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Abstract 

 
 
The project I am presenting aimed to: 1. Elucidate the pattern of post-

translational modification on the different variants of newly synthesized histones 

H3 in mammalian cells; 2. Reveal whether the acetylation of residue K56 on 

newly synthesized H3 histones plays a role in the incorporation of the histone 

into chromatin in mammalian cells; and 3. Determine whether the acetylation of 

residue K56 on newly synthesized H3 histones plays a role in the incorporation of 

the histone specifically in replicating chromatin in mammalian cells. The 

experiments to answer these questions were performed using HEK293 cells with 

inducible expression of FLAG-histones, enabling us to control the synthesis of 

new histones of interest and to detect and analyze their presence and relative 

levels in the cells. The results suggest that the acetylation of lysine 56 on histone 

H3 may play a positive role in the incorporation of the histone into new 

chromatin, and lack of acetylation may be reducing the efficiency of incorporation 

compared to acetylated histones. 
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1. Chromatin 

 

In eukaryotes, DNA is packaged around proteins to form a compact, organized, 

yet dynamic structure called chromatin. The basic unit of chromatin is the 

nucleosome, consisting of an octamer of four types of histones (two of each): 

H2A, H2B, H3, and H4 (1). Each of these histones contains a globular histone 

fold domain, and an N-terminal tail extending out away from the fold domain. The 

globular region is made up of three alpha-helices, separated by two loops, which 

are involved in intranucleosomal interactions between the histones. Within the 

nucleosome, histones are arranged in a tetramer of two H3/H4 heterodimers, 

held together by !-helix interactions between the two H3 molecules, and two 

H2A/H2B heterodimers interacting between the H2B and H4 molecules. 

Approximately 147 bp of DNA are wrapped around the nucleosome core 1.8 

times (1-3). The globular domains of the histone proteins forms electrostatic 

interactions with the surrounding DNA, and the N-terminal tails of histones 

protrude out of the nucleosome core and interact with nearby nucleosomes to  

form higher-order chromatin folding (1, 4). This structure functions predominantly 

to condense the DNA. By interactions among the histones within different 

nucleosomes, the structure of chromatin can become more condensed, 

preventing DNA binding proteins from acting on the given region of DNA. 

Alternatively, fewer interactions between nucleosomes can result in more relaxed 

chromatin, allowing regulatory factors to come in contact with the DNA. The 
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nucleosome density is one important factor in such internucleosomal interactions, 

and it varies in different regions of chromatin, depending on the need for local 

activity at a given time of the cell cycle or during given conditions, such as DNA 

replication in S-phase, gene transcription, and double stranded break repair (5-

10). During replication, nucleosomes are disrupted by helicases in order to allow 

the replication machinery full access to the DNA (11, 12). Behind the replication 

fork, nucleosomes are reassembled on both sides of the fork, and both pre-

existing and newly synthesized histones are incorporated into chromatin (13-15).  

 

During replication, newly synthesized histones are directly deposited onto DNA 

(16, 17). This deposition is mediated by histone chaperones and controlled by 

nucleosome assembly factors (18, 19). The mechanism of de novo nucleosome 

assembly involves the deposition of two H3/H4 dimers onto DNA to form a 

tetramer, followed by the addition of two H2A/H2B dimers to complete the 

histone octamer (1, 16, 18-24). 

 

2. Histone H3 Variants 

 

Higher eukaryotes have four evolutionarily conserved histone H3 variants: the 

replication-coupled H3.1 and H3.2, the replication-independent H3.3, and the 

centromere-specific CENP-A (25, 26). Histones H3.1 and H3.3 differ in sequence 

at only four amino acid residues, three of which have been found responsible for 
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the difference in deposition. Changing these sequences on H3.1 to match those 

of H3.3 results in the replication-independent deposition of H3.1 (26-29). The 

replication-coupled H3.1 is expressed only during S-phase, while the replication-

independent H3.3 is expressed at basal levels throughout the entire cell cycle 

(30-34). It is incorporated into chromatin during transcription and following DNA 

repair. Enrichment of H3.3 is particularly observed in transcriptionally active 

genes and in the gene promoters of both active and repressed genes, as well as 

in telomeric repeats (29, 34-38). However, it is not found in satellite DNA and Y-

chromosomal repeat DNA. Changing the amino acid sequence of histone H3.3 

alters its genome enrichment to a pattern more similar to that of H3.1. 

Incorporation of H3.3 inside the body of the gene correlates with transcriptional 

activity; in transcriptionally repressed genes, H3.3 is only found in the promoter 

region, and not in the body of the gene (29). In embryonic stem cells, 

pluripotency genes incorporate histone H3.3, and it is lost upon differentiation, 

when these genes are no longer expressed, but housekeeping genes continue to 

incorporate H3.3 even after differentiation, correlating with their continuous 

activity. 

          

3. CAF-1 and HIRA Chromatin Assembly Factors 

 

Histone chaperones and chromatin assembly factors are important in regulating 

the nucleosome assembly and eviction (18, 39-41). The main protein that 
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mediates the incorporation of H3/H4 during replication-coupled assembly is CAF-

1 (22, 42-46). CAF-1 consists of three subunits, called Cac1, Cac2, and Cac3 in 

yeast, or p150, p60, and p48 in Drosophila and human cells (46). During DNA 

synthesis, CAF-1 interacts directly with PCNA, a DNA polymerase processivity 

factor, targeting histones to be deposited at the site of replication (41, 47, 48). 

CAF-1 also mediates nucleotide excision repair-coupled and ssDNA break 

repair-coupled nucleosome assembly outside of S-phase (49-53).  

 

CAF-1 is important for heterochromatin maintenance, and mutating it impairs 

gene silencing of telomeres; however telomeres still incorporate nucleosomes 

even in the absence of CAF-1 (45, 54-56). In yeast, CAF-1 is not essential for 

viability, though cac1 deletion mutants are slightly sensitive to genotoxic stress, 

such as UV radiation (45, 54, 57). Loss of CAF-1 also increases sensitivity to 

DNases, indicating a decrease in the efficiency of nucleosome assembly in the 

absence of the protein (58). 

 

Like other chromatin assembly factors, the p60 and p48 subunits of CAF-1 

contain seven WD repeats (45, 59-63). These are 4-10 amino acid repeats 

ending in pairs of Trp-Asp (WD) residues, and are highly conserved in 

eukaryotes, but not found in prokaryotes. They are involved in protein-protein 

interactions, mediating signal transduction, RNA processing, gene expression, 

vesicular trafficking, and cell division (63-65). The presence of WD repeats 
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results in a propeller structure forming 4-10 internal beta-strands each ending in 

a WD pair, and these structures are specialized loops where protein interactions 

take place (63, 67-69). 

 

The nucleosome assembly factor involved with replication-independent 

nucleosome assembly is called Hir in yeast, and HIRA in humans (24, 29, 41, 

70). HIRA specifically binds and mediates H3.3 incorporation into chromatin, in 

association with the chromatin remodeling factor CHD1 (70-74). HIRA is required 

for transcriptional regulation in Drosophila, and is responsible for H3.3 deposition 

at both active and repressed genes, but not on transcription factor binding sites 

and telomeres, where the H3.3 incorporation is not dependent on HIRA but on 

other factors (29, 75-78). The normal H3.3 enrichment pattern, including 

transcription start sites and house keeping genes, is not observed in cells lacking 

HIRA. Depletion of HIRA prevents replication-independent histone deposition, 

but not nucleotide excision repair-coupled nucleosome assembly (70). 

 

HIRA contains seven WD-repeat sequences, which share 27% identity with the 

CAF-1 WD region (59, 61, 62, 70). The protein is phosphorylated in a temporal 

manner throughout the cell cycle (79, 80). Yeast Hir1 and Hir2 repress 

transcription of H2A and H2B genes during most of the cell cycle, and recruit 

SWI/SNF nucleosome remodeling complex at the G1/S boundary, allowing H2A 
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and H2B transcription (81-84). HIRA has overlapping function with CAF-1 in 

telomeric and mating type silencing (59). 

Both CAF-1 and HIRA bind H3/H4 directly (85, 86) and require histone 

chaperone Asf1 (Anti-silencing factor 1) for most efficient nucleosome assembly, 

in yeast, Drosophila, and human cells (57, 87). In yeast, Hir proteins associate 

with Asf1 to promote silencing (88). 

 

4. Asf1 Histone Chaperone 

 

Asf1 is a histone chaperone involved in both replication-coupled and replication-

independent nucleosome assembly (49, 57, 58, 88-92). In mammals, there are 

two proteins, Asf1a and Asf1b, that share 71% homology and whose function is 

highly redundant (92-94). The N-terminal end of Asf1 consists of 155 extremely 

highly conserved residues, arranged in defined secondary structures. This is the 

functional part of the protein, involved in protein-protein interactions with H3/H4 

dimers as well as other chromatin assembly factors (91, 95). The C-terminal end 

is highly acidic, but not as well conserved and has an undefined, random coiled 

structure. It is not functionally essential, but is thought to stabilize interactions 

with proteins bound to Asf1 (95).  Drosophila and human Asf1 lack the acidic C-

terminal tail, but instead the histone chaperone is phosphorylated in a replication-

dependent manner (94). The protein has a conserved concave hydrophobic 
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groove, flanked by electronegative acidic surface (95). This site is thought to be 

the histone binding site. 

