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PREFACE 

This dissertation is a collaborative project involving long-term monitoring data collected 

by the Michigan Department of Natural Resources (DNR) over the last two decades. The 

material in these chapters includes analysis of data collected by the DNR during 1992 – 

2014. The structure of this dissertation is that of a series of manuscripts, that are 

intended to be published. Dr. Dean Beyer, Jr. is a DNR lead research biologist. Dean 

shared the data and provided oversight for the overall project. Dr. Joseph Bump provided 

advising and guidance in terms of writing and analysis. Shawn O’Neil analyzed the data 

and wrote the chapters in this dissertation.   
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Abstract 

All natural processes are dynamic in space and time. Establishing the links between 

spatiotemporal patterns and ecological processes is critical for improving our 

understanding of natural systems. Empirical data representing wildlife populations is 

accumulating and increasingly involves spatiotemporal components. Wildlife monitoring 

programs for threatened, endangered, or other species of interest often involve radio-

tracking of a sample of individual animals combined with census data. Such data are 

valuable both for conservation and management of populations and for testing ecological 

theories about species distribution and what influences patterns over time. We used 20 

years of radio telemetry and snow tracking data to evaluate spatiotemporal patterns in 

gray wolf (Canis lupus) distribution, habitat selection, survival, and mortality in the 

Upper Peninsula (UP) of Michigan, USA. Wolves recolonized the study area during the 

early 1990s and exceeded a population size of 600 individuals before the end of the 

study. In addition, wolves were on the Endangered Species List during the majority of 

the study. This work therefore explores the spatial ecology of endangered wolves during 

a period of population recovery. We analyzed winter prey distributions of wolves, 

evaluated theoretical and modern empirically-driven models of density dependent habitat 

selection, estimated annual survival, and explored cause-specific mortality. Our methods 

included isodar analysis, spatiotemporal generalized linear mixed models of habitat 

selection, proportional hazards models with time-dependent spatial covariates, and 

competing risks analysis. Winter prey distributions exhibited a habitat functional 

response depending on winter snow conditions, resulting in a geographic prey limitation 
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that affected wolf territory occupancy within the study area. Density-dependence in 

habitat selection revealed that wolf selection patterns were more consistent with an 

ideal-preemptive habitat distribution, as opposed to the ideal-free distribution. Density-

dependent habitat selection patterns revealed decreasing selection for prey availability at 

greater wolf densities, while selection for anthropogenic features such as road density 

increased. However, selection across time exhibited occupancy-dependence as opposed 

to density-dependence. Wolf annual was survival ~ 75% and was influenced by sex, age, 

transient status, agriculture, habitat edge, wolf density, and Julian day, as well as several 

individual factors. Survival declined as wolf density increased, resulting in a shifting 

mosaic of wolf survival. Human-caused mortality increased with wolf density and was 

the primary mortality source of UP wolves, comprising ~ 17% annually. Much of 

human-caused mortality was attributed to illegal killing. Human-caused mortality was 

partially compensated for by natural mortality, and negative impacts on population 

growth rate were most evident when human-caused and natural mortality were both 

high. The spatial ecology of wolves in this study describes patterns associated with a 

growing and shifting population. Density-dependent effects population dynamics 

occurred with expanding wolf range, where later colonizers were forced to utilize 

habitats closer to human populations. Theoretical tests revealed potential for source-sink 

population dynamics. Evidence suggested the population had stabilized by the end of the 

study, and that suitable habitat was saturated. Future conservation of the population will 

likely depend on preservation of high quality source habitats and managing human 

conflicts associated with high wolf density areas occurring near population centers. 
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1. Introduction 

1.1 Spatiotemporal variation, habitat selection, and habitat fitness 

Novel opportunities are increasing in the collection and analysis of ecological 

data that can reveal patterns that are dynamic in space and time. Access to 

spatiotemporal data has spurred methodological advancements and modern statistical 

approaches that allow ecologists to study animal movement (Lima and Zollner 1996, 

Rubenstein and Hobson 2004, Morales et al. 2010, McClintock et al. 2012), spatial 

structure in populations (Guisan and Thuiller 2005, Engelbrecht et al. 2007, Kery et al. 

2011, Royle et al. 2013), and patterns in habitat that demonstrate fascinating interactions 

between animals and their environments (Bump et al. 2009, Wunder 2010, Murray et al. 

2013, McLoughlin et al. 2016). Knowledge that is gained from such advancements has 

clear value in terms of basic science and our understanding of the natural world (Massol 

et al. 2011). In addition, opportunities in ecological conservation and management are 

increasingly vast. The ability to know where and when key events are occurring 

contributes to better integration of scientific knowledge and management of animal 

populations (Frantz et al. 2009, Richard and Armstrong 2010, Anderson and Gaston 

2013, Cromsigt et al. 2013, Coates et al. 2016). One important area in wildlife 

management is the understanding of habitat selection (Rosenzweig 1981, Orians and 

Wittenberger 1991, McLoughlin et al. 2010, Morris 2011). While historically most 

studies of habitat selection offered a “snapshot” of linkages between animals, 

accumulation of spatiotemporal data associated with long-term monitoring programs 

have resulted in new opportunities to apply habitat use and selection concepts in ways 
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that integrate temporal components of the process. Quantifying temporal variation within 

and alongside traditional habitat selection approaches can reveal the influences that 

important population processes (i.e. density dependence) and changes in resource 

availability have on wildlife-habitat relationships (Morris 2003b, McLoughlin et al. 

2010, Matthiopoulos et al. 2011, Aarts et al. 2013, Matthiopoulos et al. 2015). In 

addition, these processes may interact with each other to influence habitat selection (van 

Beest et al. 2015). Evaluating spatiotemporal variation in habitat selection can reveal 

better understanding of “true” ecological niches, contributions of habitat types to species 

fitness, and trends in wildlife-human conflicts associated with dynamic trends in space 

use.     

 Long-term monitoring programs that provide spatiotemporal data also offer 

opportunities for ecologists to carry out empirical tests of ecological theory. Habitat 

selection as a field of study is typically viewed as an applied science. However, its study 

is deeply rooted in ecological niche and optimal foraging theory (Rosenzweig 1991, 

Brown et al. 1999, Pulliam 2000, Hirzel and Le Lay 2008). More recently, applications 

of density-dependent habitat selection can be traced to more recent theory involving 

density-fitness habitat relationships (Morris 1988, Morris 2003a, McLoughlin et al. 

2010). While modern studies typically acknowledge density dependent habitat selection 

theory, direct tests of the theory can be performed with spatiotemporal data. Such tests 

improve our understanding of our species, and also can provide evidence for or against 

commonly made assumptions. For example, the assumption that density and/or 

occupancy is indicative of habitat ‘quality’ is based on the theoretical Ideal-Free 
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distribution (Morris 1988, Morris 1989), which in itself assumes optimal foraging and 

near-perfect perception of habitat benefits at varying levels of competition. These 

assumptions can easily be violated in the real world, but ecologists generally expect that 

divergence from expected behaviors (i.e. violations of assumptions) don’t dramatically 

skew inferences from traditional models. Nonetheless, tests of habitat selection theory 

are rare and should be performed whenever possible to validate expectations of 

population-level behaviors. 

1.2 Study system 

Our study area was the UP of Michigan, located in the northern Great Lakes 

region of the USA. The study area was predominantly characterized by long winters 

with heavy snowfall; > 100 cm of snowfall was common throughout the UP, with 350–

500 cm typically falling within lake effect snow belts (Eichenlaub et al. 1990). Greatest 

snowfall totals generally occurred at local elevations > 300 m within ~ 30 km of the 

Lake Superior shoreline in the northern UP and Keweenaw Peninsula (National 

Operational Hydrologic Remote Sensing Center 2004). Coldest temperatures occurred in 

January, with average daily maxima of -7–0° C; average daily minimums were ~ -15° C 

in January and February across the study area (Eichenlaub et al. 1990). The UP was 

characterized by dense northern hardwood forests. Coniferous tree species included 

balsam fir (Abies balsamea), northern white cedar (Thuja occidentalis), black spruce 

(Picea mariana), white spruce (Picea glauca), eastern hemlock (Tsuga canadensis), 

white pine (Pinus strobus), red pine (Pinus resinosa), and tamarack (Larix laricina). 

Further details on forest and land cover types are available in O’Neil and Bump (2014).  
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The Michigan wolf population occurred solely in the UP during the time period 

of the study. Wolves were virtually non-existent in the UP from the 1950s–1970s, with 

sporadic occurrences documented in the 1980s and recovery likely beginning in 1988 

(Beyer et al. 2009). From the early 1990s – 2014, the wolf population in Michigan 

transitioned from being locally extinct to exceeding 600 animals (Michigan Department 

of Natural Resources 2015), occupying virtually all available suitable habitat in the 

Upper Peninsula (UP). During this time period, the population went from being 

protected under the Endangered Species Act (ESA), to being hunted (2013), and to again 

being protected (Dec. 2014). Michigan’s wolf monitoring program provided a unique 

and rare opportunity to assess these dynamics, as wolves’ spatial distribution and 

population growth was tracked from early recovery through widespread recolonization. 

Capturing and collaring efforts began in 1992, with multiple packs monitored by 1995, 

the first year effectively included in this study. The population was counted during the 

years following, and steadily increased through the 1990s. Wolves in the UP were 

federally protected under the ESA from 1974 – 2007, 2008 – 2009, 2009 – 2011, and 

following the completion of this study (2014). A detailed chronology of wolves ESA 

status in the Western Great Lakes region can be found at 

http://www.fws.gov/midwest/wolf/.        

White-tailed deer (Odocoileus virginianus) are the primary prey for wolves in the 

region, and deer populations are constrained by severe winters with heavy snowfall, 

especially in the higher latitudes of the study area (Potvin et al. 2005). Limiting factors 

for wolves included road density and deer density (Mladenoff and Sickley 1998, Potvin 

http://www.fws.gov/midwest/wolf/
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et al. 2005). Since road densities are low throughout the UP, deer densities likely have a 

strong influence on the upper limit of the wolf population (Potvin et al. 2005). Biological 

carrying capacity estimates have ranged from 600 to 1,350 wolves (Beyer et al. 2009).  

Deer are migratory throughout much of the UP due to harsh winter conditions. When 

snow depth exceeds ~ 30 cm, deer migrate south and congregate in dense stands of 

eastern hemlock and northern white cedar (Shi et al. 2006, Witt et al. 2012, Murray et al. 

2013). Deer have used the same winter range consistently over time; this has likely been 

a result of learned behavior (passing of behavioral traits; Nelson 1998) combined with 

predictable patterns in snow depth and cover. Within these habitats, hemlock, cedar and 

other coniferous tree species provide cover and intercept snow while a northwest 

weather flow generates lake effect snow with greatest accumulation at higher elevations 

several km offshore of Lake Superior. Variability in winter severity determines whether 

deer will migrate to winter range in the southern regions of the study area (Van Deelen 

et al. 1998) while the northern regions receive much greater snowfall resulting in 

consistent annual migrations.  

1.3 Research objectives  

Our research objectives were centered on a long-term monitoring study of the 

gray wolf (Canis lupus) population in the Upper Peninsula (UP) of Michigan, USA. 

Michigan’s wolf population has recolonized the UP naturally starting in the early 1990s 

following extirpation that had occurred by the 1960s (Beyer et al. 2009). The legal status 

of wolves in this sub-population and elsewhere has been controversial as occupied range 

has expanded (Bruskotter et al. 2014, Chapron et al. 2014, Vucetich and Nelson 2014, 
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Olson et al. 2015, Chapron and Treves 2016). Details are described further in the next 

section. Management objectives of the Michigan wolf population have generally 

involved A) facilitating the recovery of the UP wolf population, and B) managing human 

conflicts associated with human coexistence with a top predator that was historically 

undesired (Mech 1995, Mech and Boitani 2010). Thus, my research objectives include 

providing information that will improve management of the population in addition to 

more general objectives aimed at answering intriguing ecological questions.  

Conservation and management objectives 

 Conservation and management objectives were focused on wolf survival, 

mortality, dispersal, and the impact that humans and habitat have had on these 

parameters over time. Specifically, these objectives were to: 

 Evaluate changes in wolf distribution over time (Chapters 3, 5 & 6) 

 Estimate monthly and annual survival rates of radio-collared wolves over fifteen 

years of monitoring (Chapter 6) 

 Test for influences of seasonal, spatial, time-dependent, and management-based 

covariates on survival and mortality of wolves (Chapters 6 & 7) 

 Develop spatial ‘risk’ maps that indicate hazardous areas for wolves and 

potential areas of human conflict (Chapter 6) 

 Identify collared wolves that dispersed from their packs and test survival effects 

associated with season, age, and sex (Chapter 6) 

 Test for difference between survival rates of dispersers vs. non-dispersers 

(Chapter 6)  
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 Estimate contributions of human vs. natural-caused mortality to overall mortality 

(Chapter 7) 

 Estimate impacts of and natural compensation for human-caused mortality 

(Chapter 7) 

Ecological research objectives    

 My ecological research objectives involved studying density dependence in wolf 

habitat selection, identifying habitat functional responses in white-tailed deer 

distributions and predicting winter habitat, linking spatiotemporal variation in wolf 

habitat selection to theoretical expectations, and evaluating the effect of density 

dependence on wolf survival and mortality over time. Specifically: 

 Identify habitat functional responses in white-tailed deer winter distribution, 

where habitat use depends on scale-dependent interacting habitat types and 

variation in snow conditions (Chapter 2) 

 Compare changes in wolf density over time in separate habitat types to evaluate 

the theoretical habitat distribution (Ideal-free vs. territorial alternatives such as 

Ideal-despotic or Ideal-preemptive; Chapter 3) 

 Evaluate density-dependent habitat selection based on shifting occupancy and 

habitat availability (Chapters 4 & 5) 

 Investigate density dependent mechanisms influencing wolf survival and 

mortality (Chapters 6 & 7) 

 Investigate support for additive vs. compensatory human-caused mortality in 

wolves (Chapter 7) 
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2. Identifying habitat bottlenecks: Functional responses in winter 

distribution of white-tailed deer (Odocoileus virginianus)1 

 

Abstract 

Functional responses in habitat selection recognize that selection is dynamic and varies 

as a function of one or more resource availabilities. Generalized functional response 

habitat models allow for the effects of environmental predictors to be measured in this 

context, which is useful for evaluating seasonal trade-off situations, density dependent 

habitat selection, and selection for habitat that may vary in availability depending on 

weather or climate. White-tailed deer (Odocoileus virginianus) exhibit migratory 

behavior when deep snow (> 30 cm) occurs in winter, moving from summer range into 

areas with dense conifer cover and reduced snow depth. While basic winter habitat needs 

are understood, questions remain about where and when deer use key habitat 

components such as eastern hemlock (Tsuga Canadensis). We hypothesized that 

incorporating functional responses into habitat selection models of white-tailed deer in 

winter would result in better predictions of deer wintering complexes. We fit generalized 

functional response (GFR) models to maps of deer winter occurrence across the Upper 

Peninsula of Michigan, USA. We updated the best fitting model structures with a 

conditional autoregressive spatial random effect using Integrated Nested Laplace 

Approximations in R package INLA. Models accounting for spatial autocorrelation and 

functional responses in habitat selection resulted in excellent fit to deer winter 

                                                            
1 The material contained in this chapter is in preparation for submission to the Journal of Wildlife 
Management 
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occurrence data, indicating support for the GFR model and its specified interactions 

between food, cover, and conditions variables. Our results are useful for exploring the 

context of key drivers of seasonal habitats, and offer a framework for prediction under 

scenarios of climate and land cover change. To our knowledge this analysis is the first to 

explicitly model functional responses to availability of multiple environmental features 

representing conditions, forage, and cover based on long-term winter observations of 

deer winter range.  

Introduction 

An enduring challenge for wildlife managers is making habitat selection analyses 

both analytically robust and ecologically realistic. The analytical capacity to easily 

examine functional responses in habitat selection studies has significantly improved the 

ecological realism and management relevance of habitat research. Functional responses 

in habitat selection do not assume constant resource selection across habitats, rather 

selection is dynamic and varies as a function of resource availability (Mysterud and Ims 

1998). For example, consider an ungulate population studied in a snowy region with 

limited winter habitat. In years of heavy snow individuals would likely exhibit strong 

selection for winter cover, but such selection might be weak in years of low snow. 

Identifying functional responses in habitat selection is critical to understanding key 

habitat components and effective management, which is especially important for highly 

valued large ungulate populations. 

Functional responses in habitat selection are common when trade-offs exist 

between resources that do not co-occur in space and time. Such is the case for white-
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tailed deer (Odocoileus virginianus) winter habitat in Michigan’s Upper Peninsula (UP), 

where heavy snowfall limits forage availability and therefore the quality of cover habitat 

depends on both localized reductions in snow depth and accessibility of winter food such 

as regenerating aspen or maple forests. As a result, estimates of long-term deer winter 

distributions suggest that winter habitat extent may be < 25% of summer range on 

average (R. Doepker, Michigan Department of Natural Resources, unpublished data). 

Deer in the UP are mostly migratory due to deep snow cover throughout the region 

during winter months. When snow depth exceeds ~ 30 cm, deer begin their migration to 

wintering complexes, where dense coniferous trees (e.g. northern white cedar Thuja 

occidentalis, eastern hemlock Tsuga canadensis) intercept snowfall and provide refuge 

from deep snow throughout the winter. Deer wintering complexes (DWCs) have been 

recognized as essential for overwintering survival in northern regions of the UP, as 

lower snow depth in DWCs provide greater accessibility to forage and reduces the 

energetic costs of movement, presumably helping deer escape from predators (Witt et al. 

2012). Despite recognition of the critical importance of hemlock and cedar in 

overwintering of deer in the UP, there is limited understanding of the combinations of 

environmental variables that drive persistence of these habitats on a broad scale (Witt et 

al. 2012). Improving deer winter range has been identified as a critical management 

priority in the Upper Great Lakes area (Michigan Department of Natural Resources 

2015), as deer are considered a recreational attraction regionally and serve as the 

primary prey for a federally listed gray wolf (Canis lupus) population. Yet spatially 
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explicit models that identify and describe key winter habitat predictors are currently 

lacking, in part likely due to limited knowledge about density, movement, and space use. 

Predictive habitat modeling involves complicated species-environment 

relationships which vary spatially and temporally at multiple scales (Turner 2005). For 

example, seasonal variation in habitat selection may result from shifts in the distribution 

of available resources, changes in diet preference, or limitations associated with harsh 

weather conditions (Godvik et al. 2009, Beyer et al. 2013, van Beest et al. 2014b). Scale-

dependent spatial responses have been widely observed and are often associated with 

behavioral patterns. At finer patch scales, foraging behavior might have a strong 

influence on habitat selection while cover requirements and other necessary conditions 

might drive selection patterns at broader scales (Anderson et al. 2005, O'Neil and Bump 

2014). Spatial heterogeneity in distribution of resources, temporal variation on multiple 

scales, interspecific interactions, and density dependence all contribute to complex 

dynamics in habitat use (including habitat selection, e.g. Beyer et al. 2010, McLoughlin 

et al. 2010). Complex dynamics are often ignored in analysis; at best, habitat models 

approximate them. Consequently, residual spatial autocorrelation often arises from 

missing information in spatial studies, which can undermine results (Dormann 2007, 

Beale et al. 2010). 

 Predictions of wildlife species distributions that rely exclusively on simple 

correlations between GIS-based environmental characteristics and animal locations 

provide limited management value because links to relevant ecological dynamics are 

often missing (Guisan and Thuiller 2005, Elith and Leathwick 2009, McLoughlin et al. 
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2010). Methods that focus on ecological process are increasingly identified as 

analytically robust and realistic (Dormann et al. 2012, Matthiopoulos et al. 2015). 

Embracing the complexities in habitat use is likely to be more informative and should 

provide more accurate predictions even when data options are limited.  

 Our objective was to develop a predictive model to explain white-tailed deer 

winter occurrence based on interacting habitat predictors at local and regional scales. In 

doing so, we tested for functional responses in winter habitat use involving a large set of 

environmental predictors representing food, water and cover availability as well as 

regional conditions (e.g. topographic variation, human influences, and snow depth). We 

hypothesized that functional responses would improve predictions of deer winter habitat 

use in our study area, thereby providing an opportunity to explore deer habitat selection 

when availability/accessibility of limited habitat is dynamic. In particular, we expected 

variation in habitat use to depend on regional conditions such as snow depth that vary on 

a north-to-south gradient (Shi et al. 2006). 

Methods 
Approach 

We developed a predictive model to explain deer occurrence in winter based on 

interacting habitat predictors (e.g. functional responses in habitat use) using multiple 

logistic regression as a base modeling framework and adding structure in the form of 

local-regional interacting variables and spatial random effects. We compared 

environmental attributes of areas occupied by deer in the UP during winter; 

environmental attributes were computed at local and regional spatial scales using GIS. 
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Starting with a “naïve” fixed-effects model as a baseline, we added fixed-effect 

interactions, second-order terms, and a spatial random effect to account for residual 

spatial autocorrelation. As a final step, we merged the local and regional scale models to 

test for a functional response in habitat selection (local variation in habitat selection 

conditional on regional habitat availability). We selected the best model based on several 

fit criteria, and used it to predict winter range. This approach allowed us to make valid 

comparisons of the relative effects included in the model, by plotting changes in model-

predicted deer winter occurrence with associated changes in local-to-regional availability 

of environmental attributes. Our analytical approach balances complex model structure 

with available information while avoiding overfitting. The resulting high accuracy 

winter habitat suitability map can be used to prioritize critical habitat improvement 

projects.    

Environmental predictors 

We generated 18 environmental predictors using ArcMap 10.1 (Environmental 

Systems Research Institute, Inc., Redlands, CA, USA), each expected to influence the 

probability of a cell on the landscape being deer winter range. Briefly, each predictor 

was included to represent habitat potential based on one or more of the following 

requirements: winter cover, browse availability, and conditions (e.g. ability to escape 

from predators, human influence, and food/cover accessibility). Predictors included 

hemlock and cedar basal area, hemlock and cedar patch area, and proportions of 

coniferous and mixed forest as dominant cover types (winter cover); proportion of area 

with maple or aspen as dominant cover type (browse availability); and average annual 
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winter snow depth, interspersion (density of interface between forage and cover 

variables), elevation, slope, aspect, topographic roughness, topographic radiation aspect 

index, stream density, road density, and proportion of developed impervious surface 

(conditions). Full descriptions of these variables, a priori biological reasoning for their 

inclusion, and data sources are available in Appendix 2A.  

To account for how selection of different habitat attributes may vary by spatial 

scale (Gaillard et al. 2010), we assessed each predictor at 4 spatial scales by specifying 

radial buffers of 0.5, 1, and 3 km to quantify local habitat (Witt et al. 2012), and 10 km 

to quantify regional availability of the same attributes. This considers local patch to 

regional and landscape-scale selection of potential winter habitat. For each variable, we 

applied a circular moving window that assigned either the neighborhood mean statistic 

for continuous variables or proportion of landscape statistic for discrete variables at each 

cell on the landscape (Appendix 2A). We used the ArcPy module for Python 2.7.2 to 

iterate through each predictor, generating a raster surface for each scale-specific metric. 

All predictor variables were median-centered prior to model-fitting. 

Analysis    

The dependent variable in our models was presence/absence of deer during 

winter, which was generally defined as the time period with > 30 cm of snow depth in 

areas where deer migrate conditionally. This time period on average occurred from 

December – April throughout the majority of the study area, although length of season 

was variable. Deer winter range has been mapped by state biologists as early as the 

1930s, with remapping surveys occurring every 10–20 years since. The most recent 

survey occurred in 2013 (http://www.michigan.gov/dnr/0,4570,7-153-

http://www.michigan.gov/dnr/0,4570,7-153-10363_10856_10905-339639--,00.html
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10363_10856_10905-339639--,00.html). Mapped winter range was largely the same in 

2013 as it was during the previous survey (2005). We used these most recent surveys 

(2005 and 2013) to designate winter range, so that it represented the same time period as 

that of environmental predictors (i.e. independent variables). 

We systematically sampled our study area, placing evenly spaced point locations 

2 km apart. At each cell location a 1 or 0 was assigned to indicate whether or not deer 

were present during surveys in 2005 or 2013. Point locations were then updated with 

values corresponding to each environmental predictor at each scale of analysis. The 

binary winter range indicator was the dependent variable 
iY  in subsequent logistic 

regression models, where ~ ( )iY Bernoulli p and 
ip  represents the probability of deer 

occurrence at each cell. We assumed the deer winter range maps represented true 

presence or absence during an average winter when snow depth exceeded 30 cm, so the 

predicted response was interpreted as the probability of occurrence during winter (i.e. in 

discrete geographical space; Aarts et al. 2012). We initially performed independent 

separate analyses for models with local scale predictors and models with regional scale 

predictors. Ultimately, we combined local and regional models to test for local effects 

conditional on regional availabilities. We describe the general model structure for local 

and regional models next, with more specific considerations and details of the combined 

model in the following sections. Our analytical approach is summarized in Fig 2.1. 

  In both local and regional models, we built the matrix of environmental 

covariates ,X with  
1 , , kx x=′ …x  indexing the list of predictors. We computed Pearson’s 

correlation coefficient r  for each pair of predictors, checking for | |  > 0.7r  (Dormann et 

http://www.michigan.gov/dnr/0,4570,7-153-10363_10856_10905-339639--,00.html
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al. 2013) and removed one of the two predictors if they were highly correlated. We then 

proceeded to build logistic regression models incrementally, starting with the simplest 

form of the model and adding structure (2nd order terms, pairwise interactions, random 

effects) until the number of parameters became unreasonably large (e.g. a ratio of n 

samples to k parameters < 20; Rue et al. 2009), at which point we reduced the model by 

removing redundant variables (described in following sections and in Fig. 2.1). Our 

baseline model (M1; Appendix 2B eq. 1) included only the main effects for each 

predictor, while a second model (M2) included main effects and 2nd order terms 

(Appendix 2B eq. 2). A third model (M3) included all pairwise interactions between 

predictors (Appendix 2B eq. 3). To select a best-fitting spatial scale (i.e. radial buffer) 

for local models, we compared model parsimony with and without each variable by 

adapting ΔAIC methods from LaForge et al. (2015; see Appendix 2B for details).  

We fit each model using the INLA (Integrated Nested Laplace Approximation) 

package (Rue et al. 2009) in R 3.2.2 (R Core Team 2015). R-INLA provides a highly 

flexible environment for fitting a large variety of spatial and spatiotemporal models 

using a Bayesian hierarchical modeling framework (Rue et al. 2009, Blangiardo et al. 

2013). This approach is particularly useful because it allows for fitting basic non-spatial 

models (GLMs or simple regression models) and then extending them with latent effects 

to model spatiotemporal dependence (Lindgren and Rue 2013, Bivand et al. 2015).  

For each model, we measured fit by calculating Pearson’s r between mean 

predicted values and observed values, and by computing Watanabe’s AIC (WAIC; 

Watanabe 2013). To assess predictive accuracy, we performed cross-validation using the 
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conditional predictive ordinate (CPO) statistic and reported mean log-CPOi (LCPO) 

where lower scores indicate greater predictive accuracy (Beguin et al. 2012). For 

comparison, we also provided the more broadly-applied Area-Under-Curve (AUC) 

statistic (Robin et al. 2011). We assessed residual spatial autocorrelation by computing 

Moran’s I (Dale and Fortin 2014) based on observed vs. model-predicted values. We 

added a spatial random effect to the resulting local and regional models to adjust for 

spatial dependence that remained unexplained by the covariates. We applied an intrinsic 

conditional autoregressive (CAR; Besag et al. 1991) spatial model in R-INLA.  To avoid 

overfitting, we fit a series of spatial models, increasing the value of the shape parameter 

in the logGamma prior until the ratio of observations to effective parameters was ~ 20 

(Rue et al. 2009, Beguin et al. 2012; see Appendix 2B for details on R-INLA model 

structure).  

Next, we ranked the effect size of model parameters (i.e. covariates) by 

computing the absolute value of �̂�𝛽/𝑆𝑆𝑆𝑆(�̂�𝛽) from the marginal posterior density estimates 

of each predictor. Marginal posterior densities from INLA are normally distributed, so 

computing the effect size using the mean and standard error results in a Z-value which is 

often used for hypothesis tests in frequentist statistics. To avoid final models with 

redundant parameters, we ranked effect sizes and eliminated variables with values < 

1.96. Hence, we considered variables unnecessary if their 95% credible intervals 

contained 0. We refer to the final local and regional models as M4local and M4regional. 

Combined GFR Model 

We combined predictors from M4local and M4regional to test for interactions 

between local and regional availabilities of forage and cover variables as well as 
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variation in regional conditions. To accomplish this, we started with a CAR model that 

included all the individual effects and 2nd order terms, and local interactions retained in 

M4local. To model the habitat use functional response, we added interactions between 

local forage and cover variables and regional availabilities of these variables. We also 

included interactions with regional conditions. Thus, deer winter occurrence was 

modeled as a function of all local variables, with the effects of forage and cover allowed 

to realistically vary depending on actual regional availabilities and conditions (i.e. the 

GFR, see Appendix 2B; Matthiopoulos et al. 2011, Aarts et al. 2013). Once fitted, we 

reduced this model using the same methods as previous models, where sets of variables 

with low effect sizes were sequentially dropped from the model until all remaining 

interactions and 2nd order terms had Z-values > 1.96.  

The final model was referred to as M4GFR and was evaluated using the same 

goodness-of-fit and accuracy statistics as the local and regional models. We explored 

functional responses from M4GFR by generating a matrix of local-regional interactions 

and reporting positive or negative interactions between variables if the 95% credible 

interval of the effect’s marginal posterior did not overlap 0. We present a graphical 

exploration of functional responses of deer winter habitat dependent on the effects of 

local hemlock basal area because this species is of particular management interest in the 

region due to its long-term decline and its importance for deer winter cover. We also 

predicted winter probability of occurrence based on the best-fitting model of M4local, 

M4regional, and M4GFR, with predictions for low, average, and high snow depth years. 

Median annual snow depth was calculated for 12 winters of daily snow depth data with 1 
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km spatial resolution (2003 – 2015; National Operational Hydrologic Remote Sensing 

Center); we computed the 12-year average (mean of medians) and standard deviation at 

each cell location. Low and high snow depth years were evaluated by subtracting or 

adding one cell-specific standard deviation from the cell’s 12-year mean, thus capturing 

spatial and temporal variation in snow depth across the UP.  

Results  

White-tailed deer winter occurrence was driven largely by reduced snow depth, 

lower elevations, and cedar forest availability, which reflects the north-to-south 

migration that occurs in the study area during most winters. However, our models 

revealed complex spatial dynamics including functional responses that indicate increases 

in winter habitat selection for many other predictors under certain conditions.  

 Table 2.1 includes all environmental covariates considered in local, regional, and 

combined GFR models of winter deer occurrence (further described in Appendix 2A). 

Covariates in the local model consistently predicted best when quantified using a 3-km 

radial buffer; the lone exception was average snow depth which produced best fit using 

the 0.5 km radial buffer. However, the best fit for local models was achieved when all 

variables were assessed at the same buffer size (Table 2.2). For both local and regional 

models, incorporating interactions between the availabilities of environmental variables 

(M3) substantially improved model fit and predictive accuracy when compared to 

simpler models (M1, M2; Table 2.2). In each case, models were further improved by 

fitting the CAR model (i.e. spatial random effects to model spatial autocorrelation) and 

subsequently removing redundant variables based on effect sizes (M4local, M4regional, 

M4GFR). Results of M4local and M4regional thus allowed us to focus on the environmental 
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covariates (measured at two separate scales) with the strongest influence on deer winter 

occurrence. Including functional response interactions further improved model fit 

(M4GFR), indicating that local predictors varied with differences in their regional 

availabilities and other regional conditions. 

Local and regional model results 

Drivers of deer winter occurrence included environmental variables that 

represented winter browse availability, winter cover, and conditions such as elevation 

and snow depth. The influence of these multiple predictors varied when assessed at local 

vs. regional scales (Fig. 2.2). We report results from M4local and M4regional independently, 

allowing for scale-dependent comparisons. Model results for the main effects are 

reported in the context of all other predictors in the model occurring at their median 

value, and β̂ denotes the mean of the marginal posterior density for each predictor (Fig. 

2.2). In terms of effect size (change in Y with corresponding change in X; Fig. 2.3), the 

strongest predictors of winter occurrence at both regional and local scales indicated that 

probability increased with increasing cedar average basal area (�̂�𝛽Cedar, local model = 0.150, 

SE = 0.013, Fig. 2.3M) and cedar average patch area (�̂�𝛽CedarPatch, regional model = 0.075, SE = 

0.010, Fig. 2.3M), and decreased with increasing snow depth (�̂�𝛽Snow, local model = -0.013, 

SE = 0.002; �̂�𝛽Snow, regional model = -0.018, SE = 0.003, Fig. 2.3A). Second order terms were 

supported in local models for average cedar basal area ( 2Cedar , local model
β̂ = -6.541e-4, SE = 

2.010e-4) and average snow depth ( 2Snow , local model
β̂ = -3.024e-5, SE = 1.225e-5).  
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Winter occurrence was also negatively associated with greater elevation with a 

stronger effect at the local scale than regional scale (�̂�𝛽Elevation, local model = -0.034, SE = 

0.003; �̂�𝛽Elevation, regional model = -0.007, SE = 0.003, Fig. 2.3B), as well as support for a 

second order term at the local scale ( 2Elevation , local model
β̂ = 7.159e-5, SE = 1.246e-5). At the 

local scale, deer occurrence in winter was also positively related to increasing 

proportions of the landscape with maple as the dominant forest cover type (�̂�𝛽Maple, local 

model = 3.069, SE = 0.568, Fig. 2.3H), proportion of mixed forest cover types (�̂�𝛽Mixed, local 

model = 3.442, SE = 1.491, Fig. 2.3I), greater interspersion (�̂�𝛽Interspersion, local model = 0.174, 

SE = 0.068, Fig. 2.3D), average percent impervious surface (�̂�𝛽Impervious, local model = 0.456, 

SE = 0.180, Fig. 2.3F), and proportion of coniferous forest as dominant cover type 

(�̂�𝛽Conifer, local model = 1.767, SE = 0.962, Fig. 2.3G). Notably, although the main effect of 

average hemlock basal area had a negative sign (�̂�𝛽Hemlock, local model = -0.050, SE = 0.024), 

its second order term had a strong positive sign ( 2Hemlock , local model
β̂ = 2.223e-3, SE = 

6.541e-4). When extrapolated across its available range of values, it was evident that 

average hemlock basal area had a strong positive influence on deer winter occurrence at 

values above ~ 25% basal area (Fig. 2.3N). Second order terms were additionally 

supported at the local scale for maple as dominant cover type ( 2Maple , local model
β̂ = -8.483, SE 

= 1.998), interspersion ( 2Edge , local model
β̂ = -0.030, SE = 0.012), average percent impervious 

surface ( 2Impervious , local model
β̂ = -0.163, SE = 0.032), and proportion of coniferous forest as 

dominant cover type ( 2Conifer , local model
β̂ = -14.72, SE = 2.793). Posterior densities for other 
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predictors measured at the local scale largely overlapped zero (Appendix 2C). At the 

regional scale, winter occurrence was positively associated with average stream density 

(�̂�𝛽Stream, regional model = 1.273, SE = 0.514; 2Stream , regional model
β̂ = -1.317, SE = 0.476, Fig. 

2.3E), and negatively associated with slope (�̂�𝛽Slope, regional model = -1.855, SE = 0.294; 

2Slope , regional model
β̂ = 0.766, SE = 0.135, Fig. 2.3C), hemlock average patch area (�̂�𝛽HemlockPatch, 

regional model = -0.139, SE = 0.021, Fig. 2.3N), average percent impervious surface 

(�̂�𝛽Impervious, regional model = -1.245, SE = 0.299, Fig. 2.3F), interspersion (�̂�𝛽Interspersion, regional 

model = -0.427, SE = 0.174, Fig. 2.3D), proportion of southern aspects (�̂�𝛽South, regional model = 

-4.220, SE = 1.793, Fig. 2.3J), and proportion of coniferous forest as dominant cover 

type (�̂�𝛽Conifer, regional model = -4.323, SE = 1.874, Fig. 2.3G). Main effects overlapped zero 

for average road density, proportion of landscape with aspen or maple as dominant cover 

types, topographic radiation aspect index, and landscape surface roughness (Fig. 2.2). 

However, 2nd order terms were supported for each of these predictors (Appendix 2D). 

Posterior marginal densities for all predictors and interactions included in M4local and 

M4regional are reported in the Appendices (2C-E).  

Combined GFR model results 

Functional response interactions were revealed by M4GFR, which was also the best fit to 

the data given the models considered (Table 2.2). Once redundant variables were 

eliminated the final combined model (M4GFR) included 24 parameters representing 

functional response interactions between local and regional variables (Table 2.2, Table 

2.3). Table 2.3 shows the local-regional interactions considered in matrix form, with 

rows representing local effects and columns representing regional effects. The 
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intersection in the matrix between the local and regional variable indicates the 

interaction effect. Positive and negative signs indicate interactions with Z-values > 1.96; 

otherwise, the effect was dropped from the model. Of 65 functional response interactions 

considered, 24 were retained. Most commonly, interactions involved regional conditions 

(Average Snow Depth, Slope, Topographic Radiation Aspect Index) and cover variables 

(Cedar and Hemlock local and regional availabilities), with evidence for changes in the 

effects of forage (% Mixed Forest, Aspen-Dominant Forest, Maple-Dominant Forest) 

and cover variables (local Hemlock and Cedar) depending on regional conditions and 

cover (regional Hemlock and Cedar).   

