of factors on the injury 
severity faced by motor-vehicle occupants involved in road accidents. The model estimation results suggest that 
some types of road accidents, namely the rollover-type, run-off-road, collisions against fixed objects and head-on 
collisions, appear to be the major contributors for the most severe injury level. Also, those who travel in a light-
vehicle, at a two-way road and on dry road surface tend to suffer more severe injuries than those who travel in a 
heavy-vehicle, at a one-way road, and on a wet road surface. In contrast, the driver´s seat is clearly the safest seating 
position, and urban areas, although presenting the highest accident occurrence frequency, are linked to decreased 
severity level. Also, women tend to be more likely to suffer serious or fatal injuries than men.  

All the findings presented above are consistent with the ones from several former studies and, at the same time, 
seem to be intuitively reasonable. However, some of those findings merit further comments. Indeed, it is interesting 
to find that urban areas are associated to a decreased injury severity, not only because it is a trend systematically 
pointed out by other authors, but also because it is actually an observed trend in Portugal. There is no evidence to 
support the generally accepted tendencies that increased occupant’s age increases the level of injury severity and, on 
the contrary, the use of restraint systems significantly decreases the level of injuries sustained by road users. Both 
variables were not statistically significant. The estimated results also show that the probability of suffering no injury 
increases when the accident victim is a male. At a first glance, this result might be controversial, since it is a fact 
that males drive more aggressively and take more risks than females, increasing the likelihood of being seriously 
injured or killed. Yet, it is also true that male drivers seem to be more technical proficient at certain driving 
situations, which may possibly lead them to take more effective defensive reactions in an imminent road accident 
and, consequently, reduce the injury outcome. It is also noteworthy that, for example, O’Donnell and Connor 
(1996), who have also focussed their analysis on motor-vehicle occupants, reported a similar result, supporting it on 
the greater ability of males to tolerate certain types and levels of physical traumas. Lastly, the results indicate that 
motor-vehicle occupants who travel on dry road surfaces are more likely to be involved in a serious or fatal road 
accident, which is consistent with the findings of, for example, Christoforou et al. (2010). This is perhaps a 
consequence of a more reckless behaviour when driving on dry pavements compared to wet or icy pavements where 
the drivers tend to be more careful, as concluded by Christoforou et al. (2010). Furthermore, dry pavements can 
encourage speeding, which is a factor strongly correlated to greater frequencies and also increased severity 
outcomes.  

Apparently the model fits the data reasonably well. Yet, the interpretation of the goodness-of-fit measures used in 
this study calls for some caution (i.e., adjusted likelihood ratio index and classification accuracy). Prudence should 
also be used in the interpretation of the marginal effects. On the one hand, there is no unquestionable goodness-of-fit 
measure for ordered response models, which compromises the judgment of the explanation/prediction capacity of 
the model. On the other hand, the marginal effects can be misleading, mainly when the explanatory variable is a 
categorical variable.  

Further replications of the ordered probit model to larger and more comprehensive samples, including exposure 
variables, such as traffic flow and speed at the time of accident, could be challenging.  
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