 

Asf1 is highly important in histone deposition, as histones that are not able to 

bind to Asf1 are not deposited onto chromatin (96). In yeast, Drosophila and 

humans, when bound to H3/H4, Asf1 directly binds the Cac2/p60 subunit of CAF-

1 and mediates histone deposition (49, 57, 97, 98). Similarly, Asf1 binds to HIRA 

directly, mediating replication-independent/transcription-coupled nucleosome 

assembly (59, 70, 79, 88, 95, 99, 100). Asf1 does not tightly associate with 

chromatin, indicating that it has a transient role in escorting the histones to the 

correct location (49). 

 

Aside from replication- and transcription-coupled assembly, Asf1 has been 

implicated in escorting histones to sites of DNA damage repair for incorporation 

post-repair (49). Asf1 interacts directly with cell cycle checkpoint kinase Rad53, 

mediating nucleosome assembly following DNA damage (101-103). CAF-1 is 

essential for Asf1-mediated nucleosome assembly following nucleotide excision 

repair, but independent of repair, Asf1 alone in high concentrations can also 

deposit histones onto chromatin (49, 92). 

 

Yeast Asf1 has also been shown to mediate chromatin disassembly, and there 

has been evidence supporting a role of Asf1 in recycling histones as H3/H4 
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dimers (11, 93, 104). Binding of Asf1 to H3/H4 dimers prevents [H3/H4]2 tetramer 

formation (105). Asf1 recruited to chromatin binds H3/H4 dimers, disrupting the 

tetramer and removing the nucleosomes from the DNA (106). Asf1 interaction 

with helicases is essential for replication fork progression (13, 93, 106). This 

indicates another role for Asf1 in DNA replication by removing nucleosomes 

before the replication fork. 

 

Overexpression of Asf1 interferes with telomeric silencing and mating type 

silencing in yeast (57, 107-109). Loss of Asf1 in yeast decreases sensitivity to 

DNases due to increase in nucleosome density and chromatin compaction in the 

absence of the protein. This further supports Asf1’s activity in disassembly of 

nucleosomes. In addition, Asf1 interacts with transcription factor TFIID and 

chromatin remodeling enzyme Brahma, possibly mediating the removal of 

nucleosomes from transcriptionally active sites (110-112). Deletion of Asf1 

results in high sensitivity to genotoxic stress, increases doubling time and cell 

cycle progression, and also alters histone gene expression (57, 99, 107).  

 

Asf1 binding to newly synthesized H3/H4 is important in mediating some post-

translational modifications specific to new histones. Asf1 itself has no 

acetyltransferase activity, but it transports histones in close proximity and 

favorable orientation to HATs (95). It has been shown to be important for the 

acetylation and methylation of H3 K9, as deletion of Asf1 reduces the abundance 
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of this modification (58, 93). Asf1 is also absolutely essential for the acetylation of 

H3 K56 by Rtt109 (to be discussed in detail below) (9, 113-116). 

 

5. Post-translational Modifications 

 

Histones are most often post-translationally modified on their N-terminal tails, 

which protrude out of the nucleosome core and are accessible for interactions 

with histone modifying proteins (1, 4, 66). Such modifications include acetylation, 

methylation, phosphorylation, ubiquitination, sumoylation, and ribosylation and 

occur at lysine, arginine, serine, and threonine residues (66, 73). The pattern of 

modifications is responsible for regulating chromatin structure and activity, not 

directly, but by recruiting and interacting with regulatory proteins that recognize 

the specific modifications (117-119). Such proteins contain domains that read the 

pattern and bind to the histone carrying it: chromodomains bind methylated lysine 

residues, bromodomains bind acetylated lysine residues. Proteins containing 

bromodomains generally recognize a range of acetylated lysines, while 

chromodomains show greater specificity in recognizing a given methylation 

pattern. The HP1 chromodomain only binds dimethylated H3 K9, while the 

Polycomb chromodomain binds dimethylated H3 K27 (66). The chromatin 

remodeling complex SWI/SNF has a bromodomain, and binds acetylated histone 

N-tails to destabilize the nucleosome (7). 
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Specific post-translational modification patterns are correlated with particular 

chromatin activities. It is important to note that these patterns of modification can 

have differential effects based on the cellular context (66). For example, the 

combination of H4 K8 acetylation + H3 K14 acetylation + H3 S10 phosphorylation 

has been linked to transcription, while H3 K9 trimethylation + H3 and H4 un-

acetylation represses transcription. In addition, H4 K5,8,12 acetylation is involved 

in histone deposition of newly synthesized histones, a modification that is 

evolutionarily conserved (66, 120). Centromeric histone H3 variant CENP-A 

differs from canonical H3 in residues that would normally be phosphorylated and 

acetylated in other H3 variants (41, 66). The lack of these residues is associated 

with the maintenance of chromatin condensation in regions incorporating CENP-

A. Another mark of chromatin condensation, particularly during mitosis, is H2A 

S1, T119 phosphorylation + H3 T3, S10,28 phosphorylation. 

  

A number of histone modifying enzymes are responsible for the post-translational 

modifications on histones throughout the cell cycle. These include histone 

acetyltransferases (HATs), which acetylate lysine and arginine residues, histone 

methyltransferases (HMTs), which methylate lysine and arginine residues, and 

histone kinases, which phosphorylate serine and threonine residues (66). Some 

histone modification enzymes interact with DNA regulatory proteins, targeting 

their activity to specific locations on chromatin. For example, ATM is a DNA 

damage checkpoint kinase, which is recruited to and activated at sites of dsDNA 
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breaks, phosphorylates histone H2A at these sites (66, 121). 

 

While some modifications are involved in recruitment of regulatory proteins, 

others are important for regulating the modifications of other residues. 

Methylation of H4 R3 promotes H4 K5,8,12 acetylation (66). Subsequently, 

acetylation of H4,5,18 promotes H3 R2,17,26 methylation. Phosphorylation of H3 

S10 inhibits methylation of H3 K9. 

 

Histone acetylation is particularly interesting, as it has been shown to regulate a 

wide range of processes, including DNA replication, chromatin assembly, 

chromosome condensation, transcription, DNA repair (66, 117, 118, 122-125). 

New histones H3 are acetylated on various residues, promoting their interaction 

with chromatin assembly factors for incorporation into chromatin (94, 126-129). 

Acetylation of new histones H3 and H4 is important for nucleosome assembly, 

and preventing acetylation, such as by deletion of the H3 and H4 N-tails, results 

in decreased nucleosome density and loss of viability (41, 130, 131).  This 

importance is further supported by the redundancy in function of acetylating the 

H3 and H4 tails: in yeast, acetylation of H4 K8 is sufficient to make up for the lack 

of acetylation on H3 due to N-tail deletion (41, 129, 131). Di-acetylation of H4 

K5,12 in newly synthesized histones is highly evolutionarily conserved, and has 

been implicated in nucleosome assembly (66, 93, 120, 132). 
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Another modification, acetylation at K56 of histone H3, is also found on newly 

synthesized histones H3, and will be discussed in greater detail later (10, 133). 

Many post-translational modifications found on new histones are removed 

following their incorporation into chromatin (21, 134). Fewer PTMs are observed 

in histones outside of S-phase (135). In addition, pericentric heterochromatin 

contains no acetylation at H4 histones, supporting the fact that acetylation is 

involved in active chromatin (86, 136). Lack of deacetylation of pericentric H4 

interferes with kinetochore function and chromosome segregation (134). 

Ultimately, the balance of HAT and HDAC activity is critical for the proper 

regulation of chromatin activity. 

 

6. H3 K56 

 

The lysine 56 residue of histone H3 is located within the globular domain of the 

histone, at the point where DNA enters and exits the nucleosome. (10, 137,138). 

This residue makes direct contact with the phosphate backbone of the 

surrounding DNA (116, 139). Because of its prominent location within the 

nucleosome, extensive studies have been done to determine if this lysine and its 

acetylation are structurally significant for the nucleosome itself as well as for 

chromatin in general (140-142). It has been hypothesized that this modification 

destabilizes the nucleosome, resulting in a number of downstream events, further 

discussed shortly. Studies have determined that acetylation of H3 K56 has no 
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effect on the formation or stability of the nucleosome (140). Chromatin fiber 

compaction is also not affected significantly by the modification of this residue 

(140, 141). However, acetylation of this lysine does weaken interaction with DNA 

at that point, resulting in localized “DNA breathing” (10, 116, 140). Thus, other, 

more complex mechanisms must be involved in the downstream events involving 

this modification. 

 

In yeast cells, H3 K56 is abundantly acetylated in a cell-cycle dependent manner 

(133, 143-147). The modification occurs only on newly synthesized histones 

during S-phase, and is removed shortly after incorporation of the histones into 

chromatin (10, 147-149). Removal of the modification is important for genome 

stability (148, 149). However, complete lack of the modification also results in 

sensitivity to genotoxic agents (10). The same modification occurs in Drosophila, 

Tetrahymena and low, but significant levels are also observed in mammalian 

cells (5, 9, 125, 144, 145, 150). However, unlike in yeast, H3 K56ac is detected 

throughout the entire cell cycle in both Drosophila and mammals. In yeast and 

human cells, the modification has been found to be gene-specific, and is 

particularly prevalent at histone gene promoters (125). The modification occurs 

on all histone H3 variants (6, 125, 151). 