Functional response interactions involving the effect of average percent hemlock 

basal area at the local scale conditional on regional availabilities of other predictors are 

shown graphically to demonstrate the functional response (Fig. 2.4). The effect of local 

hemlock basal area varied depending on regional availabilities of forage (Maple-

Dominant Forest), regional availabilities of other quality cover (i.e. Area Cedar Forest), 

and regional conditions (Snow Depth, Interspersion, Topographic Radiation Aspect 

Index). These effects are plotted in log-odds of use for ease of interpretation (Fig. 2.4). 

We discuss this example and its implications below. 

Discussion 
The strongest predictors of deer winter occurrence at both local and regional 

scales included cedar forest (i.e. average cedar basal area and average cedar patch area), 

as its effect resulted in a nearly 100% increase in probability of occurrence from lower 

availability percentiles for cedar forest to upper availability percentiles. Elevation (-), 

hemlock basal area (+), and snow depth (-) also had strong local effects while snow 
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depth (-) and slope (-) had strong regional effects. Although the effects of other 

predictors were comparatively small in this context, their influences were conditionally 

dependent on other predictors. For example, consider that the median value for average 

snow depth within the study area was approximately 36 cm. Also, the median value for 

% basal area cedar was approximately 9% while the median average patch area of cedar 

was 17 km2. Referring to Fig. 2.3 and locating the predicted probability value 

corresponding to these medians on the Y-axes (Figs. 2.3A, 2.3M), the probability of 

winter occurrence under such conditions was only ~ 10%. Thus, any additional effects 

would be limited by the strong influences of snow and cedar. Plotting predicted effects 

of environmental characteristics across their range of availability (Fig. 2.3) was key to 

this understanding (i.e. reporting main effects alone can be misleading). Under different 

conditions (e.g. lower snow depth and/or greater cedar basal area), other predictors could 

have greater influences. Understanding local effects in the context of regional conditions 

is a therefore a primary motivation for modeling the functional response in habitat 

selection.  

We modeled environmental predictors of forage and cover conditional on their 

regional availabilities, as well as other regional conditions such as snow depth, elevation, 

slopes, and stream densities among others. Including functional response interactions 

improved model accuracy and fit when compared to models without functional 

responses (M4local and M4regional; Table 2.2), suggesting that local-regional interactions 

were relevant predictors of deer winter occurrence. For example, results from M4GFR 

indicated that the positive effect of high quality cover variables such as hemlock and 
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cedar basal area increased as regional average snow depth increased, while the effect of 

lower quality cover or potential forage variables (% mixed forest dominant, % aspen 

dominant) decreased as snow depth increased (Table 2.3). Additional functional 

response interactions involved regional conditions such as elevation, slope, topographic 

radiation index, stream densities, proportion of impervious surfaces, and interspersion 

(Table 2.3).  

We demonstrated functional response interactions graphically in Fig. 2.4. Local 

hemlock basal area varied from 0% to approximately 60% and had a positive influence 

on deer winter occurrence on average (e.g. bold line in the middle of each plot), with 

log-odds increasing from 0 to 4.25 across this range. Converting to odds ratios indicates 

that a location with 60% average local basal area is exp(4.25) ≈ 70 times more likely to 

support deer winter occurrence than a location without hemlock. Fig. 2.4 shows this 

effect is conditional on other predictors. The change in log-odds across the same range 

increases to +7.65 for areas with greater regional interspersion between deciduous and 

coniferous forests (~ 4 km/km2; 75th percentile, Fig. 2.4A), and +6.17 for areas with 

greater regional snow depth (~ 42 cm; 75th percentile, Fig. 2.4B). Comparatively, the 

effect of local hemlock basal area declines with greater proportions of maple or cedar 

dominant forest (Fig. 2.4C, Fig. 2.4D), which suggests either conditional selection of 

these alternative features and/or a response to hemlock being less available under the 

same conditions (e.g. less likely for >50% basal area hemlock to occur where forest is 

dominated by other species). Interactions can be explored in similar fashion for any set 

of predictors, and have potential to provide valuable insight when wildlife habitat 
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management projects require spatially explicit decision tools. In our example not all 

hemlock stands were frequently used by deer (Witt et al. 2012), but promoting hemlock 

regeneration may be needed to increase winter habitat potential. Consequently, our 

analysis can be used to determine the conditions under which deer select hemlock, and 

thus indicate where habitat modifications can be effective and optimized.        

Including functional responses in habitat models also offers a framework for 

exploring the potential effects of dynamic conditions on predicted habitat suitability. For 

example, if winter habitat potential is arbitrarily defined as > 25% probability of winter 

occurrence, our model (M4GFR) predicted approximately 11,326 km2 of winter habitat, 

covering 30% of the study area considered (37,374 km2; Fig. 2.5B). The remainder of 

the UP (i.e. southern regions) is generally considered annual deer winter range, as snow 

depth rarely exceeds 30 cm. During a mild winter with snow depth roughly one SD 

below average, the area of this predicted habitat increases to 18,228 km2 (49% of study 

area, Fig. 2.5C). However, given a severe winter with snow depth one SD above 

average, predicted winter habitat decreases to 4,887 km2, only 13% of the study area 

(Fig. 2.5A). Assuming the remainder of the UP (≈ 5,236 additional km2) comprises 

winter habitat regardless of winter conditions, our model predicts that a severe winter 

would limit deer winter habitat potential to < 24% of the entire UP (Fig. 2.5A).  

Large ungulates interact with their environment in complex ways. Ungulates are 

widely regarded as habitat generalists, meaning that habitat selection patterns can be 

variable and difficult to predict. For example, specialist behavior may be observed at low 

densities (e.g. stronger selection of high quality habitats) but habitat selection may be 
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weaker at high densities, reflecting more generalist behavior (van Beest et al. 2015). 

Identifying functionally relevant predictors in any situation is key to fitting models that 

offer ecological insight and are subsequently more suitable for extrapolation (Elith and 

Leathwick 2009). We found evidence that including functional responses in habitat 

selection models is promising in this regard. Functional responses in habitat use 

recognize that the relationship between the environment and the animal depends on the 

relative availability of specific habitat attributes such as food and cover, implying a 

trade-off situation where high quality forage and cover habitats do not necessarily occur 

in the same geographic location (Mysterud and Ims 1998). In this situation, an animal 

might only select high quality forage given that cover habitat is also accessible nearby 

(Massé and Côté 2009). These responses have been increasingly observed in ungulates. 

Early findings indicated that lifetime reproductive success in red deer (Cervus elaphus) 

was not always maximized by selecting the highest quality grasslands; instead, when red 

deer were highly abundant they selected lower quality forage on average to avoid 

negative impacts of competition (McLoughlin et al. 2006). Similar findings have been 

reported for elk and moose (Alces alces) in other systems, especially when density-

dependent habitat selection and competition between sympatric species is relevant (van 

Beest et al. 2014a, van Beest et al. 2015).  

When managing a population, identifying predictors of species distribution may 

only be sufficient when stakeholders can address questions such as “which habitat 

components are most limiting under what conditions?” Consideration of functional 

responses in habitat selection is crucial for developing powerful habitat models and 
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answering these questions. In our system, results confirm that winter habitat is driven 

largely by elevation, snow depth, and winter cover (cedar and hemlock forest) on the 

local scale.  However, regional conditions play an important role in determining use of 

important forage and cover habitat indicators such as the local availability of maple, 

aspen, and mixed forest. Our predictive models help to reveal sets of conditions that vary 

in importance with spatial scale and also interact with each other to influence the 

realized ecological niche.  

 Despite a rigorous and robust modeling procedure, future advancements may be 

made by improving the spatial and temporal scales at which deer winter occurrence has 

historically been measured. Surveys of winter deer habitat use in the UP rely heavily on 

researchers’ ability to detect deer sign while driving roads; this is an effective method 

because deer tracks and browse sign are easy to detect when snow cover exists. 

However, confidence in less accessible areas away from roads is lower, in some cases 

requiring assumptions based on contiguity of habitat type. Our observations are thus 

most relevant at a coarse scale, whereas inference about local patch/stand scale (i.e., < 

0.5 km) habitat selection or diet preferences would require more detailed research (e.g., a 

GPS-collar project). Since surveys are not carried out each year, our predictions of 

habitat potential during years with lower or greater snow depth than average will benefit 

from continued evaluation. We also emphasize that habitat quality may be related to deer 

density or probability of use, but only when certain conditions are met (Van Horne 

1983). We caution against conclusions that model-predicted probabilities of deer 

occurrence are highly correlated with fitness-based habitat quality, especially at fine 
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scales. Key predictors in our model such as cedar basal area and snow depth represent 

major limiting factors for deer landscape use in winter, but without measuring doe 

overwintering survival and/or reproductive success (e.g. Gaillard et al. 2010) it is not 

possible to speculate on fitness benefits incurred at different deer winter habitat 

locations. Nonetheless, given known limitations about the spatial extent of winter range 

along with winter’s potential constraint on variation in annual growth rates in ungulates, 

gathering fitness-based data would conceivably require less effort since it could be 

focused on smaller areas which support the majority of the population.     

Management Implications 

In the UP of Michigan, heavy snowfall during winter is the primary condition 

limiting winter habitat to < 25% of summer range for white-tailed deer. Functional 

responses in habitat use revealed a landscape where habitat potential became 

progressively patchy as snow depth increased (Fig. 2.5). Deer increasingly rely on the 

availability of dense conifer (cedar and hemlock) when snow depth is greatest, but 

utilize areas with greater browse availability (aspen, maple, and mixed forest types) 

when snow depth is less limiting or when high quality cover is available (Table 2.3, 

Appendix 2C-E). Limitations associated with winter severity may contribute to boom-

bust population cycles associated with the UP deer herd; harsh winters such as those of 

2012-2013 and 2013-2014 contribute to die-offs that may reduce the population by as 

much as 50%. In contrast, these populations are often able to rebound quickly when 

winters are short and mild and high quality forage is abundant. Our results are consistent 

with previous findings that have acknowledged a trade-off in habitat use depending on 
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variation in winter severity as well as configuration of surrounding habitat (Morrison et 

al. 2003, Jensen et al. 2011, Witt et al. 2012).  However, to our knowledge this analysis 

is the first to explicitly model functional responses to availability of multiple 

environmental features representing conditions, forage, and cover based on long-term 

winter observations of deer winter range. Overall, “naïve” winter habitat use models that 

only represented simple relationships between environmental predictors and deer 

occurrence were not accurate or realistic for assessment of winter distribution of deer in 

Michigan’s UP. Modeling functional responses in habitat use and fitting models with 

spatial effects resulted in models that were better fits to the occurrence data and 

predicted distribution with greater accuracy and ecological realism. Modeling functional 

responses in habitat selection can help to reveal the context for selection of important 

attributes. These models are useful decision tools because they can make predictions 

under a wider and dynamic range of conditions, thus informing spatial prioritization of 

habitat improvement projects.  
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Table 2.1. Variables considered in local, regional, and functional response habitat 

selection models of deer winter occurrence in the Upper Peninsula of Michigan, USA. 

Variable Description Source 
Data 

Source 

Snow Depth Average snow 
depth (mm) 
during winters of 
2003–2014 

Continuous Snow Data Assimilation System 
(National Operational Hydrologic 
Remote Sensing Center 2004) 
 

Hemlock 
Basal 

Average % basal 
area hemlock 
within moving 
window 
 

Continuous USFS National Risk Map 
(Ellenwood and Krist 2007) 

Cedar Basal Average % basal 
area cedar within 
moving window 
 

Continuous USFS National Risk Map 
(Ellenwood and Krist 2007) 

Hemlock 
Patch Area 

Area (km2) of 
hemlock-
dominated cover 
types within 
moving window 
 

Continuous USFS National Risk Map 
(Ellenwood and Krist 2007) 

Cedar Patch 
Area 

Area (km2) of 
cedar-dominated 
cover types 
within moving 
window 
 

Continuous USFS National Risk Map 
(Ellenwood and Krist 2007) 

Coniferous % of coniferous-
dominant forest 
land cover types 
within moving 
window 
 

Discrete USFS National Risk Map 
(Ellenwood and Krist 2007) 

Elevation Average 
elevation (m) 
within moving 
window 
 

Continuous USGS 30m Digital Elevation 
Model (DEM; 
http://nationalmap.gov/index.html) 

Slope Average degrees Continuous USGS 30m DEM 
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slope within 
moving window 
 

Roughness Average terrain 
ruggedness 
index within 
moving window 
 

Continuous USGS 30m DEM; ArcGIS 
Geomorphometry and Gradient 
Metrics (Evans et al. 2014) 

Southern 
Aspect 

% of landscape 
with south-
facing slopes 
(1/0) 
 

Discrete USGS 30m DEM 

Topographic 
Radiation 
Aspect Index 

Average TRAI 
value within 
moving window 
 

Continuous USGS 30m DEM; ArcGIS 
Geomorphometry and Gradient 
Metrics (Evans et al. 2014) 

Maple % of Maple 
dominant 
vegetation 
within moving 
window 
 

Discrete USFS National Risk Map 
(Ellenwood and Krist 2007) 

Aspen % of Aspen 
dominant 
vegetation 
within moving 
window 
 

Discrete USFS National Risk Map 
(Ellenwood and Krist 2007) 

Mixed Forest % of mixed 
forest land cover 
types within 
moving window 
 

Discrete Michigan Gap Analysis Project 
(Donovan et al. 2004) 

Interspersion Average density 
(km/km2) of 
hard edge 
between 
coniferous and 
deciduous land 
cover types 
 

Continuous Michigan Gap Analysis Project 
(Donovan et al. 2004) 

Road Density % of mixed 
forest land cover 

Discrete US Census Bureau TIGER/Line 
(https://www.census.gov/geo/maps
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types within 
moving window 
 

-data/data/tiger-line.html) 

Developed Average % 
impervious 
surfaces within 
moving window 
 

Continuous National Land Cover Database 
(Xian et al. 2011) 

Stream 
Density 

Average density 
(km/km2) of 
streams or rivers 
within moving 
window 

Continuous US Census Bureau TIGER/Line 
(https://www.census.gov/geo/maps
-data/data/tiger-line.html) 
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Table 2.2. Summary of fit statistics (Pearson’s r of fitted vs. model-predicted values [r], 

Watanabe’s AIC [WAIC], Log- conditional predictive ordinate statistic [LCPO], Area-

Under-Curve statistic [AUC]) from models of winter deer occurrence in Michigan’s 

Upper Peninsula, USA. Model formulations included at minimum “naïve” main effects 

(M1), main effects and 2nd order terms for non-linear response curves associated with 

predictors (M2), main effects, 2nd order terms, and all pairwise interactions between 

main effects (M3), and main effects, 2nd order terms, and all pairwise interactions 

between main effects plus a spatial random effect (Conditional Autoregressive [CAR]; 

M4). Local models were fitted at multiple spatial scales and M4GFR included interactions 

between local forage and cover variables and regional forage, cover, and conditions 

variables. 

Model Buffer (km)  r WAIC LCPO AUC k predictors 

M1local 1 0.5 0.451 8251 0.441 0.781 17 

M1local 2 1.0 0.469 8092 0.432 0.791 17 

M1local 3 3.0 0.483 7946 0.424 0.800 17 

M1multiscale 0.5, 1.0, 3.0 0.474 8037 0.429 0.793 17 

M2local 1 0.5 0.470 8105 0.433 0.796 33 

M2local 2 1.0 0.491 7908 0.425 0.808 33 

M2local 3 3.0 0.514 7686 0.411 0.820 33 

M2multiscale 0.5, 1.0, 3.0 0.508 7752 0.415 0.816 33 

M3scale 1 0.5 0.522 7850 0.424 0.829 153 
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M3scale 2 1.0 0.551 7537 0.408 0.847 153 

M3scale 3 3.0 0.621 6675 0.357 0.886 153 

M3multiscale 0.5, 1.0, 3.0 0.616 6735 0.360 0.884 153 

M4local (CAR) 3.0 0.861 4253 0.228 0.985 45 

M1regional 10.0 0.449 8227 0.439 0.775 17 

M2regional 10.0 0.516 7600 0.406 0.831 33 

M3regional 10.0 0.691 5728 0.306 0.921 153 

M4regional (CAR) 10.0 0.838 4551 0.244 0.979 47 

M4GFR (CAR) 3.0, 10.0 0.870 3982 0.214 0.986 63 
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Table 2.3. Matrix of local-regional interactions retained in a generalized functional 

response (GFR) deer winter habitat model (M4GFR), where indicators of forage and cover 

availability measured at the local scale (3 km radial buffer; rows) were modeled 

conditional on regional predictors of forage, cover, and other conditions (10 km radial 

buffer, columns). Signs indicate whether or not each local-regional interaction was 

retained in the final model fit and whether the local predictor’s influence increased (+), 

decreased (-), or stayed the same when values of regional predictors increased; regional 

effects of % Mixed Forest and Road Density are omitted from the table because 95% 

credible intervals for their interactions and main effects overlapped zero. 

Lo
ca

l S
ca

le
 E

ff
ec

t 

Regional Scale Effect 

  
Maple Aspen Mixed Cedar Hemlock 

  
+ 

 
+ + + 

Maple + - + 
  

+ 
Aspen 

 
+ 

    Cedar + 
 

- 
 

- - 
Hemlock - + + 

   Snow - 
 

- - + + 
Elevation + + 

    Slope - - - + - 
 TRAI + - 

  
- - 

Stream 
 

- 
  

+ 
 Impervious - 

  
- 

  Interspersion - 
    

+ 
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Figure 2.1. Flow diagram describing the model building process for fitting habitat use 

functional response models to white-tailed deer winter occurrence data in the Upper 

Peninsula of Michigan, USA. This process included fitting models at local and regional 

scales separately, with model structures for main effects only (M1), main effects and 2nd 

order terms (M2), and all pairwise interactions (M3); the generalized functional response 

(M4GFR) involved fitting models with local effects conditional on regional availabilities. 
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Figure 2.2. Posterior marginal density distributions of environmental predictors from the 

best local and regional models (predictors measured using 3 and 10 km radial buffers, 

respectively) of white-tailed deer winter occurrence in the Upper Peninsula, Michigan, 

USA. Effects of the topographic Roughness and Radiation Aspect Index are not shown 

because their main effects were not relevant predictors at either model scale. 
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Figure 2.3. Predicted change in the probability of deer winter occurrence with 

corresponding changes in local and regional availabilities of environmental predictors 

(measured using 3 and 10 km radial buffers, respectively). Response curves ± 95% 

credible intervals for each predictor are based on setting all other variables equal to their 

median values and allowing one predictor to vary across its range of values on the study 

site, the Upper Peninsula of Michigan, USA. Effects of the topographic Roughness and 

Radiation Aspect Index are not shown because their main effects were not relevant 

predictors in either model. 
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Figure 2.4. Example of the functional response in habitat selection during winter, where 

deer selection of greater % hemlock basal area (e.g. log-odds of winter occurrence) 

varies depending on regional availabilities of density of deciduous-coniferous forest 
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edge (i.e. interspersion), average snow depth, % maple dominant forest, patch area of 

cedar-dominant forest, and topographic radiation index. 
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Figure 2.5. Predicted probability of deer winter occurrence in the Upper Peninsula of 

Michigan, USA based on A) above-average snow depth conditions, B) average snow 

depth conditions, and C) below-average snow depth conditions.  

Appendix 2A. Environmental predictors of winter deer occurrence 

Environmental predictors were chosen to represent habitat potential based on food 

(browse availability), cover, and regional conditions. We summarize these below and 

include a reference table for quick access. 

Food variables representing winter browse potential 

1. Proportion of maple forest as dominant cover type: Early successional maple 

species (primarily Acer saccharum, Acer rubrum) are a major food source for 

deer in winter. Understory maple buds and stems are often heavily browsed but 

offer a consistent food source due to the species’ ability to tolerate herbivory 

(Witt and Webster 2010, Jensen et al. 2011). Quantifying maple forest at the 

landscape level serves as an index for the availability of these food items, as 

understory measurements were not possible. 

2. Proportion of aspen forest (Populus grandidentata, Populus tremula) as 

dominant cover type: Aspen forest, especially early successional vegetation, 

offers a year-round food source for deer which may be particularly important at 

the end of the winter season (McCaffery et al. 1974, Doepker et al. 1994, Van 

Deelen et al. 1996).  

Cover variables representing snow depth reduction potential and associated access to 

understory vegetation for foraging 



45 
 

3. Hemlock basal and patch area: Hemlock is a known key component of winter 

habitat for deer, especially in the northern regions of Michigan’s UP where 

snowfall commonly exceeds 400 cm (Witt and Webster 2010, Jensen et al. 2011, 

Witt et al. 2012). Hemlock provides high quality cover and potential browse, 

although hemlock regeneration may be suppressed by high deer use (Murray et 

al. 2013).  We measured hemlock basal area at the local scale and the total patch 

area of hemlock dominant forest at the regional scale (see Table 2A.1).   

4-5. Cedar basal and patch area: Northern white cedar swamps are heavily favored 

by deer in winter; cedar availability is more broadly distributed in the more 

southern regions of our study area. Cedar provides cover and food availability. 

Deer often migrate large distances (north-to south) to cedar swamp complexes 

during winter (Doepker et al. 1994, Van Deelen et al. 1998, Shi et al. 2006). 

6-7. Proportion of coniferous forest as dominant cover type: Deer will use other 

coniferous forest types for winter cover to some extent; other cover types are 

generally less favored than hemlock and cedar but species such as white pine 

(Pinus strobus) may be a preferred food source when available (Doepker et al. 

1994, Van Deelen et al. 1998, Shi et al. 2006). This variable includes all 

coniferous species present in the UP of Michigan: balsam fir (Abies balsamea), 

northern white cedar (Thuja occidentalis), black spruce (Picea mariana), white 

spruce (Picea glauca), eastern hemlock (Tsuga canadensis), tamarack (Larix 

laricina), white pine, and red pine (Pinus resinosa).  
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8. Proportion of mixed forest as dominant cover type: This cover type includes 

components of quality cover and quality winter browse mentioned above, and 

thus may be an important winter habitat type under moderate conditions. Mixed 

forest may occur near transition zones, may be important corridor features (for 

movement between dense conifer stands), and may represent finer-scale 

interspersion than could be measured at our scales of analysis. 

Conditions variables representing factors that either limit or promote access to 

winter habitat components  

9. Average snow depth: Snow depth is perhaps the primary limiting factor for deer 

winter habitat (Doepker et al. 1994, Shi et al. 2006, Witt et al. 2012); duration of 

snow depth > 30 cm also may influence the ability of deer to survive winter. 

Deep snow reduces mobility, increases energetic costs associated with 

movement, and limits access to important food resources. 

10. Elevation: Greater snowfall occurs at higher elevations and important winter 

cover tree species are more common at lower elevations and along river bottoms. 

Lower elevation has previously been linked to deer use of hemlock stands (Witt 

et al. 2012). 

11. Slope: Greater slopes impede movement and often occur at higher elevations 

which are presumed to be a limiting condition. However, slopes are sometimes 

associated with river valleys characterized by greater cedar and hemlock 

abundance and the availability of water sources; areas with greater slopes may be 
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avoided by deer under some circumstances but selected under other 

circumstances. 

12. Roughness: This predictor represents the ruggedness of terrain. More rugged 

terrain may be avoided by deer, especially in areas with greater snow depths. 

Rugged terrain may impede movement; deer may be more vulnerable to 

predation in these “terrain traps.” 

13. Southern aspects: South-facing slopes may represent a shorter winter season 

and/or lower snow depths. See explanation of the Topographic Radiation Aspect 

Index. 

14.  Topographic Radiation Aspect Index (TRASP): This variable combines slope 

and aspect to indicate the amount of solar radiation received at a location on the 

landscape (Roberts and Cooper 1989). Areas with greater TRASP values may 

provide greater access to food resources and may result in lower snow depths; 

alternatively, greater TRASP values may contribute to greater incidence of crust 

layers in deep snow, which may increase deer vulnerability to predators such as 

wolves (Canis lupus; Telfer and Kelsall 1984, Nelson and Mech 1986, Vucetich 

et al. 2012). 

15. Interspersion (density of coniferous-deciduous forest edge):  Similar to the 

mixed cover variable, interspersion represents juxtaposition of high quality 

winter cover and high quality winter forage. Low values of interspersion indicate 

a more homogeneous landscape, whereas high values represent structure and 
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complexity that is likely to provide more of the necessary components of winter 

habitat (Witt et al. 2012). 

16. Stream density: Streams can be an important water source in winter. When 

many other water bodies are frozen, sections and pockets of faster moving water 

stay open year round. Stream networks often coincide with cedar swamp habitat, 

thus providing corridors between habitat patches. Deer can also browse on cedar 

branches that overhang stream and creek banks.  

17. Road density: Plowed roads allow deer to move between habitat patches more 

easily; intermediate road densities may also indicate additional food sources 

associated with small residential or rural communities, including supplemental 

feeding sites (legal by permit in the UP, https://www.michigan.gov/dnr/0,4570,7-

153-10366_37141_37705-250066--,00.html) and food plots (i.e. standing crops). 

Many of the roads in the UP are forest roads, which are associated with logging; 

road densities thus may also indicate to some extent the potential for food 

stemming from recent cuts. 

18. Percent developed impervious surface: Human population density is relatively 

low throughout the UP. Impervious surfaces are an index for human 

development; deer likely avoid the highest values but there are very few cities in 

the study area. Thus, similar to road densities, intermediate proportions of 

impervious surface may indicate potential for supplemental food and temporary 

cover. These areas might also serve as refuge from predators, because wolves 

https://www.michigan.gov/dnr/0,4570,7-153-10366_37141_37705-250066--,00.html
https://www.michigan.gov/dnr/0,4570,7-153-10366_37141_37705-250066--,00.html
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generally avoid greater road densities and impervious surfaces in our study area 

(Potvin et al. 2005, Stenglein 2014). 

 

Appendix 2B. Detailed methods and formulas  

Models M1, M2, and M3 for local-scale models (0.5, 1, or 3 km radial buffer) and 
regional-scale models (10 km radial buffer) 

In generalized linear model notation, our baseline model (M1) took the form: 

0 1 1 2 2( ) ln
1 k k

pLogit p x x x
p

β β β β ε
 

= = = + + + + + − 
Xβ    (1) 

where 𝑘𝑘 indicates the number of predictors in the model formula. M1 was then extended 

with 2nd order terms (M2), resulting in:  

2 2
0 1 1 2 2 1( ) ln ...

1 k k k i k j j
pLogit p x x x x x

p
β β β β β β ε+ +

 
= = = + + + + + + + + − 

Xβ     (2) 

where 1, , , ,i j kx x x x⊆   with length ,j with specific elements representing non-linear 

functional forms for the relationship between logit( ) and .Y x  Models M1 and M2 were 

considered “naïve” because potential interactions between different habitat features were 

not specified. Thus, the third model (M3) included all pairwise interactions as fixed 

effects: 
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( )

( ) ( )

0 1 1 2 2

3 1 2 1
2

2 2

12 2

( ) ln
1

 (1st order terms)
 (interactions between 1st order terms)

...  (2nd order terms)

                                

k k

k kkk

i jk kk k j

pLogit p
p

x x x
x x x x

x x

β β β β
β β

β β ε

−+

+ + + +

 
= = = − 

+ + + +
+ + +

+ + + +

Xβ





               

  (3) 

where coefficients ( )β and fixed terms are indexed as in Eq. (2). Including all pairwise 

interactions between 𝑘𝑘 predictors results in !
( 2)!2!

kk
k

 
+ − 

  or equivalently
2
k

k  
+  

 
 

coefficient estimates, representing the estimated effect of each individual predictor 

𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 in addition to the pairwise interactions 
1 2 1 3 1,  , , k kx x x x x x−… and 2nd order terms.  

Selection of best-fitting radial buffer for local-scale models 

An additional step was to select the best-fitting spatial scale for predictors (i.e. 500, 

1000, or 3000 m radial buffer) in the local model (i.e. Mlocal). First, for each scale we fit 

a separate model for M1, M2, and M3, and compared goodness-of-fit and predictive 

accuracy metrics (Pearson’s r, WAIC, LCPO, AUC) to select the best fit of the three. 

Next, we compared model parsimony with and without each variable by calculating 

WAIC, and comparing it to a reduced model without variable x: for each scale we 

calculated a specific ΔWAIC corresponding to the effects of variable x (and its 

associated 2nd order and interaction terms for models M2 and M3), where 

variable ( ) full model - variable ( ) full modelWAIC  = WAIC WAICx x∆ −  (adapted from Laforge et al. 

2015). The “best” spatial scale for each predictor was that with the lowest ΔWAIC. If 
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variable ( )WAIC x∆ was > 0 for any x, we did not consider that predictor in the final local 

model. The final local model was fit using the best-fitting spatial scale for each predictor 

and fit statistics were compared to models from previous steps which considered 

predictors independently at scales 1 (500 m radial buffer), 2 (1000 m radial buffer), and 

3 (3000 m radial buffer).  

Conditional autoregressive model formulation 

The intrinsic conditional autoregressive (CAR) model takes the form 

 ( ) ln ( )
1

pLogit p f s
p

ε
 

= = + + − 
Xβ   (4) 

where ( )f s represents the spatial random effect in a latent Gaussian model (Beguin et al. 

2012). Following notation in Beguin et al. (2012), in the CAR model, ( )f s models 

spatial dependence based on the following conditional distribution: 

 
~

1 1( ) | ( ), , ~ ( ),s s s s
s ss s s

f s f s s s N f s
n n′

′ ′ λ ′
λ

 
≠  

 
∑   (5) 

In (6), ~s s′  tells us that the two cells are neighbors (i.e. next to each other or sharing a 

single boundary point), 
sn  indicates the number of neighbors for cell ,s  and 

sλ  is a 

precision hyperparameter, which is assigned a logGamma prior by default (Besag et al. 

1991, Beguin et al. 2012, Bivand et al. 2015). An uninformative prior for 
sλ  generally 

results in lower spatial smoothing, resulting in a large number of effective parameters 

which can lead to overfitting. Alternatively, specifying an informative prior for 
sλ  can 

increase spatial smoothing which reduces potential for overfitting to local observations. 
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Functional response habitat use models 

In studies where habitat covariates are quantified in continuous environmental space 

(e.g. most species distribution models), it is possible to incorporate the GFR into habitat 

models by letting habitat selection coefficients vary as a function of region-specific 

availabilities (Matthiopoulos et al. 2011, Aarts et al. 2013). For example, in a 

generalized linear mixed model the effect of a single predictor represented by the 

coefficient ,iβ can be quantified at regional location l  by including pairwise interactions 

between ,ix  its regional expectation, and the regional expectations of all other covariates 

in :x   

 , ,0 , ,
1

[ ]
I

i l i i j j l i l
j

Eβ γ δ ε
=

= + +∑ x   (6) 

  

where [ ]j lE x  is the average value of the thj environmental predictor in the thl region, 

,i jδ  is the fixed effect slope coefficient, and ,i 0γ  is the intercept coefficient (formula 

adapted from Aarts et al. 2013). Notably, this formulation implies the use of random 

intercepts for each region, fixed and random effects for all covariates, and fixed effects 

for all pairwise interactions between each covariate and its regional expectation (Aarts et 

al. 2013). Thus, as the number of regions and the length of 𝐱𝐱′ increase, the number of 

parameters required to fit a habitat selection model will quickly become large. In many 

cases, observed ecological data will not be sufficient to support such complex models, so 

a simpler model may be necessary. Considerations of scale can direct efforts to simplify 

the GFR while respecting the limitations of observed data.  
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To assess functional responses in habitat use, we fit simplified versions of the GFR by 

first assuming that our environmental predictors as measured represented local-to-

regional scale availability (i.e. 0.5 km – 10 km radial buffer area). That is, region-

specific availabilities at different scales were accounted for in the moving window 

approach (10 km radial buffer) to quantifying habitat predictors, and we modelled local 

probability of occurrence as a function of regional availabilities of forage, cover, and 

conditions.  

 

Appendix 2C. Coefficient estimates from local-scale habitat models 

Posterior marginal density estimates for local scale (M4local) models of deer winter 

occurrence, with �̂�𝛽 notation indicating the mean of the posterior distribution and 

𝑍𝑍 indicating effect size (�̂�𝛽/𝑆𝑆𝑆𝑆[�̂�𝛽]). Environmental predictors were summarized using a 

circular assessment window with a 3000 m radial buffer. Model structure included main 

effects, 2nd order (squared terms), and local interactions; parameters were dropped from 

the model if |𝑍𝑍| < 1.96 and all of its associated interactions and 2nd order terms also had 

|𝑍𝑍| < 1.96.   

 Parameter �̂�𝛽 𝑆𝑆𝑆𝑆(�̂�𝛽) Lower 
95% CI 

Upper 
95% CI Z 

(Intercept) -2.4505 0.2182 -2.8800 -2.0300 -11.230 

Snow Depth -0.0131 0.0018 -0.0167 -0.0097 -7.418 

Hemlock Basal Area -0.0502 0.0245 -0.0983 -0.0021 -2.051 

Cedar Basal Area 0.1503 0.0129 0.1250 0.1760 11.631 
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% Impervious 0.4564 0.1795 0.1040 0.8090 2.542 

Stream Density 0.1796 0.1865 -0.1860 0.5460 0.963 

Road Density -0.2157 0.2433 -0.6970 0.2590 -0.887 

Interspersion 0.1737 0.0675 0.0417 0.3070 2.573 

Slope -0.0237 0.0860 -0.1930 0.1450 -0.276 

% Mixed Forest 3.4420 1.4905 0.5150 6.3700 2.309 

% Aspen Dominant 0.2681 0.9616 -1.6200 2.1500 0.279 

% Maple Dominant 3.0692 0.5681 1.9600 4.1900 5.402 

% Conifer Dominant 1.7668 0.9616 -0.1150 3.6600 1.837 

% South-facing 0.0870 0.7529 -1.3900 1.5600 0.116 

Elevation -0.0341 0.0028 -0.0398 -0.0287 -11.985 

Topo. Radiation Aspect -0.5049 1.1260 -2.7200 1.7000 -0.448 

Snow Depth2 -0.0001 0.0001 -0.0001 -0.0001 -2.468 

Hemlock Basal2 0.0022 0.0006 0.0009 0.0035 3.403 

Cedar Basal2 -0.0006 0.0002 -0.0010 -0.0002 -3.258 

% Impervious2 -0.1629 0.0321 -0.2280 -0.1010 -5.064 

Interspersion2 -0.0304 0.0118 -0.0537 -0.0074 -2.581 

% Maple2 -8.4833 1.9980 -12.4000 -4.5900 -4.246 

% Conifer2 -14.7164 2.7931 -20.3000 -9.2900 -5.269 

Elevation2 0.0001 0.0001 0.0001 0.0001 5.745 

Snow Depth: Cedar Basal 0.0003 0.0001 0.0002 0.0006 4.492 

Snow Depth: % Impervious -0.0030 0.0013 -0.0056 -0.0006 -2.384 
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Snow Depth: Stream Density 0.0085 0.0023 0.0041 0.0130 3.777 

Snow Depth: Road Density 0.0100 0.0023 0.0055 0.0146 4.358 

Snow Depth: Slope -0.0027 0.0011 -0.0049 -0.0007 -2.646 

Snow Depth: Conifer -0.0432 0.0076 -0.0583 -0.0285 -5.716 

Snow Depth: South-facing -0.0145 0.0067 -0.0277 -0.0014 -2.165 

Hemlock Basal: Road Density 0.0668 0.0256 0.0169 0.1170 2.616 

Cedar Basal: Road Density -0.0425 0.0131 -0.0684 -0.0168 -3.237 

Cedar Basal: Slope 0.0260 0.0086 0.0092 0.0431 3.023 

Cedar Basal: Roughness -0.0001 0.0001 -0.0001 -0.0001 -2.849 

% Impervious: % Mixed -9.8137 2.0786 -14.0000 -5.8200 -4.721 

Stream Density: Road Density 0.9498 0.3358 0.2940 1.6100 2.828 

Stream Density: Slope 0.3158 0.0776 0.1650 0.4690 4.068 

Road Density: % Mixed -6.1573 2.4648 -11.0000 -1.3500 -2.498 

Road Density: % Aspen -4.2698 1.7221 -7.6800 -0.9160 -2.479 

Road Density: % Maple -2.9045 0.7978 -4.4700 -1.3400 -3.641 

Road Density: Elevation 0.0051 0.0017 0.0018 0.0084 3.065 

% Mixed: South-facing -16.6982 6.1029 -28.7000 -4.7400 -2.736 

% Maple: % Conifer -14.8530 4.0777 -23.0000 -6.9400 -3.642 

% Maple: % South-facing 8.3362 2.7547 2.9400 13.8000 3.026 

% Maple: Topo. Rad. Aspect -17.8917 4.5646 -26.9000 -8.9700 -3.920 
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Appendix 2D. Coefficient estimates from regional-scale habitat models 

Posterior marginal density estimates for regional scale (M4regional) models of deer winter 

occurrence, with �̂�𝛽 notation indicating the mean of the posterior distribution and 

𝑍𝑍 indicating effect size (�̂�𝛽/𝑆𝑆𝑆𝑆[�̂�𝛽]). Environmental predictors were summarized using a 

circular assessment window with a 10,000 m radial buffer. Model structure included 

main effects, 2nd order (squared terms), and regional interactions; parameters were 

dropped from the model if |𝑍𝑍| < 1.96 and all of its associated interactions and 2nd order 

terms also had |𝑍𝑍| < 1.96.   

