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Abstract—The prediction of the position of a given volume
sample in a full body atlas, also known as a volume localization,
is a part of an initial stage of image retrieval in most of
the dedicated CAD systems. In this paper we present two
methods for volume localization, namely histogram matching
and classifier regression. Since the histogram matching method
ignores the spatial orientation, it is used when the orientation
of the volume cubes are not the same. On the other hand
the classifier regression is much faster and can be used as a
quick estimation and as a tool to reduce the scope of the initial
problem. Both presented methods were tested on a dataset with
3962 volumes of a human body atlas. The accuracy and the
speed of execution was compared and is presented in this paper.

I. INTRODUCTION

3D volume localization problem is a problem of estimating
the atlas coordinates of a given sample 3D volume (i.e.
object, miniature). This is usually done by comparing the
characteristics of a sample volume with the characteristics of
other volumes with known coordinates. The coordinates of the
most similar volume are returned as a result, as shown in Fig.
1.
To achieve this, one can use the method which compares
the sample volume with the other volumes from the dataset
and the coordinates are estimated as the interpolation of the
coordinates of the most similar volumes, weighted by the
degree of similarity. Another approach attempts to estimate
the coordinates using classifier regression. Part of the problem
is to find the matching volumes - this task can be viewed
as the contents based image retrieval (CBIR) problem. One
of the models to solve the CBIR is to treat the images as
collections or histograms of the features [2] and compare the
distances (dissimilarities) between the feature vectors. The
resulting feature is the one with the lower distances, hence
higher similarity. Potential features used for grey-level images

Fig. 1. Estimating the coordinates of the most similar volume

can be the very pixels, features that correspond to human
visual perception, texture features such as global descriptors or
Gabor features, or local descriptors such as SIFT or corner de-
tectors [2]. Shape features such as Fourier descriptors, moment
invariants and finite element models were surveyed in [12],
graph based shape features were presented in [1]. A method for
retrieving 3D datasets based on Local Binary Patterns (LBP)
features [4] was introduced in [11] and compared with features
such as 3D Wavelet Transforms and 3D co-occurence matrices.
In this paper we use and compare two methods for the
coordinate prediction, namely the histogram matching, which
is presented in Section II-A, and the classifier regression,
presented in Section II-B. The results of the comparison are
given in Section III. We conclude the paper in Section IV.

II. METHODS

Two methods for the coordinate prediction are used: histogram
matching and the classifier regression.

A. Histogram matching

The orientation of the sample volume is usually not the same
as the orientation of the volumes in the dataset. Hence, it
is necessary either to encounter for their proper alignment,
or to use a measure independent to the orientation of the
volumes. Such measures include histogram, rotation invariant
image moments and local features. The first method presented
in this paper compares the histogram of the samples with
the histograms of all the other miniatures. The drawback of
using histograms is the loss of spatial intensity distribution
information. Some other rotation invariant feature extraction
method such as SIFT or LBP in 3D [4] would be potentially
suitable to overcome the problem of describing the spatial
relations between voxels.
Figure 2 depicts three different volume samples in both 3D
and cross-section version, their histograms and the detected
locations within the human body atlas using the histogram
matching method.
1) Histogram dissimilarity measures: There are several cross-
bin and bin-to-bin dissimilarity measures to distinguish among
histograms being compared [6]. Generally, cross-bin distances
such as Earth Movers Distance (EMD) tend to be more
robust and more discriminative than bin-to-bin measures when
comparing two histograms [9].
Let L and M represent histograms being compared and each
value M(i) the count of the number of observations that fall
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Fig. 2. Three volumes with their histograms and detected location within human body atlas.

into one of the disjoint intensity intervals. If n be the total
number of observations and k the total number of bins, then
the following holds:

n =

k∑
i=1

M(i)

Among the most popular bin-to-bin measures let us mention:
histogram intersection, L1 and L2 norm, χ2, and Jeffreys
Divergence with calculation formulas (in respective order)

• h(L,M) =

∑
j
min(L(j),M(j)))∑

j
M(j)

• L1(L,M) =

∑
j
abs(L(j)−M(j))

N

• L2(L,M) =

∑
j
(L(j)−M(j))2

N

• χ2(L,M) =

∑
j
(L(j)−M(j))2∑
j
L(j)+M(j)

• Jf(L,M) =∑
j

(
L(j)log 2L(j)

L(j)+M(j) +M(j)log 2M(j)
L(j)+M(j)

)
An important representative of the cross-bin histogram com-
parison method is called the Earth Movers Distance (EMD)
[8], [9]. Fast implementation of the cross-bin histogram com-
parison EMD was used in our tests [8].