 

Acetylation of H3 K56 has implicated roles in replication, DNA repair, 

transcriptional regulation, homologous recombination, as well as chromatin 
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assembly (5, 6, 7, 9, 10, 90, 113, 115, 116, 125, 137, 138, 146-148, 152-156). 

Histone chaperone Asf1 is required for the acetylation of H3 K56, and the 

modification is not detected in asf1 deletion mutants (114, 116, 146, 149, 157, 

158). Asf1 binds the H3/H4 heterodimer at the C-terminus of H3, a site away 

from the K56 residue, allowing it to be in solution and accessible to HATs and 

other proteins (150, 159). Histones deposited by CAF-1 are acetylated at K56, 

and CAF-1 binding to chromatin is enhanced by the presence of the modification 

on CAF-1-bound H3 (10, 115). CAF-1 binds H3 K56 directly via its Cac1 subunit. 

Acetylation of H3 K56 does not affect binding of H3/H4 to Asf1, but it directly 

affects the binding affinity with CAF-1 (115). These facts support the role of H3 

K56 acetylation in replication-coupled nucleosome assembly in yeast. 

 

In yeast, H3 K56 acetylation is shown to have a critical role in packaging DNA 

into chromatin following DNA replication and repair (5, 10, 113, 115, 116, 146, 

147, 155, 160). In Drosophila and HeLa cells, acetylation of H3 K56 increases 

with an increase in DNA damage, and it has been shown in human cells to co-

localize with the DNA-damage specific histone variant H2AXp (9). In yeast, K56 

acetylation is not removed post-assembly at sites of DNA damage, and this delay 

of deacetylation promotes DNA repair (10). The modification regulates 

reassembly of nucleosomes after DSB repair and is necessary for the completion 

of repair (5). The fact that asf1 deletion mutants and asf1 cac1 double deletion 

mutants are highly sensitive to genotoxic stress supports the involvement of H3 
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K56 in DNA repair (57). 

 

Increased levels of H3 K56 acetylation have also been correlated with 

tumorigenicity, as well as pluripotency! (9, 125, 160). H3 K56 has been defined 

as marker for the epigenetic difference between pluripotent and differentiated 

cells (125). In Drosophila, the chaperone responsible for mediating the 

acetylation of H3 K56, Asf1, is highly abundant in embryos and less so in adults, 

suggesting that the modification is also found at higher levels in undifferentiated 

cells and indicating evolutionary conservation of H3 K56 as a pluripotency 

marker (57). In human embryonic stem cells, canonical histone gene promoters 

contain H3 K56ac, while variant histone genes do not. In differentiated cells, 

variant histone gene promoters also contain the modification, while the levels 

detected in the canonical histone genes are reduced. 

 

H3 K56 acetylation is observed in the promoter regions of histone genes and 

genes involved in core transcriptional network (90, 125, 154). In yeast, H3 K56 

acetylation occurs prior to the expression of histone genes, and the presence of 

the modification in histone gene promoters is absolutely necessary for the 

transcription of the histone genes (7).  This correlates with the observed effect of 

Asf1 on expression of histone genes (93). Consistent with the implicated role in 

transcriptional regulation, the modification has been shown to be essential to the 

recruitment of chromatin remodeling factor SWI/SNF (7). A hypothesized model 
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suggests that in yeast, acetylation of H3 K56 in histone gene promoters recruits 

SWI/SNF to the promoter. SWI/SNF destabilizes the nucleosome and activates 

gene transcription (7). 

7. Rtt109 HAT 

 

An important histone acetyltransferase that has been implicated in acetylating H3 

K56 on newly synthesized histones is the yeast Rtt109 (116). It shares structural 

homology to the mammalian HAT p300 (146, 147, 161-168). Binding to histone 

chaperones (Asf1 or Vps75) is essential for the HAT function of Rtt109 (116, 146, 

147, 169). Histone chaperone Asf1 is required for H3 K56 acetylation of nascent 

H3 by Rtt109 (113-116, 146). Asf1 escorts the histone in close proximity to the 

HAT and presents it in the correct orientation for acetylating the residue. Rtt109 

acetylates H3 K56 only when associated with both Asf1 and H4 in a transient 

Rtt109-H3/H4-Asf1 complex (116). The HAT itself interacts with, but does not 

stably bind histones (116, 169).  

 

Rtt109 requires AcCoA to acetylate H3 K56, and both AcCoA and H3 must enter 

the active site of Rtt109 in order for acetylation to occur (116, 146, 147, 161, 

170). The order of binding is not important and likely random. Rtt109 lacks 

AcCoA binding motif, but has been shown that functionally it binds the molecule 

similarly to other HATs (116). The reaction occurs between the "-amino group of 

the lysine and the acetyl group of AcCoA (170). In mammalian p300, the binding 
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of AcCoA to the HAT is required prior to H3 binding, and the involvement of a 

histone chaperone is not necessary (9, 165, 171).  

 

Rtt109/Asf1 is important for genome stability (116). Deletion of Rtt109 results in 

chromosomal rearrangement and genomic instability, hypersensitivity to DNA 

damage and activation of DNA damage checkpoints (146). rtt109 deletion 

mutants lack H3 K56 acetylation (146, 172). The similarity in the profile of rtt109 

deletion mutants and asf1 deletion mutants confirm that Rtt109 acts in the same 

pathway as Asf1 (146, 173, 174). The current model suggests that Asf1 binds 

new H3/H4 dimers, binding the C-terminus of H3, and presents the H3 K56 

residue to Rtt109 for acetylation. Following acetylation, the heterodimer is 

transferred to CAF-1 for deposition onto chromatin (113, 115, 147, 150). 

 

8. H3 K56 HDACs 

 

The balance between acetylation and deacetylation of the H3 K56 residue is 

essential to the genomic stability of cells. Yeast cells that cannot undergo K56 

acetylation are sensitive to genotoxic stress, but this sensitivity is even higher in 

cells that cannot deacetylate the residue (10, 57, 99, 146, 148, 151, 180). This 

puts special importance to histone deacetylases involved in removing the 

modification at the appropriate time in the cell cycle. The HDACs responsible for 

this are the Hst3 and Hst4 proteins  (Sir2 in Drosophila; SIRT1 and SIRT2 in 
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humans), members of the Sirtuin family (9, 148, 149, 152, 175-180). 

 

In yeast, Hst3 is present in low levels in S phase and increases in G2/M, 

opposite to the levels of H3 K56 acetylation (109, 148). It has been shown to 

deacetylate H3 K56 in mature chromatin. It is thought that K56 deacetylation in 

G2 might signal Hst3 degradation in G2/M, in order for K56 acetylation to 

accumulate again in G1 (148). The importance of sirtuins in deacetylating H3 

K56 was shown by blocking sirtuin function, and a subsequent increase of 

acetylated K56 levels were observed; double deletion of Hst3 and Hst4 showed 

HDAC specificity to this residue, since acetylation at other residues was not 

affected (148). 

 

Yeast Hst3 and Hst4 act redundantly and double deletion has severe effects 

(180). Double deletion increases the levels of acetylated H3 K56 even after S-

phase (148). However, replication-induced DNA damage was observed by the 

presence of the DNA damage marker, phosphorylated H2A, long after DNA 

replication, indicating that deacetylation of H3 K56 is important for completion of 

double-stranded break repair (148). Failure to deacetylate K56 also leads to 

defective silencing in telomeres (151). 
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9. Specific Aims 

 

It is apparent that H3 K56 is an important residue, though very little is known 

about its function in mammalian cells. The primary part of my project aimed to 

reveal more information about the role of this residue in human cells, mainly in 

nucleosome assembly during DNA replication. In addition, I attempted to 

construct an informational map of the post-translational modifications found on 

newly synthesized H3 histone variants. 
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Materials and Methods 

Reagents 
 
Buffer A  
10 mM Tris, 1.8 mM BME, 3 mM MgCl2,10 mM Sodium Butyrate, pH 7.6 
 
HB Buffer 
20 mM HEPES free acid, 5 mM KCl, 2 mM MgCl2, 10 mM NaButyrate, pH 7.5 
 
SDS Sample Buffer 
0.1 M Tris, 2% SDS, 2 M urea, 23% glycerol, 5 M EDTA, 0.3 M BME, 0.002% 
BoBlue 
 
SDS-PAGE Running gel 
18% Acrylamide / 0.09% Bis-acrylamide, 0.75 M Tris pH 8.8, 0.1%SDS, 0.05% 
APS, 0.05% TEMED. 
 
SDS-PAGE Stacking gel 
6% Acrylamide / 0.16% Bis-acrylamide, 0.125 M Tris pH 6.8, 0.1% SDS, 0.05% 
APS, 0.1% TEMED 
 
SDS-PAGE Running Buffer 
50 mM Tris, 380 mM glycine, 0.1% SDS 
 
SDS-PAGE Transfer Buffer 
25 mM Tris, 192 mM Glycine, 20% Methanol 
 
Blocking Buffer 
50 mM Tris, 150 mM NaCl, 0.1% Tween-20, 0.2% w/v I-Block (Applied 
Biosystems, Cat# T2015). 
 