 Parameter �̂�𝛽 𝑆𝑆𝑆𝑆(�̂�𝛽) Lower 
95% CI 

Upper 
95% CI 

𝑍𝑍 

(Intercept) -2.6543 0.2866 -3.2300 -2.1000 -9.260 

Snow Depth -0.0178 0.0026 -0.0229 -0.0129 -6.957 

% Impervious -1.2447 0.2991 -1.8400 -0.6630 -4.162 

Stream Density 1.2731 0.5135 0.2720 2.2900 2.479 

Road Density -0.1444 0.3923 -0.9180 0.6230 -0.368 

Interspersion -0.4271 0.1735 -0.7680 -0.0863 -2.461 

Slope -1.8551 0.2944 -2.4400 -1.2800 -6.300 

% Mixed Forest 5.6686 3.8865 -2.0000 13.3000 1.459 

% Aspen Dominant 0.4283 2.6390 -4.7600 5.6000 0.162 

% Maple Dominant  1.9867 1.2629 -0.4980 4.4600 1.573 

% Conifer Dominant -4.3232 1.8743 -8.0300 -0.6670 -2.307 

% South-facing -4.2200 1.7926 -7.7500 -0.7120 -2.354 
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Elevation -0.0072 0.0035 -0.0141 -0.0004 -2.067 

Topo. Radiation Aspect 4.9955 2.8441 -0.5620 10.6000 1.756 

Roughness Index 0.0003 0.0002 -0.0002 0.0007 1.145 

Cedar Patch 0.0751 0.0097 0.0563 0.0943 7.753 

Hemlock Patch -0.1385 0.0214 -0.1810 -0.0970 -6.471 

Stream Density2 -1.3174 0.4762 -2.2600 -0.3870 -2.766 

Road Density2 -1.6601 0.5244 -2.7000 -0.6430 -3.166 

Slope2 0.7655 0.1345 0.5050 1.0300 5.690 

% Aspen2 -63.9681 11.3704 -86.6000 -41.9000 -5.626 

% Maple2 -8.8576 2.7636 -14.3000 -3.4700 -3.205 

Topo. Rad. Aspect2 136.8405 21.6507 94.2000 179.0000 6.320 

Roughness2 0.0000 0.0000 0.0000 0.0000 -2.920 

Snow Depth: Stream Density 0.0203 0.0055 0.0097 0.0312 3.720 

Snow Depth: Slope -0.0082 0.0025 -0.0132 -0.0034 -3.301 

Snow Depth: % Mixed -0.2588 0.0445 -0.3470 -0.1720 -5.810 

Snow Depth: % Maple 0.0262 0.0100 0.0066 0.0460 2.616 

Snow Depth: % South -0.0500 0.0111 -0.0719 -0.0283 -4.503 

% Impervious: % Mixed -28.4230 4.5823 -37.5000 -19.5000 -6.203 

Stream Density: Interspersion 1.0333 0.2996 0.4470 1.6200 3.449 

Stream Density: % Aspen 19.7844 3.3340 13.3000 26.4000 5.934 

Stream Density: Roughness -0.0006 0.0002 -0.0010 -0.0001 -2.518 

Stream Density: Hem. Patch 0.1626 0.0300 0.1050 0.2220 5.416 



58 
 

Road Density: % Conifer 14.3347 2.0970 10.3000 18.5000 6.836 

Road Density: Roughness 0.0012 0.0002 0.0009 0.0015 7.203 

Interspersion: % Mixed -10.9112 2.1833 -15.2000 -6.6400 -4.997 

Interspersion: % South -4.2376 0.6647 -5.5600 -2.9500 -6.375 

Interspersion: Hem. Patch 0.0075 0.0029 0.0018 0.0133 2.542 

Slope: Roughness -0.0003 0.0001 -0.0005 -0.0001 -3.266 

% Aspen: % Maple 17.0465 8.0656 1.3300 33.0000 2.113 

% Aspen: % South 53.3873 11.5375 30.8000 76.1000 4.627 

% Maple: % South 20.9941 4.7219 11.8000 30.3000 4.446 

% Maple: Hem. Patch -0.2673 0.0568 -0.3800 -0.1570 -4.704 

% South-facing: Elevation 0.0413 0.0118 0.0184 0.0647 3.502 

% South-facing: Roughness -0.0055 0.0007 -0.0070 -0.0041 -7.406 

Elevation: Hem. Patch -0.0002 0.0001 -0.0004 0.0000 -2.530 

Roughness: Hem. Patch 0.0000 0.0000 0.0000 0.0000 4.016 
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Appendix 2E. Coefficient estimates from generalized functional 

response habitat models 

Posterior marginal density estimates for generalized functional response (M4GFR) models 

of deer winter occurrence, with �̂�𝛽 notation indicating the mean of the posterior 

distribution and 𝑍𝑍 indicating effect size (�̂�𝛽/𝑆𝑆𝑆𝑆[�̂�𝛽]). Environmental predictors 

representing local (3000 m radial buffer) food and cover habitat were fit conditional on 

the availabilities of regional (10,000 m radial buffer) food, cover, and other conditions. 

Model structure included main effects, 2nd order (squared terms), and local-regional 

interactions; parameters were dropped from the model if |𝑍𝑍| < 1.96 and all of its 

associated interactions and 2nd order terms also had |𝑍𝑍| < 1.96.   

Parameter �̂�𝛽 𝑆𝑆𝑆𝑆(�̂�𝛽) Lower 
95% CI 

Upper 
95% CI 

𝑍𝑍 

(Intercept) -3.2213 0.2551 -3.7304 -2.7284 -12.626 

Local Effects      

Snow Depth -0.0090 0.0030 -0.0150 -0.0030 -2.945 

Hemlock Basal 0.0704 0.0256 0.0203 0.1210 2.747 

Cedar Basal 0.1438 0.0144 0.1158 0.1724 9.970 

% Impervious 0.4810 0.1909 0.1071 0.8563 2.520 

Stream Density 0.3077 0.2854 -0.2518 0.8686 1.078 

Road Density 0.6968 0.2459 0.2118 1.1775 2.834 
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Interspersion 0.1700 0.0548 0.0627 0.2779 3.102 

Slope 0.2127 0.1032 0.0102 0.4152 2.062 

% Mixed Forest 7.1705 1.7550 3.7324 10.6219 4.086 

% Aspen Dominant -0.8114 1.3132 -3.4009 1.7559 -0.618 

% Maple Dominant 3.1814 0.6782 1.8581 4.5198 4.691 

% Conifer Dominant 2.5119 0.9813 0.5942 4.4457 2.560 

Elevation -0.0793 0.0059 -0.0911 -0.0678 -13.322 

Snow Depth2 -0.0001 0.0001 -0.0001 -0.0001 -2.518 

% Impervious2 -0.1374 0.0335 -0.2047 -0.0732 -4.106 

% Conifer2 -5.8002 2.0467 -9.8453 -1.8071 -2.834 

Snow Depth: % Impervious -0.0026 0.0013 -0.0053 -0.0001 -2.014 

Snow Depth: Stream Dens. 0.0140 0.0026 0.0089 0.0191 5.410 

Snow Depth: Road Density 0.0130 0.0025 0.0081 0.0179 5.217 

Snow Depth: % Conifer -0.0477 0.0076 -0.0628 -0.0329 -6.254 

Cedar Basal: Road Density -0.0431 0.0134 -0.0696 -0.0168 -3.212 

Cedar Basal: Slope 0.0492 0.0107 0.0283 0.0703 4.594 

Cedar Basal: Roughness -0.0001 0.0001 -0.0001 -0.0001 -3.818 

% Impervious: % Mixed -6.0191 2.0857 -10.1994 -2.0021 -2.886 

Stream Density: Slope 0.2533 0.0881 0.0817 0.4274 2.876 

Road Density:% Aspen -8.1676 1.8361 -11.7975 -4.5867 -4.448 

Road Density:% Maple -4.0313 0.8574 -5.7125 -2.3459 -4.702 

Road Density: Elevation 0.0051 0.0017 0.0018 0.0083 3.065 
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Regional Effects      

% Maple 4.1733 0.9398 2.3305 6.0206 4.440 

% Aspen 3.5582 1.9157 -0.2028 7.3194 1.857 

Cedar Patch 0.0553 0.0089 0.0380 0.0729 6.216 

Hemlock Patch -0.1010 0.0181 -0.1369 -0.0659 -5.587 

Snow Depth -0.0097 0.0042 -0.0180 -0.0016 -2.326 

Elevation 0.0689 0.0072 0.0549 0.0832 9.552 

Slope -1.3755 0.2476 -1.8645 -0.8918 -5.554 

Topo. Radiation Aspect 2.2669 3.3471 -4.2874 8.8539 0.677 

Stream Density -0.0556 0.5315 -1.1007 0.9867 -0.105 

% Impervious -0.7723 0.2539 -1.2778 -0.2800 -3.041 

Interspersion -0.8077 0.1329 -1.0706 -0.5484 -6.075 

% Maple 4.1733 0.9398 2.3305 6.0206 4.440 

Local:Regional Interactions      

Cedar Basal: Cedar_Patch -0.0007 0.0002 -0.0012 -0.0003 -3.330 

Cedar Basal: Snow Depth 0.0004 0.0001 0.0002 0.0006 3.910 

Cedar Basal: Slope -0.0470 0.0156 -0.0778 -0.0164 -3.009 

Ced. Basal: Top. Rad. Asp. -0.3819 0.1432 -0.6669 -0.1043 -2.667 

Ced. Basal: Stream Density 0.0685 0.0238 0.0220 0.1154 2.878 

Hemlock Basal: % Maple -0.5414 0.0884 -0.7167 -0.3695 -6.127 

Hem. Basal: Cedar Patch -0.0074 0.0012 -0.0098 -0.0051 -6.157 

Hem. Basal: Snow Depth 0.0006 0.0003 0.0001 0.0011 2.117 

Hem. Basal: Top. Rad. Asp -0.9445 0.3032 -1.5421 -0.3514 -3.115 

Hem. Basal: Interspersion 0.0624 0.0163 0.0306 0.0946 3.830 
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% Mixed: Snow Depth -0.1185 0.0244 -0.1668 -0.0709 -4.851 

% Mixed: Slope 5.5986 1.3966 2.8532 8.3369 4.009 

% Mixed: % Impervious -18.9514 3.5226 -25.9677 -12.1271 -5.380 

% Maple: % Maple -8.9429 2.7166 -14.2882 -3.6206 -3.292 

% Maple: % Aspen 17.9839 5.8327 6.5912 29.4828 3.083 

% Maple: Hemlock Patch 0.1424 0.0425 0.0596 0.2263 3.353 

% Maple: Elevation 0.0250 0.0047 0.0159 0.0342 5.390 

% Maple: Slope -3.1747 0.5813 -4.3217 -2.0390 -5.461 

% Maple: Top. Rad. Asp. -74.8021 10.1357 -94.8287 -55.0233 -7.380 

% Maple: Stream Density -4.3102 1.1361 -6.5518 -2.0904 -3.794 

% Aspen: Cedar Patch -0.0983 0.0415 -0.1799 -0.0169 -2.368 

% Aspen: Hemlock Patch 0.5256 0.1156 0.2994 0.7532 4.546 

% Aspen: Snow Depth -0.0441 0.0154 -0.0744 -0.0140 -2.867 

% Aspen: Slope -4.9721 1.0433 -7.0265 -2.9298 -4.766 
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3. Empirical evidence of preemptive habitat selection by a top predator 

during 19 years of population recovery2 

Abstract 

Habitat selection studies commonly work under assumptions of an Ideal-Free habitat 

distribution (IFD), where relationships between animal density and habitat imply 

differences in relative habitat quality. The IFD is the basis for inference in modern 

habitat modeling approaches which include resource selection functions (RSFs) and 

species distribution models (SDMs). Theoretical habitat distributions are rarely tested 

empirically, and alternatives to the IFD may have greater support if an animal exhibits 

territorial behavior at a spatial scale that matches analyses. We used 19 years of 

monitoring data from gray wolves (Canis lupus) in the Upper Peninsula of Michigan, 

USA, to test assumptions of IFD to alternative distributions including the Ideal-Despotic 

distribution (IDD), and Ideal-Preemptive distribution (IPD) using isodar analyses. The 

latter habitat distributions occur when dominant groups or individuals depress the fitness 

of those that are less-experienced or inferior (IDD), or pre-emptively colonize the best 

habitats thereby excluding later arrivals (IPD). In either alternative, the density-habitat 

suitability relationship becomes unreliable, and habitat suitability is better determined 

via measures of fitness such as survival, reproduction, or growth rate. The Michigan 

wolf population increased from ~ 50 to > 600 individuals during our study, and habitat 

selection patterns were most consistent with the IPD; to our knowledge, this constitutes 

the first formal test of theoretical density dependent habitat selection in large carnivores. 

                                                            
2 The material contained in this chapter is in preparation for submission to Ecology 
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An IPD suggests potential mismatches between animal density and habitat quality and 

can lead to source-sink population dynamics.  

Introduction 

Habitat selection is fundamental to animal ecology. Although rarely stated, most 

habitat selection studies work under the assumption of an Ideal-Free Distribution (IFD), 

where a population’s fitness is maximized across habitats through differences in density 

(density-dependent habitat selection; Fretwell and Lucas 1969, Morris 1988). 

Assumptions of IFD are often untested, which can lead to false conclusions about 

relative habitat quality (Van Horne 1983). Species presence or density may not be 

correlated with other components of fitness such as reproductive success and/or survival 

(Van Horne 1983, Gaillard et al. 2010), especially when intraspecific competition and 

territoriality influence habitat selection processes (Pulliam 1988, Pulliam and Danielson 

1991). In such cases, predictions from the theoretical IFD are inappropriate and 

alternative theories of species distribution should be explored. 

Animals should distribute themselves in a way that maximizes fitness and 

minimizes competition for resources. Thus, habitat selection should be functionally 

dependent on conspecific density, due to its relationship with resource availability and 

competition (e.g. McLoughlin et al. 2010). The IFD is based on habitat matching rules 

stating that, if animals are approximately optimal foragers, then a given habitat’s 

suitability (e.g. habitat A) decreases as a function of conspecific density (Fretwell and 

Lucas 1969, Morris 1988). As density increases, individuals should begin to select an 

alternative habitat (e.g. habitat B) to achieve the same average fitness benefits as those in 



65 
 

the first habitat  (Morris 1988, Pulliam and Danielson 1991). In general, habitat B may 

be qualitatively or quantitatively inferior to habitat A (Morris 2003a), but will provide 

equivalent fitness benefits (such as reproductive success) at densities lower than that of 

habitat A (Morris 1988, Morris 2003b). Under IFD, fitness will be approximately equal 

between habitats while density varies, suggesting differences in available resources 

between the two. Evidence for IFD has accumulated from several systems involving 

primarily non-territorial species (Mobaek et al. 2009, van Beest et al. 2014a). However, 

less attention has been given to theoretical distributions where animals either compete 

directly for territory (Ideal-despotic or Ideal-dominant distribution [IDD]; Fretwell and 

Lucas 1969, Oro 2008, Mosser et al. 2009) or preemptively occupy the “best” habitat 

sites (Ideal preemptive distribution [IPD; Pulliam and Danielson 1991]). In the latter 

situation, habitat matching becomes more complex and the prediction of equal fitness 

between habitats breaks down (Morris 1994). 

Direct tests of theoretical habitat models for territorial species are lacking. 

Although we might assume IDD or IPD for many territorial species, it is unclear whether 

current data match theoretical expectations (Morris 1994, Morris 2003a, b, McLoughlin 

et al. 2006, Haché et al. 2013).  Isodar theory is a framework for testing theoretical 

habitat distributions, and can reveal the effect of density dependence on habitat selection 

patterns(Morris 2003a). A habitat isodar is generated by separating a population’s 

geographic distribution into distinguishable classes (e.g., habitat A vs. habitat B), where 

the animal’s density can be estimated in each class (Morris 1987, 1988). Repeated 

estimation of density in each class (i.e. over time) and plotting paired densities in habitat 
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A vs. habitat B produces the isodar, which can take a variety of shapes (Morris 1994). 

Regression analysis of the paired densities frequently takes a linear functional form, 

where the intercept can reveal differences in resources between habitats (quantitative 

differences) and the slope reveals differences in habitat structure (qualitative differences; 

Morris 1988, Morris 2003a). The linear isodar often suggests an IFD, but observation of 

unequal fitness between habitats and/or despotic behavior can alternatively reveal the 

IDD (Morris 1994, Mosser et al. 2009). Other patterns may emerge; non-linear isodars 

can indicate preemptive habitat selection (Pulliam and Danielson 1991, Morris 1994) 

and gaps in the isodar are associated with Allee effects (Morris 2002). The specific 

shape of a non-linear isodar can imply remarkable patterns that might otherwise go 

undetected. For example, saturation of a limited number of high quality sites can result 

in niche-shifts or switching of preferred habitats (an asymptotic isodar; Morris 1994), 

and differences in the variance of site quality between the habitats is predicted by a 

sigmoidal isodar (Morris 1994). Testing hypotheses related to theoretical habitat 

selection distributions is important for many reasons, including 1) detecting fundamental 

differences in how density dependence might operate within a population (Rodenhouse 

et al. 1997), 2) understanding potential for realized vs. fundamental niche mismatches 

and source-sink habitat dynamics under IDD or IPD (Pulliam 1988, Pulliam 2000), 3) 

implications of differences in genetic flow through a population (Gaggiotti 1996, Falcy 

2015), and 4) scale-dependent spatial variation in perceived habitat fitness across a 

landscape. Testing hypotheses related to theoretical habitat selection distributions is 

important for many reasons, including 1) fundamental differences in how density 
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dependence might operate within a population (Rodenhouse et al. 1997), 2) potential for 

realized vs. fundamental niche mismatches and source-sink habitat dynamics under IDD 

or IPD (Pulliam 1988, Pulliam 2000), 3) implications of differences in genetic flow 

through a population (Gaggiotti 1996, Falcy 2015), and 4) scale-dependent spatial 

variation in perceived habitat fitness across a landscape.  

Our objectives were to explore competing hypotheses about the theoretical 

habitat distribution of a large, territorial and iconic predator (gray wolves, Canis lupus) 

and compare observations of density-dependent habitat selection to those expected under 

IFD, IDD or IPD. To accomplish this, we evaluated fitness-density relationships 

(Fretwell and Lucas 1969) and applied isodar analysis (Morris 1988, 1994) to a 19-year 

time series of wolf observational data gathered during a period of recolonization to the 

Upper Great Lakes region.  

We predicted that wolf isodars and fitness-density relationships would be more 

consistent with IDD (Fig. 3.1D & 3.1C) or IPD (Fig. 3.1E & 3.1F) than IFD (Fig. 3.1A 

& 3.1B). Under IFD, if two habitats differ in suitability, then fitness declines as a 

function of density in both habitats but the average density in one habitat is consistently 

higher than the other. In this model, the inferior habitat should be unoccupied when 

density is low in the superior habitat (Fig. 3.1A & 3.1B; Morris 1988, 1994, McLoughlin 

et al. 2010). Territorial species might achieve an IFD under the density assessment 

hypothesis, where new arrivals respond to cues about density from existing occupants 

and establish alternative sites rather than challenge existing competitors (Fretwell and 

Lucas 1969). This scenario is plausible for wolves, which advertise their presence and 
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communicate vocally as well as intensively marking territory boundaries via scent-

marking (Mech and Boitani 2010). Direct competition may be uncommon at relatively 

low densities because if existing habitat is relatively suitable and unoccupied, the risk of 

challenging current occupants might outweigh the cost of selecting less suitable habitat 

(e.g., Cubaynes et al. 2014, Cassidy et al. 2015). Evidence of IFD is a linear isodar with 

equal fitness and varying densities among habitats (Morris 1994). Under IDD, 

interference from existing competitors reduces potential habitat quality, such that the 

alternative (but inferior) unoccupied habitat might appear to have equivalent benefits 

(Morris 1994). Since a linear isodar may still be observed, other evidence may be needed 

to conclude an IDD. In general, the key signature of IDD would be unequal average 

fitness between habitats (Morris 1994). The IPD model (Fig. 3.1E & 3.1F) offers an 

interesting alternative hypothesis to IDD. The IPD was inspired by the process of 

breeding site selection by migrants (Pulliam 1988, Pulliam and Danielson 1991) but 

could conceivably be applicable to any recolonizing territorial species. Under IPD, 

access to a site is determined by first arrival and selection of the best available site. The 

preemptive distribution results in a non-linear isodar (Morris 1994, Fig. 3.1F) which 

distinguishes it from the IFD or IDD alternatives.     

Methods 

Overview 

We explored variation in wolf densities and growth rate among habitat types over 

19 years of population recovery using non-parametric distribution tests and isodar 

analysis. Isodar analysis involves data which reflect spatial and temporal variation in 
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density across a heterogeneous landscape (≥ 2 habitat types), such that habitat selection 

influences species distribution and fitness and/or density conceivably vary between 

habitats. For wolves, these data can be gathered by repeatedly documenting pack 

territory locations (i.e. through aerial surveys and ground tracking) and estimating pack 

sizes over time. Spatial structure of the wolf territories combined with pack sizes can be 

used to generate smoothed estimates of wolf density which is subsequently used in 

isodar analysis. We implemented a Principal Components Analysis (PCA) of correlated 

landscape predictors based on prey availability, potential for human influence, and land 

cover attributes. PCA results were used in generalized linear models of wolf occurrence 

to establish the most important predictors of wolf habitat, and the top three predictors 

were evaluated with isodar plots. We performed linear and non-linear regression analysis 

of isodar plots and used cross-validation to select a best-fitting functional form. The 

shape of the best-fitting isodar  

 Wolves in the UP were federally protected under the ESA from 1974 - 2007, 

2008 – 2009, 2009 – 2011, and again following the completion of this study (2014). A 

detailed chronology of wolves ESA status in the Western Great Lakes region can be 

found at http://www.fws.gov/midwest/wolf/.   

Data collection 

 Wolves were live-captured using foot-hold traps during spring and summer 

1992–2013 as part of a larger Michigan Department of Natural Resources (DNR) wolf 

monitoring program (Beyer et al. 2009). Individuals were chemically immobilized 

(ketamine hydrochloride and xylazine, 100 mg/ml) using 0.11 mg/kg ketamine 

http://www.fws.gov/midwest/wolf/
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hydrochloride and 2 mg/kg xylazine and fitted with VHF radiocollars (Telonics, Inc., 

Mesa, Arizona, USA; Potvin et al. 2005). Wolves were located by fixed-wing single-

engine aircraft approximately 1–2 times per week, and coordinates were uploaded to a 

database for use in GIS. The telemetry study is further described in Potvin et al. (2005), 

Vucetich et al. (2012), and Beyer et al. (2009).    

 We used data from Michigan DNR wolf track counts to estimate wolf abundance 

and variation in wolf density over space and time. The track counts began in 1992 and 

continued throughout the duration of the study. The study site was divided into 21 units, 

each counted every year from 1992–2006. During winter, all passable roads were 

surveyed from trucks and snowmobiles. Pack sizes and territory boundaries were 

established by intensive tracking efforts, with trackers using information from radio-

collared wolves as well as recording all sign, such as territory markings, scat, and all 

individual sets of tracks (Potvin et al. 2005). An accuracy assessment of the ground 

tracking efforts was conducted during a 4-year independent study (Vucetich et al. 2012), 

which revealed a 4% average difference between the separate counts (Beyer et al. 2009). 

In 2007, the state adopted a geographically stratified sampling plan to reduce the cost 

and effort of the survey. A panel design was implemented to increase the precision of 

abundance estimates (Schreuder 1993), which also ensured that some sampled units 

were counted during successive years. 

Estimation of Territory Boundaries 

 Each wolf territory was established by a combination of radio-collar locations 

and track surveys. Following detection of a pack, territories were monitored either by 
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aerial telemetry relocations from ≥ resident wolves or by repeatedly visiting the site via 

the annual tracking survey. This allowed us to document pack presence and territory 

persistence over the course of the study. We delineated annual territory boundaries using 

the following framework: first, if ≥ 30 telemetry locations were available for a pack 

during a year (e.g. year = time t), we generated a unique territory home range for year t. 

If there were < 30 locations for year t, but ≥ 30 locations were available over the course 

of a 2- or 3-year time period (t-1, t, t+1), we generated the territory home range using a 

3-year moving window. For all other years that packs were known to be present at their 

site, we generated long-term average territories using either A) locations from previous 

years, i.e. territories from previous steps, B) a combination of telemetry locations and 

tracks from surveys, or C) a minimum convex polygon based on track locations across 

years.    

When telemetry locations were available (n ≥ 30), we used a fixed kernel density 

estimator to create a utilization distribution (UD) for each pack territory during either 

year t or the 3-year moving window. The kernel bandwidth was estimated using the 

“plug-in” method (Uboni et al. 2015b) , after first removing outlying locations (≥ 5 km 

from pack territory; Fuller 1989) and any individual wolves that did not consistently 

occupy a territory. We defined the territory home range as the 95% volume isopleth from 

the UD. Home ranges and bandwidth estimators were analyzed using packages 

‘adehabitatHR’ and ‘ks’ in R 3.2.2  (Calenge 2006, Duong 2007, R Core Team 2015).   

Wolf Density 
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 Packs were counted during track survey efforts. The entire study area was 

counted from 1995–2006. For survey units that were not surveyed every year starting in 

2007, we assumed that packs persisted if they were detected the years directly before and 

after the year for which the count did not occur. We used the midpoint to extrapolate 

pack size in these cases. The last year included in the study was 2013 but surveys 

continued the following year, allowing us to use data from 2014 to make extrapolations. 

We created a longitudinal matrix with pack territory as the subject unit (rows) and year 

as the time unit (columns). For each year in the study, each pack was either detected, 

assumed present, or not detected, and pack size estimates were recorded in a related 

table. We summed rows of the matrix to estimate total wolves and compared results to 

the Michigan DNR’s abundance estimates (Michigan Department of Natural Resources 

2015) to verify that our assumptions of occupancy and pack size were reasonable. The 

matrix was linked to a geodatabase with polygons for all territory home ranges estimated 

each year; all packs with counts ≥ 2 were included in subsequent steps while lone 

individuals were assigned to remaining geographic space (i.e. area not occupied by an 

existing pack during year t). We converted pack sizes to density (wolves / 1000 km2) for 

each territory, and ultimately generated a smoothed surface for each year using a circular 

moving window with radius equal to that of an average wolf territory size during the 

study. The final result of this analysis was a set of raster surfaces representing 

spatiotemporal variation in wolf density during the study, demonstrated by an animation 

in the Supplementary files (Appendix 3A). Geoprocessing steps were completed in 
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ArcMap 10.3 (Environmental Systems Research Institute, Inc., Redlands, CA, USA) 

using ArcPy for Python 2.7.2.   

Habitat Suitability Model 

 We used a generalized linear mixed model (GLMM) with a binary response to 

identify habitat types likely to be used by wolves within the study area. The GLMM was 

fitted to Principal Components Analysis (PCA) predictors of correlated landscape 

covariates associated with prey densities (e.g. buck harvest index and deer wintering 

complex habitat), human influences (e.g. road density, distance to highways, % 

impervious surface, % protected land), and landscape features (elevation, slope, forest-

open edge, stream density). Further details about the development of the model and 

corresponding PCA are available in (Appendix 3B). Using the results, we ranked habitat 

covariates by their effect size (Z-score) and delta score (predicted change in probability 

of occurrence corresponding to a change in predictor x). We selected the top three 

covariates to represent key differences in habitat perceived by wolves and used them in 

subsequent isodar assessments. 

Isodar Analysis 

We developed isodars for the three most important habitat covariates (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) 

using methods similar to Falcy (2015), which are appropriate for continuous data. 

Continuous habitat data were represented by raster surfaces corresponding to principal 

components identified as strong predictors of habitat selection. While isodar analyses 

typically consider discrete habitat types, RSFs or SDMs predominantly rely on 

continuous data to make predictions about habitat quality. A solution for using these data 
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in isodar analysis is to reclassify relevant habitat variables into paired bins representing 

values above and below the mean for a given variable (Falcy 2015). Based on the results 

of the habitat suitability model, we separated the top-ranked PCA predictors into 6 

classes using a quantile (equal area) reclassification of the relevant principal components 

in ArcMap. We dropped the middle two classes (i.e. values nearest to the median) and 

combined the 1st and 2nd (low values) and 5th and 6th (high values) to represent the paired 

habitat types. We sampled 20 random point locations from each paired bin for each year 

in the study. To represent regional wolf density at the sampled point locations, we 

specified a radial buffer twice the size of an average wolf home range and computed the 

mean wolf density at time t within the buffer. 

 We plotted habitat pairs for each habitat predictor (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) corresponding to 

the mean annual wolf density in each binned habitat type. We fitted linear and non-linear 

candidate models to each isodar (Table 3.1), where the response variable (density in 

habitat A) represented the preferred habitat type based on RSF results. We used leave-

one-out cross validation to evaluate the models based on root-mean squared prediction 

error (RMSPE), with lowest scores indicating best predictive fit to the data.  

Comparison of fitness in separate habitats 

We estimated spatial variation in local growth rates among habitat types by 

pooling estimates of wolf density each year and evaluating the change in density over 

time. Since wolf density trends can be highly stochastic at the local scale, we evaluated 

changes at the 5th, 25th, 50th, 75th, and 95th percentile of the sampled densities, and 
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estimated the “growth rate,” e.g. r = 1log( )t

t

density
density

+ . We assumed that differences in 

growth rate trends between habitats indicated differences in fitness (Morris 1994). Due 

to differences in site quality, growth rate could vary between habitat types, potentially 

operating on different time scales. To account for this, we compared growth rates in 

different habitats for early (1995 – 2001), mid (2002 – 2007), and late (2008 – 2013) 

recovery time periods. For each time period, we conducted a two-sample non-parametric 

Mann-Whitney test (Hollander et al. 2013) of the hypothesis that the distribution of 

growth rates sampled from habitat A (superior habitat) was shifted to the right of those 

sampled from habitat B (inferior habitat). 

Results 

Wolf abundance estimates in the UP increased from 80–658 during the time 

period of the study (1995–2013), and corresponding estimates of wolf density were 

spatially variable, ranging from 0 – 70 wolves / km2, with the maximum value occurring 

in the far western UP in 2011 where several large packs were observed utilizing 

overlapping territories. Mean wolf density for the overall study area was approximately 

1.7 wolves / km2 in 1995 and increased to 11.1 wolves / km2 in 2011 before apparently 

stabilizing (10.5 wolves / km2 in 2013; Appendix 3A). 

The habitat suitability model revealed that the top three predictors of wolf 

occupancy were indices of prey availability (PC1-prey, β̂ =0.417, P<0.001), human 

influence (PC1-human, β̂ = -0.244, P<0.001), and favorable land cover with high 

stream densities (PC2-land, β̂ =0.379, P<0.001; Table 3.2). Prey availability was 
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generated from a PCA of distance to and proportion of deer wintering complexes and 

annual buck kill reported from surveys (Tables 3.3 & 3.4). Human influence was 

positively associated with proportions of impervious surface, road density, and distance 

to highway and negatively associated with proportion of public lands (e.g. National or 

State Forest; Tables 3.3 & 3.4). The principal component index for land cover was 

largely driven by stream densities, with greater stream densities associated with greater 

PC2-land values (Tables 3.3 & 3.4). Further details about the habitat model are available 

in Appendix 3B.  

Regression of wolf density in contrasting habitat types showed differences in 

density in different habitats, as expected from the results of our habitat suitability model 

(Table 3.2, Fig. 3.2). Wolf density was greatest when prey availability was high and 

human influence was low (Fig. 3.2). Although relative probability of wolf occurrence 

increased in landscapes with greater stream densities (Table 3.2), it appeared that wolf 

densities were greater overall when stream densities were lower. Regression models fit 

to densities in separate habitats indicated that non-linear relationships between densities 

in paired habitat types were the best fit for all three habitat predictors. Cross-validation 

statistics are summarized in Table 3.5. This suggests evidence that wolves used a pre-

emptive site selection strategy while colonizing the study area. The best fitting curve 

was sigmoidal for isodars representing habitat differences in prey availability and 

favorable land cover, and asymptotic for habitat differences in human influence (Table 

3.1, Table 3.5, Fig. 3.3).   
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We observed a difference in growth rates between habitats with contrasting prey 

availabilities during the early and late time periods. Median growth rate (r) was 0.15 in 

habitats with greater prey availability (habitat A) and 0.05 with lower prey availability 

(habitat B) during 1995 – 2001, and the Mann-Whitney test revealed a location shift in 

the distribution (W = 1.08e05, nA = 518, nB = 386, p =0.018). We did not observe a 

difference in the distributions during 2002 – 2007 (median rA = 0.10, rB = 0.12; W = 

1.3e05, nA = 503, nB  = 529, p=0.691). Interestingly, growth rates were higher in habitat 

B than in habitat A during 2008 – 2013 (median rA = 0.00, rB = 0.06; W = 1.2e05, nA = 

449, nB  = 592, p=0.691, p = 0.002 [rA < rB]). We did not observe differences in growth 

rates between paired habitats with differences in human influence or land cover 

characteristics for any of the three time periods (Appendix 3C). Changes in local density 

over time (i.e. estimates of local growth rate) revealed surprisingly similar distributions 

for the latter habitat types given expectations of IPD or IDD. Details on the comparisons 

across the distribution are available in Appendix 3C.    

Discussion 

Territorial species are often assumed to distribute themselves according to IDD 

or IPD theory. IDD is difficult to demonstrate empirically, as it requires snapshots of 

species density in contrasting habitat types combined with relevant information about 

habitat fitness. Reproductive rates (McLoughlin et al. 2006) and estimates of survival   

(Franklin et al. 2000, Aldridge and Boyce 2007) are often related to habitat in order to 

check assumptions about habitat selection and its relationship with fitness. However, 

growth rate is often the best overall indicator of a habitat’s productivity (Morris 1994, 
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Matthiopoulos et al. 2015). If measures of productivity differ substantially between 

habitat types, this may be seen as evidence for IDD or IPD; if animals follow habitat 

matching rules then fitness should be equal on average while density is optimized 

(Morris 1988). Mosser et al. (2009) showed differences in reproductive rates between 

habitats and documented despotism in Serengeti lions, and Falcy (2015) modeled 

spawning site selection in Chinook salmon and concluded results that were more 

consistent with IPD given non-linearity in resulting isodars. In contrast, territorial 

Ovenbirds (Seiurus aurocapilla) appeared more consistent with an IFD, defying 

theoretical expectations (Haché et al. 2013).  

We hypothesized that wolf habitat selection over a 19 year recovery period 

would reveal an IDD. Alternatively, wolf recolonization could be consistent with IPD 

due to pre-emptive site selection strategies and territorial cues such as howling and 

scent-marking that could limit intraspecific conflict at low densities (Fretwell and Lucas 

1969). An IPD is often viewed as a certain type of IDD (Pulliam and Danielson 1991, 

Haché et al. 2013) and does not necessarily exclude dominant-subordinate behavior. A 

key signature of IPD is a non-linear isodar (Morris 1994, Falcy 2015). Non-linear 

regression fits to isodars of wolf densities indeed suggested IPD in our study. However, 

IPD should reveal differences in productivity between habitat types similar to IDD 

because high quality habitat sites are typically limited and provide greater fitness 

benefits (Morris 1994, Haché et al. 2013). Evidence for IPD/IDD based on assessment of 

spatially varying growth rates (i.e. changes in local density across time) varied in our 

study, which is likely due to complexities in local demographic rates, immigration vs. 



79 
 

emigration, and landscape patterns that may promote or suppress local source-sink 

dynamics (Heinrichs et al. 2016). 

While isodars were non-linear for all three paired habitat types, growth rates only 

varied for prey availability. Further, the contrast in growth rates in high vs. low prey 

availability habitats switched direction over time, suggesting that density dependence 

may complicate comparisons of productivity between habitats depending on time scale. 

For example, in our study growth rates were significantly higher with greater prey 

availability early in the study (Appendix 3C). However, by the middle of the study there 

was no evident difference in growth rates between habitats and during the late time 

period growth rates were actually higher in the lower quality sites (Appendix 3C). This 

result is consistent with a pre-emptive site selection process but may also indicate 

density-dependent regulation which at times may promote a system that appears to 

follow an IFD through adaptive habitat selection (Morris and MacEachern 2010), 

adjustment of territory size (Ridley et al. 2004), and other mechanisms. It is important to 

note situations where the IFD might appear to be a better fit to empirical data for 

territorial species. 

When disparities exist in an environment with varying habitat quality, density 

dependence may become a strong regulating force in areas where habitat quality 

promotes rapid growth. Under the IPD model, animals that arrive early establish 

territories in the highest quality habitat and preempt the use of these habitats by 

individuals arriving later (Pulliam and Danielson 1991). This would seemingly result in 

site-dependent as opposed to density-dependent regulation (Rodenhouse et al. 1997). 
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However, IDD or IPD models do not account for adjustments to territory size (Ridley et 

al. 2004, Haché et al. 2013). Territory size is likely habitat and density dependent in 

wolves (Rich et al. 2012 and Kittle et al. 2015, but see Mattisson et al. 2013), and this 

could result in a system that appears to be more consistent with the IFD (Haché et al. 

2013). In high quality habitat with abundant prey, wolves can achieve high densities by 

reducing territory size and tolerating some degree of territory overlap between packs 

(Rich et al. 2012) without necessarily losing fitness benefits, resulting in an apparent 

IFD. These highest quality habitats may reach an equilibrium where mortality and 

emigration balance out reproduction; if dispersal increases at high densities (Matthysen 

2005), these habitats likely contribute a surplus of individuals that diffuse into lower 

quality habitats. Importantly, this situation could appear to be consistent with either IFD 

or IDD/IPD, and is also likely to contribute to source-sink population dynamics (Haché 

et al. 2013, Heinrichs et al. 2016). We observed variation in wolf density and 

productivity in habitats with contrasting prey availability. Isodars suggested an IPD, but 

differences in productivity switched directions over the course of the study. With respect 

to prey availability as a habitat indicator, we documented highest growth rates in the 

better habitat early in the study, no difference in growth rates between habitats in the 

middle of the study, and higher growth rates in the lower quality habitats later in the 

study. We view this as further evidence that populations may occur anywhere on the 

continuum between IFD and IDD (e.g. Ridley et al. 2004, Haché et al. 2013). In fact, it 

is not inconceivable that a population could transition from IPD to IFD to IDD during a 

recolonization event. This could occur because density dependence can locally influence 



81 
 

multiple vital rates, promote adjustments in territory size and movement between 

habitats of varying quality, and contribute to despotic behavior (i.e. Cubaynes et al. 

2014) 

While non-linear isodars were the case for all three habitat predictors, we did not 

detect differences in local growth rates for habitat types contrasting human influence and 

land cover characteristics. Wolf densities were greater where human influence was lower 

(Fig. 3.2), but this did not translate to a difference in productivity between habitats 

during any time period (Appendix 3A). Wolves may occur at lower densities in areas 

prone to human conflict due to an avoidance strategy, lower survival rates, or a 

combination of both. In some cases, areas prone to human conflict may represent habitat 

sinks with increased mortality risk. For example, increased mortality risk was associated 

with greater proportions of agricultural land cover in our study area (Chapter 6). Lower 

survival rates could suppress local densities without impacting growth rate if increased 

mortality was compensated for by greater reproduction locally or by immigration from 

nearby ‘source’ populations (Pulliam 2000, Heinrichs et al. 2016). Interestingly, wolves 

colonizing the study area did not initially demonstrate strong selection for areas with 

lower human influence, and paired mean densities in the contrasting habitat types stayed 

relatively similar across the time series (e.g. Fig. 3.3A). This may reflect the relatively 

low levels of human influence throughout the study area, where only the most developed 

areas (< 1% of the study area) were avoided as a response to perceived risk. 

A sigmoidal isodar was the best fit to paired densities in contrasting habitats with 

differences in prey availability and land cover characteristics (primarily stream 
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densities). This result may indicate that variance of site quality is greater in the lower 

quality habitat (Morris 1994). Furthermore, the best sites may actually occur in the 

overall lower quality habitat than in the higher quality habitat despite being fewer in 

number (see Fig. 9 in Morris 1994). Theoretical fitness-density curves cross each other 

in this case, and density may occasionally be greater in the lower quality habitat than in 

the higher quality habitat (Morris 1994). This is not unreasonable for our study area. 

First, prey availability is not evenly distributed in the winter due to deep snow. White-

tailed deer winter habitat can be severely constrained during severe winters which could 

lead to very high prey densities. In areas with less deer winter habitat, prey availability 

would be lower overall, but deer would become more concentrated in small areas during 

winter which would presumably make hunting easier. Thus, a few of the best territory 

sites could occur where prey availability is relatively low overall, and wolves may have 

colonized these areas first leading to a pre-emptive distribution and a sigmoidal isodar 

shape. Similarly, stream densities may represent high quality hunting grounds (e.g. 

Kauffman et al. 2007), but the highest stream densities were relatively limited. Wolves 

appeared to initially prefer greater stream densities when occupying the landscape (Table 

3.2, Table 3.3, Fig. 3.3C), but ultimately this characteristic was not a major constraint on 

density (Fig. 3.2, Fig. 3.3C).       

Evidence for preemptive habitat distributions is rare (Sergio and Newton 2003, 

Zając et al. 2006, Petty and Grossman 2010). Our study is the first (to our knowledge) to 

document non-linear isodars for a large carnivore species, and the first to show shifts in 

fitness benefits (i.e. shifting from IPD to IFD) corresponding to spatiotemporal variation 
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in density dependence. Even more uncommon is a sigmoidal isodar based on empirical 

evidence. Sigmoidal isodars indicate complex fitness-density relationships between 

habitats, and suggest that the best overall sites may occur in areas that are not considered 

high quality habitat. This scenario may be more common than previously realized, as 

large variance in site quality is likely in habitats that are disturbed or fragmented. The 

IPD is generally considered to be a precondition for source-sink population dynamics 

(Pulliam 1988, Pulliam and Danielson 1991, Morris 2003a). Source-sink dynamics are 

also more likely where species exhibit rapid growth and occupy interspersed habitats of 

contrasting quality (Heinrichs et al. 2016). These conditions evidently occur within our 

study system, and are probably not uncommon for large carnivores in other systems. 

Understanding preemptive habitat selection and its potential to occur in a source-sink 

system is important for conserving species of concern such as wolves, because source 

habitats likely contribute disproportionately to population dynamics and are often 

difficult to identify (Heinrichs et al. 2016). 
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Table 3.1. Linear, curvilinear, and non-linear candidate regression models for fitting 

theoretical isodars to annual snapshots of wolf density occurring in separate habitat 

types. Candidate models include linear isodars representing Ideal-free (IFD) or Ideal-

despotic (IDD) habitat distributions and non-linear isodars representing ideal-preemptive 

distributions (Morris 1994). 

Model Formula Theoretical Model  

Linear (LM1) 0 1β β ε= + +Y X   IFD/IDD; consumer-

resource or additive 

interference 

Log-Log (LM2) 0 1log( ) log( )β β ε= + +Y X   IFD/IDD; continuous input 

or multiplicative 

interference 

LogX (LM3) 0 1 log( )β β ε= + +Y X  IPD; fewer sites in higher 

quality habitat 

Asymptotic (NLS1) 1 2 1 3( ) exp[ exp( ) ]φ φ φ φ= + − −Y X   IPD; large differences in site 

quality between habitats 

Logistic (NLS2) 1

2 31 exp[ ( ) / ]
φ ε

φ φ
= +

+ − −
Y

X
 

IPD; unequal variances in 

site qualities between 

habitats 
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Table 3.2. Results from a resource selection probability function (RSPF) indicating the 

relative influence of predictors of wolf occupancy in the Upper Peninsula of Michigan, 

USA. Predictor strength is indicated by effect size (Z) and the change in predicted 

probability of occurrence corresponding to changes in the predictor across its range of 

values in the study area (dY/dX); the three strongest predictors (in bold) were used for 

isodar analyses. 

Predictor β̂  SE ( β̂ ) Z P dY/dX 

Intercept 0.005 0.018 0.30 0.767 NA 

PC-Prey 1 0.417 0.013 32.89 < 0.001 0.606 

PC-Prey 2 -0.073 0.020 -3.63 < 0.001 -0.114 

PC-Topo 1 -0.173 0.017 -10.35 < 0.001 -0.372 

PC-Topo 2 0.299 0.017 18.00 < 0.001 0.497 

PC-Land Cover 1 0.048 0.017 2.85 0.004 0.144 

PC-Land Cover 2 0.379 0.019 19.66 < 0.001 0.707 

PC-Human 1 -0.244 0.013 -18.34 < 0.001 -0.618 

Protected Land 0.159 0.018 8.77 < 0.001 0.104 

Snow -0.045 0.019 -2.35 0.019 -0.157 
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Table 3.3. Component loadings from four separate Principal Components Analyses of 

geographic variation in prey availability, human impacts, topographic features, and land 

cover in the Upper Peninsula of Michigan, USA. Principal components were used as 

predictors in wolf habitat selection models. 

Loadings 

      PCA Predictors PC1 PC2 PC3 PC4 PC5 

Prey 

availability 

% Deer wintering 

complex 0.67 -0.228 0.706 

  

 

Distance to deer 

wintering complex -0.671 0.22 0.708 

    Buck kill index 0.317 0.948       

Human 

influence Distance to highway 0.430 0.398 -0.540 0.500 -0.339 

 

Road Density -0.449 -0.265 -0.684 0.182 0.478 

 

% Developed 

Impervious -0.571 -0.181 -0.116 

 

-0.792 

 

% Agriculture -0.436 0.334 0.445 0.691 0.150 

 

Protected Land 0.312 -0.792 0.171 0.488 

 Topographic Elevation -0.440 0.548 -0.662 -0.261   

 

Slope -0.615 0.126 0.220 0.747 

 

 

Topographic -0.578 -0.118 0.527 -0.611 
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Roughness Index 

  

Radiation Aspect 

Index 0.306 0.819 0.485     

Land Cover Stream Density 0.190 0.908 0.372 

  

 

Forest-Open Edge 

Density -0.636 0.191 -0.215 -0.717 

 

 

% Open  -0.62 0.262 -0.251 0.695 

   % Water & wetlands -0.418 -0.266 0.868     
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Table 3.4. Landscape variables from Principal Components Analysis (PCA) used in a 

Resource Selection Probability Function for wolves in the Upper Peninsula of Michigan, 

USA. Four separate PCAs were applied to summarize geographic variation in prey 

availability, human impacts, topographic features, and land cover in the study area; The 

first and second components (PC1 and PC2) explained ≥ 50% of the variance in each 

PCA. 

Variable Description 

Prop. 
Variance 
explained 

Prey - PC1 Positive association with prey winter habitat 

and prey densities 

0.67 

Prey - PC2 Positive association with buck kill index 0.30 

Human - PC1 Human impact - positive association with 

road density, developed areas, and % 

agriculture, negatively associated with 

greater distance to highway and proportion 

of public land (e.g. national forest) 

0.52 

Topographic - PC1 Lower elevation and slope, less rugged 0.25 

Topographic - PC2 Positive association with south-facing slopes 0.25 

Land Cover - PC1 Generally forest-dominated, negative 

association with greater edge densities, open 

habitats, water, and wetlands 

0.56 

Land Cover - PC2 Positive association with greater stream 0.25 
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densities 

Snow depth Greater average snow depths in winter  

Protected Land Greater proportions of national and state 

forest 
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Table 3.5. Cross-validation rankings for isodar regression models comparing wolf 

densities in habitats with high vs. low prey availability, human influence, and favorable 

land cover. LM3, NLS1, and NLS2 indicate non-linear regression model fits, while LM1 

and LM2 indicate linearity (see Morris 1994). Non-linear isodars are indicative of pre-

emptive habitat distributions (Morris 1994).   

Habitat Predictor Ranking Model RMSE 

Prey Availability 1 NLS2 1.965 

 

2 NLS1 2.044 

 

3 LM3 2.164 

 

4 LM1 2.171 

  5 LM2 3.850 

Human Influence 1 LM3 2.103 

 

2 NLS1 2.158 

 

3 NLS2 2.185 

 

4 LM1 2.326 

  5 LM2 2.443 

Land Cover 1 NLS2 1.889 

 

2 NLS1 2.094 

 

3 LM3 2.108 

 

4 LM1 2.187 

  5 LM2 2.312 
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Figure 3.1. Theoretical fitness-density relationships and resulting isodars under the 
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Ideal-Free Distribution (IFD; A, B), the Ideal-Despotic Distribution (IDD; C, D), and the 

Ideal-Preemptive Distribution (IPD; E, F). Figures adapted from Morris (1994). 

   

 

Figure 3.2. Distributions of estimated wolf density at randomly selected locations within 

contrasting habitat types representing low vs. high human influence (A), prey 

availability (B), and favorable land cover (C) in Upper Michigan, USA, 1995 – 2013.  
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Figure 3.3.  Empirical isodars fit to a time series of mean wolf densities occurring within 

contrasting habitat types representing low vs. high human influence (A), prey 

availability (B), and favorable land cover (C) in Upper Michigan, USA, 1995 – 2013. 

Non-linear isodars indicate preemptive, density dependent habitat selection.  
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Appendix 3A. (Video Animation) Spatiotemporal change in wolf 
density in the Upper Peninsula, MI, USA, 1995-2013. 
A time-lapse animation is available in the online supplementary files for this document. 

 

Appendix 3B. Probability of occurrence models of wolf habitat use in 
the Upper Peninsula, MI, USA, 1995 – 2013. 
We modeled wolf occurrence in our study area by repeatedly drawing 500 random 
locations from occupied habitat (used habitat) and 500 random locations from 
unoccupied habitat (unused habitat) each year of the study. The response variable for 
analysis was thus a Bernoulli distributed variable indicating habitat use at a random 
coordinate; ( ) ( , )P used Bernoulli n p .       
 
Landscape variables 
 
Landscape predictors were developed to model habitat suitability in the study area, with 
continuous random variables chosen to represent prey availability, human influence, 
topographic variation, and land cover characteristics. Each variable is described in detail 
below. 
 
A. Indices of Prey Availability  

Variable: Buck Harvest 

Source: Michigan Department of Natural Resources (MDNR) 

Unit: Antlered bucks killed / km2 

Description & Measurement: Buck harvest data were collected from mail surveys during 
white-tailed deer hunting season across the Upper Peninsula (UP) by the MDNR (e.g. 
Frawley 2010). Harvest numbers were summarized by area (km2) at the county level, 
and a circular moving window (r = 4.02 km) was used to smooth the results at the same 
scale as other predictors. A continuous raster surface of 30 m cell size was thus 
generated for each year in the study, representing mean bucks harvested / km2. This was 
done using focal statistics in ArcGIS 10.1 (hereafter, ArcGIS; Environmental Systems 
Research Institute, Redlands, CA, USA).   

--- 

Variable: % Deer Wintering Complex 

Source: MDNR (e.g. http://www.michigan.gov/dnr/0,4570,7-153-10363_10856_10905-
339639--.html) 

http://www.michigan.gov/dnr/0,4570,7-153-10363_10856_10905-339639--.html
http://www.michigan.gov/dnr/0,4570,7-153-10363_10856_10905-339639--.html
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Unit: Percent of area mapped as deer wintering complex (%) 

Description & Measurement: White-tailed deer (Odocoileus virginianus) are migratory 
throughout much of the UP due to harsh winter conditions, and congregate in dense 
stands of primarily eastern hemlock (Tsuga canadensis) and northern white cedar (Thuja 
occidentalis) when snow depth exceeds approximately 30 cm (Shi et al. 2006; Witt et al. 
2012; Murray, Webster & Bump 2013). Deer winter range was been mapped by state 
biologists as early as the 1930s, with surveys occurring every 10 – 20 years since. The 
most recent surveys occurred in 2005 and 2013. We used the maps from 2005 and 2013 
to classify the study area as winter habitat (deer wintering complex, or DWC), or non-
winter habitat. We generated the percent of landscape variable using a circular moving 
window (r = 4.02 km) to summarize the area mapped as DWC at each location. A 
continuous raster (30 m cell) was generated for the study area to represent this metric. 
We assumed no significant change in DWC habitat throughout the study. Seasonal 
migration is a learned behavior and results in high fidelity to winter ranges, such that the 
same DWCs are repeatedly utilized year after year (Nelson 1998, Nelson et al. 2004).    

--  

Variable: Distance to Deer Wintering Complex  

Source: MDNR (see PDWC) 

Unit: Distance to nearest DWC (km) 

Description & Measurement: See description for ‘% Deer Wintering Complex.’ We 
generated distance to DWC (km) by creating a Euclidean distance raster surface in 
ArcGIS and subsequently calculating the average distance within the circular moving 
window across the study site. No significant change in DWC habitat was assumed over 
the course of the study (see ‘% Deer Wintering Complex’). 

--  

Variable: Annual Snow Depth 

Source: National Climate Data Center (http://www.ncdc.noaa.gov/) 

Unit: Average Daily Snow Depth (cm), 1 Nov – 30 Mar  

Description & Measurement: We downloaded daily snow depth data from the National 
Climatic Data Center (NCDC) for all weather stations on the study site. We calculated 
the mean winter snow depth at each station (1 Nov – 30 Mar) for each year in the study. 
We used Empirical Bayesian Kriging in ArcGIS (EBK; 
http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html) to interpolate a 
raster surface for each year based on the weather station point data. Parameters for the 
EBK analysis included an output cell of 500 m, maximum number of points = 50, local 

http://www.ncdc.noaa.gov/
http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html
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model overlap = 2, simulated semivariograms = 50, and a standard circular 
neighborhood with radius = 150,000 m, maximum neighbors = 12, and minimum 
neighbors = 3. The resulting raster surface represented interannual and spatial variation 
in snow depths during the study.  

 

B. Human Influence and Infrastructure  

Variable: % Agriculture 

Source: National Land Cover Database (NLCD; http://www.mrlc.gov/) 

Unit: Percentage of landscape comprising agricultural cover types (%) 

Description & Measurement: Agricultural cover types were reclassified from NLCD 
products for years 1992, 2001, 2006, and 2011. The early years of the study were linked 
to results from the 1992 product (wolf biological years 1995-1997), and 2001 product 
(wolf biological years 1998-2003), while later years corresponded to the 2006 (wolf 
years 2004-2008) and 2011 products (wolf years 2009-2013). Agricultural cover types 
included pasture/hay, row crops, small grains, and fallow ground, and were assigned a 
value of 1, with all other cover types reclassified to Null values. The moving window 
was applied to calculate the percentage of landscape comprising agriculture at each 
location (30 m cell) in the study area.  

-- 

Variable: Distance to Major Road 

Source: U.S. Census Bureau (http://www.census.gov/geo/maps-data/data/tiger.html) 

Unit: Distance to nearest major road (km) 

Description & Measurement: TIGER\Line roads were downloaded from the U.S. Census 
Bureau for the years 1990 and 2000-2014. We queried primary and secondary roads 
from the database for each year that the data were available. In the Upper Peninsula, 
these were almost entirely major highway routes. 1990 was removed from consideration 
because the classification scheme did not match the later years. Road coverages were 
similar in the 2000 data, however, so we used the 2000 file for the early study years. We 
calculated Euclidean distance to primary and secondary roads and applied the circular 
moving window to the resulting raster surface. For study years 2000-2013 we 
recalculated this metric every two years (i.e. 2002, 2004, … , 2012) to represent 
temporal changes in extent of roads.  

-- 

Variable: Minor Road Density 

http://www.mrlc.gov/
http://www.census.gov/geo/maps-data/data/tiger.html
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Source: U.S. Census Bureau (see HWY) 

Unit: Distance of Minor Roads / Unit Area (km / km2) 

Description & Measurement: TIGER\Line roads were described in ‘Distance to Major 
Road.’ For minor road densities, we queried local roads and trails from the TIGER\Line 
database. We then calculated minor road density within the moving window using the 
Line Density tool in ArcGIS. The temporal representation of these features was the same 
as in ‘Distance to Major Road.’    

--  

Variable: % Impervious Surface 

Source: NLCD (http://www.mrlc.gov/index.php) 

Unit: Percent of landscape comprising impervious surfaces (%) 

Description & Measurement: In addition to the NLCD products, we also acquired the 
2001, 2006, and 2011 Percent Developed Imperviousness product. In order to capture 
the best available temporal resolution for this feature, early study years were assigned to 
the 2001 product while later years (post-2002) were assigned to the 2006 and 2011 
products (see description for ‘% Agriculture’). We summarized % impervious (focal 
mean) within the moving window described previously to create the index for human 
population density and infrastructure. 

-- 

Variable: % Protected Land 

Source: USGS Protected Areas Database (http://gapanalysis.usgs.gov/padus/ ) 

Unit: Percentage of landscape comprising public/protected land ownership 

Description & Measurement: Protected areas in the UP of Michigan included National 
and State Forests, National Park Service land ownership, U.S. Fish and Wildlife Service, 
and various small tracts of land belonging to state or non-profit based conservancy 
projects or land trusts. We summarized the % landscape (focal mean) within the moving 
window to create an index of protected land where higher values represented lower 
potential for human development and disturbance. 

--  

C. Natural Features 

Variable: % Open 

Source: NLCD 

http://www.mrlc.gov/index.php
http://gapanalysis.usgs.gov/padus/
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Unit: Percent of landscape comprising open cover types (%) 

Description & Measurement: We used NLCD products to calculate the percentage of 
open cover types occurring on the landscape. Open cover types and forested land were 
reclassified to a binary raster (1 = open), which was used to assess the proportion of 
open cover occurring within the moving window. Open cover types included 
grassland/herbaceous, pasture/hay, row crops, small grains, fallow ground, 
herbaceous/emergent wetlands, bare ground, and quarries, mines, or pits. The analysis 
was repeated for 1992, 2001, 2006, and 2011 NLCD products to represent land cover 
change during the study. 

-- 

Variable: Open:Forested Edge Density 

Source: NLCD 

Unit: Distance of the open:forested linear feature / Unit Area (km / km2) 

Description & Measurement: We used NLDC products to create two binary rasters: one 
representing open cover types (see ‘% Open’), and one which included all forested cover 
types vs. other features. We defined the boundary between these two features as an edge, 
converted the boundary to line features in ArcGIS, and calculated the line density within 
the moving window described previously. The analysis was repeated for 1992, 2001, 
2006, and 2011 NLCD products. 

-- 

Variable: % Open Water & Wetlands 

Source: NLCD 

Unit: Percent of landscape comprising open water and wetlands 

Description & Measurement: We used NLCD products to reclassify 
emergent/herbaceous wetlands and open water cover types. A binary raster was created 
for these cover types using methods described in ‘% Open.’ We evaluated the percentage 
of landscape comprising open water and wetlands within the moving window. The 
analysis was repeated for the 1992, 2001, 2006, and 2011 NLCD products. 

--  

Variable: Stream Density 

Source: Michigan Geographic Data Library 
(http://www.mcgi.state.mi.us/mgdl/?rel=thext&action=thmname&cid=3&cat=MI+Geog
raphic+Framework+Hydrography+%28v14a%29) 

http://www.mcgi.state.mi.us/mgdl/?rel=thext&action=thmname&cid=3&cat=MI+Geographic+Framework+Hydrography+%28v14a%29
http://www.mcgi.state.mi.us/mgdl/?rel=thext&action=thmname&cid=3&cat=MI+Geographic+Framework+Hydrography+%28v14a%29
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Unit: Distance of stream per unit area (km / km2) 

Description & Measurement: Hydrography files were downloaded from the Michigan 
Geographic Data Library. All streams and linear water features were selected from these 
data and clipped to the study area (FCC codes H3*– H4*). Linear stream features were 
converted to a 30 m density raster using the line density tool with 4.02 km radius. 

-- 

Variable: Elevation 

Source: USGS National Map (http://nationalmap.gov/) 

Unit: Meters above sea level (m) 

Description & Measurement: We downloaded a 30 m DEM from the National Map and 
calculated mean elevation within the moving window described previously.   

-- 

Variable: Slope 

Source: USGS DEM (see Elevation) 

Unit: Degrees of slope (°) 

Description & Measurement: We used the DEM described in ‘Elevation’ to compute 
degrees slope using ArcGIS, and calculated the mean slope within the moving window. 

--  

Variable: Terrain ruggedness 

Source: USGS DEM (see Elevation) 

Unit: Index of terrain ruggedness 

Description & Measurement: We used the DEM to compute the average terrain 
ruggedness index value within the moving window. The analysis was performed using 
the ArcGIS Geomorphometry and Gradient Metrics toolbox (Evans et al 2014). The 
index measures topographic heterogeneity and is fully described in Evans et al. (2014).  

-- 

Variable: Topographic radiation aspect index 

Source: USGS DEM (see Elevation) 

Unit: Index of heat load 

http://nationalmap.gov/
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Description & Measurement: We used the DEM to compute the average heat load index 
value within the moving window. The analysis was performed using the ArcGIS 
Geomorphometry and Gradient Metrics toolbox (Evans et al 2014). The index measures 
potential for direct solar radiation and warmer temperatures based on a slope-aspect 
transformation; the method is fully described and referenced in Evans et al. (2014).  

-- 

Principal Components Analyses of landscape predictors 
 
We separated landscape predictors into four separate classes (prey availability, human 
influence, topographic variation, land cover characteristics) and performed Principal 
Components Analyses (PCA) to reduce from many correlated landscape predictors to 
fewer uncorrelated predictors (e.g., see Panzacchi et al. 2015). The PCA was performed 
in R 3.2.2 (R Core Team 2015) on the correlation matrix of the predictors in each 
category (Venables and Ripley 2002). We selected the first and second principal 
components from each analysis to use as predictors in wolf habitat models. The first and 
second components explained ≥ 50% of the variance in each case, and served as 
landscape variables that were relevant to wolf life history, fitness, and habitat 
requirements on the landscape. For human influence, we replaced the 2nd component 
with the ‘Protected Land’ variable in habitat models due to its ability to predict habitat 
use and ease of interpretation. We also added the ‘Snow’ predictor to models 
independently because of its potential to influence habitat and because it did not fall 
under any particular category. Tables 3 and 4 in the main text show the results of the 
PCAs and the resulting indices considered in wolf habitat models.    
 
Habitat Analysis 

We were interested primarily in the ability of landscape predictors to influence wolf 
habitat use at the population level within the study area. As a baseline, we used a 
generalized linear model for a binary response variable 

 0 1 1 2 2( ) ln
1 k k

pLogit p x x x
p

β β β β ε
 

= = = + + + + + − 
Xβ    (7) 

where 𝑘𝑘 indicates the number of predictors in the model formula and 1( ,..., )kx x  indicates 
the vector of habitat predictors with 1,..., kβ β  regression coefficients. We added a 
random intercept (Year) to the model to account for repeatedly sampling from the study 
area over time (Hebblewhite and Merrill 2008).  The logit link was used to transform the 
linear response into a probability; we interpreted this as relative probability of 
occurrence due to the strong assumptions associated with modeling habitat selection 
processes (e.g. Lele et al. 2013).  



101 
 

Our model included predictors for prey (Prey-PC1, Prey-PC2), human influence 
(Human-PC1, Protected Land), topographic variation (Topo-PC1, Topo-PC2), land 
cover characteristics (Land-PC1, Land-PC1), and snow. Each of these predictors was 
relevant to habitat use (Table 2, main text) so we did not implement model reduction or 
model selection. The resulting model discriminated reasonably between predicted used 
and unused locations according to the Receiving Operator Characteristic (AUC = 0.803; 
Robin et al. 2011).  We selected the top three predictors for isodar analyses based on 
rankings of predicted influence on probability of selection (change in predicted Y with 
change in X) and effect size (|Z-value|). The top predictors were Prey-PC1 with greater 
values indicating greater prey availability, Human-PC1 with greater values indicating 
more human impacts, and Land-PC2 with greater values strongly associated with greater 
stream densities. These results are summarized in Tables 2 and 3, main text. 

 

Appendix 3C. Growth rate differences in separate habitats 

 
      Time Period Habitat Predictor Percentile rA rB Mann-Whitney test (rA 

> rB) 
1995 - 2001 Prey Availability 5th -1.68 -3.02 

  

  

25th -0.32 -0.88 
  

  

median 0.15 0.05 W = 9.2e04, p = 0.018 

  

75th 0.79 0.98 
  

    95th 2.82 4.05 
  

 

Human Influence 5th -2.48 -2.37 
  

  

25th -0.54 -0.61 
  

  

median 0.13 0.13 W = 1.3e05, p = 0.555 

  

75th 0.77 1.01 
  

    95th 4.41 3.16 
  

 

Land Cover 5th -2.22 -2.40 
  

  

25th -0.57 -0.52 
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median 0.16 0.13 W = 2.2e05, p=0.203 

  

75th 1.03 0.79 
  

    95th 3.36 3.51 
  

2002 - 2007 Prey Availability 5th -0.98 -1.09 
  

  

25th -0.21 -0.24 
  

  

median 0.10 0.12 W = 1.3e05, p = 0.691 

  

75th 0.43 0.54 
  

    95th 1.55 1.69 
  

 

Human Influence 5th -0.86 -1.43 
  

  

25th -0.23 -0.21 
  

  

median 0.14 0.15 W = 1.2e05, p = 0.535 

  

75th 0.51 0.54 
  

    95th 1.67 1.54 
  

 

Land Cover 5th -1.27 -0.89 
  

  

25th -0.19 -0.22 
  

  

median 0.12 0.12 W = 2.1e05, p = 0.541 

  

75th 0.51 0.48 
  

    95th 1.62 1.59 
  

2008 - 2013 Prey Availability 5th -0.67 -0.72 
  

  

25th -0.12 -0.13 
  

  

median 0.00 0.06 W = 1.1e05, p = 0.998* 

  

75th 0.15 0.24 
  

    95th 0.51 1.04 
  

 

Human Influence 5th -0.59 -0.66 
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25th -0.10 -0.13 
  

  

median 0.04 0.05 W = 1.2e05, p = 0.658 

  

75th 0.22 0.27 
  

    95th 0.82 0.82 
  

 

Land Cover 5th -0.7 -0.58 
  

  

25th -0.14 -0.1 
  

  

median 0.03 0.05 W = 2.1e05, 9 = 0.705 

  

75th 0.25 0.22 
  

    95th 0.77 0.81 
  

       * Indicates the null hypothesis of the opposite test (rB > rA) would be true 
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4. A simulation of conceptual used and available habitat distributions 

under assumptions of strong territoriality and population growth3 

Abstract 

Habitat selection is a dynamic behavioral process which can be influenced by many 

variables, including species territoriality. The effect of territoriality on temporally-

varying, density dependent habitat selection trends has received little attention at the 

landscape scale. Specifically, the availability distribution is a key component of modern 

habitat selection models and can be constrained substantially at the population level 

when animals employ a preemptive site occupancy strategy. The implication is that the 

geographic availability of all habitat types shrinks in size as populations increase and 

vice versa. Depending on the degree of preference or avoidance of a particular habitat 

and the relative abundance of the habitat, the selection ratio can vary in ways that may 

be unanticipated. We simulated 4 scenarios of density (or occupancy) dependent habitat 

selection under the assumption that increases in occupancy led to constricted geographic 

availability of habitats. Depending on the initial habitat distribution and the nature of 

habitat use, the selection ratio increased, decreased, or remained constant over time. The 

change in the selection ratio is akin to a density dependent change in the (β) coefficients 

from modern habitat selection models and depends on the convergence or divergence of 

habitat use and availability distributions. For example, if the central tendencies of used 

and available habitat distributions diverge, the strength of habitat selection increases. 

                                                            
3 The material contained in this chapter is being prepared for submission to an undetermined journal 
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Alternatively, the used and available distributions may converge, resulting in weaker 

selection, or move in parallel, resulting in constant selection. 

Introduction 

Modeling and understanding animal habitat selection occurring within dynamic 

systems is an ongoing challenge for ecologists. Distributions of used and available 

habitat can be highly variable, especially when populations fluctuate and the 

distributions of available resources or habitat are not stationary (McLoughlin et al. 2010, 

Aarts et al. 2013, Matthiopoulos et al. 2015). A question that often motivates researchers 

is whether or not habitat selection patterns are sensitive to these changes (van Beest et al. 

2014a, van Beest et al. 2015). Answering this question relies heavily on assumptions 

about accessibility of important habitat types or resources (Beyer et al. 2010, Lele et al. 

2013). Radio telemetry studies may track a population over the course of a time series, 

making targeted inference about the spatiotemporal process challenging.  

Territoriality and associated changes in occupancy as a population increases can 

pose problems for traditional analytic approaches to the question of habitat selection. 

Habitat selection may be much different at low population densities than it is at high 

densities (Matthiopoulos et al. 2015, Yackulic et al. 2015). In Upper Michigan, USA, for 

example, gray wolves (Canis lupus) began to repopulate the region in the early 1990s 

and the population continued to grow from < 50 individuals (pre-1995) to > 600 (post-

2010; Michigan Department of Natural Resources 2015). During this time, wolves 

established territories throughout the Upper Peninsula (UP) in areas where prey were 
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abundant and human development was minimal. By the end of the time series, available 

suitable habitat for new colonizing packs was likely limited. From a habitat selection 

perspective, the available habitat distribution at the end of the study likely bore little 

resemblance to its distribution during early recolonization. Although this alone has 

consequences for habitat selection, the change in availability could also influence the 

used habitat distribution. For example, animals may adapt and become tolerant of lower 

quality habitat if choosing to do so poses less risk and thus offers potentially equal 

fitness benefits as competing for the best habitat (e.g. see ideal-despotic habitat 

distribution theory; Fretwell & Lucas 1969, Morris 1988). Alternatively, new arrivals 

can be “preempted” from existing habitats (Pulliam 1988, Pulliam and Danielson 1991, 

Morris 1994). Such site-dependent regulation (Rodenhouse et al. 1997) may have a 

strong influence on habitat selection.  

Habitat selection is often perceived as a behavioral process. Understanding the 

influence that preemptive or despotic habitat distributions might have on traditional 

habitat selection models (Boyce and McDonald 1999, Manly et al. 2002, Johnson et al. 

2006) is crucial to correctly interpreting an animal’s behavior. For example, an animal 

may exhibit preference for a specific limited habitat requirement (e.g. preferred food 

source). As population increases, habitats with more of the preferred food source 

become less available. At this point, individuals may adjust to changing conditions, thus 

changing their behavior (i.e. becoming more tolerant of lower quality habitat, or 

choosing to use an alternative food source). In this case, both the used and availability 

distributions shift. Habitat selection might remain constant if the rate of change in both 
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distributions is balanced, but the strength of selection could appear to increase or 

decrease if the rate of change in used and available distributions is not equal. In fact, any 

combination of density- or time-dependent habitat selection scenarios is conceivable, 

and the observed dynamics would depend on strength of preference, relative availability, 

and substitutability of a given resource or habitat type. Thus, we suggest that 

understanding the nature of habitat selection requires tracking shifts in both habitat 

distributions (used and available), in order to correctly interpret any change (or lack 

thereof) in the habitat selection ratio (e.g. selection of a discrete habitat type, or a 

coefficient shift for a continuous habitat metric; see Aarts et al. 2013 and McDonald 

2013 for explanation of selection ratios for discrete vs. continuous habitat 

representations). 

Our objective was to provide a conceptual framework for understanding and 

graphically plotting used and available habitat distributions for theoretical habitat 

metrics under varying scenarios of preference, availability, and substitutability. Changes 

in the corresponding selection ratio (increase vs. decrease in strength of selection) 

depend on divergence or convergence of the central tendencies of used and habitat 

distributions; we demonstrated this by generating arbitrary habitat distributions on a 

spatial grid, simulating an increasing population where more and more units become 

occupied over the course of the time series, and plotting subsequent used and available 

habitat distributions along with their corresponding selection ratios. Conceptual results 

are informative and the method can easily be applied empirically. 

Methods 
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We explored the effect of changing habitat availability (aka, a functional 

response in habitat selection; Aarts et al. 2013) on continuous habitat coefficients for 

four scenarios of increasing population growth: S1 = a finite habitat type with strong 

selection and limited availability, S2 = an abundant habitat type which is selected for but 

not limited, S3 = a limited habitat type that is initially selected for but is increasingly 

substituted for by another habitat type as its availability declines, and S4 = an abundant 

habitat type with no initial selection, but becomes increasingly selected for as a 

substitute for another limited habitat type (e.g. the habitat in S3).  

For each scenario, we simulated occupancy on a 10 × 10 grid and specified 15 

time steps.  To model increases in occupancy, we specified a sigmoidal logistic growth 

function to represent an increase of proportion occupied from approximately 0.05 to 0.75 

across the 15 unit time series. We used the ‘scurve’ function in R 3.2.2 package 

‘LS2Wstat’ (Nunes et al. 2014, R Core Team 2015) to extrapolate the values between 

0.05 and 0.75 at time t = (1, 2 , … , 15). For each scenario, we specified a probability 

distribution function (PDF) for a continuous random variable representing an arbitrary 

habitat metric of interest, where the shape of the PDF was chosen depending on the 

scenario. For all cases, low values represented low quality habitat and vice versa. For 

example, a habitat with limited resources would have greatest density at values near or 

below 0, with greater values (i.e. upper tail of distribution) representing a limited supply 

of high quality habitat. Alternatively, a habitat with abundant resources would have 

greatest density at values above zero. We assumed constant territory size and occupancy 

in each example (e.g. Ridley et al. 2013, Haché et al. 2013) such that occupied territories 
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could not overlap or change in size and once geographical units were occupied they 

remained so for all subsequent time steps. 

Scenario 1 (S1) 

In S1, we simulated dynamic habitat selection of a relatively limited, finite 

habitat type. Each geographical unit was assigned a habitat value 1 1 2 100( , ,..., )X x x x=  

based on a normally distributed random variable with mean 0 and variance 1, i.e.

1 (0,1)X N  (Fig. 4.1A). We specified the probability of an animal occupying a 

geographical unit i to be a sigmoidal function of X1, with probability increasing as X1 

increased (Fig. 4.1B): 

 
10.15

1( 1)
1 xP i

e−= =
+

  (8) 

where i = 1 indicates selection of unit i. The proportion occupied at each time unit 

similarly followed a sigmoidal function with a slope coefficient of 0.33: 0.33

1( )
1 tN t

e−=
+

, where N(t) represented the number of units occupied at time t. We simulated occupancy 

by randomly sampling n units from the grid at each time step without replacement, 

where 

 { ( )                   if 1
( ) ( 1)    otherwise (t > 1)

n t tn n t n t
== − −   (9) 

and probability of occupying unit i followed (1). At each time step we estimated the used 

(fu[X1]) and available (fa[X1]) distributions of the habitat 1X by computing its mean in the 
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occupied (used) and remaining unoccupied (available) units. We repeated the procedure 

100 times to generate a sample of independent time series. We then graphically plotted 

the used and available habitats as a function of time, and computed the ratio of used to 

available habitat at each time step: , 1
1

, 1

exp( [ ])
( , )

exp( [ ])
u t

a t

f X
X t

f X
β = .  As a final step, we used a 

local polynomial regression smoother to fit a trend line to the simulated used and 

available distribution time series and selection ratios. 

Scenario 2 (S2) 

In S2, we simulated dynamic habitat selection of an abundant but used habitat 

type. Each geographical unit was assigned a habitat value 2 1 2 100( , ,..., )X x x x= , which 

was based on a Beta distribution, i.e. 2 ( , )X Beta α = 5 β =1 (Fig. 4.2A). The probability 

of occupancy for unit i in this case was specified similar to (1), with a slope parameter of 

0.5 (instead of 0.15) and the range defined by X2’s range. Selection of X2 was thus 

slightly weaker than that of X1, with an increase in probability of ~ 0.9 across the range 

of X2 (Fig. 4.2B). Occupancy was otherwise simulated as in (2), and the used and 

available distributions along with corresponding selection ratios were estimated similar 

to S1.  