1X PBS (Phosphate Buffered Saline) 
0.008 M sodium phosphate, 0.002 M potassium phosphate, 0.14 M sodium 
chloride, 0.01 M potassium chloride, pH 7.4 
 
1X TBS (Tris Buffered Saline) 
50 mM Tris, 150 mM NaCl, pH 7.5 
 
3E Buffer 
0.12 M Tris, 6 mM NaOAc-3H2O, 3 mM EDTA, pH 7.6 
 
4% SDS – DNA Sample Buffer 
33% 3E Buffer, 5% glycerol, 1% SDS, 0.01% BoBlue 
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4% SDS - DNA Gel 
4% Acrylamide / 0.2% Bis-acrylamide, 33% 3E Buffer, 0.1% SDS, 0.08% 
TEMED, 0.05% APS. 
 
4% SDS – DNA Gel Running Buffer 
26% 3E Buffer, 0.1% SDS 
 
IP Wash Buffer 
20 mM Tris pH 8.5, 0.5 M NaCl, 10 mM NaButyrate, 1 mM EDTA, 1% Triton X-
100 
 
High Salt TSE 
1% Triton X-100, 2 mM EDTA, 500 mM NaCl, 20 mM Tris, pH 8.1 
 
Medium Salt TSE 
1% Triton X-100, 2 mM EDTA, 400 mM NaCl, 20 mM Tris, pH 8.1 
 
Low Salt TSE 
1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris, pH 8.1 
 
2.5% SDS extraction buffer 
1 mM EDTA pH 7.2, 10 mM Tris pH 7.4, 10 mM NaButyrate, 50 mM NaCl, 0.3 M 
BME, 2.5% SDS 
 
0.5% SDS extraction buffer 
1 mM EDTA pH 7.2, 10 mM Tris pH 7.4, 10 mM NaButyrate, 50 mM NaCl, 0.5% 
SDS 
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Methods 

Cell culture 

HEK 293 cells were grown at 37°C, 5% CO2 in HyClone High Glucose DMEM 

supplemented with 9% Fetal Bovine Serum, Pen/Strep (100 U/mL penicillin, 0.1 

mg/mL streptomycin), 2 mM L-Glutamine, 0.11 mg/mL G418, (0.055 mg/mL 

hygromycin, for transfected cells). 

 

Creating wild type and mutant clones 

Cells expressing FLAG-tagged histones were created using a HEK293 Tet-ON 

Advanced system, in which the addition of the tetracycline-derivative, 

doxycycline, induces the expression of FLAG-tagged proteins. FLAG-H3.1 clones 

were created by transfecting HEK293 Tet-ON Advanced cells with a DNA 

plasmid encoding the specific FLAG-histone. Hygromicin resistance marker was 

used to select for successfully transfected clones. Transfection medium was 

prepared by combining 500 !L Opti-1 DMEM, 10 !L of Lipofectamine 2000, 0.25 

ug linear hygromycin marker, 3.75 ug plasmid DNA, incubated at room 

temperature for 20 min. Cells were grown to 90% confluency in Complete non-

hygromycin DMEM in 6-well plates. Growth medium was removed and replaced 

by transfection medium to incubate for two days at 37°C. The medium was 

replaced with Complete hygromycin DMEM to select for transfected cells. 

Hygromicin-resistant clones were tested for induction. 
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Mutants  

Cell lines containing mutant FLAG-histones were created by Cheryl Doughty by 

point-directed mutagenesis using the Stratagene QuikChange kit.  

 

Test induction  

Cells were grown in Complete hygromycin DMEM at 37°C in 6-well plates to 90% 

confluency. Cell were induced with 2 ug/mL doxycycline and incubated at 37°C 

for 4 hours. Cells were harvested and centrifuged at 2000 RPM for 2 min to 

remove the growth medium. Total cell extract was prepared as described below 

and samples were analyzed by Western Blot. Induction was confirmed by 

probing the blot with anti-FLAG antibody (Sigma Cat # F7425, 1:1000 dilution). 

 

Total cell extract 

Cell pellets were washed in 1 mL Buffer A and resuspended in 500 !L 2 mM 

EDTA with 0.2 M H2SO4. The samples were sonicated for 5 seconds to break up 

the plasma and nuclear membranes and incubated overnight at 4°C with 

constant rotation to allow acid-extraction of the proteins. Samples were 

centrifuged in a microcentrifuge at max speed for 10 min at 4°C, and the proteins 

in the supernatant were TCA-precipitated with 25% Trichloroacetic acid. Samples 

were washed with acetone to remove residual TCA, dried, and resuspended in 

SDS sample buffer to run on SDS-PAGE and transfer for Western blot.  
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Synchrony 

Cells were treated with 5 mM Thymidine in Complete DMEM for 24 hours at 

37°C, 5%CO2 to block the cell cycle at the G1/S-phase boundary. Cells were 

then washed with unsupplemented DMEM, and released with DMEM containing 

30 !M deoxycytidine. At the time of the release, cells were also induced by 

supplementing the release medium with 2 ug/mL doxycycline. Cells were kept at 

37°C, 5% CO2 and harvested in mid- S phase, 4 hours after release. Samples 

were taken prior to thymidine treatment, prior to release, and at the time of 

harvest, in order to confirm the effectiveness of the synchrony by flow cytometry. 

 

Flow Cytometry 

Cells were obtained from culture and centrifuged at 1000 RPM for 2 min to 

remove the growth medium. Cells were washed in 1X phosphate buffered saline 

(PBS) supplemented with 20 mM EDTA, and resuspended in 70% ethanol 

overnight at 4°C to fix them for flow cytometry. 

 

At the time of analysis, fixed cells were centrifuged at 2000 RPM for 2 min to 

remove the ethanol. Cells were washed in 1X phosphate buffered saline 

supplemented with 20 mM EDTA, and resuspended in the same buffer. Cells 

were prepared for staining and flow cytometry by adding 0.1% Triton X-100, 5% 

RNAse II (10 !g/mL), and 5% propidium iodide. Cells were incubated at 37°C for 

30 min. Cells were analyzed by flow cytometry using FACSCanto cyometer (BD 
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Bioscience) and BD FACSDiva Software. 

 

Cytoplasmic S100 Isolation 

Cells were harvested and centrifuged at 1500 RPM for 2 min in order to remove 

the growth medium. Cells were washed once with 30 mL ice cold Buffer A, 

followed by two washes in 30 mL ice cold HB Buffer. The cell pellet was 

centrifuged at 4000 RPM for 2 min at 4°C and resuspended in 500 !L HB Buffer. 

The cells were homogenized and incubated on ice for 30 min. The sample was 

centrifuged at 12000 RPM for 10 min at 4°C. The spin was repeated with the 

supernatant to ensure complete sedimentation of the pellet. The supernatant was 

transferred to an ultracentrifuge tube and centrifuged at 43000 RPM for 1.5 hours 

at 4°C in a Beckman TL-100 Ultracentrifuge, using a TLA-45 Rotor.  

 

Immunorecipitation of FLAG-histones 

Preparing beads 

1x 150 !L of mouse-M2 (anti-FLAG) beads (Sigma, Cat# F2426) per IP (for 

every 70 A260 of nuclei) 

2x 150 !L of mouse-IgG beads (Sigma, Cat # A0919) per IP (for every 70 A260 of 

nuclei)  

Beads were washed 6x in 1 mL of 1X TBS. When immunoprecipitating 

chromatin, an additional wash with 1mL of 2 mM EDTA was performed to remove 

any salt. 
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Samples were prepared for IP by adding 0.25% Triton X-100, 1 mM PMSF, 1 mM 

EGTA. Samples were pre-cleared by incubating in non-immune IgG beads for 1 

hour at room temperature, with constant rotation. Samples were centrifuged at 

2000 RPM for 2 min and allowed to sit on ice for 5 min to settle. 

 

Sequential IP was performed by incubating the pre-cleared supernatant with the 

non-immune IgG beads for 1 hour at room temperature, with constant rotation, to 

serve as a negative control. The samples were centrifuged at 2000 RPM for 2 

min and allowed to sit on ice for 5 min to settle. The supernatant was then 

incubated with the M2 anti-FLAG beads overnight at 4°C with constant rotation. 

The IgG beads were stored in 2mM EDTA at 4°C overnight. 

 

Treatment of S100 samples following FLAG-IP 

The IP sample was centrifuged at 2000 RPM for 2 min and allowed to sit on ice 

for 5 min to settle. The supernatant, containing the unbound fraction, was saved. 

The M2 and IgG beads were washed 5x for 10 min in 1 mL of IP wash buffer 

supplemented with 1 mM PMSF, and 1x for 10 min in 10 mM Tris, pH 8.1.  

 

Post IP-extraction from beads 

After washing the beads post IP, they were extracted in an equal volume of 2.5% 

SDS extraction buffer at 70°C for 1 hour. Samples were centrifuged at 2000 RPM 

for 2 min and allowed to sit for 5 min at room temperature to settle. The 
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supernatant was transferred into a new tube, and the beads were washed with 

150 !L of 0.5% SDS extraction buffer. The beads were centrifuged at max speed 

for 2 min and allowed to sit for 5 min at room temperature to settle. The 

supernatants were combined. Phenol/chloroform/alcohol (25:24:1) was added to 

the sample at a volume 58.6% of the sample volume, and the samples were 

shaken vigorously for 15 min. Samples were centrifuged at max speed for 10 min 

at 4°C. The aqueous layer was removed, and the organic layer was adjusted to 

0.1 M HCl. 12 volumes of acetone were added, and the sample was incubated 

overnight at -20°C to precipitate the proteins. Samples were washed with 

acetone to remove residual phenol/chloroform, dried, and resuspended in SDS 

sample buffer to run on SDS-PAGE and transfer for Western blot.  