Scenario 3 (S3) 

In S3, we simulated dynamic habitat selection of a limited habitat type, this time 

defining rules for a declining probability of occupancy as occupancy increased. A 

motivating example would be an animal that switches from a preferred food item to an 
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alternative source, thereby substituting one habitat type for another. Geographical units 

were assigned habitat values 3 1 2 100( , ,..., )X x x x= , which were based on a Beta 

distribution with highest density at low values, i.e. 3 ( , )X Beta α =1 β = 5 (Fig. 4.3A). 

To model declining habitat use, we defined an initial probability of occupancy similar to 

S1 and S2, defining a slope parameter of 0.75 and range defined by X3’s range, which 

corresponded to an initial probability of use increase of 100% across the full range of 

possible values (Fig. 4.3B). In this case, probability of use was a declining function of 

occupancy, modeled through the β coefficients of a generalized linear model (GLM) 

with a binomial response and logit link function. For example, the curve defining the 

initial relationship between X3 and probability of use can be expressed as the linear 

model logit( ) 7.5 15Y x= − + + ε ,  where x is the habitat value (in this case, X3). We 

specified use of X3 to decline to near zero at occupancy > 0.75, using a logistic function 

for 0β  and 1β  in the GLM  

 0
7.5

1 exp{(0.5 ) / 0.06}x
β −

=
+ − −

  (10) 

 1
15

1 exp{(0.5 ) / 0.06}x
β =

+ − −
  (11) 

where x was the proportion of units occupied. We used the ‘SSlogis’ function in R 

(Pinheiro et al. 2011) to estimate the scale and point of inflection parameters. 

Simulations proceeded as in S1 and S2, with estimation of used and available 

distributions along with the corresponding selection ratio. 
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Scenario 4 (S3) 

S4 represents the substitute habitat type for S3, with initial selection near zero 

but increasing as occupancy increases. Geographical units were assigned habitat values

4 1 2 100( , ,..., )X x x x= , which were based on a Beta distribution with highest density at 

greater values, i.e. 4 ( , )X Beta α = 4 β = 2 (Fig. 4.4A). We defined an initial probability 

of use as in previous scenarios, this time with a slope parameter of 0.01 indicating very 

weak initial selection (Fig. 4.4B). In contrast to X3, selection of X4 was an increasing 

function of occupancy. Similar to S3, we specified an increase in β0 and β1 using logistic 

functions: 

 0
7.5

1 exp{(0.5 ) / 0.06}x
β −

=
+ −

  (12) 

 1
7.5

1 exp{(0.5 ) / 0.06}x
β =

+ −
  (13) 

where x was the proportion of units occupied. Contrary to the previous example, the 

scale parameter is positive, resulting in a decreasing effect on β. Simulations proceeded 

as in the other scenarios. 

Results 

Scenario 1 (S1) 

Fig. 4.5 illustrates the simulated change in occupancy for one iteration of the 15-

step time series, using S1 as an example. In S1, the animal exhibits strong selection for 

the habitat (greater habitat suitability in darker green), such that by the end of the time 
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series the majority of remaining unoccupied units have unsuitable habitat values (Fig. 

4.5, Fig. 4.6A). The results of all simulations are shown in Fig. 4.6. In S1, the strong 

selection for habitat X1 resulted in a decline in both the used (fu[X1]) and available 

(fa[X1]) distributions (Fig. 4.6A). However, in this example, the depletion of remaining 

available habitat was evident by the end of the time series, resulting in a decline in the 

value of available habitat that was steeper than that of the used habitat (Fig. 4.6A). As a 

result, the selection ratio (use proportional to availability) increased with increasing 

occupancy over time (Fig. 4.6B).  

Scenario 2 (S2) 

In S2, the animal used habitat at a rate that was nearly proportional to its 

availability (Figs. 4.2A, 4.2B, 4.6C). In this case, the used or available habitat 

distributions were both relatively static. As a result, the selection ratio also remained 

constant as occupancy increased (Fig. 4.6D).  

Scenario 3 (S3) 

S3 demonstrates declining selection over time, as the animal’s probability of 

using an initially preferred habitat type decreases as that habitat type becomes less 

available. The distribution of used habitat decreases more rapidly than that of the 

available habitat distribution (Fig. 4.6E), resulting in a declining selection ratio with 

increasing occupancy (Fig. 4.6F).  

Scenario 4 (S4) 

In S4, the animal does not exhibit initial use of the habitat, but increases its use 

as occupancy increases. The result is an increasing used habitat distribution and a 
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decreasing available habitat distribution (Fig. 4.4G), leading to an increasing selection 

ratio (Fig. 4.4H).  

Discussion 

Habitat suitability modeling is necessary for understanding species requirements, 

but the effect of territoriality on modern habitat selection models has received little 

attention. Quantifying habitat selection often relies on a comparison between habitats 

used by an animal and habitats deemed to be available (Johnson 1980, Manly et al. 2002, 

Johnson et al. 2006). A disproportionate ratio between use and availability is the basis 

for inference in the broadly applied resource selection function (RSF; Boyce et al. 2002, 

Johnson et al. 2006). In addition, other habitat modeling tools such as species 

distribution models (SDMs; Phillips et al. 2006, Austin 2007) also rely on these 

comparisons, although it is not always explicitly stated (McDonald et al. 2013). Habitat 

selection can be dynamic, with multiple processes influencing an animal’s space use as 

well as its perception of habitat or resource availability (McLoughlin et al. 2010, Aarts et 

al. 2013). We’ve demonstrated the effect that territoriality can have on the habitat 

selection ratio through competitive exclusion. Our framework is useful for investigating 

the behavioral mechanisms or ecological processes that cause changes in habitat 

selection when territorial behavior imposes constraints on habitat availability.  

Density dependence has been identified as a major driver of spatiotemporal 

variation in habitat selection (McLoughlin et al. 2006, van Beest et al. 2014a, van Beest 

et al. 2015). Density dependent habitat selection has been primarily studied under the 

assumption of an ideal-free distribution (Morris 1988), which precludes geographic 
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constraints on space use. Density dependent habitat selection is expected for territorial 

species, but space use patterns such as territory colonization and occupancy can have a 

profoundly different effect on the habitat selection process. Specifically, if competitive 

exclusion imposes ‘invisible barriers’ on geographic habitat availability at the landscape 

level (e.g. Pulliam and Danielson 1991, Rodenhouse et al. 1997), then habitat use, 

availability, and selection will be heavily dependent on the proportion of habitat 

occupied overall. Temporal variation in habitat selection can then be attributed to the 

importance and relative abundance of a given habitat type. We’ve shown that if a habitat 

is essential and limited in availability, then the habitat selection ratio is likely to increase 

with increasing density or occupancy, even while animals shift their utilization to lower 

quality habitat characteristics. However, abundant habitats that are used proportional to 

their availabilities (as in S2) may be interpreted as unimportant by researchers (e.g. no 

statistical effect in the habitat model) even if they receive high utilization (Aarts et al. 

2013); this lends itself to the importance of an informed understanding of the specific 

rates of habitat utilization by individuals or populations (Millspaugh et al. 2006, Hooten 

et al. 2013) as well as estimates of relative habitat availability. A comprehensive analysis 

accounting for temporal change will also help to reveal habitats that are being substituted 

for (as in S3) or being used as a substitute (as in S4; van Beest et al. 2014b). 

In our simulations, we assumed that landscape-level increases in density and 

occupancy did not result in changes in territory size and degree of overlap between 

territories. In reality, territorial individuals or groups may adjust shape, size, and 

boundaries of their home ranges to accommodate an increasing population (Ridley et al. 
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2004, Haché et al. 2013). If this is the case, then later arrivals or new colonizers may 

have access to some habitat and resources that were assumed to be unavailable in our 

simulation framework. Thus, habitat availability would be underestimated for the 

population, especially near the end of the time series. However, overlap in territories 

would have to be largely significant in order to marginalize the landscape occupancy-

dependent effects that we observed. Moreover, overlap or crowding effects typically 

indicate that density dependent habitat selection is more consistent with that expected 

from an ideal-free distribution, as opposed to the ideal-preemptive or ideal-despotic 

alternatives (Morris 1994, Haché et al. 2013). Habitat selection and space use patterns 

are inescapably complex, and thus expectations or assumptions of territoriality should be 

qualified and tested whenever possible.  

Simulated scenarios of habitat use, availability, and selection under strong 

assumptions of territoriality indicate that habitat selection can be temporally dynamic in 

ways that may be unexpected. Selection for a particular habitat can increase even when 

the habitat used by the individual or group declines over time due to density dependent 

saturation of high suitability habitat. In addition to providing ecologically relevant 

information that can often be overlooked, exploring temporal trends in habitat use and 

availability distributions will likely result in a more broadly informed analysis overall, 

and can reveal explanations for unexpected patterns in habitat selection. While this 

conclusion can also be applied to gregarious and social species, its significance is 

especially relevant to territorial species with population fluctuations resulting in range 

expansion or contraction over time. Modern evaluations of habitat suitability should 
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recognize the potential for territoriality to constrain distributions of habitat availability, 

which are crucial for accurately assessing habitat selection. 

 

  

Figure 4.1. Hypothetical relationship between A) a simulated habitat and B) the 

probability of and individual or group occupying the habitat for Scenario 1 (S1). In S1, if 

the habitat is normally distributed (X1 ~ N (μ=0,σ=1)) and occupancy is related to larger 
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habitat values, then suitable habitat is limited such that selection will deplete available 

habitat over time. 
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Figure 4.2. Hypothetical relationship between A) a simulated habitat and B) the 

probability of and individual or group occupying the habitat for Scenario 2 (S2). In S2, 

the habitat is Beta distributed ( 2 ( , )X Beta α = 5 β =1 ); although occupancy increases 

with increasing habitat values, the habitat type is more abundant and thus is less likely to 

be depleted.  

  



120 
 

Figure 4.3. Hypothetical relationship between A) a simulated habitat and B) the 

probability of an individual or group occupying the habitat for Scenario 3 (S3). In S3, 

the habitat is Beta distributed ( 3 ( , )X Beta α =1 β = 5 ) and probability of occupancy 

depends initially on X3 but declines as the proportion of the landscape occupied 

increases. This scenario may occur when an animal switches to an alternative habitat 

type as the initial habitat becomes less available. 

  



121 
 

Figure 4.4. Hypothetical relationship between A) a simulated habitat and B) the 

probability of an individual or group occupying the habitat for Scenario 4 (S4). In S4, 

the habitat is Beta distributed ( 4 ( , )X Beta α = 4 β = 2 ) with no initial relationship 

between X4 and occupancy. However, as occupancy increases, habitat X4 becomes 

increasingly important. This scenario may occur when an animal switches from an 

alternative habitat type. 

  

Figure 4.5. Demonstration of one simulation iteration of increasing occupancy over time 

from ~ 5% of units occupied to ~ 75% occupied for a limited but preferred habitat type. 

Bolded grid units with hash marks represent units that have become occupied at, e.g. 
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time steps 1 (A), 5 (B), 10 (C), 15 (D), while darker shades indicate greater habitat 

suitability.    

 

  

Figure 4.6. Results from simulations of used and available habitat (1st panel column; 

A,C,E,F) and corresponding selection ratios (2nd panel column; B,D,F,H) under 

assumptions of strong territoriality and increasing occupancy over time. Four 

hypothetical scenarios were evaluated in simulations, including an important, limited 
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habitat (A,B), abundant but important habitat (C,D), limited substitutable habitat (E,F), 

and more abundant substitute habitat (G,H). Results show that the change in the 

selection ratio is dependent on convergence or divergence between used and available 

habitat distributions as occupancy increases over time.  
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5. Implications of territoriality and density dependence on long term 

comparisons of used to available habitat distributions4 

Abstract 

Habitat selection is a process that spans space, time, and individual life histories. 

Ecological analyses of animal distributions and preferences are most accurate when they 

account for inherent dynamics of the habitat selection process. Since habitat selection is 

a function of habitat availability, strong territoriality can constrain the habitat perceived 

to be available to individual animals or groups attempting to colonize or establish new 

territory. When considering a population change over time, broad-scale changes in 

habitat availability can drive density dependent variation in habitat selection. We 

investigated density dependent habitat selection over a 19-year period of gray wolf 

(Canis lupus) recovery in Michigan, USA using a generalized linear mixed model 

(GLMM) framework with habitat selection coefficients conditioned on random effects 

for wolf packs and random year intercepts (e.g. crossed random effects). In addition, we 

allowed habitat selection coefficients to vary as interactions with increasing wolf density 

over space and time. Results indicated that the probability of pack occupancy was driven 

largely by winter prey availability and human impact indices, but that selection 

coefficients for multiple predictors were density dependent. Density dependent habitat 

selection models had good fit to pack occupancy data, but changes in occupancy at the 

landscape level tracked changes in used and availability distributions more explicitly 

across time. Spatiotemporal dynamics and population changes can cause considerable 
                                                            
4 The material contained in this chapter is in preparation for submission to the Journal of Applied Ecology 
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variation in wildlife-habitat relationships; we encourage modelers to adopt flexible 

approaches to account for potential influences of territoriality when applying traditional 

habitat selection procedures.  

Introduction 
 

Investigating an organism’s habitat preference and quantifying its realized niche 

is fundamental for ecologists (sensu Hutchinson 1957; Boyce and McDonald 1999; 

Pulliam 2000; Hirzel and Le Lay 2008). Population ecology and conservation biology in 

particular rely on habitat selection studies because identifying the factors influencing 

distributions, densities, gene flow, and fitness characteristics in species is necessary to 

manage populations and conserve habitat. Resource or habitat selection functions (RSFs 

or HSFs; Aarts et al. 2013) and species distribution models (SDMs) are broadly used to 

explore biotic elements that drive habitat use and species range (Warton and Aarts 

2013). HSFs and SDMs have contributed greatly to our understanding of animal-habitat 

relationships, but applications are often limited in terms of predictive and explanatory 

capacity (Zurell et al. 2009, Yackulic et al. 2013). 

Habitat selection is a process that spans multiple dimensions (3D space, time, life 

history; Morris 2003, Keating and Cherry 2009; Uboni et al. 2015a). The most accurate 

ecological analyses of animal distributions and preferences are those that recognize the 

inherent dynamics of the habitat selection process (McLoughlin et al. 2010, van Beest et 

al. 2015). Habitat selection is a function of habitat availability (a habitat selection 

functional response; Mysterud and Ims 1998, Matthiopoulos et al. 2011), and changes in 

availability may coincide with variation in the local population density of inter- or 
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intraspecifics (density dependent functional responses; Tardy et al. 2014, van Beest et al. 

2015). Changes in habitat availability can also occur as a result of environmental 

stochasticity (e.g. drought), or human impacts (e.g. land cover change). The degree to 

which functional responses are linked to density likely depends on the nature of 

competitive behavior between or among species. Evidence suggests that ideal-free 

consumers generalize their habitat selection with increases in conspecific density (Blix et 

al. 2014, van Beest et al. 2014a, van Beest et al. 2014b). In this case, the distribution of 

available habitat may change in composition but geographic availability can remain 

constant. However, territorial species are not as well understood and the implication of 

increasing density on corresponding availability distributions has not been addressed in a 

habitat selection framework.  

Theory on pre-emptive or ideal-dominant habitat distributions suggests that 

territorial species should increase their use of sub-optimal habitat types as density 

increases (Fretwell and Lucas 1969, Pulliam and Danielson 1991, Morris 1994).  Habitat 

matching under either of these scenarios is likely to be more complex than that of the 

ideal-free case, where variation in density theoretically reflects the quality of underlying 

habitats (Morris 1994). When assessing temporal variation in habitat selection by 

territorial species, treatment of the available habitat distribution (i.e. the probability 

density function of all locations available to be selected over an area of interest; 

Northrup et al. 2013) becomes complicated by the potential for exclusion (Pulliam and 

Danielson 1991, Rodenhouse et al. 1997) and/or despotism (Fretwell and Lucas 1969, 

Mosser et al. 2009). More specifically, the habitat distribution that is available to early 
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arrivals will be different than that available to later arrivals. Assuming early arrivals 

recognize and occupy the best available sites (Pulliam and Danielson 1991), the 

available habitat distribution for later arrivals will not include these sites until they are 

again vacated. 

By definition, evaluation of habitat selection in RSFs or HSFs depends on the 

ratio of used habitat to available habitat; if this ratio is ≠ 1, we conclude selection for 

(ratio >1) or against (ratio <1) a defined habitat type (Johnson 1980, Manly et al. 2002). 

The selection ratio is often assumed constant for relatively short-term studies, with 

inference occurring at the local population level. However, when temporal variation 

imposes changes in the used habitat distribution, the available habitat distribution, or 

both distributions, the resulting output can be difficult to interpret. When shifts in 

resource availability occur concurrently with changes in species density, attributing 

temporally-varying habitat selection coefficients to the appropriate process can be 

challenging (density-dependence, functional response, or both; McLoughlin et al. 2010, 

Matthiopoulos et al. 2015). This is especially true when territoriality influences the 

habitat available to colonizing animals.   

In this paper, we introduce a methodological workflow to evaluate habitat 

selection by territorial animals in the presence of changing population density and 

environmental variation. To demonstrate our approach, we used a combination of long-

term radio collar and snow tracking data on gray wolves (Canis lupus) during a period 

20-year period of recolonization to the Upper Peninsula of Michigan. Our objectives 

were to 1) identify important predictors of wolf habitat selection occurring within our 
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study area, 2) test for temporal variation in habitat selection, and 3) explore density 

dependent trends in habitat selection corresponding to the most important habitat 

predictors. In (3), we focus on density dependent habitat selection (hereafter, DDHS) by 

explicitly accounting for functional responses that occurred due to long-term changes in 

habitat predictors, such as a gradual decline in prey density. We also highlight the 

importance of modeling spatially varying density within a study area in addition to long-

term population trends, as DDHS can occur at multiple scales (van Beest et al. 2014b, 

Laforge et al. 2016). We employ a site-occupancy approach (Rodenhouse et al. 1997) to 

account for changes in the habitat availability distributions for multiple habitat 

predictors. Under the assumption of competitive exclusion, we apply habitat selection 

models to each annual snapshot of wolf locations, but constrain the availability 

distribution to areas not already occupied by existing wolf packs. 

 Understanding DDHS for territorial species is valuable for multiple reasons. 

Changes in density or abundance may alter the response curves of predictors in a model, 

particularly if the population has undergone long-term growth or decline during the 

study. Furthermore, predictions of the ecological niche based on current conditions may 

be unreliable because populations are not likely to be at equilibrium with their 

environmental surroundings at any given time (though often assumed to be; Yackulic et 

al. 2015). In such cases, habitat quality may be reflected by habitat selection patterns 

only at low population densities (e.g., van Beest et al. 2014a), especially under 

assumptions of theoretical ideal-despotic or pre-emptive habitat distributions. Inferences 

from models that include density data while accounting for corresponding changes in 
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habitat availability are also more likely to reflect population dynamics that are of 

interest. Variation in the population growth rate is likely to be partially dependent on 

habitat selection (Morris 1994, Matthiopoulos et al. 2015), with positive average growth 

rates typically associated with higher quality habitat (Pulliam 2000, Hirzel and Le Lay 

2008). Furthermore, detecting behavioral changes associated with DDHS can reveal 

much about the limiting nature of a given habitat predictor (Fig. 5.1; Appendix 5A). For 

example, the distribution of used habitat typically will shift toward lower quality habitat 

as population density increases and quality sites become saturated; however, the 

available distribution (i.e. what remains and is not used) may also shift if quality habitat 

is limited (Fig. 5.1A). If the decline in the available distribution is steeper than that of 

the used distribution, than habitat selection actually gets stronger (Fig. 5.1B), indicating 

the finite nature of the given habitat predictor while also demonstrating its importance to 

the species. Understanding the influence of density-dependent mechanisms on habitat 

selection is especially critical for territorial and social carnivores such as wolves, 

particularly in areas where recolonization or range expansion is occurring. 

Methods 
 
Overview 
 

We used radio-collar data from gray wolves in Michigan, USA to assess the 

effect of increasing wolf density on wolf habitat selection at the territory scale during a 

period of recolonization, 1995 – 2013. We expected wolves to recolonize based on the 

ideal despotic (IDD; Fretwell & Lucas 1969) or ideal preemptive distribution (IPD; 

Pulliam & Danielson 1991), where individuals either pre-emptively occupy highest 
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quality sites (Rodenhouse et al. 1997), or claim territories based on competitive 

superiority (Mosser et al. 2009).  By this expectation, highest quality sites would be 

selected first while abundance increased, until all of the best habitats were occupied. 

Packs would then compete for habitat and increasingly occupy marginal territories, 

potentially leading to source-sink dynamics and declines in vital rates and/or population 

growth rates (Pulliam 2000, Mosser et al. 2009, Cubaynes et al. 2014). We assumed that 

the distribution of habitat availability from an individual wolf pack’s perspective varied 

depending on population abundance and local densities, such that areas occupied by 

existing packs became unavailable to new colonizers.  

From a resource selection standpoint, this process would result in location and 

scale shifts in both the used and available habitat distributions, potentially leading to 

density-dependent habitat selection (McLoughlin et al. 2010) as the used habitat 

distribution becomes increasingly dependent on the per capita available habitat 

distribution. Importantly, we note that density-dependent habitat selection in territorial 

species can take any form if the available habitat distribution is allowed to vary with 

occupancy. For example, preference or avoidance of a given habitat suitability predictor 

could increase if the rate of change in the available distribution exceeds the rate of 

change in the used distribution. Alternatively, preference or avoidance could become 

weaker or remain constant (Fig. 5.1). 

Methodological framework 

Assessment of density-dependent habitat selection requires spatially explicit 

information on species distribution and abundance that also captures temporal variation 
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at relevant scales (Matthiopoulos et al. 2015). These data are often gathered from long-

term monitoring studies that include a population census or estimate of density that is 

repeated at a regular interval. Radio and GPS telemetry are perhaps the most broadly 

applied method for monitoring species distribution across time (Northrup et al. 2013). 

The Resource Selection Function (RSF; Manly et al. 2002, Johnson et al. 2006), its 

equivalent habitat selection function (HSF; Aarts et al. 2013, Matthiopoulos et al. 2015), 

and the Resource Selection Probability Function (RSPF; Lele and Keim 2006, Lele et al. 

2013) are widely established tools for analyzing these data. These methods become 

increasingly powerful when combined with population information and/or indices of 

abundance (Matthiopoulos et al. 2015, Coates et al. 2016). In particular, the effect of 

density on habitat selection can reveal important insights about the realized vs. 

fundamental niche (Hirzel and Le Lay 2008, McLoughlin et al. 2010, van Beest et al. 

2014b). Density-dependent habitat selection has not yet received thorough exploration 

for territorial species. This may be partly due to the difficulty in accurately defining 

habitat availability (Beyer et al. 2010, Aarts et al. 2013, Lele et al. 2013).   

 We approached this problem by assuming that site occupancy and territoriality 

were the primary mechanisms imposing constraints on habitat availability as the wolf 

population increased. Following derivations of the use-availability likelihood in 

McDonald (2013) and Aarts et al. (2013), we define relative habitat use as the 

probability density function uf X : 

 ( ) ( ) ( )
( ) ( )

a
u

a
E

w X f Xf X
w X f X dX

=
∫

  (14) 
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where the available distribution af X  within the study area comprises environmental 

covariates X in multi-dimensional environmental space E , and ( )w X is the RSF or 

RSPF (Aarts et al. 2013, Lele et al. 2013). Equation 1 can be rearranged to show that

( )w X is proportional to the ratio of use to availability for the set of covariates X (Aarts 

et al. 2013). Specifying habitat use as a weighted distribution (Lele and Keim 2006, 

Aarts et al. 2013) reveals the important implication that changes in relative use depend 

on changes in availability, unless otherwise adjusted for in ( )w X (e.g., McLoughlin et al. 

2010, Matthiopoulos et al. 2011). To obtain the desired information about habitat 

selection (e.g. estimate ( )w X  and the set of effects β ), McDonald (2013) showed that a 

logistic regression approach can be used to obtain β̂  by sampling used and available 

locations from the distribution of geographically available habitat (typically coded as 1’s 

for used and 0’s for pseudo-availability; Northrup et al. 2013) under the following 

conditions: the availability sample aS  is iid  and represents all areas in af X equally, the 

sampling domain D is the same for the used sample uS , aS and uS  do not depend on 

each other, and the exponential link is used to obtain the predicted values for ˆ ( )w X . 

Taking these constraints into account, it becomes apparent that a density-dependent 

habitat selection model for territorial animals is only valid when the availability 

distribution is realistically constrained to the unoccupied landscape for a given 

individual or group. Achieving this involves repetitively updating D to match the 

conditions being observed by a given individual or group i at a particular time t. In other 

words, traditional habitat selecting modeling can be used, but care must be taken to 
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appropriately model the dynamic boundaries of the available habitat distribution and 

subsequent used and available sampling domains. To meet these criteria, we redefined 

the area available to each collared wolf pack in our study on an annual timestep. Our 

approach combined long-term occupancy patterns with radio-telemetry data to generate 

annual snapshots of area occupied, area available, and regionally varying wolf density. 

Thus, we were able to draw pack- and year-specific use and available samples from a 

dynamic sampling domain accounting for changes in wolf distribution and density over 

time. 

Data collection 

Wolves were live-captured using foot-hold traps during spring and summer 1992 

– 2013 as part of a larger Michigan Department of Natural Resources (DNR) wolf 

monitoring program (Beyer et al. 2009). Individuals were chemically immobilized 

(ketamine hydrochloride and xylazine, 100 mg/ml) using 0·11 mg/kg ketamine 

hydrochloride and 2 mg/kg xylazine and fitted with VHF radiocollars (Telonics, Inc., 

Mesa, Arizona, USA; Potvin et al. 2005). Wolves were located by fixed-wing single-

engine aircraft approximately 1-2 times per week. Further details on the telemetry study 

can be found in Potvin et al. (2005), Vucetich et al. (2012), and Beyer et al. (2009).    

We used data from Michigan DNR wolf track counts to estimate variation in 

wolf density over space and time. Track counts began in 1992 and continued throughout 

the duration of the study. The study site was divided into 21 units and all passable roads 

were surveyed during winter from trucks and snowmobiles (Potvin et al. 2005). Pack 

sizes and territory boundaries were established by intensive tracking efforts, with 
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trackers using information from radio-collared wolves as well as recording all sign, such 

as territory markings, scat, and individual sets of tracks (Potvin et al. 2005). An accuracy 

assessment of the ground tracking efforts was conducted during an independent study 

(Vucetich et al. 2012), which revealed a 4% average difference between the separate 

counts (Beyer et al. 2009). In 2007, the state adopted a geographically stratified 

sampling plan to reduce the cost and effort of the survey. A panel design was 

implemented to increase the precision of abundance estimates which ensured that some 

sampled units were counted during successive years. Further description of the survey is 

provided online 

(http://www.wolfandwildlifestudies.com/downloads/Estimating_Wolf_Abundance_in_

Michigan_060208_239125_7.pdf) with details about its development available in Potvin 

et al. (2005) and Beyer et al. (2009).  

Estimation of territory boundaries 

Each wolf territory was established by a combination of radio-collar locations 

and track surveys. Following detection of a pack, territories were monitored either by 

aerial telemetry relocations from ≥ 1 resident individual wolves or by repeatedly visiting 

the site via the annual tracking survey. This allowed us to document pack presence and 

territory persistence over the course of the study. We delineated annual territory 

boundaries using the following framework: first, if ≥ 30 telemetry locations were 

available for a pack during a year (e.g. year = time t), we generated a unique territory 

home range for year t. If there were < 30 locations for year t, but ≥ 30 locations were 

available over the course of a 2- or 3-year time period (t-1, t, t+1), we generated the 

http://www.wolfandwildlifestudies.com/downloads/Estimating_Wolf_Abundance_in_Michigan_060208_239125_7.pdf
http://www.wolfandwildlifestudies.com/downloads/Estimating_Wolf_Abundance_in_Michigan_060208_239125_7.pdf
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territory home range using a 3-year moving window. For all other years that packs were 

known to be present at their site, we generated long-term average territories using either 

A) locations from previous years, i.e. territories from previous steps, B) a combination of 

telemetry locations and tracks from surveys, or C) a minimum convex polygon based on 

track locations occurring over the full time series. 

When telemetry locations were available (n ≥ 30), we used a fixed kernel density 

estimator to create a utilization distribution (UD) for each pack territory during either 

year t or the 3-year moving window. The kernel bandwidth was estimated using the 

“plug-in” bandwidth estimator (Duong 2007) after first removing outlying locations (≥ 5 

km from pack territory; Fuller 1989) and any individual wolves that did not consistently 

occupy a territory. We defined the territory home range as the 95% volume isopleth from 

the UD. Home ranges and bandwidth estimators were analyzed using packages 

‘adehabitatHR’ and ‘ks’ in R 3.2.2 (Calenge 2006, Duong 2007, R Core Team 2015).   

Annual Wolf Density 

 Packs were counted during track survey efforts. The entire study area was 

counted from 1995–2006. For survey units that were not surveyed every year starting in 

2007, we assumed that packs persisted if they were detected the years directly before and 

after the year for which the count did not occur. We used the midpoint to extrapolate 

pack size in these cases. The last year included in the study was 2013 but surveys 

continued the following year, allowing us to use data from 2014 to make extrapolations. 

We created a longitudinal matrix with pack territory as the subject unit (rows) and year 

as the time unit (columns). For each year in the study, each pack was either detected, 
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assumed present, or not detected, and pack size estimates were recorded in a related 

table. We summed rows of the matrix to estimate total wolves and compared results to 

the Michigan Department of Natural Resources [DNR]’s abundance estimates (Michigan 

Department of Natural Resources 2008, 2015) to verify that our assumptions of 

occupancy and pack size were reasonable. The matrix was linked to a geodatabase with 

polygons for all territory home ranges estimated each year; all packs with counts ≥ 2 

were included in subsequent steps while lone individuals were assigned to remaining 

geographic space (i.e. area not occupied by an existing pack during year t). We 

converted pack sizes to density (wolves / 1000 km2) for each territory, and ultimately 

generated a smoothed surface for each year using a circular moving window with radius 

approximately equal to median wolf dispersal distance (km), which was based on an 

exponential distribution with λ  = 1/55 (from Treves et al. 2009). Geoprocessing steps 

were completed in ArcMap 10.3 (Environmental Systems Research Institute, Inc., 

Redlands, CA, USA) using ArcPy for Python 2.7.2. 

Landscape variables 

 To characterize habitat in the study area, we considered land cover and 

topographic characteristics (i.e. natural features), indices of prey availability, and 

measures of human infrastructure and density (Fuller et al. 2003, Oakleaf et al. 2006, 

Mladenoff et al. 2009).  For natural features, we used 30 m Digital Elevation Models 

(DEMs) to quantify topography, including measures of elevation, slope, and aspect. We 

used National Land Cover Data (NLCD) to quantify land cover characteristics, such as 

open areas (i.e. inverse of forested land), water/wetlands, and edge habitat (interface 
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between forested and open areas). Stream densities were also derived from Michigan’s 

hydrography framework. Land cover characteristics were evaluated using the 1992, 

2001, 2006, and 2011 products to represent any land cover change occurring during the 

time series. We considered several predictors assumed to be representative of prey 

availability on the landscape. Wolves primarily prey on white-tailed deer (Odocoileus 

virginianus) in the UP; although population estimates were unavailable for deer over the 

entire course of the study, buck harvest data estimated by hunter surveys (e.g. Frawley 

2010) provided a consistent index for overall deer density at the county level. However, 

most deer in the UP are obligate seasonal migrators due to heavy winter snowfall. 

Consequently, high concentrations of deer in winter are found in dense coniferous 

canopy cover, often consisting of eastern hemlock (Tsuga canadensis) and northern 

white cedar (Thuja occidentalis), which intercept large amounts of snowfall and provide 

important cover (Witt et al. 2012). These deer wintering complexes (hereafter, DWCs) 

have been mapped by state biologists since the 1930s (see Appendix 5B for details). 

Distance to DWC and proportion of DWC within a moving window were combined in a 

principal components analysis to create an index of winter prey availability (see 

Appendix 5B).  Measures of human infrastructure, indices of human population density, 

and proportion of public land were generated from NLCD, TIGER/Line roads files, and 

the U.S. Protected Areas Database (GAP Analysis program; see Appendix 5B). The 

percent developed impervious data product was used as an index for human activity, 

agricultural land was extracted from NLCD land cover products, and minor roads, and 

major highways were separated from each TIGER/Line file. Protected areas were 
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extracted from GAP products and comprised mainly land under state and federal 

ownership. We used moving window analyses to develop spatially-explicit surfaces for 

each landscape feature considered. The size of the circular assessment window was set 

to 50.75 km2, which was ¼ of the mean wolf home range estimated during the study. 

Spatial variables were evaluated in ArcGIS 10.1 (Environmental Systems Research 

Institute, Inc., Redlands, CA, USA). We standardized each variable for each year in the 

analysis to remove temporal trends in covariate values prior to model-fitting. Hence, 

each covariate’s value was relative to its availability on the study site for any given year.  

Full details on the data sources, development and representation of spatial landscape 

variables are provided in Appendix 5B. Spatial analysis of environmental features often 

produces many correlated predictors, which can interfere with model-fitting and 

interpretation of results (Dormann et al. 2013). To reduce the number of variables 

considered and avoid redundant predictors, we initially fit generalized linear models 

using penalized maximum likelihood to select a subset of predictors from the original set 

(Friedman et al. 2010, Tibshirani et al. 2012). Details on preliminary model reduction 

are in Appendix 5C.  

Use/Availability Sampling Design and Resource Selection Probability Functions 

 To characterize the used ( uf X ) and available distributions ( af X ) necessary for 

estimating an RSF, we used a random sampling design (Northrup et al. 2013), where 

habitat used by wolves was compared to available habitat (i.e. not occupied by other 

packs) at the territory level (2nd order selection; Johnson 1980). At the wolf pack level, 

each year-specific pack territory boundary represented the sampling domain for used 
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locations for individual i and time t ( ti
uS ). The availability sampling domain ( ti

aS ) was 

specific to each individual and year as well, and was based on the boundaries described 

in Estimation of Territory Boundaries. We assumed that wolf dispersal follows an 

exponential distribution with a mean distance of 55 km ( 1/ 55λ = ; Treves et al. 2009). 

In this case, 95% of dispersal distances are less than 165 km, so we buffered 165 km 

from the center of the individual’s home range to set a maximum geographic range for

ti
aS . We restricted geographic availability for each individual by removing all areas 

known to be occupied at time t from the buffered home range. ti
aS was the union of 

individual i's home range and unoccupied habitat within its range at time t. This analysis 

was repeated for all individuals and all years in the study. We drew 5 random locations 

from each ti
uS and 25 random locations from each ti

aS to characterize annual used and 

available distributions. All random locations were updated with values from landscape 

variables, standardized estimates of wolf density, and factors representing pack territory 

and biological year. We automated use-availability sampling using the ArcPy module in 

Python 2.7.2 and ArcMap 10.3 (Environmental Systems Research Institute, Inc., 

Redlands CA, USA). 

 We used a Generalized Linear Mixed Model (GLMM) framework to 

accommodate unbalanced subpopulations, repeated sampling of the same packs over 

multiple years, and correlations that may otherwise exist among packs (Hebblewhite and 

Merrill 2008, Bolker et al. 2009). We used the binomial family of distributions to 

approximate the use-availability likelihood (McDonald 2013),  where used locations are 
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coded 1 and availability locations coded 0. To represent our time- and pack-specific 

sampling design, we modelled pack and year as random (crossed random intercepts for 

pack and year + random pack coefficients; Hebblewhite and Merrill 2008; Bolker et al. 

2009). This allowed estimates of β to be conditioned on used and available sampling 

distributions for each pack-year. 

 We obtained estimates of β  by fitting models with Integrated Nested Laplace 

Approximation in R-INLA (Rue et al. 2009), which provides a highly flexible 

environment for fitting a large variety of spatial and spatiotemporal models using a 

Bayesian hierarchical modeling framework (Rue et al. 2009, Blangiardo et al. 2013). We 

fit a latent Gaussian model akin to ~ ( ) ( , )Y f t f i+ +Xβ x , where Y represents used vs. 

available observations, X  is the matrix of landscape variables with associated regression 

parametersβ , ( )f t  is a random iid intercept for year, and ( , )f ix represents random iid  

effects for pack. For all landscape variables, we included a density-dependent interaction 

effect where the main effect of the variable was modeled as a function of wolf density 

(McLoughlin et al. 2010). By default, all regression parameters were assigned 

uninformative Gaussian priors. To estimate the RSPF from the model, we included the 

mean of the marginal posterior density estimate for each β  in the RSPF (Logistic) model 

formula (Johnson et al. 2006, Lele and Keim 2006): 

 0 1 1 2 2

0 1 1 2 2

ˆ ˆ ˆ ˆexp( ... )ˆ *( ) ˆ ˆ ˆ ˆ1 exp( ... )
k k

k k

x x xw
x x x

β β β β
β β β β

+ + + +
=

+ + + + +
X   (15) 

Note that (2) refers to the population-level estimate, which is not specific to any pack or 

year. We reported population-level effects for model covariates, which corresponded to 
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the average  across the full time series, including all packs and years (e.g. Hebblewhite 

& Merrill 2008). To demonstrate braod-scale spatial heterogeneity, density-dependence 

in probability of use, and temporal change, we also extrapolated fitted model values for 

the early (1995 – 2000), middle (2001 – 2006), and late (2007 – 2013) time periods of 

the study. These results were obtained by extracting pack- and year-specific fitted values 

from the model at each used/available sample point, and generating a spatially smoothed 

probability surfacesusing Empirical Bayesian Kriging in ArcGIS 10.3. We evaluated the 

model fit by computing Pearson’s correlation (r) between mean predicted and observed 

values and assessing the model’s ability to discriminate between occupied and 

unoccupied locations using the Receiving Operator Characteristic and Area Under Curve 

(AUC) statistic (Robin et al. 2011). Finally, we performed leave-one-out cross-validation 

via the log-conditional predictive ordinate statistic (LCPO; Held et al. 2010, Beguin et 

al. 2012). 