 

SDS-PAGE 

Gel and running buffer were prepared as previously described (181) and run at 

37 mA constant current. 

 

Western Blot 

SDS-PAGE was transferred onto PVDF membrane overnight at 30 V constant 

voltage. Transfer buffer was prepared using standard recipe. Membrane was 

incubated at room temperature for 1 hour in blocking buffer, followed by 2 hours 

in primary antibody (rabbit anti-FLAG (Sigma, Cat# F7425, at 1:1000 dilution), 

rabbit anti-panH4 (Millipore, Cat# 07-108, at 1:1000 or 1:2000 dilution). 
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Membrane was washed twice in blocking buffer and incubated for 1 hour in 

secondary antibody (goat anti-rabbit-AP conjugated (Applied Biosystems, Cat# 

T2191, at 1:5000 dilution). Membrane was washed three times in blocking buffer, 

and incubated twice for 2 min each time in 1X Assay Buffer (Applied Biosystems, 

Cat# T2187), followed by a 5-minute incubation in CDP-star solution (Applied 

Biosystems, Cat# T2146) prior to exposure to film. 

 

Radioactive Thymidine Labeling 

Cells were harvested and centrifuged at 1500 RPM for 2 min in order to remove 

the growth medium. Cells were resuspended in 20 mL of Complete DMEM 

supplemented with 2 ug/mL doxycycline and 30 !M deoxycytidine, and labeled 

with 750 uCi 3H-Thymidine (83.2 Ci/mmol; Perkin Elmer) for 1.5 hours at 37°C 

with frequent agitation. 

 

NaButyrate Treatment 

Cells were harvested and centrifuged at 1500 RPM for 2 min in order to remove 

the growth medium. Cells were resuspended in 20 mL of Complete DMEM 

supplemented with 2 ug/mL doxycycline and 30 !M deoxycytidine, and treated 

with 25 mM NaButyrate for 2 hours at 37°C with frequent agitation. 

 

Nuclei Isolation 

Cells were harvested and centrifuged at 1500 RPM for 2 min in order to remove 
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the growth medium. Cells were washed twice in 20 mL ice cold Buffer A, then 

resuspended in 10 mL Buffer A and incubated on ice for 15 min. Cells were 

homogenized and washed with 20 mL Buffer A. Nuclei concentration was 

determined by measuring the absorbance at 260 nm. 

 

Preparing mononucleosomes 

Isolated nuclei were resuspended in Buffer A at 40 A260/mL. The sample was 

adjusted to 0.5 mM CaCl2 and pre-incubated at 37°C for 5 min. Chromatin was 

digested with 2 U/mL Micrococcal Nuclease (Sigma, Cat# N3755) for 3.5 minutes 

at 37°C. The digestion reaction was stopped by adding 2 mM EGTA, pH 7.6, and 

incubating on ice for 20 min. The sample was centrifuged at max speed for 10 

minutes at 4°C. The S1 fraction, containing the mononucleosomes, was 

transferred to a new tube and A260 was measured to calculate the 

mononucleosome concentration. The remaining pellet was resuspended in 1 mL 

of 2 mM EDTA and incubated on ice for 20 min. The sample was centrifuged at 

max speed for 10 min at 4°C. The S2 fraction, containing the oligonucleosomes, 

was transferred to a new tube and A260 was measured to calculate the 

oligonucleosome concentration. The remaining pellet, the P fraction, was 

resuspended in 1 mL of 2 mM EDTA. 
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Immunorecipitation of H4 acetylated at K5, 12 

Preparing beads 

For every sample to be immunoprecipitated, 3 x 150 !L of hydrated Protein A 

Sepharose beads (Amersham Scientific) per every 70 A260 of nuclei were 

prepared. 

 

Protein A Sepharose beads were hydrated in 1 mL High Salt TSE for 30 min at 

room temperature with constant rotation. Following incubation, the beads were 

centrifuged at 2000 RPM for 30 sec to remove the supernatant, and washed 2x 5 

min in 1 mL High Salt TSE, and 2x 5 min in 1:1 beads:Low Salt TSE. Per 300 !L 

of beads, 150 !L of antibody (the 7481 anti-H4 K5,12ac (Annunziato Lab) or 

RNIS) were added, and the beads were incubated at 37° for 1.5 hours with 

constant rotation. Following incubtation, the beads were washed 3x 5 min in 500 

!L Low Salt TSE with 2 mM PMSF.  

 

Samples were prepared for IP by adding 0.25% Triton X-100, 1 mM PMSF, 1 mM 

EGTA. Samples were pre-cleared by incubating in non-immune Rabbit Serum 

beads for 1 hour at room temperature, with constant rotation. Samples were 

centrifuged at 2000 RPM for 2 min and allowed to sit on ice for 5 min to settle. 

 

Sequential IP was performed by incubating the pre-cleared supernatant with the 

non-immune beads for 1 hour at room temperature, with constant rotation, to 
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serve as a negative control. The samples were centrifuged at 2000 RPM for 2 

min and allowed to sit on ice for 5 min to settle. The supernatant was then 

incubated overnight at 4°C with constant rotation with the 7481 beads, which 

contain the antibody that recognizes H4 acetylated at K5 and 12.  

 

Treatment of ChIP samples following 7481-IP 

The IP sample was centrifuged at 2000 RPM for 2 min and allowed to sit on ice 

for 5 min to settle. The supernatant, containing the unbound fraction, was saved. 

The 7481 and RNIS beads were washed 1x in 1 mL 2 mM EDTA to remove any 

salt, and 5x for 10 min in 1 mL of Medium Salt TSE supplemented with 1 mM 

PMSF, and 1x for 10 min in 10 mM Tris.  

 

Post IP-extraction from beads 

Post-IP extraction procedure for the ChIP samples was as described above. 
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Sample distribution 

 

Part II Assembly into Chromatin Experiments, post-MNase digestion: 

Of the S1 sample: 

85% were prepared for IP 

10% were prepared for Western Blot by MgCl2/EtOH precipitation (“S1 input”) 

5 % were prepared for DNA gel by MgCl2/EtOH precipitation 

Of the S2 sample: 

85% were prepared for IP 

10% were prepared for Western Blot by MgCl2/EtOH precipitation (“S2 input”) 

5 % were prepared for DNA gel by MgCl2/EtOH precipitation 

Of the P sample: 

5 % were prepared for DNA gel by MgCl2/EtOH precipitation 

95% were frozen at -20°C 

 

Part III Assembly onto new DNA Experiments, post-MNase digestion: 

Of the S1 sample: 

75% were prepared for IP 

15% were prepared for Western Blot by MgCl2/EtOH precipitation (“S1 input”) 

5% were TCA precipitated for scintillation counting 

5 % were prepared for DNA gel by MgCl2/EtOH precipitation 
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Of the S2 sample: 

75% were prepared for IP 

15% were prepared for Western Blot by MgCl2/EtOH precipitation (“S2 input”) 

1% was TCA precipitated for scintillation counting 

5 % were prepared for DNA gel by MgCl2/EtOH precipitation 

4% were frozen at -20°C 

Of the P sample: 

71% were prepared for Western Blot by MgCl2/EtOH precipitation (“P”) 

6% were TCA precipitated for scintillation counting 

5 % were prepared for DNA gel by MgCl2/EtOH precipitation 

18% were frozen at -20°C 

 

Part III Assembly onto new DNA Experiments, post-ChIP: 

Of the IgG and M2 beads: 

75% were TCA precipitated for scintillation counting 

25% were extracted for Western Blot 

Of the unbound samples: 

75% were prepared for Western Blot by MgCl2/EtOH precipitation 

25% were saved for TCA precipitated for scintillation counting (only a volume 

 equivalent to that of the input sample was TCA precipitated. The rest was  

 frozen at -20°C). 
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MgCl2/EtOH precipitation 

Samples were adjusted to 10 mM MgCl2. Two volumes of 95% Ethanol were 

added, and the samples were incubated in a dry ice/Ethanol bath for 5 min. 

Samples were centrifuged at max speed for 10 min at 4°C. The supernatant was 

discarded and the sample was dried and resuspended either in SDS sample 

buffer to run on SDS-PAGE and transfer for Western Blot, or in DNA sample 

buffer to run on DNA gel and stain. 

 

TCA precipitation for scintillation counting 

200 !L of 10 mM EDTA, 50 ug BSA-DNA carrier, and the appropriate sample 

were incubated in 3 mL 10% TCA on ice for 30 min. The samples were filtered 

onto glass fiber filters using vacuum apparatus. Filters were washed 2x 3 mL 

cold 10% TCA, and 2x 3 mL cold 95% EtOH. Filters were dried in scintillation 

vials overnight. 

 

DNA gel 

Gel and running buffer were prepared as previously described (182) and run at 

110 V constant voltage. Following electrophoresis, gel is washed for 20 min in 

dH2O, stained for 20 min with Ethidium Bromide, destained for 20 min in dH2O. 

Photograph of gel is taken in UV gel box  
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Results and Discussion 

Part I: Post-translational Modifications of Newly Synthesized Histones H3.1 

and H3.3 

 

As described in the introduction, post-translational modifications of histones are 

of major regulatory importance in a number of cellular events, including 

chromatin assembly, transcription, silencing, and repair (117-119). The pattern of 

modifications may dictate the activity of the chromatin that incorporates the 

modified histones, and this pattern is dynamic and changes throughout the cell 

cycle in accordance to the cellular needs of chromatin activity. The acetylation of 

histone H4 at lysines 5 and 12, as well as the acetylation of H3 at lysine 56 in 

yeast (21, 111, 147-149), are such examples of transient post-translational 

modifications. Clearly, the acetylation and subsequent deacetylation of these 

residues is important in the genomic stability. 