Results 

Data Attributes 

 During the course of the study, 371 individual wolves were captured and 

relocated by aerial surveys, and 30,091 locations were recorded. Track surveys identified 

229 unique pack territories overall, with annual territory counts ranging from 33 (1995) 

to 102 (2006). Mean pack size during the study was approximately 4 wolves and 

increased over time, with annual means ranging from 2.74 (SE = 0.86) to 5.18 (SE = 

3.40; Table 5.1). The wolf population increased from an estimated 80 individuals (1995) 

to 687 (2011) before evidently stabilizing (recent estimates 618 – 658; Michigan DNR 
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2015, Michigan DNR unpublished data). The overall population growth rate during this 

time declined from 𝑟𝑟 = 0.16 (1995 – 1996) to 𝑟𝑟 = -0.01 (2009 – 2010, 2011 – 2013), and 

appeared consistent with density-dependent logistic growth (Mills 2012). Mean wolf 

density increased from approximately 1.86 / 1000 km2 in 1995 to > 15 / 1000 km2 in 

2011 – 2013 (Table 5.1) and was geographically variable (Fig. 5.2). Wolves recolonized 

the majority of suitable habitat during the study. Tracking and radio telemetry revealed 

135 packs occupying ~ 63% of the UP by 2011 (Table 5.1). Sampling from used and 

available (unused) distributions over time resulted in 48,480 locations for the entire 

study period.  

Variable selection  

 Penalized maximum likelihood model reduction procedures resulted in dropping 

5 of the initial 15 predictors of wolf habitat: % open cover types, % water/wetlands, 

distance to highway, topographic radiation aspect index, and average snow depth. 

Dropping predictors indicated that they did not contribute substantially to predictions of 

wolf habitat selection. Predictors retained in the subsequent modeling included buck kill 

index, winter prey index, stream density, slope, elevation, forested-open edge density, 

road density, % impervious developed, % agricultural land, and % public land (Table 

5.2). Marginal posterior distributions for main effects in the final model (conditional on 

average wolf density) indicated that wolf habitat selection was driven by prey 

availability (buck kill and winter prey indices), human influence (% impervious surface), 

and topography (elevation and slope). The effects of elevation and slope were parabola-

shaped (e.g. quadratic function; Table 5.2), indicating selection for intermediate 
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topography. Credible intervals (95% CI) overlapped zero for all other effects at the 

population level. However, posterior CIs for density-dependent interactions were 

relevant (i.e. 95% CI did not include zero) for many effects even when the main effect 

was not a strong predictor of habitat selection (Table 5.2). 

Model fit & parameter estimates 
 
 Diagnostics from our final model indicated good model fit (r = 0.82, AUC = 

0.98, LCPO = 0.25), suggesting that density dependence was an important component of 

habitat selection in our study area. Specifically, the effect of winter prey decreased with 

increasing density ( int er prey  density
ˆ 0.151,  95% CI = [-0.194, -0.109]wβ × = − ), as did the 

effects of elevation (

2elevation  density elevation   density
ˆ ˆ0.384,  [-0.484, -0.285] ; 0.158,  [0.084, 0.232]β β× ×

= − = ) and 

stream density ( stream  density
ˆ 0.151,  [-0.202, -0.099] β × = − ). In contrast, effects increased 

significantly with density for road density ( road  density
ˆ 0.129,  [0.052, 0.206] β × = ), slope

2slope  density slope   density
ˆ ˆ0.134,  [0.040, 0.227] ; 0.008,  [-0.062,  0.046]β β× ×

= = − , and % public 

land ( public land  density
ˆ 0.058,  [0.009, 0.108] β × = ). All other density-dependent terms had 

effects overlapping zero (Table 5.2), although the interaction with forested-open edge 

could be considered nearly significant ( edge  density
ˆ 0.066,  [-0.133, 0.000] β × = − ). Relative 

effect sizes for interaction terms are more easily interpreted graphically (Fig. 5.3). For 

example, the change in the slope for winter prey (with respect to log-odds of wolf pack 

occurrence) is evident in Fig. 5.3A, but the overall effect of winter prey remains positive 
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even at the highest wolf density. In contrast, the sign of the main effect for stream 

density was positive at low wolf density and negative at high wolf density (and ~ 0 at 

median wolf density), indicating density-dependent switching of preference (Fig. 5.3B). 

A similar transition was observed for the road density effect, although the change in 

selection was less dramatic (Fig. 5.3C). Density dependent changes are less evident for 

% public land (Fig. 5.3D), elevation (Fig. 5.3E), and slope (Fig. 5.3F), despite the 

statistical evidence of the interaction effect.   

Mapping habitat selection 

 Density dependent habitat selection predicted changes over time, as wolf pack 

occupancy expanded from the beginning of the study (1995) to the end (2013). Modelled 

probability of pack occurrences captured this dynamic (Fig. 5.4).  

Discussion 

 Territorial species should increase their use of sub-optimal habitat types as 

density increases (Fretwell and Lucas 1969, Pulliam and Danielson 1991, Morris 1994). 

Applied habitat selection models typically do not capture the spatiotemporal dynamics 

associated with density dependent changes in used and available habitat distributions. 

Understanding the potential for a functional response in habitat selection (Matthiopoulos 

et al. 2011, Aarts et al. 2013) associated with increases in density is critical for accurate 

habitat modeling in territorial species. Density dependent habitat selection dynamics in 

ideal-free consumers have received wide recognition (McLoughlin et al. 2010, van Beest 

et al. 2014a). However, little attention has been given to the case where changes in site 



145 
 

occupancy influence the used and available habitat distributions for species that exhibit 

strong territoriality, and thus theoretically follow an ideal despotic or ideal preemptive 

habitat distribution (Morris 1994, Falcy 2015). We found that habitat selection was 

density dependent with respect to multiple habitat predictors for social and territorial 

gray wolves. However, changes in density (e.g. localized growth rates) varied temporally 

and spatially, which complicated interpretation of the habitat selection functional 

response. 

 Wolves’ preference for areas with greater prey availability decreased as density 

increased (Table 5.2, Fig. 5.3). Similarly, weak preference for greater stream densities 

switched to avoidance as density increased (Table 5.2, Fig. 5.3). Selection of areas with 

greater road density, greater slopes, and greater proportion of public land increased with 

increasing wolf densities (Table 5.2, Fig. 5.3). We assumed that density dependence was 

primarily responsible for functional responses in habitat selection. However, a post-hoc 

assessment of interannual variation in used and available habitat distributions and 

associated selection ratios revealed that density did not fully explain changes over time 

(Fig. 5.3). While spatial heterogeneity in wolf density was clearly an important 

component of habitat selection, changes in overall landscape occupancy (see Table 5.1) 

appeared to be a better indicator of long-term change. For example, important predictors 

of wolf habitat selection included indices of prey availability and human impact (Table 

2). Our density dependent habitat selection model suggested that preference for greater 

prey availability decreased with increasing wolf density. Used and available distributions 

of prey availability both declined over time (Fig. 5.5a, b), but increased with increasing 
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wolf density (Fig. 5.5c). Since the rate of change in the prey availability distribution 

exceeded that of the used distribution, the selection ratio of prey availability evidently 

increased over time (Fig. 5.5d, e) which was not captured by changes in wolf density 

(Fig. 5.5f). This result matched expectations for a limited, preferred resource or habitat 

type (Fig. 5.1a, b) where availability becomes ‘depleted’ with increasing population size 

and occupancy. With respect to human impact, wolves avoided more developed areas 

but the modelled effect was not significantly density dependent (Table 5.2). Used and 

available distributions of human impact both increased over time. Similar to prey 

availability, the rate of change in the availability distribution exceeded that of the used 

distribution, leading to apparent increased avoidance over time (Fig. 5.6a, b, d). Again, 

this result was not reflected by changes in density, but was represented by changes in 

landscape occupancy over time.  

 Site-dependence, rather than density dependence, may be a more natural 

regulating mechanism for population abundance when species exhibit territoriality 

(Rodenhouse et al. 1997). Under preemptive habitat selection, sites with greatest 

suitability are selected above those of lesser suitability until the greatest suitability sites 

are all occupied (Pulliam and Danielson 1991, Morris 1994, Rodenhouse et al. 1997). 

Negative feedback in demographic rates occurs when lower quality sites are increasingly 

selected for (i.e. indicating the best sites have become saturated; Rodenhouse et al. 

1997). In other work, we showed that the ideal preemptive habitat distribution is likely 

for wolves, and that localized increases in density occurred more rapidly in certain areas 

with greater prey availability and lower human influence (Chapter 3, this dissertation). 
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Furthermore, density dependence appeared to operate on a shorter time scale in these 

areas, and was lagged in areas with fewer high suitability sites. Under site-dependent 

regulation, density may be a poor predictor of large-scale changes in geographic 

availability of resources or suitable habitat sites. For example, wolf packs consistently 

occupy territories regardless of whether pack size is small (e.g. 3 wolves) or large (e.g. 

10 wolves). In addition, density can increase rapidly in an area of high suitability and 

crowding can occur while landscape-level occupancy stays relatively constant. As a 

result, functional responses in habitat selection may be better explained by landscape-

level occupancy as opposed to density when considering models that compare used to 

available habitat metrics for territorial species. 

 Proportion of landscape occupied is more directly related to the used vs. 

available habitat framework implemented in RSFs or RSPFs. If density information is 

available, it may be more appropriate to use it as the response variable (rather than 

presence/absence) in habitat models or population growth models as opposed to using 

RSFs or RSPFs (Matthiopoulos et al. 2015). Landscape occupancy is also simpler to 

interpret when modeling the effect that change over time has on the RSPF. In our study 

system, changes in density varied spatially and on multiple time scales which 

complicated interpretation (Chapter 3, this dissertation). In contrast, changes in 

occupancy over time were more intuitive when explaining long-term change in habitat 

preferences.  

 Spatiotemporal change in habitat model effects is expected when data are 

collected over a time series (Aarts et al. 2013, Matthiopoulos et al. 2015). Modeling 
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density- or occupancy-specific selection functions can help to account for change. 

However, accurately modeling a dynamic availability distribution is critical, especially 

in territorial species’ undergoing population change. We used random effects within our 

model framework to assess selection conditional on year and pack specific variation. 

Assuming territories were no longer available to new colonizers, we were able to 

redefine geographic habitat availability on an annual time step. As such, temporal 

changes in habitat selection associated with changing occupancy were accounted for. 

Random effects have an additional benefit which is rarely addressed in modern habitat 

modeling efforts, namely the opportunity to explore individual or group level 

heterogeneity (e.g. Hebblewhite and Merrill 2008). Random coefficients (also referred to 

as random slopes) defined on the individual or group with respect to one or more 

covariates allow one to explore deviations from the overall population-level mean, 

which can then be linked to performance-based metrics such as survival or reproduction 

(Gaillard et al. 2010, Coates et al. 2017). Although this was not our primary objective in 

this paper, our modelling framework presented the opportunity to explore differences in 

selection among wolf packs so we briefly present an example. In a post-hoc analysis, we 

compared average annual pack sizes for packs that exhibited greater selection for the 

prey availability index (β coefficient > 75th percentile value) to those with weaker 

selection (β coefficient < 25th percentile value). In a non-parametric Mann-Whitney 

distribution test, packs with weaker selection had lower pack sizes (2 – 7 wolves, x = 

2.97 wolves) than those with stronger selection (2 – 12 wolves, x = 4.01 wolves; W = 

1079, p = 0.016). This result would appear to indicate a fitness consequence associated 
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with habitat selection by individual wolf packs, where packs that recognize and select 

habitats with greater prey availability may be able to achieve greater productivity (i.e. 

through reproduction and recruitment) than those with weaker habitat selection. 

However, it is again important to recognize that selection under the constraints of 

territorial behavior may be driven more by local or regional conditions (e.g. availability 

of prey in unoccupied areas) than an individual or group choice. The latter result is 

supported by our modelled evidence of a decline in selection of greater prey availability 

with increases in wolf density. 

Conclusions 

 Territorial animals should exhibit habitat selection patterns that are 

fundamentally different than those of more gregarious species. The effect of increasing 

occupancy and density over time means that what is perceived to be available to early 

colonizers is likely vastly different than later occupants. Accounting for density or 

occupancy dependent habitat selection at the landscape scale is critical for identifying 

and understanding key limiting habitat factors and their relative availabilities. In 

Michigan wolves, the limiting nature of prey availabilities was demonstrated by 

increasing wolf habitat selection over time, which was driven by rapidly declining 

geographic availability of areas that typically support overwintering white-tailed deer. 

This is an important example of a habitat selection functional response driven by 

colonization, density dependence, and changes in occupancy.  
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Table 5.1. Estimation of gray wolf minimum population, pack size, and occupancy 

during a 19 year period of recovery in Michigan, USA. 

Year  N N 
/1000 
km2 

N 
(Packs) 

Pack size 
(mean) 

Pack 
size 
(SE) 

Area 
occupied 
(km2) 

Proportion of 
study area 
occupied 

1995 80 1.86 27 2.74 0.86 5753 0.14 

1996 116 2.70 23 3.33 1.81 6719 0.17 

1997 112 2.61 31 2.89 1.08 9002 0.22 

1998 140 3.26 39 3.14 1.39 9869 0.24 

1999 174 4.05 55 3.02 1.32 13292 0.33 

2000 216 5.02 65 3.21 1.46 16063 0.40 

2001 249 5.79 73 3.49 2.06 15677 0.39 

2002 278 6.47 70 4.29 2.34 15868 0.39 

2003 321 7.47 79 4.56 2.54 15373 0.38 

2004 360 8.37 89 4.60 2.76 17993 0.44 

2005 405 9.42 98 4.59 2.54 20326 0.50 

2006 434 10.10 99 4.65 2.71 19719 0.49 

2007 509 11.84 111 4.91 2.50 22696 0.56 

2008 520 12.10 122 4.40 2.66 23659 0.58 

2009 577 13.42 120 5.18 3.40 22642 0.56 

2010 557 12.96 128 5.06 3.16 23703 0.58 

2011 687 15.98 135 5.07 2.81 25533 0.63 

2012 NA  123 NA NA 23335 0.57 
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2013 658 15.31 129 5.15 2.67 23967 0.59 

 

Table 5.2. Posterior marginal distributions for predictors of wolf pack occurrence in the 

Michigan, USA, 1995-2013. Predictors were modeled as a function of wolf density, 

which varied both spatially and temporally. Models were fit using random effects for 

time and pack territory, thus accounting for repeated sampling of occurrence over time. 

Posterior distributions for each parameter were estimated using Integrated Nested 

Laplace Approximation in R (R-INLA), and reported effects correspond to the 

population-level effect while accounting for pack-level variation.  

 Parameter Mean SD 
2.5th 
Percentile 

97.5th 
Percentile Mode mean/se 

Intercept -9.776 0.552 -10.924 -8.750 -9.704 -17.711 

Buck kill index -0.802 0.169 -1.143 -0.478 -0.794 -4.741 

Winter prey index 0.563 0.067 0.433 0.695 0.561 8.434 

Stream density 0.088 0.078 -0.066 0.239 0.090 1.137 

Elevation 1.105 0.968 -0.799 3.009 1.103 1.141 

Elevation2 -6.550 0.598 -7.784 -5.430 -6.481 -10.948 

Slope -0.237 0.212 -0.658 0.177 -0.234 -1.118 

Slope2 -1.393 0.136 -1.674 -1.140 -1.379 -10.263 

Forested-open edge 

density 0.128 0.117 -0.105 0.356 0.131 1.091 

Road density -0.034 0.086 -0.206 0.134 -0.032 -0.393 
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% Public land -0.118 0.142 -0.398 0.159 -0.116 -0.832 

% Impervious -1.542 0.199 -1.953 -1.173 -1.518 -7.748 

Wolf density 0.817 0.057 0.706 0.928 0.817 14.401 

Posterior distribution of interaction (x * wolf density) 

Buck kill index 0.028 0.043 -0.055 0.112 0.028 0.664 

Winter prey index -0.151 0.022 -0.194 -0.108 -0.151 -6.871 

Stream density   -0.151 0.026 -0.202 -0.099 -0.151 -5.750 

Elevation -0.384 0.051 -0.484 -0.285 -0.384 -7.583 

Elevation2 0.158 0.038 0.084 0.232 0.158 4.196 

Slope 0.134 0.047 0.040 0.227 0.134 2.817 

Slope2 -0.008 0.028 -0.062 0.046 -0.009 -0.306 

Edge density  -0.066 0.034 -0.133 0.000 -0.066 -1.950 

Road density  0.129 0.039 0.052 0.206 0.129 3.301 

% Public land  0.058 0.025 0.009 0.108 0.058 2.305 

% Impervious -0.083 0.066 -0.211 0.049 -0.085 -1.250 
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Figure 5.1. Results from simulations of used and available habitat (1st panel column; 

A,C,E,F) and corresponding selection ratios (2nd panel column; B,D,F,H) under 

assumptions of strong territoriality and increasing occupancy over time. Four 

hypothetical scenarios were evaluated in simulations, including an important, limited 

habitat (A,B), abundant but important habitat (C,D), limited substitutable habitat (E,F), 

and more abundant substitute habitat (G,H). Results show that the change in the 
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selection ratio is dependent on convergence or divergence between used and available 

habitat distributions as occupancy increases over time. 

 

Figure 5.2. Spatially explicit smoothed estimates of wolf density from early recovery 

(1995 – 2000; A) to late (2007 – 2013; C) in Michigan, USA. Wolf density estimates 

were generated from winter tracking data and radio telemetry, with pack territories and 
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sizes being monitored annually during the study. Pack sizes and territory locations were 

converted to density (wolves / 1000 km2) for each territory and smoothed using a 

circular moving window with radius approximately equal to median wolf dispersal 

distance (km), which was based on an exponential distribution with λ  = 1/55. Smoothed 

surfaces were averaged across time periods to create snapshots for 1995 – 2000 (A), 

2001 – 2006 (B), and 2007 – 2013 (C). 
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Figure 5.3. Log-odds of wolf pack occurrence from a resource selection probability 

function (RSPF) for wolves in Michigan, USA. Predictors of wolf pack occurrence were 
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fit as interactions with wolf density, which varied spatially and temporally over time. 

The RSPF was generated based on a Generalized Linear Mixed Model framework using 

the R package ‘INLA’ with coefficient estimates generated conditional on specific wolf 

packs and years. Density dependence was observed with respect to the effects of prey 

availability (A), stream density (B), road density (C), protected land (D), elevation (E), 

and Slope (F); in some cases, selection coefficients switched from positive to negative 

(stream density; B) or negative to positive (road density; C) as wolf density increased 

over time.   
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Figure 5.4. Model-fitted probability of wolf pack occurrence for three time periods 

(1995 – 2000; A, 2001 – 2006; B, and 2007 – 2013; C) during wolf recovery in 

Michigan, USA. Fitted probabilities were generated from a resource selection 

probability function (RSPF) which was generated based on a Generalized Linear Mixed 

Model framework using the R package ‘INLA’ with coefficient estimates generated 
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conditional on specific wolf packs and years and density dependent coefficient 

interactions. 

 

Figure 5.5. Comparisons of means for distributions of used and available winter prey 

availability (A, B, C) and habitat selection ratios (D, E, F) corresponding to changes in 

time (A, D), proportion of landscape occupied (B, E), and wolf density (C, F) for wolves 

in Michigan, USA, 1995 – 2013. Trends in habitat selection over time tracked changes in 

occupancy at the landscape level more closely than changes in wolf density, likely in 

part due to regional variation in wolf density across years. 
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Figure 5.6. Comparisons of means for distributions of used and available human impact 

(A, B, C) and habitat selection ratios (D, E, F) corresponding to changes in time (A, D), 

proportion of landscape occupied (B, E), and wolf density (C, F) for wolves in 

Michigan, USA, 1995 – 2013. 
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Appendix 5A. 
 
Candidate landscape variables in spatiotemporal habitat selection function (HSF) 
models, Michigan wolves 1994 – 2013. 

C. Indices of Prey Availability (Resources) 

Variable: Buck Harvest 

Source: Michigan Department of Natural Resources (MDNR) 

Original Unit: Antlered bucks killed / km2 

Description & Measurement: Buck harvest data were collected from mail surveys during 
white-tailed deer hunting season across the Upper Peninsula (UP) by the MDNR (e.g. 
Frawley 2010). Harvest numbers were summarized by area (km2) at the county level, 
and a circular moving window (r = 4.02 km) was used to smooth the results at the same 
scale as other predictors. A continuous raster surface of 30 m cell size was thus 
generated for each year in the study, representing mean bucks harvested / km2. This was 
done using focal statistics in ArcGIS 10.1 (hereafter, ArcGIS; Environmental Systems 
Research Institute, Redlands, CA, USA). Final values were standardized around their 
mean for each study year prior to being fit in models.   

Expected relationship with wolf space use: Positive (+). White-tailed deer are the 
primary prey source for wolves in Michigan, and MDNR has indicated that buck harvest 
numbers track the deer population consistently across time. Buck harvest was a 
consistent index for deer densities (i.e. prey availability) across the study area and was 
also measured each year. We expected wolf use to generally increase with increasing 
densities of bucks harvested, but suspected that density dependent habitat selection 
would regulate this relationship due to limitations in deer density, particularly in the 
northern regions of the study site (Potvin et al. 2005).  

--- 

Variable: PCA of % Deer Wintering Complex and Distance to Deer Wintering Complex 

Source: MDNR (e.g. http://www.michigan.gov/dnr/0,4570,7-153-10363_10856_10905-
339639--.html) 

Abbreviation: PPC1 

Original Unit: % of area within moving window, Distance to nearest DWC (km) 

Description & Measurement: White-tailed deer (Odocoileus virginianus) are migratory 
throughout much of the UP due to harsh winter conditions, and congregate (i.e. “yard”) 
in dense stands of primarily eastern hemlock (Tsuga canadensis) and northern white 

http://www.michigan.gov/dnr/0,4570,7-153-10363_10856_10905-339639--.html
http://www.michigan.gov/dnr/0,4570,7-153-10363_10856_10905-339639--.html
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cedar (Thuja occidentalis) when snow depth exceeds approximately 30 cm (Shi et al. 
2006; Witt et al. 2012; Murray, Webster & Bump 2013). Deer winter range was been 
mapped by state biologists as early as the 1930s, with surveys occurring every 10 – 20 
years since. The most recent surveys occurred in 2005 and 2013. We used the maps from 
2005 and 2013 to classify the study area as winter habitat (deer wintering complex, or 
DWC), or non-winter habitat. We generated the percent of landscape variable using a 
circular moving window (r = 4.02 km) to summarize the area mapped as DWC at each 
location. We generated distance to DWC (km) by creating a Euclidean distance raster 
surface in ArcGIS and subsequently calculating the average distance within the circular 
moving window across the study site. A continuous raster (30 m cell) was generated for 
the study area to represent these metrics. We assumed no significant change in DWC 
habitat throughout the study. Seasonal migration is a learned behavior and results in high 
fidelity to winter ranges, such that the same DWCs are repeatedly utilized year after year 
(Nelson 1998; Nelson, Mech & Frame 2004). Since % DWC and distance to DWC 
contained similar information, we combined the variables using a principal components 
analysis, and extracted the first component for use in subsequent modeling. Increasing 
values of Prey-PC1 (i.e. PPC1) thus indicated increasing winter prey availability.  

Expected relationship with wolf space use: Positive (+). Deer wintering range is only 
about 15% of annual range in higher snowfall zones of the UP (Doepker et al. 
unpublished report ). This represents a prey limitation that wolves must consider when 
establishing and defending territories. We expected wolf use to increase with increasing 
area of the landscape comprising DWC habitat and decreasing distance to DWC. This 
would correspond to a positive relationship with PPC1. 

--  

Variable: Annual Snow Depth 

Source: National Climate Data Center (http://www.ncdc.noaa.gov/) 

Abbreviation: SNOW 

Unit: Average Daily Snow Depth (cm), 1 Nov – 30 Mar  

Description & Measurement: We downloaded daily snow depth data from the National 
Climatic Data Center (NCDC) for all weather stations on the study site. We calculated 
the mean winter snow depth at each station (1 Nov – 30 Mar) for each year in the study. 
We used Empirical Bayesian Kriging in ArcGIS (EBK; 
http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html) to interpolate a 
raster surface for each year based on the weather station point data. Parameters for the 
EBK analysis included an output cell of 500 m, maximum number of points = 50, local 
model overlap = 2, simulated semivariograms = 50, and a standard circular 
neighborhood with radius = 150,000 m, maximum neighbors = 12, and minimum 

http://www.ncdc.noaa.gov/
http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html
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neighbors = 3. The resulting raster surface represented interannual and spatial variation 
in snow depths during the study. Final values were standardized around their mean for 
each study year prior to being fit in models.  

Expected relationship with wolf space use: Conditional (+/-). In general, we expected 
habitat use to decrease with increasing snow depths (Houle et al. 2010, Uboni 2012), as 
habitat for prey became more limited (Potvin et al. 2005). However, greater snow depths 
may give wolves a hunting advantage, particularly during late winter when deer become 
more vulnerable and snow conditions become difficult to navigate (Vucetich et al. 
2012). The use of DWCs may complicate this relationship; we expected greater selection 
of DWCs in areas (and winters) with deeper snow, as a response to more densely 
congregated prey. 

 

D. Human Influence and Infrastructure (Risks) 

Variable: % Agriculture 

Source: National Land Cover Database (NLCD; http://www.mrlc.gov/) 

Abbreviation: AG 

Unit: Percentage of landscape comprising agricultural cover types (%) 

Description & Measurement: Agricultural cover types were reclassified from NLCD 
products for years 1992, 2001, 2006, and 2011. The early years of the study were linked 
to results from the 1992 product (wolf biological years 1995-1997), and 2001 product 
(wolf biological years 1998-2003), while later years corresponded to the 2006 (wolf 
years 2004-2008) and 2011 products (wolf years 2009-2013). Agricultural cover types 
included pasture/hay, row crops, small grains, and fallow ground, and were assigned a 
value of 1, with all other cover types reclassified to Null values. The moving window 
was applied to calculate the percentage of landscape comprising agriculture at each 
location (30 m cell) in the study area. Final values were standardized around their mean 
prior to being fit in models. 

Expected relationship with wolf space use: Negative (-). Agriculture typically represents 
mortality risk for wolves, and is negatively associated with pack persistence (Oakleaf et 
al. 2006, Mladenoff et al. 2009, Stenglein 2014). Consequently, wolves are unlikely to 
select and maintain territories with a significant agricultural component, particularly 
when better habitat is available. We expected a negative relationship between wolf use 
and % agriculture, while recognizing that as wolf densities increased the relationship 
might change. 

-- 

http://www.mrlc.gov/
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Variable: Distance to Major Road 

Source: U.S. Census Bureau (http://www.census.gov/geo/maps-data/data/tiger.html) 

Abbreviation: HWY 

Unit: Distance to nearest major road (km) 

Description & Measurement: TIGER\Line roads were downloaded from the U.S. Census 
Bureau for the years 1990 and 2000-2014. We queried primary and secondary roads 
from the database for each year that the data were available. In the Upper Peninsula, 
these were almost entirely major highway routes. 1990 was removed from consideration 
because the classification scheme did not match the later years. Road coverages were 
similar in the 2000 data, however, so we used the 2000 file for the early study years. We 
calculated Euclidean distance to primary and secondary roads and applied the circular 
moving window to the resulting raster surface. For study years 2000-2013 we 
recalculated this metric every two years (i.e. 2002, 2004, … , 2012) to represent 
temporal changes in extent of roads. Final values were standardized around their mean 
for each study year prior to being fit in models.  

Expected relationship with wolf space use: Positive (+). Many previous modeling efforts 
have indicated that wolf habitat is primarily limited by human activity and road 
densities. Some attention has been given to the type of road considered (Mladenoff et al. 
1995, Oakleaf et al. 2006, Benson et al. 2014). While major roads are almost always 
avoided, lesser used roads can be utilized by wolves for traveling and territory marking 
(Lesmerises et al. 2012, Zimmermann et al. 2014). We split major and minor roads into 
separate classes to consider these possibilities. We expected wolf use to increase with 
increasing distance from major roads, because major roads are generally associated with 
higher levels of human activity and represent mortality risk. 

-- 

Variable: Minor Road Density 

Source: U.S. Census Bureau (see HWY) 

Abbreviation: ROAD 

Unit: Distance of Minor Roads / Unit Area (km / km2) 

Description & Measurement: TIGER\Line roads were described in ‘Distance to Major 
Road.’ For minor road densities, we queried local roads and trails from the TIGER\Line 
database. We then calculated minor road density within the moving window using the 
Line Density tool in ArcGIS. The temporal representation of these features was the same 
as in ‘Distance to Major Road.’  Final values were standardized around their mean for 
each study year prior to being fit in models.  

http://www.census.gov/geo/maps-data/data/tiger.html
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Expected relationship with wolf use: Negative (-). Traditionally, road densities have been 
considered a strong negative driver of wolf habitat quality (Mladenoff et al. 1995; 
Mladenoff and Sickley 1998; Potvin et al. 2005). In general, wolf occurrence decreases 
with increases in human presence and disturbance, which often correlates with road 
density. However, in areas with relatively low human population density, wolves may 
select for areas with greater road densities than expected. This effect is context-specific, 
and depends on the level of disturbance, such as current or recent logging activity  
(Houle et al. 2010, Lesmerises et al. 2012, 2013) Wolf use of these features tends to 
increase as human activity decreases (Hebblewhite and Merrill 2008). Logging occurs 
year-round in the UP and minor road densities are correlated with hunting camps and 
recreational activity, thus on average we expected a negative relationship between wolf 
use and minor road densities.  

--  

Variable: % Impervious Surface 

Source: NLCD (http://www.mrlc.gov/index.php) 

Abbreviation: IMP 

Unit: Percent of landscape comprising impervious surfaces (%) 

Description & Measurement: In addition to the NLCD products, we also acquired the 
2001, 2006, and 2011 Percent Developed Imperviousness product. In order to capture 
the best available temporal resolution for this feature, early study years were assigned to 
the 2001 product while later years (post-2002) were assigned to the 2006 and 2011 
products (see description for ‘% Agriculture’). We summarized % impervious (focal 
mean) within the moving window described previously to create the index for human 
population density and infrastructure. Final values were standardized around their mean 
prior to being fit in models. 

Expected relationship with wolf use: Negative (-). Imperviousness is used as an index of 
human activity and infrastructure, which wolves avoid if they can. We expected wolf use 
to decline rapidly as imperviousness increased.  

--  

Variable: % Protected Land 

Source: USGS Protected Areas Database (http://gapanalysis.usgs.gov/padus/ ) 

Unit: Percentage of landscape comprising public/protected land ownership 

Description & Measurement: Protected areas in the UP of Michigan included National 
and State Forests, National Park Service land ownership, U.S. Fish and Wildlife Service, 
and various small tracts of land belonging to state or non-profit based conservancy 

http://www.mrlc.gov/index.php
http://gapanalysis.usgs.gov/padus/
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projects or land trusts. We summarized the % landscape (focal mean) within the moving 
window to create an index of protected land where higher values represented lower 
potential for human development and disturbance. Final values were standardized 
around their mean prior to being fit in models. 

 

C. Natural Features 

Variable: % Open 

Source: NLCD 

Abbreviation: OPEN 

Unit: Percent of landscape comprising open cover types (%) 

Description & Measurement: We used NLCD products to calculate the percentage of 
open cover types occurring on the landscape. Open cover types and forested land were 
reclassified to a binary raster (1 = open), which was used to assess the proportion of 
open cover occurring within the moving window. Open cover types included 
grassland/herbaceous, pasture/hay, row crops, small grains, fallow ground, 
herbaceous/emergent wetlands, bare ground, and quarries, mines, or pits. The analysis 
was repeated for 1992, 2001, 2006, and 2011 NLCD products to represent land cover 
change during the study. Final values were standardized around their mean prior to being 
fit in models. 

Expected relationship with wolf use: Negative (-). Wolves in northern forests often select 
cover types that are associated with prey access and ease of travel, and are negatively 
associated with human disturbances (Houle et al. 2010, Lesmerises et al. 2012, Kittle et 
al. 2015). In the UP, much of the open habitat is either associated with human 
disturbance such as logging and recreation, or agricultural land which represents risk to 
wolves. Wetlands are another open cover type, which may represent prey availability in 
the form of moose and beaver (Houle et al. 2010, Lesmerises et al. 2012), but moose are 
not abundant in the UP and beaver are, at best, a seasonal food source. We largely 
expected wolves in the UP to avoid open cover types, although the selection of this 
cover type is likely contextual. Alternatively, open areas may be used as hunting 
grounds, although this probably depends on the particular predator/prey system being 
studied (Kauffman et al. 2007). We considered seasonal and density dependent 
interactions to account for this possibility, as deep snow covers open areas in the winter, 
such that prey would likely only occur in these areas in the summer.  

-- 

Variable: Open:Forested Edge Density 
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Source: NLCD 

Abbreviation: EDGE 

Unit: Distance of the open:forested linear feature / Unit Area (km / km2) 

Description & Measurement: We used NLDC products to create two binary rasters: one 
representing open cover types (see ‘% Open’), and one which included all forested cover 
types vs. other features. We defined the boundary between these two features as an edge, 
converted the boundary to line features in ArcGIS, and calculated the line density within 
the moving window described previously. The analysis was repeated for 1992, 2001, 
2006, and 2011 NLCD products. Final values were standardized around their mean for 
each study year prior to being fit in models. 

Expected relationship with wolf use: Positive (+). There are several reasons that wolf 
habitat use should be positively associated with edgy habitat. First, these features likely 
represent high quality foraging habitat for deer, particularly in summer, while also 
providing access to cover. In addition, linear features such as the transition zone between 
cover types may increase prey encounter rates and represent escape obstacles (Kauffman 
et al. 2007, Houle et al. 2010, Lesmerises et al. 2012). Such features may also be useful 
as travel corridors and for marking territory boundaries. We expected habitat use to 
increase with increasing open:forested edge densities on our study site.  

-- 

Variable: % Open Water & Wetlands 

Source: NLCD 

Abbreviation: WET 

Unit: Percent of landscape comprising open water and wetlands 

Description & Measurement: We used NLCD products to reclassify 
emergent/herbaceous wetlands and open water cover types. A binary raster was created 
for these cover types using methods described in ‘% Open.’ We evaluated the percentage 
of landscape comprising open water and wetlands within the moving window. The 
analysis was repeated for the 1992, 2001, 2006, and 2011 NLCD products. Final values 
were standardized around their mean for each study year prior to being fit in models. 

Expected relationship with wolf use: Negative (-). Water and wetlands may be indicative 
of potential alternative prey sources (beaver, moose), but wolves prey primarily on deer 
throughout the UP. Wolves selected against open water features, although shorelines 
were a preferred cover type (Kittle et al. 2015). In general, we expected wolf use to 
decline as the proportion of open water and wetlands increased.   

--  
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Variable: Stream Density 

Source: Michigan Geographic Data Library 
(http://www.mcgi.state.mi.us/mgdl/?rel=thext&action=thmname&cid=3&cat=MI+Geog
raphic+Framework+Hydrography+%28v14a%29) 

Abbreviation: STREAM 

Unit: Distance of stream per unit area (km / km2) 

Description & Measurement: Hydrography files were downloaded from the Michigan 
Geographic Data Library. All streams and linear water features were selected from these 
data and clipped to the study area (FCC codes H3*– H4*). Linear stream features were 
converted to a 30 m density raster using the line density tool with 4.02 km radius. Final 
values were standardized around their mean for each study year prior to being fit in 
models. 

Expected relationship with wolf use: Positive (+). Streams may represent higher prey 
availability, either via correlation with greater beaver densities (i.e. a seasonal/alternate 
prey source) or as preferred hunting territory (Kauffman et al. 2007, Lesmerises et al. 
2012). We expected wolves to increase utilization with greater stream densities. 

-- 

Variable: Elevation 

Source: USGS National Map (http://nationalmap.gov/) 

Abbreviation: ELEV 

Unit: Meters above sea level (m) 

Description & Measurement: We downloaded a 30 m DEM from the National Map and 
calculated mean elevation within the moving window described previously. Final values 
were standardized around their mean prior to being fit in models.   

Expected relationship with wolf use: Negative (-), Quadratic (i.e. selection for 
intermediate elevation). Numerous studies have found a relationship between wolf 
territory use and elevation. While results are mixed, a common finding is that wolves do 
not utilize the highest elevations on the landscape, but also tend to select against 
lowlands on average (Lesmerises et al. 2012, Uboni 2012, Kittle et al. 2015). Thus, we 
expected selection for intermediate elevation on our study site (Milakovic et al. 2011). 
Although elevation does not exceed ~ 600 m in the UP, snowfall in winter tends to be 
greatest at higher elevations, and deer vacate these areas when snow exceeds ~ 30 cm.   

-- 

Variable: Slope 

http://www.mcgi.state.mi.us/mgdl/?rel=thext&action=thmname&cid=3&cat=MI+Geographic+Framework+Hydrography+%28v14a%29
http://www.mcgi.state.mi.us/mgdl/?rel=thext&action=thmname&cid=3&cat=MI+Geographic+Framework+Hydrography+%28v14a%29
http://nationalmap.gov/
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Source: USGS DEM (see ELEV) 

Abbreviation: SLO 

Unit: Degrees of slope (°) 

Description & Measurement: We used the DEM described in ‘Elevation’ to compute 
degrees slope using ArcGIS, and calculated the mean slope within the moving window. 
Final values were standardized around their mean prior to being fit in models. 