 

In order to study the effect of post-translational modifications on chromatin 

activity, it is important to have a map of the pattern that is found on a given 

histone at a given point in the cell cycle. The goal of this part of my project is to 

create such a map for newly synthesized replication-coupled (H3.1) and 

replication-independent (H3.3) variants of histone H3 in S-phase. HEK293 cells 

with inducible expression of wild-type FLAG-H3.1 or wild-type FLAG-H3.3 were 

used for this purpose. The FLAG-tag allows for easy detection by anti-FLAG 
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antibodies, and since its expression is only induced for a few hours prior to the 

experiment, its presence is indicative of newly synthesized histones. Thus, any 

FLAG-tagged histone present must be recently synthesized, rather than pre-

existing. 

 

Cells were synchronized in S phase in order to obtain the maximum number of 

histones containing modifications that are specific to newly synthesized histones 

in S phase. Synchrony was obtained by treating the cells with 5 mM Thymidine 

for 24 hours in order for them to accumulate at the G1/S boundary. Cells were 

then released by removing the thymidine and adding deoxycitidine at 30 !M for 4 

hours, at which point the majority of cells were in mid-S phase. The synchrony 

was monitored by measuring the DNA content of cells through flow cytometry. 

Samples for flow analysis were taken at three time points throughout the 

experiment – prior to treatment, after 24-hour arrest, after 4-hour release. Cells 

were fixed for flow cytometry in 70% ethanol overnight at 4°C.  

 

The clones expressing H3.1 synchronized to 68% in S phase, and the H3.3 

clones synchronized to 84% in S (Fig. 1). It is not unusual for different clones to 

have different efficiency of synchrony, as there may be genetic variations that 

can account for that.  
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Expression of FLAG-histones was induced by treating with doxycycline at the 

time of release, for 4 hours to allow the synthesis of new histones FLAG-H3. 

Upon harvesting the cells, the cytoplasmic (S100) content, which includes the 

new histones, was extracted. Studying cytoplasmic histones ensures that the 

modifications being analyzed are specifically in the histones of the pre-deposition 

complex. 

 

Following cytoplasmic extraction, FLAG-histones were isolated by 

immunoprecipitating with anti-FLAG M2 beads, as described in the Materials and 

Methods. Subsequent removal of the FLAG-histone from the IP beads was 

necessary in order to obtain a pure sample of newly synthesized FLAG-H3.1 or 

FLAG-H3.3. The efficiency of immunoprecipitation was monitored by analyzing 

10% of the sample by Western blot probing with anti-FLAG/anti-pan-H4 antibody 

(Fig. 2). Comparing the intensities of the input and bound bands (lanes 2 and 5, 

each representing 10% of the sample), it can be said that the majority of the 

FLAG-H3.1 is pulled down.  Lanes 4 and 6 are controls to show that following IP, 

the FLAG-H3.1 is bound by the anti-FLAG beads (lane 4), and after extraction, 

no more FLAG-H3.1 remains bound to the beads (lane 6). 

 

The induction of FLAG-histones in the HEK293 clones was routinely monitored in 

order to ensure that the cells do not constitutively express the protein in the 

absence of inducer, and that they still express when treated with doxycycline. 
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Figure 3 represents one such test, in which the sample in lane 1 is untreated, 

and the sample in lane 2 is treated with doxycycline for 4 hours. Total cell 

extracts were prepared by sonicating cells to break up the plasma and nuclear 

membranes and acid-extracting the proteins. Once in solution, proteins were 

TCA-precipitated and run on SDS-PAGE for Western blotting. Blots were probed 

with anti-FLAG/anti-pan-H4 antibodies. In a positive test, FLAG is not detected in 

the untreated sample, but is detected in the induced sample (Fig. 3). 

 

The FLAG-H3.1 and FLAG-H3.3 samples obtained from this experiment are 

currently stored at -80°C and await their send-out to a Mass Spectrometry facility 

for analysis of the post-translational modifications found in each sample.  

 

Beads Extraction 

Anti-FLAG beads have very high affinity for the FLAG peptide, and extracting the 

FLAG-histones from the beads after immunoprecipitation required the 

development of a new extraction protocol (Fig. 4a). Following IP, the beads were 

washed extensively to remove any unbound or nonspecifically sticking material. 

Incubation at 70°C for 1 hour in a 2.5% SDS buffer containing 0.3 M 2-

mercaptoethanol (ßME) was necessary to break the interactions between the 

anti-FLAG beads and the isolated proteins. The beads were subsequenty 

washed with 0.5% SDS buffer without ßME prior to the standard phenol-

chloroform extraction described in the Materials and Methods (Fig. 4b). 
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Part II: FLAG-H3.1 S-phase assembly and the effect of K56 acetylation 

 

In this part of the project, the questions of how efficiently the FLAG-H3.1 is 

assembled into chromatin and whether acetylation of K56 affects the efficiency 

were addressed directly. Two approaches were taken, the first of which aimed to 

detect whether FLAG-H3.1 associates with chromatin. This was done by 

comparing the ratios of FLAG-H3.1 to H4 in the total cell extract, the nuclei 

extract, and the chromatin of HEK293 cells. Differences in the ratios would 

indicate differences in the cellular distribution of FLAG-H3.1 compared to H4. 

Since H4 is essential for the assembly of all nucleosomes and chromatin 

formation, it is appropriate measurement to compare FLAG-H3.1 levels to. 

 

Cells with inducible expression of wild type FLAG-H3.1 or a mutant version of 

FLAG-H3.1 were utilized. In the mutant histones, the K56 residue was changed 

to either Q or R. The K56Q mutant mimics constituitive acetylation of K56, while 

the K56R mutant mimics constituitively unacetylated K56. The cellular distribution 

of FLAG-H3.1 was compared among the wild type and two mutants, to determine 

the role of acetylation of K56 on deposition onto chromatin. 

 

Cells were synchronized in S-phase to focus the study on the assembly in this 

point of the cell cycle. The synchrony was performed as described earlier, by 

blocking cells for 24 hours with 5 mM Thymidine and releasing for 4 hours with 
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30 uM deoxycitidine. Flow cytometric analysis confirmed that after the 4-hour 

release, 70% of the wild type, 68% of the K56Q, and 78% of the K56R cells were 

in S-phase (Fig. 5). 

 

At the time of release, cells were treated with 2 ug/mL doxycycline in order to 

induce expression of FLAG-H3.1. Cells were harvested at 4 hours after 

release/induction, and an aliquot was saved as total cell sample. Proteins were 

extracted and tested for presence of FLAG-H3.1 following induction. Nuclei were 

isolated to analyze the chromatin content of the cells. An aliquot was saved to 

represent the nuclear content, and proteins were again extracted to test for 

FLAG-H3.1. Following nuclei isolation, chromatin was extracted by treating the 

sample with Micrococcal nuclease (MNase), which digests the linker DNA 

between the nucleosomes, leaving individual mononucleosomes intact. Because 

the amount of chromatin digested is directly proportional to the concentration of 

MNase and the incubation time, not everything is digested during the 3.5 minutes 

of incubation, resulting in two fractions of chromatin: S1 fraction, containing the 

mononucleosomes, and S2 fraction, containing oligonucleosomes. The degree of 

digestion is analyzed by running samples of each fraction on a 4% SDS-PAGE 

and staining with ethidium bromide (Fig. 6). 

 

The ratios of FLAG-H3.1 to H4 found in each of the three fractions tested (total 

cell, nuclei, chromatin) were very similar to each other in cells expressing wild 
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type FLAG-H3.1, as well as cells expressing FLAG-H3.1 K56Q and FLAG-H3.1 

K56R, suggesting that all of the FLAG-H3.1 detected in the cell is in the nucleus 

and is associated with chromatin (Fig. 7). No significant difference is observed in 

the levels of association of FLAG-H3.1 with chromatin between the 

unacetylatable K56R mutant and wild type FLAG-H3.1, suggesting that the lack 

of acetylation on the residue does not play a significant role in the efficiency of 

incorporation of the histone into chromatin. 

 

The second approach to this part of the project directly tested whether FLAG-

H3.1 is incorporated into nucleosomes. This involved the immunoprecipitation of 

H4 diacetylated at histones K5, 12. As mentioned previously, acetylation of these 

residues on H4 is a mark of newly synthesized histone H4 prior to incorporation 

into chromatin and shortly thereafter (42). By immunoprecipitating H4 K5,12ac2 

from chromatin and testing if FLAG-H3.1 is pulled down along with it, it can be 

determined with certainty whether or not (and to what degree) FLAG-H3.1 is 

incorporated into chromatin during S phase. 