Expected relationship with wolf use: Negative (-), Quadratic (i.e. selection for 
intermediate elevation). We anticipated a similar response to slopes as that of elevation. 
The range of elevation on our study site was not large, but the topography in many areas 
was rugged, resulting in significant slopes and changes in elevation. We expected 
wolves to use areas with shallow or intermediate slopes on our study site. Steeper areas 
are more difficult for wolves to navigate and may be risky, while flatter terrain has been 
associated with wolf hunting behavior (Kauffman et al. 2007). Most studies find a 
negative relationship between wolf use and slope (Houle et al. 2010, Milakovic et al. 
2011, Lesmerises et al. 2012). 

--  

Variable: Terrain ruggedness 

Source: USGS DEM (see Elevation) 

Unit: Index of terrain ruggedness 

Description & Measurement: We used the DEM to compute the average terrain 
ruggedness index value within the moving window. The analysis was performed using 
the ArcGIS Geomorphometry and Gradient Metrics toolbox (Evans et al. 2014). The 
index measures topographic heterogeneity and is fully described in Evans et al. (2014).  

-- 

Variable: Topographic radiation aspect index 

Source: USGS DEM (see Elevation) 

Unit: Index of heat load 

Description & Measurement: We used the DEM to compute the average heat load index 
value within the moving window. The analysis was performed using the ArcGIS 
Geomorphometry and Gradient Metrics toolbox (Evans et al. 2014). The index measures 
potential for direct solar radiation and warmer temperatures based on a slope-aspect 
transformation; the method is fully described and referenced in Evans et al. (2014).  
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Appendix 5B.  
 
Preliminary model reduction to remove correlated and unnecessary predictor 
variables. 
 
Our model included a large number of correlated variables so we fit generalized linear 

models using penalized maximum likelihood to select a subset of predictors from the 

original set. We used the elastic net regularization penalty in R package ‘glmnet,’ which 

combines lasso and ridge regression methods to discard irrelevant predictors and shrink 

coefficients of correlated predictors toward each other (Friedman et al. 2010, Tibshirani 

et al. 2012). We set the parameter α to 0.9, which causes performance similar to the lasso 

but also manages erratic model behavior resulting from highly correlated variables 

(Friedman et al. 2010). To determine which effects to keep, we used cross-validation to 

estimate best fit for the tuning parameter λ, where the method for λ was set to choose the 

most regularized model with errors within one SE of the minimum mean cross-validated 

error (Friedman et al. 2010). To ensure consistency across the dataset, we ran a Monte 

Carlo simulation with 1000 iterations, randomly selecting 5000 records from our dataset, 

refitting the model with ‘glmnet’, and estimating λ via the cross-validation routine. Each 

time we recorded which variables had not been discarded, and calculated the overall 

proportion (p) of model fits that included each variable x. We dropped variables with p < 

0.5, and included the rest in subsequent models.   
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6. Spatially varying density dependence drives a shifting mosaic of  

survival in a recovering apex predator (Canis lupus)5 

Abstract 
 
Understanding landscape patterns in mortality risk is crucial for promoting recovery of 

threatened and endangered species. Humans affect mortality risk in large carnivores, 

such as wolves (Canis lupus), but spatiotemporally-varying density dependence can 

significantly influence the ‘landscape of survival.’ This potentially occurs when density 

varies spatially and risk is unevenly distributed. We quantified spatiotemporal sources of 

variation in survival rates of gray wolves (Canis lupus) during a 21-year period of 

population recovery in Upper Michigan, USA. We focused on mapping risk across time 

using Cox Proportional Hazards (CPH) models with time-dependent covariates, thus 

exploring a shifting mosaic of survival. Extended CPH models and time-dependent 

covariates revealed influences of seasonality, density dependence and movement 

patterns, as well as individual-level factors and landscape predictors of risk. We used 

results to predict the shifting landscape of risk at the beginning, middle, and end of the 

wolf recovery time series. Survival rates varied spatially and declined over time. Long-

term change was density-dependent, with landscape predictors such as agricultural land 

cover contributing negatively to survival. Survival also varied seasonally and depended 

on individual experience, sex, and movement within vs. outside territories. The shifting 

landscape of survival suggested that increasing density contributed to greater potential 

for human conflict and wolf mortality risk. Long-term spatial variation in key population 

                                                            
5 The material contained in this chapter has been submitted to Ecology and Evolution 
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vital rates is largely unquantified in many threatened, endangered, and recovering 

species. Variation in risk may indicate potential for source-sink population dynamics, 

especially where individuals preemptively occupy suitable territories, which forces new 

individuals into riskier habitat types as density increases. We encourage managers to 

explore relationships between adult survival and localized changes in population density. 

Density-dependent risk maps can identify increasing conflict areas or potential habitat 

sinks which may persist due to high productivity in adjacent habitats.    

Introduction 

Accurate estimates of key vital rates are crucial in promoting restoration and 

recovery of threatened and endangered species, especially where humans contribute to 

changes in population demographics. Anthropogenic impacts have driven many species 

to the brink of extinction (Vié et al. 2009); however, changes in conservation policy can 

in some cases allow for recovery. For example, changing perceptions and increased 

protections have contributed to increases in large carnivore populations over the past 

several decades (Chapron et al. 2014, Ripple et al. 2014, Smith et al. 2015). Gray wolves 

(Canis lupus) are arguably one of the most iconic examples of successful conservation 

policy (Beschta and Ripple 2009, Wydeven et al. 2009a, Mech and Boitani 2010). 

Nonetheless, some population segments remain endangered, in part due to the potential 

for human actions to reverse positive growth rates or inhibit continued range expansion 

(Liberg et al. 2012, Bruskotter et al. 2014, Olson et al. 2015).  

Survival is an important driver of wolf populations, especially when humans 

contribute substantially to wolf mortality. Wolves in the U.S. are frequently subject to 
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legal (e.g. hunting, lethal control), illegal (poaching), and incidental killing (e.g. vehicle 

strike) (Murray et al. 2010, Gude et al. 2012, Stenglein et al. 2015a). The relative 

influence of human-caused mortality is debated (Creel and Rotella 2010, Murray et al. 

2010, Gude et al. 2012), with some subpopulations apparently sustaining high mortality 

rates (Adams et al. 2008, Creel and Rotella 2010, Mech and Boitani 2010). Monitoring 

and precise estimation of adult survival in the presence of human-caused mortality is a 

key input for effective management. 

While survival estimation on its own is useful and informative for management, 

understanding driving mechanisms is necessary to guide decision-making. Annual 

survival in wolves is frequently related to the ‘riskiness’ of their environment. Greater 

mortality risk is often associated with variables that indicate potential for human impact. 

Wolves inhabiting areas with greater road densities, greater proportions of agricultural 

land cover, and more private land generally have lower survival rates than those that 

occupy more remote, protected areas (Fuller et al. 2003, Smith et al. 2010, Stenglein 

2014). Survival can also be density dependent, especially in protected areas where 

populations saturate habitat. In these cases, survival may be regulated by intraspecific 

aggression as wolves compete for territory and prey (Cubaynes et al. 2014), or by 

reduced prey availability (Fuller et al. 2003, Marucco et al. 2012). Analyses that 

characterize habitat quality in terms of fitness metrics rather than density or distribution 

are ecologically informative and are a valuable tool for resource managers (Mosser et al. 

2009, Gaillard et al. 2010).  
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Relating adult survival to environmental characteristics can identify habitat-

limiting factors and potential sink habitats (habitats that are occupied frequently but 

contribute to negative average growth rates; (Aldridge and Boyce 2007, Hirzel and Le 

Lay 2008)). A habitat’s fitness potential generally cannot be inferred from studies of 

habitat selection alone due to density-fitness relationships (Morris 1988) and/or 

complications associated with measuring the ‘true’ ecological niche (Pulliam 2000). 

Survival modeling with environmental covariates can provide one solution to this 

problem.  

We evaluated spatiotemporal variation in wolf survival rates in Michigan, USA, 

from 1995 – 2013. In particular, we were interested in obtaining a reliable estimate for 

adult survival of the population (hereafter, ), testing for density-dependent and/or 

temporal variation in , and evaluating the relative influences on  within the 

study area. Hypothesized influences on included individual-level factors (age, sex, 

body condition at capture, capture type, vaccination status, pack membership status) and 

continuous spatial covariates (distance from pack territory, habitat suitability metrics, 

and movement information). Testing for such effects contributes to 1) understanding of 

how management may influence the population, 2) evaluation of the factors that increase 

mortality risk, and 3) knowledge about habitat fitness and potential sink habitats being 

used by wolves.  

Methods 

Field methods 

( )S t

( )S t ( )S t

( )S t
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Wolves were captured using foot-hold traps during spring and summer, 1992 – 

2013. Capturing efforts were part of an ongoing wolf monitoring and radio telemetry 

program with the Michigan Department of Natural Resources (Michigan Department of 

Natural Resources 2008, Beyer et al. 2009, Michigan Department of Natural Resources 

2015). Some captures also occurred opportunistically in the fall, when wolves were 

incidentally caught by coyote (Canis latrans) trappers. After being collared, wolves were 

located by fixed-wing single-engine aircraft 1 – 2 times per week during the study. Field 

crews attempted to physically locate collars shortly after a mortality signal (< 1 week); 

fate was initially determined via field necropsy and cause of death was later updated as 

needed via lab necropsies at the Michigan Department of Natural Resources Wildlife 

Disease Laboratory. Detailed field methods are available in Beyer et al. (2009), Potvin, 

et al. (2005), and Vucetich et al. (2012).    

Wolf packs, territories, and density 

The Michigan DNR tracked wolves in winter to complete an annual census of the wolf 

population and estimate spatial variation in wolf density. All passable roads were 

surveyed from trucks and snowmobiles (Potvin et al. 2005). Once tracks were detected, 

trackers recorded all signs (territory markings, scat, individual sets of tracks) to estimate 

pack sizes and establish pack boundaries. Further details on tracking methods and wolf 

abundance estimation are available in the references cited in the previous section and 

online at 

http://www.wolfandwildlifestudies.com/downloads/Estimating_Wolf_Abundance_in_M

ichigan_060208_239125_7.pdf.  

http://www.wolfandwildlifestudies.com/downloads/Estimating_Wolf_Abundance_in_Michigan_060208_239125_7.pdf
http://www.wolfandwildlifestudies.com/downloads/Estimating_Wolf_Abundance_in_Michigan_060208_239125_7.pdf
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We used a combination of radio-collar locations and track survey data to 

generate annual estimates of wolf density. Once detected, pack territories were 

monitored by aerial telemetry relocations or by repeatedly visiting known territory sites 

each winter to establish annual occupancy. Territory boundaries from radio telemetry 

data were generated using fixed kernel density estimation to create a 3D utilization 

distribution (UD), where the territory home range was defined as the 95% volume 

isopleth boundary. For years and/or packs with inadequate locations for estimation of the 

UD, we approximated territory boundaries by combining long-term telemetry locations 

associated with known packs and locations of tracks from the winter tracking survey. In 

cases where telemetry locations did not exist, we used a minimum convex polygon from 

long-term track locations. 

We approximated spatiotemporal variation in wolf density by generating a 

longitudinal matrix representing pack persistence and changes in pack size over time. 

These data were linked to the pack territory boundaries in ArcMap 10.3.1 

(Environmental Systems Research Institute, Inc., Redlands, CA, USA). Annual pack 

counts were converted to wolves / 1000 km2. We generated a smoothed surface for 

annual wolf density each year using a circular moving window with radius equal to 

approximate median wolf dispersal in the Great Lakes region (≈ 38 km; Treves et al. 

2009).  

Landscape covariates 

We developed habitat metrics representing variability in land cover, topography, 

prey availability, and potential human influence using publicly available GIS data (Table 
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6.1). We used moving window analyses to develop spatially-explicit surfaces for each 

landscape feature considered. The circular assessment window was set to 50.75 km2 (¼ 

of the mean wolf home range size), chosen to represent within-territory level variation. 

Each wolf observation was updated with habitat metrics corresponding to its location at 

the time, thus representing the effect of ‘third-order’ or location-based habitat selection 

(Johnson 1980, DeCesare et al. 2012).         

Survival Analysis 

We used extended Cox Proportional Hazards (CPH) models (Therneau and 

Grambsch 2000, Smith et al. 2010, Benson et al. 2014) to estimate wolf annual survival 

and test for effects of individual-level variation, monitoring and management, habitat, 

and movement (distance from pack home range and transience) on the hazard rate (i.e. 

risk of mortality). Specifically, we were interested in the survival function 

, where T is the random variable representing survival time (Murray 

2006). To accommodate covariates in our model, we estimated the hazard function:   

   (16) 

where the overall hazard is modeled as a function of the non-parametric baseline hazard 

and the regression risk function =  

(Hosmer Jr and Lemeshow 1999, Murray 2006, DeCesare et al. 2014). Modeling the 

hazard according to this formulation allows for convenient and familiar interpretation of 

covariate effects, where the coefficients indicate relative effects on the resulting hazard 

ratio. Subsequently,  can be determined provided the hazard function is known 

( ) ( )S t P T t= ≥
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(Murray 2006). The CPH model is flexible in that there is no parametric assumption on 

the hazard, only that the hazard ratio is constant over time (the proportional hazards 

assumption; Klein J. P. and Moeschberger, M.L. 2005, Therneau, T.M. and Grambsch, 

P.M. 2000). However, the CPH model can easily be extended to cases where predictors 

vary with time (Fox 2002, Fieberg and DelGiudice 2009).  

We specified CPH models where the hazard was modeled according to a 

combination of individual, at-capture factors and time-varying age, habitat, movement 

and time of year covariates (Table 6.1). The event of interest in our models was the 

known death of the individual wolf, and the time to event interval began after the first 

capture. When fate was undetermined, we right-censored individuals at their last known 

location and time. Individuals that left the study area and were recovered dead elsewhere 

were also right-censored. Wolves were sexed, weighed, and aged at capture. We 

specified a time-dependent age covariate, where age was modelled as a smoothed 

function of time after capture (Therneau and Grambsch 2000, Fieberg and DelGiudice 

2009, Moore 2016). During the early recovery phase (prior to 2004), most wolves 

received vaccinations for leptospirosis, canine distemper, and parvovirus and if 

necessary treatment for sarcoptic mange. In addition, wolves involved in depredation 

incidents were translocated during 1998 – 2002. A dummy indicator variable (0/1) was 

included for ‘Vaccine’ and ‘Ivomec.’ Similar indicator variables were considered for 

‘Translocation,’ ‘Depredation,’ ‘Recaptured’ (i.e. trapped on > 1 occasion), and ‘Capture 

Type’ (researcher vs. incidentally trapped; Table 6.1).  
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We allowed habitat variables to change over time, with each covariate 

representing surrounding habitat according to each individual time-specific location. In 

addition, we quantified pack membership vs transience. Pack membership was assigned 

based on consistent observation within known pack territory boundaries. Alternatively, 

transient status was assigned when individuals left a known territory and did not return 

(e.g. Smith et al. 2010), or were never observed consistently occupying a territory. We 

referred to these individuals as ‘transients’ rather than dispersers, because dispersal 

implies permanently leaving a natal territory (Boyd and Pletscher 1999) which was not 

always known. For pack status, we quantified risk associated with exploratory 

movements by calculating the distance from each observation to the center of the pack’s 

home range. We also computed a variable indicating movement rate (distance/time) 

corresponding to the log-transformed distance between the current and last location, 

corrected for the time interval between observations. In the CPH model, we specified 

log-transformed distance from home range center as an interaction conditional on pack 

membership; for transients, the distance was calculated based on the geographic center 

of all observations for the individual.  

To model potential long- and short-term trends and density dependent annual 

survival, we included variables for wolf density, day of year (DOY), and biological year. 

Each of these predictors was specified to have a non-linear functional relationship with 

the hazard, which we accommodated using cubic smoothing splines with an initial 5 

degrees of freedom (Therneau and Grambsch 2000, Harrell 2015, Moore 2016). 
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We specified a full model by initially including all parameters (Table 6.1) and 

used a forward-backward search algorithm to identify the optimal reduced version of the 

model based on improvement in AIC associated with iteratively adding and removing 

parameters from the model (Moore 2016). To check the assumption of proportional 

hazards for the final reduced model, we plotted scaled Schoenfeld residuals over time for 

each covariate and tested for a statistically significant trend (i.e.,  ; DeCesare et 

al. 2014, Moore 2016). We fit all models using the ‘survival’ and ‘rms’ packages in R 

3.2.2 (Therneau and Grambsch 2000, Harrell 2015, R Core Team 2015), with smoothing 

splines specified using ‘pspline’ and ‘rcs’ and model selection implemented using the 

‘step’ function (Therneau and Grambsch 2000, Venables and Ripley 2002, Moore 2016). 

Risk maps 

We used our final model to predict spatial representations of annual survival rate 

at three time periods during the study: early recovery (1995 – 2000; < 250 wolves), mid 

recovery (2001 – 2006; 250 – 450 wolves), and late recovery (2007 – 2013; 450 – 700 

wolves). To obtain estimates, we conditioned on the average or most common case for 

non-spatial variables, and projected cumulative annual survival estimates onto a map of 

the study area using the local estimates for relevant landscape predictors in the model 

formula: 

   (17) 
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where represents expected survival probability for an ‘average’ individual at 

location i and time t (365 days in this case), and  

(Therneau and Grambsch 2000, Fieberg and DelGiudice 2009, DeCesare et al. 2014). 

For each time period, we estimated separately for males and females with initial age 

set to 3 years, and specified relevant time-varying covariates such that their paths could 

be mapped through time for each prediction (Thomas and Reyes 2014). For the final risk 

maps, we averaged all survival probabilities for males and females to represent the 

population-level estimate. 

Results  

We included 365 individual wolf encounter histories, with 176 known deaths 

occurring during the study. The remaining individuals were right-censored, either 

because fate was not determined or because they were retrieved dead later outside of the 

study area. A baseline CPH model fit without covariates estimated the overall annual 

survival rate for collared wolves during our study:  = 0.75 (95% CI = 0.70 – 0.80). 

CPH models fit with covariates revealed that multiple factors influenced the hazard (risk 

of mortality) and subsequent survival estimates. The best reduced model included 

capture-level covariates for sex, weight at capture, translocation status, and vaccine 

(Table 6.2). In addition, time-dependent covariates were supported for pack membership 

vs. transience, ageing (initial age + time after capture), day of year, distance from 

territory center, wolf density, forested-open edge density, percent agriculture, and 

ˆ ( )iS t

0 0 0
:

ˆˆ ˆ( ) exp( ( )) exp( ( ))
j

j
j t t

S t t h t
≤

= −Λ = ∑

( )S t
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elevation (Table 6.2). Schoenfeld residual tests indicated that the proportional hazards 

assumption was satisfied for all predictors (Table 6.3).  

Mortality risk was greater for males ( ) and increased with 

distance from the individual’s territory when individuals were associated with a pack (

). In contrast, the distance effect reduced the hazard for transients (

). Pack membership reduced mortality risk (

), as did ageing (see Table 6.2 for effects of non-linear terms) 

and greater body weight at capture ( ) although the ageing and 

weight effects were not statistically significant at the conventional  threshold. 

Twenty-four wolves were translocated following a depredation event; our model 

indicated that this action may have reduced mortality risk following translocation (

). Vaccinations may have similarly reduced mortality risk (

). Relatively low sample sizes for the latter effects may have 

limited our ability to detect a statistically significant effect. 

Landscape covariates representing prey availability, land cover, topography, and 

human influence had relatively little effect on mortality risk, with only three of the 

original 12 landscape predictors retained in the final model (forested-open edge density, 

% agriculture, elevation; Table 6.2). Mortality risk increased with greater proportions of 

agriculture and also with increasing edge densities and elevation, 

although the latter two effects were not statistically significant at (Table 6.2).  

ˆ 0.428,  0.016pβ = =

ˆ 0.217,  0.001 pβ = =

ˆ 0.216,  0.001 pβ = − =

ˆ 5.272,  0.001 pβ = − <

ˆ 0.013,  0.119 pβ = − =

0.05α =

ˆ 0.541,  0.124 pβ = − =

ˆ 0.320,  0.121 pβ = − =

ˆ( 0.159,  0.037)pβ = =

0.05α =
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We detected seasonal (day of year) and density-dependent effects on mortality 

risk, which had non-linear effects on the hazard (Table 6.2; Figs. 6.1 and 6.2). In 

particular, mortality risk was greatest in winter and lowest in summer (Fig. 6.2C), 

resulting in lower cumulative survival probabilities during the winter (Fig. 6.1). Survival 

was density-dependent, with the estimated hazard increasing with greater wolf densities; 

the increase was sharp initially before apparently stabilizing at moderate densities (Fig. 

6.2E). Density-dependence associated with spatiotemporal variation in wolf density was 

reflected by our risk maps, as estimated survival rates declined the most in the highest 

wolf density areas over time (Fig. 6.3). 

Discussion 

Adult survival is a key driver of wolf population dynamics (Fuller et al. 2003) 

and provides important information about how preferred habitats influence relative 

fitness. Linking habitat to population vital rates such as survival is likely to be more 

valuable for long-term management and conservation of populations than focusing 

solely on habitat selection or species distribution (Franklin et al. 2000, Gaillard et al. 

2010), especially when a species likely deviates from the theoretical ideal-free habitat 

distribution (Mosser et al. 2009). Our CPH models related patterns in wolf movement 

and territory use to variation in space and time, suggesting that the spatial ecology of the 

species is a key component of understanding long-term fitness and population trends. By 

identifying the most relevant predictors of wolf survival and mortality risk, we could 

extrapolate predictions of a key fitness indicator spatially and temporally, providing a 
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valuable tool for effective management of a controversial but ecologically fundamental 

top predator.  

Wolves in our study area had survival rates similar to other U.S. populations. 

Recent estimates have ranged from 0.75 (Wydeven et al. 2009b, Smith et al. 2010) to 

0.79 (Adams et al. 2008, Wydeven et al. 2009a, Cubaynes et al. 2014). However, the 

spatiotemporal landscape of survival has not been explored with the detail provided here. 

From the results of our analysis, we identified four areas of focus that are broadly 

relevant under the context of spatiotemporal variation in wolf survival and mortality 

risk: 1) long-term temporal variation and density dependence in estimates of wolf 

survival, 2) short-term seasonal variation and its ecological relevance and potential 

management implications, 3) human impacts and the importance of wolves ability to 

navigate the anthropogenic ‘landscape of risk’ (e.g. Stenglein, J.L. et al. 2015a) and 4) 

the importance of identifying habitat quality based on fitness for despotic or pre-emptive 

habitat selectors (Van Horne 1983, Pulliam and Danielson 1991, Mosser et al. 2009). 

Long-term variation and density dependence        

Density dependence was a driving force of long-term temporal variation in 

survival rates during our study. We included smoothed terms for time (biological year) 

in addition to wolf density, but the smooth time variable was not retained in the final 

model while spatiotemporal density was highly significant (Table 6.2). The effect was 

evident in spatial predictions of annual survival during early (1995 – 2000), mid (2001 – 

2006), and late (2007 – 2013) recovery time periods (Fig. 6.3). When holding all other 

variables except density constant in our model, estimated UP-wide adult survival rates 
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declined across the time series (Fig. 6.4). By the late time period, modeled survival was 

lowered throughout the majority of the study area (Fig. 6.4C), which we attributed 

mainly to broad-scale increases in wolf density because proportions of agriculture and 

forested-open edge densities were relatively constant at the scale of our analysis while 

wolf density varied over time (Fig. 6.4). Density-dependent regulation of survival rates 

in wolves can occur through increased intraspecific aggression when wolves are 

protected from human-caused mortality (Cubaynes et al. 2014). While we documented a 

few cases of wolves being killed by other wolves (MDNR, unpublished data), we 

observed more evidence that the declines in survival in our study area corresponded with 

increased potential for human conflict (e.g., see Murray et al. 2010). As wolves 

expanded their range, shifts in habitat use and selection resulted in greater exposure to 

sub-optimal habitat with greater proportions of agriculture and human development, 

subsequently increasing the risk of human-caused mortality.  

Seasonal variation in survival rates   

We detected seasonal variation in the hazard rate for wolves in our study. Risk of 

mortality increased during fall and winter and appeared to peak in January (Fig. 6.2C). 

Several factors could contribute to increased mortality risk during fall and winter. 

Wolves may be more vulnerable to illegal human-caused mortality during this time 

period. Deer hunting with firearms in our study area typically began in mid-November, 

with a muzzleloader season concluding in mid-December. Illegal killing tends to occur 

opportunistically in heavily forested regions; wolves are probably most vulnerable to 

being killed illegally during hunting seasons. Seasonality in mortality risk also coincides 
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with the heaviest snowfall time periods in the UP, and recreational trails receive heavy 

snowmobile use. Wolves are known to use forest roads and trails as travel routes and 

territory boundaries (Barja et al. 2004, Whittington et al. 2005, Kohn et al. 2009), which 

likely makes them more vulnerable to detection (Zimmermann et al. 2014). 

Alternatively, dispersal sometimes varies seasonally in wolf populations (Boyd and 

Pletscher 1999, Kojola et al. 2006) and transience was also associated with increased 

mortality risk in our study, indicating that dispersal could contribute to seasonal 

variation in mortality risk.  

Navigation of a risky landscape 

Drivers of mortality risk suggested that human impacts were the predominant 

hazard facing wolves, even in a population that was legally protected during the majority 

of the study (Beyer et al. 2009, Olson et al. 2015). Wolf mortality was primarily human-

caused, with the majority of deaths occurring due to poaching, vehicle strikes, and other 

human causes such as legal euthanization or incidental trapping (MDNR, unpublished 

data). Records of known mortality sources indicated human mortality causes 

outnumbered other causes by > 2:1. In addition, illegal killing may be underestimated 

due to potential censoring bias (Liberg et al. 2012, Stenglein et al. 2015c), although 

estimates of informative censoring were relatively low in a similar neighboring 

population (Stenglein 2014, Stenglein et al. 2015c). 

Our final CPH model included effects such as proportion of agriculture, open-

forest edge density, elevation, territory vs. transient, distance from territory, 

translocation, and experience, which suggests that occupying high quality ‘real estate’ 
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(Mosser et al. 2009), developing knowledge of territory, and learning to navigate a risky 

landscape (i.e. for transients) are keys to long-term survival for wolves. Evidence for this 

includes the following: First, experience mattered, as risk generally decreased as wolves 

got older and transients were more likely to survive as they aged and established new 

territories. Second, density-dependence in survival rates combined with habitat 

predictors indicative of risk may indicate potential for a source-sink process consistent 

with ideal-despotic or ideal-preemptive habitat distributions (Pulliam and Danielson 

1991, Morris 2003a, Mosser et al. 2009). In this scenario, early colonizers would occupy 

the safest habitat and later colonizers would have to choose from riskier sites. This 

hypothesis is corroborated by higher survival rates predicted for wolves that consistently 

occupy territories as opposed to increased hazards for those that exhibit exploratory 

movements (greater distances from pack territory) and transience (unknown pack 

territory or transient movements). Source-sink dynamics are complex, and demonstration 

of source vs. sink habitat would require additional information on recruitment and 

immigration/emigration which would allow estimation of a net growth rate for specific 

habitats. Thus, spatial predictions of annual survival should be interpreted as mortality 

risk, which in this case is associated with potential human conflicts.  

Conclusion 

Animals may not always select the highest quality habitat (Battin 2004). When 

territoriality is significant, site dependent regulation (Rodenhouse et al. 1997) likely 

results in uneven fitness across a landscape when the highest quality habitats become 

saturated (Mosser et al. 2009). Declining survival rates in wolves were related to 
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spatiotemporal variation in wolf density during recolonization, indicating that mortality 

risk is density-dependent when safe habitats are limited. In this case, a mismatch 

between habitat suitability and occupancy may exist, and traditional habitat suitability 

analyses may not be adequate indicators of quality. Source-sink population dynamics 

may occur in this scenario; resource managers should seek to identify source habitats 

and preserve them to promote and sustain long-term, regional species recovery.  
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Table 6.1. List of codes and descriptions for all variables considered in a Cox 

Proportional Hazards model of wolf survival times in Michigan, USA, 1992 – 2013. 

Parameter Variable Type Description and coding 

Measured at 
capture 

  Age continuous 
(estimated)  

age in years, estimate at trap or updated later 
via necropsy info 

Sex categorical factor 
(2 levels) 

male, female 

Capture Type categorical factor 
(2 levels) 

research, incidental 

Vaccine indicator 1 = received vaccination, 0 otherwise 

Ivomec indicator 1 = received ivomec, 0 otherwise 

Weight continuous weight at capture (lbs) 

Time-
dependent 

  Capture Effects     

Translocationa indicator 1 = translocated, 0 otherwise 

Depredationa indicator 1 = depredation event, 0 otherwise 

Recaptureda indicator 1 = trapped on > 1 occasion, 0 otherwise 

Movement & 
Transience     

Pack 
membershipa,c 

categorical factor 
(2 levels) 

0 = resident pack, 1 = transient 

Distance 
(transient) 

continuous distance from center of all observations 

Distance 
(resident pack) 

continuous distance from center of territory home range 
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Movement rate continuous distance between current and last 
observation / time between observations 

Habitat     

Buck Kill 
index 

continuous Bucks killed per km2, measured within 
moving window 

% Deer 
wintering 
complex 
(DWC) 

continuous Proportion of deer winter habitat within 
moving window 

Distance to 
DWC 

continuous Distance to nearest deer winter habitat 
complex within moving window 

Road Density continuous Road density (km / km2) within moving 
window 

% Impervious 
Surface 

continuous Developed impervious surface % of 
landscape within moving window 

% Agriculture continuous Agriculture % of landscape within moving 
window 

% Protected 
Land 

continuous Public/protected % of landscape within 
moving window 

Snow Depth continuous Long-term average of snow depth, 1 km 
spatial resolutiond 

Elevation continuous Average elevation (m) within moving 
window 

Slope continuous Average degrees slope within moving 
window 

Forested:Open 
Edge Density 

continuous Density of forested vs. open habitat edge 
(km / km2) within moving window 

Stream Density continuous Stream density (km/km2) within moving 
window 

Density 
Dependence 

and Time     

Wolf Densityb continuous Average annual wolf density within moving 
window (38 km buffere) 
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Biological 
Yearb 

continuous non-linear effect of biological year 

Day of Yearb continuous non-linear effect of julian date (day of year) 

Ageingb continuous non-linear effect of age over time, starting 
with estimated age at capture 

   a indicator switches from 0 to 1 at the time of the event and remains 1 afterward 

b non-linear effect; modeled using cubic 

spline function 

 c pack membership determined by association with known pack territory and homing movement 

behavior 

d Snow Data Assimilation System (SNODAS; https://nsidc.org/data/g02158) 

e approximate median wolf dispersal distance based on distances reported in Treves et al. (2009) 
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Table 6.2. Relative effects (log-hazard) of relevant predictors in a Cox Proportional 

Hazards model of wolf survival times in Michigan, USA, 1992 – 2013. Predictors in 

bold indicate p values < 0.05. Negative values correspond to reduced mortality risk.  

Parameter 
   

 

Sex         

Male 0.428 0.178 2.410 0.016 

Capture effects         

Weight at capture -0.013 0.008 -1.560 0.119 

Translocation -0.541 0.349 -1.550 0.121 

Depredation     

Recaptured     

Researcher (vs. Incidental)     

Vaccine -0.320 0.208 -1.540 0.124 

Ivomec 

    Movement and transience         

Territory membership -5.272 1.139 -4.630 < 0.001 

Distance from center of observations 
(transient) 

-0.216 0.064 -3.390 0.001 

Distance from territory (territory 
occupant) 

0.433 0.132 3.290 0.001 

Movement rate 

    Habitat         

β̂ ˆ( )SE β  Wald Z p
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Buck kill index     

% Deer Wintering Complex     

Distance to Deer Wintering Complex     

Road Density     

% Impervious Surface     

% Agriculture 0.159 0.076 2.080 0.037 

% Protected Land     

Snow Depth     

Elevation 0.199 0.125 1.590 0.112 

Slope     

Forested:Open Edge Density (Edge), 
linear term 

1.895 0.975 1.940 0.052 

Edge1 -18.344 10.808 -1.700 0.090 

Edge2 31.693 18.897 1.680 0.094 

Stream Density     

Density Dependence and Time         

Age (cumulative) 0.046 0.174 0.260 0.793 

Age1 -0.963 0.630 -1.530 0.126 

Age2 3.900 2.138 1.820 0.068 

Day of Year (DOY), linear term -0.012 0.004 -3.410 0.001 

DOY1 0.024 0.010 2.410 0.016 

DOY2 -0.068 0.039 -1.710 0.086 

Biological Year, linear term     
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Biological Year, non-linear terms     

Wolf Density, linear term 1.619 0.627 2.580 0.010 

Wolf Density1  -15.358 6.112  -2.510 0.012 

Wolf Density2 33.694 13.567 2.480 0.013 
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Table 6.3. Results of the assumption of proportional hazards test using scaled 

Schoenfeld residuals for each individual predictor separately and for the full (global) 

model, where p < 0.05 indicates a statistically significant relationship between a 

predictor’s effect and time. 

Parameter ρ   p 

Age -0.034 0.241 0.623 

Sex 0.009 0.015 0.904 

Weight 0.041 0.435 0.510 

Vaccine -0.064 0.673 0.412 

Translocation 0.027 0.144 0.705 

Agriculture -0.024 0.129 0.720 

Elevation -0.059 0.698 0.403 

Distance from Territory -0.125 2.068 0.150 

Territory membership -0.107 3.127 0.077 

Distance*Territory -0.107 3.088 0.079 

Wolf density -0.092 1.716 0.190 

Day of Year -0.021 0.074 0.786 

Edge -0.035 0.240 0.625 

GLOBAL NA 6.26 0.936 

 

  

2χ



196 
 

 

Figure 6.1. Predicted annual survival rates from a Cox Proportional Hazards (CPH) 

model comparing adult and juvenile wolves occupying territories (A, B) to adult and 

juvenile transient wolves (C, D) in Michigan, USA, 1992 – 2013. Females (green 

curves) had greater survival rates than males (blue curves), and survival varied 

seasonally based on a smoothed function of time (Julian day) with mortality risk greater 

in winter than in summer. Transient status was identified based on movements away 

from known territories without returning and was associated with lower predicted 

survival (C, D). Initial age was 1 year old for juveniles and 3.5 years old for adults; all 
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other covariates in the CPH were held constant at mean values for continuous variables 

or most common case for discrete or factor variables.    

 

Figure 6.2. Relative log hazard effects from a Cox Proportional Hazards fit to time-

varying predictors in Michigan USA, 1992 – 2013. Greater log hazard indicates greater 

mortality risk and shorter survival times (color-coded red) while lower hazards 

correspond to lower risk and longer survival times (color-coded blue).  
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Fig. 6.3. Spatial representation of the ‘landscape of risk’ for wolves in Michigan, USA 

corresponding to three time periods: A) 1995 – 2000; early recovery, B) 2001 – 2006 

(mid-recovery), and C) 2007 – 2013 (late recovery). Spatial and temporal variation in 
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predicted survival reflected density dependence (lower survival rates with increasing 

wolf density), and landscape effects associated with agriculture, open vs. forested edge 

densities, and elevation (increased mortality risk with greater proportions of agriculture, 

greater edge densities, and highest elevations). Annual survival estimates were for adult 

wolves (starting age = 3.5 years) and estimates were conditioned on the 1st day of the 

biological year (April 15). 
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Figure 6.4. Time trend in predicted adult annual survival rates for an average adult wolf 

corresponding with changes in median wolf density in Michigan, USA, 1995 – 2013. 

Wolf abundance increased from 57 to over 600 during the study; declines in survival 

were related to increasing wolf density, as survival predictions were obtained from a 

Cox Proportional Hazards model with all predictors except wolf density held constant at 

their average (continuous variables) or most common values (factor variables) in the 

study. Error bars around the density estimates represent the interquartile range, while the 

shaded polygon around the survival estimates represents the 95% confidence interval. 
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7. Competing risks and partial compensation for human-caused 

mortality in Upper Peninsula wolves6 

Abstract 

Conservation and management of wolves and other large carnivores requires monitoring 

and quantifying the effect that humans have on populations. Humans can either facilitate 

or limit range expansion and population growth of large carnivores. Quantifying the 

impacts of human-caused mortality on populations is essential for conservation and 

management, especially when goals involve facilitating range expansion. The primary 

mortality source for wolves is most commonly human-caused. The ability of wolves to 

withstand high rates of anthropogenic mortality is debated; although population growth 

has occurred with human-caused mortality near 30%, in many cases this has occurred in 

populations that have may have been sustained by immigration from outside 

populations. Human-caused mortality is often assumed to be compensated for by 

reductions in natural mortality or increased recruitment, but several studies have 

concluded that human-caused mortality is additive, or even “super-additive” to other 

mortality sources. I evaluated human-caused mortality in the Michigan wolf population. 

I focused specifically on estimating competing risks, exploring correlations between 

mortality sources, overall survival, density, and population growth. I also quantified 

compensatory-additivity metrics with respect to human caused mortality. Human causes 

contributed to 66% of reported wolf mortality in Michigan, and the most common cause 

of death was illegal killing. This translated to a rate of ~ 17% annual human-caused 
                                                            
6 The material contained in this chapter is in preparation for submission to Conservation Letters 
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mortality. The compensatory-additivity statistic was 0.464, suggesting partial 

compensation, and growth rate was affected the most when both human and natural 

mortality rates were high (less compensation). In addition, human caused-mortality was 

density dependent. Although evidence for partial compensation is encouraging, 

informative censoring can bias survival estimates high if human-caused mortality is 

underestimated. Based on a sensitivity analysis, “cryptic poaching” of up to 20% of 

censored events could result in survival estimates ~ 6% lower than expected based on 

standard known fate analysis. States with connected populations should consider 

implementing interstate population models that borrow information from multiple data 

sources, thereby providing valuable information about immigration, emigration, larger 

scale population trends, and source-sink dynamics that have not been formally 

quantified.          

Introduction 
 

Conservation and management of large carnivores requires monitoring and 

quantifying the effect that humans have on populations. Large carnivore populations 

have increased in certain areas of the United States (Bales et al. 2005, LaRue et al. 2012, 

Smith et al. 2014, Wilmers and Schmitz 2016), suggesting that recovery and 

reintroduction efforts have been successful in restoring top predators to ecosystems that 

were lacking them for several decades (Smith et al. 2003, Beschta and Ripple 2009, 

Mladenoff et al. 2009, Wydeven et al. 2009a, Ripple et al. 2014). However, increasing 

carnivore populations have come with new conservation policy challenges. Management 

and mitigation of wildlife-human conflicts are a key priority in state and federal 
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management plans involving expanding predator populations. Current debates involve 

questions about the ethics and legality of large carnivore hunting (Bruskotter et al. 2014, 

Lute et al. 2014, Vucetich and Nelson 2014), the capacity for human tolerance of 

predators (e.g. “social carrying capacity”; Kellert et al. 1996 , Carpenter et al. 2000), and 

the impact that high rates of anthropogenic mortality can have on populations (Creel and 

Rotella 2010, Gude et al. 2012, Liberg et al. 2012). Humans play a key role in either 

facilitating or limiting range expansion and population growth for these species (Linnell 

et al. 2001, Musiani and Paquet 2004).   

The gray wolf (Canis lupus) is an iconic top predator species that has re-

established itself in the northern Rocky Mountains and northern Great Lakes through a 

combination of natural recolonization and human re-introduction efforts (Beyer et al. 

2009, Smith and Bangs 2009, Wydeven et al. 2009a). Currently, Great Lakes 

populations have surpassed 3,000 wolves while Rocky Mountain populations have 

exceeded 1,500 and are expanding west and south into Washington, Oregon, and 

California (https://www.fws.gov/midwest/wolf/aboutwolves/WolfPopUS.htm). In nearly 

every study of wolf mortality to date, the primary mortality source for wolves has been 

death from human causes (Creel and Rotella 2010, Murray et al. 2010, Gude et al. 2012, 

Stenglein et al. 2015b). The only exceptions to this rule have been subpopulations inside 

Yellowstone and Isle Royale National Parks, where ~ 100 – 200 wolves collectively 

inhabit protected wilderness where hunting is prohibited and the only human presence is 

tourism (e.g. Cubaynes et al. 2014). In other areas, wolves have evidently sustained 

annual human-caused mortality rates of 30-50% (Fuller et al. 2003, Person and Russell 
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2008, Creel and Rotella 2010, Gude et al. 2012) , where killing occurs legally (e.g. 

depredation control or legal wolf hunt), illegally (poaching), and incidentally (hit by 

vehicles).  

It is often suggested that wolf populations can continue to withstand human-

caused mortality rates of up to 30% (Fuller et al. 2003, Gude et al. 2012). This 

assumption relies on evidence suggesting that human mortality is at least partially 

compensated for by reductions in natural mortality or increased reproduction (Murray et 

al. 2010). Evidence for this varies and often depends on context (Creel and Rotella 

2010). Survival rates for wolves have historically been lowest where human influence is 

high. Annual estimates have ranged from 0.55 – 0.85 for wolves > 1 year old in 

generally unexploited populations (Fuller et al. 2003, Adams et al. 2008, Smith et al. 

2010, Benson et al. 2014, Stenglein 2014). However, lower (0.34 – 0.54) survival 

estimates have been recorded for wolves subject to significant annual take (Person and 

Russell 2008), and lower estimates often correspond with areas of lower habitat quality 

(Smith et al. 2010, Stenglein 2014, Stenglein et al. 2015a). For example, wolves 

inhabiting areas with higher road densities and greater proportions of agricultural land 

cover relative to other (i.e. higher quality) habitats had lower survival and higher risks of 

human-caused mortality in Wisconsin (Stenglein 2014). This indicates that risk 

associated with human populations is may be an important regulating density-dependent 

factor for wolves in the Great Lakes Region. However, the nature of the linking 

mechanism has yet to be revealed by empirical data, hence the need for testing density-

dependent habitat selection (Chapter 1) and relating it to survival rates and mortality 
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factors over time (this chapter). While wolves apparently can sustain high levels of 

human take, additive increases in total mortality have been reported at rates lower than 

30% (Creel and Rotella 2010, Stenglein 2014). The debate about the degree to which 

mortality from natural causes compensates for human causes is ongoing; recent evidence 

would seem to suggest that wolf populations, on average, can remain stable (i.e. zero 

growth) at approximately 22% annual human-caused mortality (Fuller et al. 2003, 

Stenglein 2014). However, there is much variation across space and time which suggests 

influences of other factors and potential source-sink dynamics between biologically 

connected populations. Given the policy implications, assessing the impacts of human-

caused mortality on wolf populations remains an important analysis.  

We estimated cause-specific mortality using data from recolonizing wolves in the 

Upper Peninsula (UP) of Michigan, USA during 1994 – 2013. We anticipated cause-

specific mortality effects on survival that could be spatially variable, involving 

components such as proximity to humans (or road densities as a proxy for human 

conflict), and proportion of agricultural land cover associated with movements and 

territories (Murray et al. 2010, Smith et al. 2010). We expected these factors to vary 

across time in a manner that is consistent with density-dependent effects associated with 

the saturation of high quality habitats (Wydeven et al. 2009a, Murray et al. 2010). Our 

objectives were to estimate cause-specific mortality rates of UP wolves, evaluate the 

effects of spatial covariates influencing multiple mortality sources, and test for 

compensatory vs. additive effects of natural and human-caused mortality across time in 

UP wolves. Results provide important information for future management of a species 
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that has been the subject of legal controversy ever since its initial Endangered Species 

Act delisting (Olson et al. 2015).  

Methods 
 
Wolf monitoring and necropsy data 
 

Locations and encounter histories of radio-marked wolves were recovered from 

VHF radio telemetry. Data collection and methodology is fully described in previous 

chapters. The data we used for all models linking cause-specific mortality to covariates 

is also summarized in Chapter 6.  Any necessary modifications to those data are 

explained in the analysis sections. We set procedures and definitions to assign specific 

causes of death to wolves (Stenglein 2014, Stenglein et al. 2015b). If possible, cause of 

death was initially determined in the field based on available evidence and condition of 

the carcass. Carcasses were typically sent to a wildlife disease lab so that necropsy 

results could be obtained.  If necropsy results were not available or inconclusive, the 

determination in the field was used to assign cause of death (Stenglein et al. 2015b). 

Field notes and lab necropsy results were maintained in a wolf carcass database. To 

insure consistency and transparency in cause of death assignments, we set criteria for 

assigning cause and level of certainty at three levels: overall fate (level 1), cause of death 

(level 2; human vs. natural vs. unknown), and contributions to mortality (level 3; Table 

7.1). Each level received a ranked certainty assignment (1=highly uncertain, 2 = 

uncertain, 3=somewhat certain, 4=certain). Two researchers independently made 

assignments and judgments of certainty; results were then compared. If assignments 

differed between researchers, we downgraded the certainty level for the assignment. 
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After initial assignments were made, results for any uncertain assignments (e.g. ultimate 

cause of death, uncertainty level 1, 2, or 3) were sent to the principal investigator (PI) for 

review. If additional information could be obtained by contacting field biologists and 

checking for updated necropsy information), the uncertainty level was upgraded and 

ultimate cause of death was assigned. Otherwise, the ultimate cause of death was 

assigned to ‘unknown.’ We used the following lines of evidence to assign the ‘illegal’ 

cause of death: 1) presence of fatal gunshot wound from an unknown source, and 2) 

retrieval of a cut or destroyed collar without a carcass. In the latter case, the collar was 

typically retrieved near a road or trail, or from a stream underneath a bridge. We 

interpreted this as the highest level of certainty that a wolf was killed illegally.  

Competing Risks Analysis 
 

We used competing risks analysis to quantify separate sources of mortality 

influencing the wolf population. Competing risks seeks to identify the contributions of 

multiple hazard types affecting the overall mortality rate (Therneau and Grambsch 2000, 

Heisey and Patterson 2006). In our case, we considered two hierarchical levels of 

competing risks. The first level involved separating human vs. natural causes of death, 

which is an important distinction when evaluating the long-term growth potential of 

recovering wolf populations (Fuller et al. 2003, Murray et al. 2010) . The second level 

involved breaking down known causes of death from each class (human vs. natural) into 

specific events (Table 7.1; Fig. 7.1). A third overall category was death from unknown 

causes. We used Cumulative Incidence Functions (CIFs) to estimate competing mortality 

risks at both levels.  
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The CIF is an extension of common survival models such as the Cox 

Proportional Hazards (CPH) model. Survival models express the time to an event 

(typically death), often as a function of covariates (Therneau and Grambsch 2000, Klein 

and Moeschberger 2005). Survival times can be modeled using parametric regression 

approaches (e.g. Weibull or Exponentially distributed survival times; Moore 2016) or 

with semiparametric approaches where the baseline hazard function can take any form 

while covariates enter the model similar to linear regression (CPH models; Therneau and 

Grambsch 2000). Briefly, if T is a random variable with cumulative distribution function 

( ) ( )    P t Pr T t= ≤  and probability density function ( ) ( )  /p t dP t dt=  , then the 

survival function S(t) is the complement ( ) ( )  ( )  1 –S t Pr T t P t= > = . The hazard 

function is the instantaneous risk of an event (e.g. death) at time t conditional on survival 

up to that time: 

 
( )( )

0

Pr | ( )( ) lim
( )t

t T t T t f th t
t S t∆ →

≤ < ∆ ≥
= =

∆
  (18) 

 
The hazard function, or log hazard, implies an exponential distribution of survival times 

with density function ( ) tp t e νν −= (Fox 2002, Heisey and Patterson 2006). The hazard 

function is: 

 

 0 1 1 2 2( ) ( ) exp( ... )i i i p iph t h t x x x= β + β + + β   (19) 

   
with hazard ratios  
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(Heisey and Patterson 2006). To extend the model to incorporate competing risks, we 

considered K=8 overall causes of death occurring from human, natural or unknown 

sources (Table 7.1; Fig. 7.1). The cumulative risk function is then defined as the 

probability of an individual dying from cause k by time t (Moore 2016): 

 

 
0

( ) Pr( , ) ( ) ( )
t

k kF t T t C k h u S u du= ≤ = = ∫   (21) 

A cause-specific hazard is obtained from the hazard function defined previously, except 

that the probability of death from cause k is conditional on the individual surviving 

through time t (i.e. not dying from another cause): 

 
( )

0

Pr , |
( ) limj t

t T t C j T t
h t
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=

∆
   (22) 

 

The hazard function defined previously becomes the sum of all cause-specific hazards at 

a given time (Moore 2016),   
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and the CIF is obtained by: 
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To evaluate the CIF for all causes of death during the study, we extended the hazard 

function of a CPH model in its simplest form (i.e. hazard function without covariates). 

To evaluate influences on human- vs. naturally-caused death independently (Meira-

Machado et al. 2008, Moore 2016), we used an existing Anderson-Gill CPH model 

framework (Chapter 6) to model the cause-specific hazard as a function of time-

dependent spatial predictors. Specifically, survival times associated with all human 

causes were subset for the human-causes model, whereas survival times with all natural 

causes were subset for the natural-causes model. For each of these models, we fit one 

model with individual-level factors (sex, age, weight, depredation status, capture type, 

home range status, vaccination, and ivomec; see Chapter 6), one model with landscape 

predictors (see Chapter 6). For the latter model, we employed forward-backward 

stepwise variable selection based on AIC to only include the most useful predictors 

(Harrell 2015, Moore 2016). As a final step, we combined the first model with the 

second (reduced) model, and again employed stepwise selection. The resulting model 

was used to compare cause-specific influences driving wolf survival and mortality.  

In addition to cause-specific hazards, we were interested in testing for potentially 

informative censoring. Several methods have been employed to indicate potential for 

informative censoring, including sensitivity analysis and a generalized linear model 

(GLM) with covariates and a binomial distribution (e.g. logistic regression) fit to right-

censored vs. non-right-censored (known fate) encounter histories (Murray 2006, Murray 

et al. 2010). We implemented the logistic regression test for informative censoring using 

the same covariates that were used in cause-specific hazard models, except that in this 
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case we used the median overall value for each individual’s time-dependent covariates. 

In addition, we employed a sensitivity analysis by reassigning increasing proportions of 

censored events with a death event and re-estimating the annual survival rate. If this 

analysis affects survival estimates, then informative censoring is more likely (Murray 

2006). We conducted the sensitivity analysis using a replacement range of 2.5% to 20% 

of censored events, as unobserved mortality is unlikely to exceed 25% (Liberg et al. 

2012, Stenglein et al. 2015c) 

 

Next, we extended the CIF corresponding to the first level (human, natural, and 

unknown mortality sources) to include a time covariate for use in an exploratory analysis 

of the relative impact of human-caused caused mortality on wolf survival and population 

growth rate (next section). Quantifying relationships between, e.g. human vs. natural 

causes, allows estimation of additivity of human-caused mortality to other causes of 

death (Creel and Rotella 2010, Peron 2013). We adjusted our time-scale for these 

models, as the AG approach may be less reliable for obtaining year-specific estimates. 

Specifically, we used a recurring time scale where each individual re-enters the study 

each year (Fieberg and DelGiudice 2009, DeCesare et al. 2014). We set the start date to 

the beginning of the biological year (April 15), and back-dated age estimates to match 

the appropriate time scale. Since individuals that lived through one year were re-entered 

into the study the next year, we used robust sandwich variance estimators to calculate 

standard errors (DeCesare et al. 2014).     

Impact of Anthropogenic Mortality 
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We extended the CIF to include biological year as a categorical fixed effect. As 

such, we obtained annual estimates of human and naturally-caused mortality, as well as 

overall annual mortality (e.g. 1 - annual survival rate; Murray 2006, Heisey and 

Patterson 2006). Quantifying inter-annual variation in the CIF allowed us to explore the 

degree to which reductions in natural mortality sources compensated for increases in 

human-caused mortality (Creel and Rotella 2010, Murray et al. 2010, Gude et al. 2012). 

To explore the potential impact of human-caused mortality on the population, we 

computed annual estimates of human-caused mortality (h), natural mortality (n), overall 

survival (S), population growth rate (r), and population density (d) for the years 1997 – 

2012. We included data from early years (1992 – 1996) with 1997 because data were too 

sparse to obtain annual estimates of survival and mortality (e.g. ≤ 3 individuals 

monitored per year prior to 1997). This analysis was cut off after biological year 2012 to 

avoid biases associated with censoring a large number of individuals at the end of the 

study (end of year 2013). We created a correlation matrix for (h, n, S, r, d) to explore 

relationships between the set of variables. We used Pearson’s correlation and assessed 

statistical significance using non-parametric rank tests (Harrell Jr 2013, Hollander et al. 

2013). We set α to 0.10 because our analysis was exploratory and small sample sizes can 

make effects difficult to detect statistically under conventional significance levels.   

We fitted 8 candidate linear regression models with r as the response variable to 

explore hypotheses about the relative effects of mortality sources, survival, and wolf 

density on the growth rate. We included four models with single linear predictors (h, n, 

S, d) and four models with unique pairs of predictors (h,n), (h,d), (n,d), and (S,d). Since h 
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and n are components of S, we did not include these pairs together in models. Further, 

since we were limited to 15 data points (one for each year), we did not include models 

with more than 2 predictors. We evaluated the best fit to the data by ranking models in 

terms of adjusted R2 and AIC.   

The relationships between temporal variation in h, n, and S can reveal important 

information about a population’s ability to compensate for human-imposed perturbations 

that reduce population size (Creel and Rotella 2010, Servanty et al. 2010). The 

relationship between human mortality and overall mortality (i.e., 1-S) can be described 

by the formula 𝛽𝛽 (1 − 𝛼𝛼⁄ ) where 𝛼𝛼 is the intercept and 𝛽𝛽 is the slope of a simple linear 

regression model relating overall annual mortality to human-caused mortality (Creel and 

Rotella 2010, Peron 2013). The resulting value indicates a measure of compensation for 

vs. additivity of human-caused mortality. An overall compensation rate was developed 

based on the temporal correlation coefficient between h and n (Sedinger et al. 2010, 

Peron 2013), where the decomposition of 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟(𝑛𝑛,ℎ) is rewritten in terms of C, the 

overall rate of compensation-additivity (Peron 2013): 

 

𝐶𝐶 =  −𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟(𝑛𝑛, ℎ)�𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛)
𝑉𝑉𝑉𝑉𝑉𝑉(ℎ

= − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛,ℎ
𝑉𝑉𝑉𝑉𝑉𝑉(ℎ)

≈ 𝜕𝜕𝑛𝑛
𝜕𝜕ℎ

           

 
In general, C is typically somewhere between 0 and 1, where 0 indicates complete 

additivity (h and n independent) and 1 indicates complete compensation (Peron 2013). C 

> 1 would suggest overcompensation, whereas C < 0 indicates over-additivity (Peron 

2013). We estimated C for our study area using (eq. 1) and year-specific estimates of h, 

n, and S from the CIF model described previously.  
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Results 

The DNR captured 465 wolves overall during the study time period. Of these, 

367 wolves were collared, relocated and monitored by aerial telemetry, and thus 

included in this analysis. The sex ratio was nearly balanced between males (52.0%; 

n=191) and females (48.0 %; n=176). The censoring rate was 51.5% (n=189) which was 

consistent with other radio telemetry studies of wolves (Murray et al. 2010, Stenglein 

2014). We observed mortalities for the other 178 wolves, and were able to determine 

cause of death for 91.0 % (n = 162). Wolf mortality was primarily human caused (66.3% 

of mortality; n = 118), with the most likely cause of death from human causes being 

“illegally killed,” followed by “vehicle strike,” “legally killed,” and “other human 

cause.” Natural causes (24.7% of mortality; n = 44) were primarily “disease,” followed 

by “intraspecific conflict,” and “other natural cause.” All mortality sources are 

summarized in Table 7.1. 

Cumulative Incidence Functions 
 

The estimated Cumulative Incidence Function (CIF) revealed the contribution of 

each mortality type to population-level mortality risk during the study. The overall 

annual mortality rate based on CPH survival models was 25 ± 5%. For a given year, the 

expected mortality from human causes was broken down into illegally killed (9.0 ± 

1.6%), vehicle strike (5.2 ± 1.3%), legally killed (2.4 ± 0.9%), and other (0.6 ± 0.4%). 

Thus, the cumulative expected mortality from human causes was ~ 17.0% annually. For 

natural causes, expected mortality was broken down into disease (3.2 ± 1.0%), 

intraspecific conflict (1.4% ± 0.7%), and other (1.3 ± 0.7%). Expected mortality from 
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natural causes thus summed to ~ 5.9% annually. An additional 2.3 (± 0.8) % of expected 

annual mortality was from unknown cause. The CIF is summarized in Fig. 7.2 with the 

mortality rate (e.g. the CIF) plotted as a function of time, with each specific cause 

stacked such that the sum of all mortality types represents the overall estimated annual 

mortality during the study. 

Cause-specific hazards and informative censoring 
 

Cause-specific hazards models fit to human and natural cause events 

independently revealed differences in covariate effects depending on death type. When 

survival times for death by human cause were isolated, the selected predictors included 

age, sex, capture type, transience status, wolf density, and edge density. Specifically, the 

human-caused hazard (i.e. risk of mortality) increased with greater wolf densities and 

greater open vs. forested edge densities and for males*, and decreased for research-

trapped*, non-transient, and older individuals (Table 7.2). In contrast, the natural-caused 

hazard increased with age and for individuals treated with Ivomec and decreased for 

non-transients, individuals that were vaccinated, and in terrain with greater slope* (Table 

7.2). Tests for informative censoring indicated that age class at capture was the only 

statistically significant predictor of censoring status. With adults being the reference age 

class,   old adults were less likely to be censored (�̂�𝛽=-2.64, p=0.01) and pups were more 

likely to be censored (�̂�𝛽=-2.64, p=0.01), while juveniles were not more or less likely 

than adults to be censored (�̂�𝛽=-0.11, p=0.67). Notably, wolf density was nearly a 

statistically significant predictor of censoring status (�̂�𝛽=0.20, p=0.06). A non-parametric 

one-sided test of the hypothesis that survival times for censored endpoints were different 
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(lower) than all other endpoint survival times was significant (W=1.48ee04, p=0.024). 

Median time to censoring was 291 days (Interquartile range [IQR] = 144 – 794) while 

median time to death of any cause was 454 days (IQR = 177 – 1034). This result 

indicated that if censoring were informative (e.g. some censoring events actually deaths), 

then survival estimates would be overestimated.  

Temporal variation and compensation-additivity of mortality sources 
 

We observed temporal variation in competing mortality sources (Table 7.3, Fig. 

7.2), which allowed us to explore the relationship between human- and naturally-caused 

deaths, overall annual survival, and population growth. Based on pairwise correlations, 

wolf growth rate was negatively correlated with human-caused mortality (r = -0.630, p = 

0.009) and density (r = -0.600, p = 0.014), positively correlated with annual survival (r = 

0.611, p = 0.012), and independent of natural mortality (r = -0.02, p = 0.931). The most 

explanatory correlates of growth rate in simple regression models were rates of human-

caused and natural mortality (R2adj = 0.534, p = 0.003;  

�̂�𝛽human = -1.427, p = 0.001, �̂�𝛽natural = -0.976, p = 0.025), as opposed to wolf density and 

overall annual survival (Table 7.4A). Human-caused mortality, wolf density, and 

survival were confounded because each independently appeared to influence growth 

rate, but relationships also potentially existed among predictors (Table 7.4B).  

A negative correlation between human- and natural-caused mortality suggested 

partial compensation, i.e. a reduction in natural mortality rate with increases in human-

caused mortality rate (Péron 2013). The effect of human-caused mortality on overall 

mortality was �̂�𝛽 = 0.405 (SE = 0.201) and was significant at α = 0.10 (t = 2.020, p = 
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0.063). Based on Creel and Rotella (2010), the formula 𝛽𝛽 (1 − 𝛼𝛼⁄ ) can indicate a 

measure of compensation for vs. additivity of human-caused mortality, where 𝛼𝛼 is the 

intercept and 𝛽𝛽 is the slope of a simple linear regression model relating overall annual 

mortality to human-caused mortality. In our system, �̂�𝛽 (1 − 𝛼𝛼�⁄ ) = 0.491, indicating 

partial compensation/additivity. The compensation-additivity C estimate (Péron 2013) 

was 0.464, also suggesting partial compensation.   

Discussion 
 

Human-caused mortality plays a major role in moderating population growth and 

range expansion for large carnivores such as wolves. Human-caused mortality generally 

has its most direct influence on annual survival rates, although it can influence other 

population vital rates as well (Brainerd et al. 2008, Borg et al. 2015). Despite 

documentation of human-caused mortality approaching 50% annually in some 

populations (Ballard et al. 1987, Person and Russell 2008), the prevailing thought has 

been that wolves can be resilient to these impacts at some range of offtake between 28 

and 50% (Mech 2001, Haight et al. 2002, Fuller et al. 2003). To sustain high rates of 

mortality, wolves must be able to compensate for top-down pressure. This can occur 

through increased reproduction following downward perturbation (McCullough 1990, 

Stewart et al. 2005, Mills 2012), decreased natural mortality related to increases in 

human-caused mortality (Lebreton 2005, Sedinger et al. 2010, Servanty et al. 2010), and 

immigration from source populations that may be more protected from the risk of human 

mortality (Boyd and Pletscher 1999, Fuller et al. 2003, Adams et al. 2008, Smith et al. 

2010).  
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Wolves’ ability to compensate for human-caused mortality has varied. Further 

complications involve the variety of methods that have been implemented to evaluate 

compensatory vs. additive mortality in wolf populations (Stenglein 2014). It is generally 

agreed upon that population decline is likely to occur when overall mortality exceeds 

approximately one third of the overall population (Ballard et al. 1987, Fuller et al. 2003, 

Person and Russell 2008, Stenglein 2014). However, some have argued that human-

caused mortality can reach 28% (Mech 2001) or 29% (Adams et al. 2008) without 

negatively impacting populations. Gude et al. (2012) showed that this can occur when 

recruitment compensates for high rates of human offtake. Depending on the analysis that 

is done, human-caused mortality can appear to be additive or super-additive to other 

causes (Creel and Rotella 2010) or partially compensated for (Murray et al. 2010, Gude 

et al. 2012). Regardless of the method, some degree of consensus has been reached that 

populations can be stable when human-caused mortality is not > 22% (Fuller et al. 2003, 

Creel and Rotella 2010, Murray et al. 2010, Stenglein 2014). However, this does not 

imply that human-caused mortality is being compensated for by reductions in natural 

mortality. In a population that generally increased over time, Perón (2013) re-evaluated 

existing data and estimated C to be -0.122 which would imply over-additivity.   

In the context of other wolf populations in the U.S., the rate of human-caused 

mortality that we reported (~ 17%) was relatively low. In addition, we observed a 

significant negative correlation between human and natural mortality causes, suggesting 

that natural deaths were reduced when human-caused mortality increased. Overall 

population growth rate was correlated with human-caused mortality, natural mortality, 
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annual survival rate, and wolf density. Human and natural mortality rates together were 

the best predictors of wolf population growth, and performed better than models that 

included wolf density and overall survival rates. As shown in Table 7.5, human-caused 

mortality was strongly density-dependent (Pearson’s r = 0.68; human-caused mortality 

increased with increasing wolf densities). Hence, density-dependent population growth 

rate was manifested in part by increases in human-caused mortality, which has been 

observed in other increasing wolf populations subject to human exploitation (Murray et 

al. 2010, Smith et al. 2010). Wolves may self-regulate via inter- and intra- pack 

aggression at high densities when humans are not a strong top-down force (Cubaynes et 

al. 2014, Cassidy et al. 2015). This suggests that increased mortality, regardless of its 

source, can be a strong driver of density dependence in wolf populations. Since upper 

limits to wolf density are likely driven by available resources and nutrition (Fuller et al. 

2003, Vucetich and Peterson 2004, Mcroberts and Mech 2014, Mech and Barber-Meyer 

2015), it is possible that top-down regulatory mechanisms influence density dependence 

primarily once high quality habitat has become saturated (e.g. Chapters 5 & 6).   

We estimated human-caused mortality to be partially compensated by associated 

reductions in natural mortality (�̂�𝛽 (1 − 𝛼𝛼�⁄ ) = 0.491; Ĉ  = 0.464; Creel and Rotella 2010, 

Perón 2013). Our estimates contrasted values for the same metrics reported elsewhere 

that suggest strongly additive human-caused mortality (�̂�𝛽 (1 − 𝛼𝛼�⁄ ) = 1.34 [Northern 

Rocky Mountains, USA; Creel and Rotella 2010] and 1.38 [Wisconsin, USA, Stenglein 

2014]; Ĉ = -0.122 [Northern Rocky Mountains; Murray et al. 2010, Perón 2013]). 

Despite lower human-caused mortality in our study area compared to others, overall 
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survival rate was comparable. Natural mortality evidently played an important role in 

our study area, and apparently had a stronger influence on growth rate than has been 

observed in other areas subject to high rates of human-caused mortality. Key differences 

existed between our study area and others during this time period. First, the UP had 

relatively little agriculture and cattle farms, so lethal control contributed less to human-

caused mortality than in other areas. Second, unique limitations in prey availability 

during winter may have contributed to greater natural mortality. However, evidence of 

compensation from our study and reports of greater rates of human mortality associated 

with similar survival rates suggest that moderate increases in human-caused mortality 

may not have a substantial effect on annual survival. Finally, it is possible that human-

caused mortality was underestimated due to uninformative censoring. If this were to be 

the case, then actual survival rates may actually be lower than reported.    

To address the question of potential informative censoring, we conducted a 

sensitivity analysis post-hoc. Informative censoring in wolves is most likely to be 

associated with unobserved mortality (e.g. illegal killing) where the collar is destroyed 

and never found. Thus, in this case the right-censored event is non-random and is a 

misclassified event in the observed data (Liberg et al. 2012, Stenglein et al. 2015c). High 

rates of such informative censoring can result in overestimates of annual survival 

(Liberg et al. 2012, Stenglein 2014, Stenglein et al. 2015c). We did not have reliable 

data on wolf recruitment, and thus were unable to provide estimates of such ‘cryptic 

poaching’ (Liberg et al. 2012, Stenglein et al. 2015c). However, given the estimated 

rates of misclassification from Wisconsin (Stenglein 2014, Stenglein et al. 2015c) and 
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Scandinavia (Liberg et al. 2012), it was possible to provide the potential effect of a range 

of informative censoring rates on wolf survival in our study. We considered rates of 

informative censoring of 2.5% –20% at 2.5% intervals, because 20% was the maximum 

possible estimate based on the posterior distribution reported in Liberg et al. (2012). To 

estimate the effects, we randomly sampled censored events, replaced their endpoints 

with death events, refit the basic CPH survival model to the partially simulated dataset, 

and re-evaluated the annual survival rate. Results suggested that misclassifications 

would bias estimates of survival, because censored survival times were shorter than 

known fate survival times. A 2.5% cryptic poaching rate (of all censored events) would 

have resulted in a survival rate estimate of 0.74 (95% CI 0.68 – 0.80), whereas 20% 

cryptic poaching would have resulted in annual survival = 0.69 (0.62 – 0.76). Possible 

rates of cryptic poaching have ranged from 0% to > 20% depending on the posterior 

distribution of the model considered (Liberg et al. 2012) and the time period of study 

(Stenglein et al. 2015c). It is also important to note that informative censoring can result 

in underestimation of survival if censored events in reality have longer survival times 

than known fate events (Murray 2006). This is possible but unlikely in monitored wolf 

populations because the most probable alternative event would be that the individual 

dispersed and left the study area, and dispersing wolves are typically at greater risk than 

resident wolves (Person and Russell 2008, Smith et al. 2010).  

Conclusion 
 

Large carnivore populations are regulated primarily by human-caused mortality 

and evaluating the impacts of this mortality source is critical for facilitating population 
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growth and expansion. Our analysis of cause-specific mortality for gray wolves in 

Michigan, USA adds to a growing body of literature that suggests wolves can sustain 

relatively high rates of human-caused mortality. We provide evidence that ~ 17% annual 

human-caused mortality is partially compensated for by decreases in natural mortality, 

and that human-caused mortality increases with subsequent increases in wolf density. 

Survival rates may have been overestimated due to potential for informative censoring 

and unobserved mortality, but quantifying these effects remains challenging. We urge 

wildlife managers in states with connected populations to consider combining available 

information from long term monitoring programs and developing interstate population 

models that borrow information from multiple data sources. Such an effort would 

provide valuable information about immigration, emigration, larger scale population 

trends, and source-sink dynamics that have not been formally quantified. Legal status 

has been controversial for species such as wolves, but cooperative multi-state 

management efforts (i.e. collaborative conservation; Duvall et al. 2017) have precluded 

the need for ESA listing in other species. Collaborative conservation at large spatial 

scales will likely be a necessary and critical component of promoting long-term recovery 

of large carnivore species. 
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Table 7.1. Categories of assigned mortality sources for radio-collared wolf carcasses 

retrieved in Michigan, USA, 1995-2013. 

Mortality 
Cause 

  Level 2 Level 3 Common examples 

Human Illegally 
killed 

Shot, trapped illegally, cut or otherwise destroyed collar 
retrieved near road, trail, or bridge 

 

Vehicle 
strike 

Hit by car, truck, or snowmobile on road or highway 

 

Legally 
killed 

Depredation control case, legally hunted 

 Other 
human 

Unintentional death associated with incidental capture 
(coyote trap) 

Natural Disease Sarcoptic mange, canine distemper, infection, canine 
parvovirus 

 

Intraspecific 
conflict 

Killed by other wolves 

 

Other 
natural 

Starvation, drowning, natural accident (death from fall or 
other trauma) 

Unknown Unknown Carcass decomposed, scavenged, or otherwise 
deteriorated, labs results inconclusive 

 

Table 7.2. Summary of cause-specific mortality of gray wolves in Upper Michigan, 

USA, 1992–2013. 

Cause of Death n % of all endpoints % of all mortality 

Human – Illegal 68 18.5 38.2 

Human – Vehicle Strike 31 8.4 17.4 
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Human – Legal 14 3.8 7.9 

Human – Other  5 1.4 2.8 

Natural – Disease  26 7.1 14.6 

Natural – Intraspecific 9 2.5 5.1 

Natural – Other  9 2.5 5.1 

Unknown cause 16 4.4 9.0 

 

Table 7.3. Individual and environmental covariates retained in Cox Proportional Hazards 

models fit independently to wolves that died by human vs. natural causes. Each model 

was fit in the absence of other causes and variable selection was done using stepwise 

AIC comparisons. Variables in bold are statistically significant at α = 0.05. 

Hazard Variable �̂�𝛽 
 

se(�̂�𝛽) 𝜒𝜒2 df p 

Human 
causes 

Sex = Male 0.325 0.192 2.872 1.000 0.090 

 Age, main effect -0.185 0.074 6.264 1.000 0.012 

 Age, non-linear   1.939 3.030 0.590 

 Capture = Research -0.439 0.233 3.495 1.000 0.062 

 Status = Transient -1.572 0.266 34.680 1.000 0.000 

 Density, main effect 0.333 0.088 14.258 1.000 0.000 

 Density, non-linear   2.492 2.050 0.297 

 Edge, main effect 0.280 0.093 8.957 1.000 0.003 
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  Edge, non-linear     1.054 2.040 0.599 

Natural 
causes 

Age, main effect 0.171 0.074 5.256 1.000 0.022 

 Status = Transient -1.466 0.365 16.057 1.000 0.000 

 Ivomec 0.936 0.449 4.318 1.000 0.038 

 Vaccination -1.248 0.482 6.686 1.000 0.010 

 Slope, main effect -0.218 0.148 2.151 1.000 0.142 

  Slope, non-linear     3.925 1.990 0.139 

 

Table 7.4. Annual rates of wolf mortality from human and natural sources in the Upper 

Peninsula of Michigan, USA, 1997 – 2012. Results were obtained from Cumulative 

Incidence Functions based on individual wolf encounter histories (time-to-event data) 

and are compared to annual estimates of survival, population, and growth rate (r) to 

assess the potential impacts of human-caused mortality on the population. 

Biological Year Human Natural Survival Pop. r 

Pre-19981 0.046 0.151 0.804 113 0.203 

1998 0.090 0.074 0.730 139 0.207 

1999 0.060 0.098 0.842 169 0.195 

2000 0.095 0.038 0.867 216 0.245 

2001 0.132 0.088 0.780 249 0.142 

2002 0.164 0.076 0.761 278 0.110 

2003 0.190 0.034 0.776 321 0.144 
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2004 0.132 0.113 0.755 360 0.115 

2005 0.142 0.110 0.748 405 0.118 

2006 0.155 0.164 0.680 434 0.069 

2007 0.162 0.064 0.774 509 0.159 

2008 0.251 0.022 0.727 520 0.021 

2009 0.220 0.000 0.780 577 0.104 

2010 0.162 0.124 0.714 557 -0.035 

2011 0.140 0.090 0.770 687 0.210 

20122 0.163 0.064 0.773 673 -0.021 

1Wolf monitoring efforts began in 1992 but few individuals (< 5) were monitored until 1997 – 1998; we 

included encounter histories dating back to 1992, but included all previous biological years in 1997’s 

estimate. 

22012’s estimate includes some individuals that were monitored through biological year 2013 (the cutoff 

for the study). Most individuals monitored in 2013 were right-censored at the end of the study and were 

not included in analysis.  

 

Table 7.5. A) Simple linear regression models correlating wolf annual growth rates (r) 

with annual rates of human-caused mortality (h), natural mortality (n), overall survival 

(S), and wolf density (d) in the Upper Peninsula of Michigan, 1997-2012; B) Pearson’s 

correlation matrix showing relationships between r, h, n, S, and d, with bold indicating 

statistical significance at α = 0.10.  

A.      
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Rank Model R2adj p df AIC 

1 r = h + n 0.534 0.003 2, 13 -41.87 

2 r = S + d 0.460 0.007 2, 13 -39.49 

3 r = h 0.356 0.009 1, 14 -37.49 

4 r = h + d 0.368 0.020 2, 13 -36.99 

5 r = S 0.328 0.012 1, 14 -36.83 

6 r = d 0.315 0.014 1, 14 -36.52 

7 r = d + n 0.292 0.042 2, 13 -35.16 

8 r = n -0.071 0.931 1, 14 -29.36 

h model-estimated annual rate of human-caused mortality 

n model-estimated annual rate of natural mortality 

S model-estimated annual survival rate 

 d overall wolf density 

   r  estimated annual growth rate 

  B.      

  r h n S d 

r 

 

-0.63 -0.02 0.61 -0.6 

h -0.63 

 

-0.55 -0.48 0.68 

n -0.02 -0.55 

 

-0.32 -0.22 

S 0.61 -0.48 -0.32 

 

-0.38 

d -0.6 0.68 -0.22 -0.38 
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Figure 7.1. Hierarchy of competing risks analysis for wolves in Michigan, USA, where 

causes of death for known fates are separated into human vs. unknown vs. natural (level 

2), and further broken down into specific mortality sources (level 3). 
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Figure 7.2. Stacked cumulative incidence function showing annual contributions of wolf 

mortality sources in Michigan, USA, 1995 – 2013. Overall annual mortality was ~ 25%, 

with primary causes being human-caused (dark red) followed by natural (light blue), and 

unknown (gray).  
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