 

Cells were again synchronized in S phase and chromatin was isolated – the 

procedure used was as described above. However, following release of cells 

from thymidine block, the cells were treated for 2 hours with 25 mM sodium 

butyrate, an HDAC inhibitor. This treatment is done to ensure that the acetylation 

of newly synthesized H4 at lysines 5 and 12 will not be removed following 
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incorporation into chromatin and throughout the experimental procedure. The S1 

and S2 fractions of chromatin were immunoprecipitated with anti- H4 K5,12ac2 

antibodies to immunoprecipitate all newly incorporated nucleosomes. Following 

IP, Western blot analysis probing with anti-FLAG demonstrated that FLAG-H3.1 

was present in the immunoprecipitated nucleosomes (bound fractions) at H3/H4 

ratios equivalent to those in the input and unbound fractions (Fig. 8). This was 

observed with the wild-type FLAG-H3.1 cells, as well as the cells expressing the 

K56Q and K56R FLAG-H3.1 mutants. The fact that the ratios of FLAG-H3.1/H4 

K5,12ac2 detected in the chromatin samples are equivalent is an indication that 

the FLAG-histones are incorporated into chromatin along with the new H4. Thus, 

consistent with the results shown in Figure 7, incorporation of the mutant 

histones into chromatin seems to occur similarly to wild-type FLAG-H3.1. 

Notably, the type of mutation, and consequently the presence or absence of 

acetylation on residue 56, does not seem to have a detectable effect on the 

degree of incorporation. 
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Part III: H3K56 assembly on newly synthesized DNA 

 

The goal of this part of the project was to determine whether the acetylation of 

the H3 K56 residue is important for the deposition of histone H3 onto newly 

synthesized DNA. By comparing the efficiency of incorporation of each mutant 

histone into newly replicated DNA to that of wild type, it can be asked whether 

the presence of the modification on K56 affects nucleosome assembly 

specifically at the replication fork. 

 

The experiment involved HEK293 cells with the capability to inducibly express 

either wild type or mutant FLAG-H3.1 in the presence of doxycycline. Cells were 

synchronized in S-phase, where DNA replication occurs and histone H3.1 is 

deposited on new DNA. The same synchrony procedure described earlier was 

used, and the synchrony was monitored by flow cytometry. Wild type cells 

synchronized on average to 70% in S phase at 3.5 hours after release (Fig. 9a), 

K56Q mutants synchronized up to 81% in S (Fig. 9b), and K56R mutants 

synchronized to 76% in S phase at the end of the release. 

 

Cells were induced with 2 ug/mL doxycycline for a total of 5 hours from the time 

of release from the G1/S block, in order to express and incorporate FLAG-H3.1. 

To show that the induction was successful, a sample of cells was acquired just 

prior to the addition of doxycycline, and the total cell extract was tested by 
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Western blot to demonstrate that before the inducing agent, there is only trace 

FLAG-H3.1 present within the cells (Fig. 10, Lane 1). Another sample of cells, 

equivalent to the first, was acquired following the 5 hours of induction, prior to 

harvesting the cells, to show that after incubating with the inducing agent, FLAG-

H3.1 is now present (Fig. 10, Lane 2).  

 

At 3.5 hours into induction, the cells were treated for 1.5 hrs with 750 uCi of 

tritiated thymidine, which is incorporated into DNA as it replicates. Thus, any 

radiolabeled chromatin is known to be new. As DNA replicates, it needs to be 

wrapped around nucleosomes, and if the incorporated nucleosomes contain 

newly synthesized histones, FLAG-H3.1 will be detected in nucleosomes 

surrounded by radiolabeled DNA. 

 

Following treatment, cells were harvested and nuclei were isolated, since the 

interest is in the nuclear histones. Chromatin was digested by incubating with 

micrococcal nuclease (MNase), which digests of the linker DNA between the 

nucleosomes resulting fractionation of the chromatin (Fig. 11). Chromatin was 

precipitated and tested for presence of FLAG-H3.1.  

 

Both the S1 and S2 fractions were immunoprecipitated using anti-FLAG M2 

beads in order to pull down any FLAG-H3.1 present in the samples. Non-immune 

IgG beads were used as a negative control. The bound and unbound fractions 
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from each IP were analyzed in as follows: 75% of the bound fractions and 25% of 

the unbound fractions were used for scintillation counting in order to determine 

the amount of radioactive DNA pulled down with the FLAG- histones; the 

remaining 25% of the bound and 75% of the unbound fractions were used for 

Western blotting in order to confirm efficient immunoprecipitation (see Sample 

Distribution in Materials in Methods).  

 

Consistently, all of the FLAG-H3.1 in the IP samples was pulled down, as FLAG 

was only detected in the bound fractions of S1 and S2 and not in the unbound 

(Fig. 12). No FLAG was detected in the non-immune IgG samples. 

 

In quantifying the amount of radioactive DNA pulled down with the FLAG-

histones, each sample was counted in duplicate and averaged, and the values 

were normalized by subtracting background counts. It is important to note that 

the counts obtained for the M2 bound fractions in these experiments were 

consistently about one order of magnitude lower than seen with FLAG-H4 (C. 

Doughty, personal communication). 

 

Using the data for the amounts of radioactivity in the total samples, the 

percentage of radiolabeled DNA that was pulled down was calculated by dividing 

the counts of the bound M2 sample by the total (bound + unbound). The 

percentage of radiolabeled DNA pulled down by non-specific sticking in the non-
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immune negative control sample (calculated the same way) was subtracted from 

the M2. This number represents the percentage of FLAG-H3.1 that was 

incorporated into radiolabeled (new) DNA. 

 

The calculated percentages averaged between 0.05% and 0.25% (Fig. 13). It is 

not surprising to see such small percentages, as the amount of FLAG-H3.1 in the 

cell is minute compared to the amount of native H3.1, resulting in a higher 

probability of native histones being incorporated. However, for the purposes of 

this project, the absolute amount of FLAG-H3.1 incorporated is not important, as 

the comparison is among the incorporation of the different mutants, all of which 

are FLAG-tagged. 

 

Based on the average percentages of incorporation of wild-type compared to 

mutant H3.1, the S1 fractions seem to show very slight preferential incorporation 

in the K56Q mutant (Fig. 13a). The opposite is seen with the K56R mutant, 

where there seems to be no incorporation on newly synthesized DNA 

(inconsistent with earlier western blot results!). The calculated percentages of 

incorporation for the wild type and different mutants are very close to each other, 

and due to the low scintillation counts, a definite conclusion cannot be made 

without additional experiments. If these data prove to be statistically significant, 

they may suggest that acetylation at that residue might positively influence the 
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deposition of H3.1 at the replication fork, however further analysis is necessary to 

determine the reason for inconsistency with the K56R results. 

 

The S2 fractions show insignificant differences in the amount of incorporation of 

the wild type and mutants (Fig. 13b). This is not entirely surprising, as the 

amount of radiolabeled DNA in the S2 fraction represents the DNA pulled down 

in an array of oligonucleosomes. Thus, single FLAG-H3.1s can pull down arrays 

of various lengths, and the amount of labeled DNA is not directly proportional to 

the amount of FLAG, as it would be in a mononucleosome. Here, low levels of 

K56R incorporation are observed, although they remain lower than wild type. 

This may indicate that K56R mutants do incorporate into chromatin, but much 

less efficiently than wild type H3.1. If this is true, it can explain why previous 

results detected K56R mutants in chromatin. 

 

The fact that mimicking constitutive acetylation at H3 K56 increases chromatin 

assembly at the replication fork is not surprising. Chromatin assembly factor 

CAF-1, known to be involved in the deposition of replication-coupled histone H3 

variants, has been shown to preferentially bind H3/H4 heterodimers containing 

H56-acetylated H3.1, and that this modification directly affects the binding affinity 

of H3 to this chromatin assembly factor (10, 22, 42-46, 115). Since the levels of 

native H3.1 acetylated at K56 are low in mammalian cells (125), a constitutive 

modification of this residue will increase the amount of H3.1 that has higher 
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affinity for CAF-1, and thus higher deposition will be observed. CAF-1 associates 

with DNA polymerase processivity factor, PCNA, at the replication fork, further 

supporting the deposition of H3.1 at the replication fork (41, 47, 48). 
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FIGURES 

 

 
Figure 1: Flow cytometry analysis demonstrating progress of cell 
synchrony of HEK293 cells prior to cytoplasmic histone isolation for PTM 
analysis. Control samples consist of asynchronously cycling HEK293 cells 
encoding, but not expressing wild-type FLAG-H3.1 (a) and wild-type FLAG-H3.3 
(b). The 24 hr arrest samples represent cells treated with 5 mM Thymidine for 24 
hrs to block at the G1/S boundary. The 4 hr release samples represent cells 
treated with 30 uM deoxycitidine to release the block and 2 ug/mL doxycycline to 
induce FLAG-H3.1 expression. 
(a). Of the control sample, 36% of cells are in G1 phase, 36% in S, and 17% in 
G2. After 24-hour arrest, 25% are in G1, 60% in S, 8 % in G2. At the end of the 
4-hour release, 15% of cells are in G1, 68 are in S, 12% are in G2. 
(b). Of the control sample, 38% of cells are in G1 phase, 38% in S, and 20% in 
G2. After 24-hour arrest, 10% are in G1, 80% in S, 8% in G2. At the end of the 4-
hour release, 5% of cells are in G1, 84% in S, 8% in G2. 
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Figure 2: Western blot analysis of immunoprecipitation of S100 extract 
from S phase HEK293 cells expressing FLAG-H3.1. Lane content: 1. FLAG-
H3.1 marker; 2. Input (10% of total S100 sample); 3. Unbound (100%); 4. Post-IP 
beads (10%) – beads immediately after IP; 5. Bound fraction after extraction from 
beads (10%); Upper band observed in Lane 5 (consistently observed in samples 
incubated with FLAG M2 beads), is thought to be resulting from the beads; 6. 
Post-extraction beads (90%) – beads following the extraction of FLAG-H3.1; Blot 
was probed with anti-FLAG (1:1000) / anti-pan-H4 (1:2000); 3.5-minute 
exposure. 
 
 
 

 
 
 
Figure 3: FLAG-H3.1 induction test 
by Western blot.  
Total cell extract from (1) Uninduced 
and (2) Induced asynchronous 
HEK293 cells encoding wild-type 
FLAG-H3.1. Blot was probed with 
anti-FLAG (1:1000) / anti-pan-H4 
(1:2000); 5-minute exposure. 
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Figure 4: Western blot analysis of extraction efficiency of FLAG-histones 
from anti-FLAG M2 affinity beads. 
(a). Unsuccessful extraction. Lane content: 1. FLAG-H3.1 marker; 2. Unbound 
(100%); 3. Bound fraction after extraction from beads (100%); 4. Post-extraction 
beads (100%) – beads following the extraction of FLAG-H3.1. Blot was probed 
with anti-FLAG (1:1000); 3-minute exposure. 
(b). Successful extraction. Lane content: 1. Unbound (100%); 2. Post-IP beads 
(10%) – beads immediately after IP; 3. Bound fraction after extraction from beads 
(10%); 4. Post-extraction beads (90%) – beads following the extraction of FLAG-
H3.1; Blot was probed with anti-FLAG (1:1000); 3.5-minute exposure. 
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Figure 5: Flow cytometry analysis demonstrating progress of cell 
synchrony of HEK293 cells prior to ChIP for nucleosome assembly study. 
Control sample consists of asynchronously cycling HEK293 cells encoding, but 
not expressing, wild-type (a), K56Q (b), or K56R (c) FLAG-H3.1. The 24 hr arrest 
sample represents cells treated with 5 mM Thymidine for 24 hrs to block at the 
G1/S boundary. The 4 hr release sample represents cells treated with 30 uM 
deoxycitidine to release the block and 2 ug/mL doxycycline to induce FLAG-H3.1 
expression. 
(a) Control: 22% in G1, 40% in S, 32% in G2; 24-hr arrest: 28% in G1, 52% in S, 
15% in G2; 4-hr release: 15% in G1, 70% in S, 12% in G2 
(b) Control: 47% in G1, 33% in S, 16% in G2; 24-hr arrest: 34% in G1, 52% in S, 
9% in G2; 4-hr release: 18% in G1, 68% in S, 10% in G2. 
(c) Control: 43% in G1, 35% in S, 17% in G2; 24- hr arrest: 29% in G1, 58% in S, 
6% in G2; 4-hr release: 7% in G1, 78% in S, 12%in G2. 
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Figure 6 (left): Efficiency of 
Mnase digestion. 
Lane content: 1. S1 – 
mononucleosomes (0.4 OD); 2. S2 
– oligonucleosomes (0.2 OD); 3. P 
– pellet (0.4 OD). Ethidium bromide 
staining. 
 
 
 
Figure 7 (right): Detection of wild-type FLAG-H3.1 (a), FLAG-H3.1 K56Q (b), 
and FLAG H3.1 K56R (c) in chromatin of HEK293. 
(a) Lane content: 1. FLAG-H3.1 marker; 2. Total cell extract from HEK293 cells 
expressing wild-type FLAG-H3.1; 3. Nuclei; 4. chromatin fraction. Blot probed 
with anti-FLAG (1:1000) / anti-pan-H4 (1:2000); 5-minute exposure. 
(b) Lane content: 1. Uninduced HEK293 cells encoding FLAG-H3 K56Q; 2. Total   
 cell extract from cells expressing FLAG-H3.1 K56Q; 3. Nuclei; 4. Chromatin 
fraction. Blot probed with anti-FLAG (1:1000) / anti-pan-H4 (1:1000); 1-minute 
exposure. 
(c) Lane content: 1. Total cell extract from cells expressing FLAG-H3.1 K56R; 2. 
Nuclei; 3. Chromatin fraction. Blot was probed with anti-FLAG (1:1000) / anti-
pan-H4 (1:1000); 1.5-minute exposure. 
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Figure 8: Detection of wild-type FLAG-H3.1 (a), FLAG-H3.1 K56Q (b), and 
FLAG H3.1 K56R (c) in chromatin of HEK293 cells following 
immunoprecipitation with anti-H4 K5,12 ac2. 
Lane content (a-b): 1. FLAG-H3.1 marker; 2. S1 input; 3. S1 unbound; 4. S1 
Bound; 5. S1 non-immune; 6. S2 input; 7. S2 unbound; 8; S2 Bound; 9. S2 non-
immune; 10. Uninduced; 11. Total cell extract; 12. Nuclei;  
Lane content (c): 1. FLAG-H3.1 marker; 2. S1 input; 3. S1 unbound; 4. S1 
Bound; 5. S1 non-immune; 6. S2 input; 7. S2 unbound; 8; S2 non-immune; 9. S2 
Bound; 10. Uninduced; 11. Total cell extract; 12. Nuclei;  
Top blots are probed with anti-FLAG (1:1000), bottom blots are probed with anti-
H4 K5,12ac2 (1:5000); 10-sec exposure. 



! &&!

 

 
 
 
 
Figure 9: Flow cytometry analysis demonstrating progress of cell 
synchrony of HEK293 cells prior to radiolabeling experiment for replication 
fork analysis. Control samples consist of asynchronously cycling HEK293 cells 
encoding, but not expressing wild type (a), K56Q (b), or K56R (c) FLAG-H3.1. 
The 24 hr arrest samples represent cells treated with 5 mM Thymidine for 24 hrs 
to block at the G1/S boundary. The 3.5 hr release samples represent cells 
treated with 30 uM deoxycitidine to release the block and 2 ug/mL doxycycline to 
induce FLAG-H3.1 expression.  
(a). Control: 41% in G1, 29% in S, 25% in G2; 24-hr arrest: 39% in G1, 50% in S, 
7% in G2; 3.5-hr release: 11% in G1, 70% in S, 14% in G2. 
(b). Control: 43% in G1, 29% in S, 26% in G2; 24-hr arrest: 30% in G1, 62% in S, 
6% in G2; 3.5-hr release: 8% in G1, 81% in S, 9% in G2. 
(c). Control: 30% in G1, 48% in S, 11% in G2; 24-hr arrest: 22% in G1, 64% in S, 
5% in G2; 4-hr release: 11% in G1, 76% in S; 7% in G2. 
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Figure 10: FLAG-H3.1 induction test 
by Western blot.  
 
Total cell extract from 1. Uninduced and 
2. Induced S-phase HEK293 cells 
encoding FLAG-H3.1 K56Q. Blot 
probed with anti-FLAG (1:1000 ) / anti-
pan-H4 (1:1000); 1-minute exposure. 
 
 
 

 
 

 
 
 
Figure 11: Efficiency of Mnase digestion. 
Lane content: 1. S1 – mononucleosomes (0.4 OD); 2. S2 
– oligonucleosomes (0.2 OD); 3. P – pellet (0.4 OD). 
Ethidium bromide staining. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



! &(!

 

 
 
Figure 12: Western blot analysis of immunoprecipitation of thymidine 
radiolabeled mono- and oligonucleosomes from S-phase HEK293 cells 
expressing wild type FLAG-H3.1 (a), FLAG-H3.1 K56Q (b), and FLAG-H3.1 
K56R (c). 
(a). Lane content: 1. S1 input; 2. S1 unbound (75%); 3. S1 bound (25%); 4. S1 
non-immune IgG (25%); 5. S2 input; 6. S2 unbound (75%); 7. S2 bound (25%); 
8. S2 non-immune IgG (25)%; 9. Induced total cell extract; 10. Nuclei. Blot 
probed with anti-FLAG (1:1000 ) / anti-pan-H4 (1:2000); 5-minute exposure. 
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(b). Lane content: 1. Uninduced; 2. Induced; 3. Nuclei; 4. S1 input; 5. S1 
unbound (75%); 6. S1 bound (25%); 7. S1 non-immune IgG (25%); 8. S2 input; 
9. S2 unbound (75%); 10. S2 bound (25%); 11. S2 non-immune IgG (25%). Blot 
probed with anti-FLAG (1:1000) / anti-pan-H4 (1:1000); 1-minute exposure. 
(c). Lane content: 1. FLAG-H3.1 marker; 2. S1 input; 3. S1 unbound (75%); 4. S1 
bound (25%); 5. S1 non-immune IgG (25%); 6. S2 input; 7. S2 unbound (75%); 
8. S2 bound (25%); 9. S2 non-immune IgG (25%); 10 uninduced; 11. Induced; 
12. Nuclei. Blot probed with anti-FLAG (1:1000)/ anti-pan-H4 (1:1000); 1-minute 
exposure. 
 

 
Figure 13: Average percentage of FLAG-H3.1 histones incorporated into 
newly synthesized DNA. Average of the percentages calculated from each 
experiment, based on the amount of radiolabeled DNA in the FLAG-bound 
fraction compared to the total IP amount. Equivalent to the percentage of FLAG-
H3.1 incorporated into newly synthesized DNA. Error bars represent standard 
error. (a) based on data from S1 mononucleosomes sample; (b) based on data 
from S2 oligonucleosome sample. 
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