2) Weighting the coordinates: We have performed the tests
by calculating all of the inter-histogram dissimilarities. After
this calculation, ten most similar volumes were queried out
of the base and used to estimate the coordinate. Estimation
was based on weighted averaging where weights sum up to
unit and each weight corresponds to the similarity level di and
follows negative exponential function with slope determined
by normalized variance of 10 selected dissimilarities.
The coordinates of the ten best matches (ranked with i) were
weighted by exponentially decaying weights, derived from
the variance of their dissimilarity measures. The resulting
coordinates [xest, yest, zest] were calculated by

[xest, yest, zest] =

10∑
i=1

wi[xiyizi]

where wi = e−λi and λ = max
(
di−mean(di)

var(di)

)
.

Such weighting was used to overcome the influence of the
outliers on the estimation since outliers can cause higher
variance in general as shown in Fig. 3.

B. Classifier regression
Another approach to predict the coordinate values uses classi-
fier regression. Classifiers such as 10-NN and Random Ferns



Fig. 3. The weights of the outliers are smaller than the weights of the
neighboring candidates.

[7] use the image features and carry out the regression instead
of usual crisp classification. PRTools Matlab library [3] is
used for 10-NN implementation while Piotrs Matlab Toolbox
[10] is used for Random Ferns implementation. Classifier
scores are used to interpolate coordinates of those that were
classified as being close to the test sample in a way typical for
each classifier. Namely, averaging of the 10 nearest neighbors
coordinates will be 10-NN regression. Similarly, in the case
of SVM classifier usage, coordinates of the most similar ones
separated by SVM will be interpolated. Features used for
classifier regression are: mean, standard deviation, median,
volume (actual number of pixels in the volume), centroid (1st

order image moments), central moments (2nd order image
moments), and the voxels themselves can be used as features,
too. In cases when voxel intensities are used (Random Ferns
classification), binary features need to be extracted - hence
number of combinations can grow high. Therefore, volumes
were resized using Gaussian pyramid before calculating the
binary features.

III. RESULTS

We tested the methods on a dataset which consist of 3926
volumes (miniatures representing body regions). Each of the
volumes was resampled to 32 × 32 × 32 image cube. Voxel
intensities of the image cube are real values ranging from 0 to
4095. Each volume corresponds to certain spatial regions of
the body as it was shown with dots (center points of the region)
in Fig. 5. Volumes are actually resembling different regions
of the body and they are taken from different orientations
(transverse, coronal, sagital).
Results are presented for both approaches introduced in the
Section II. ”Histogram comparison” turns out to be quite
precise at finding similar patches. However, the choice of the
dissimilarity metric is very important. As mentioned, cross-
bin dissimilarity is preferred since it is more robust. The
performance of different metrics when matching histograms
for query volume (object nr. 1540) shown together with its
top 10 most similar patches from the database. Process finds
10 most similar volumes and interpolates their coordinates.

Fig. 4. Human atlas with 3926 volumes.

Fig. 5. Voxel representing a region of a human body.



Dissimilarity measure h L1 L2 χ2 Jf EMD
Estimated position error 16.5792 3.7436 129.8316 1.3632 1.2895 1.2466

TABLE I
ESTIMATED POSITION ERRORS FOR DIFFERENT HISTOGRAM COMPARISON MEASURES (INTERSECTION, L1 AND L2 NORM, χ2 , JEFFREY DIVERGENCE

AND EMD) FOR THE OBJECT NR. 1540

Fig. 6. Results of volume matching using histogram comparison for dissimilarity measures L1 norm, L2 norm, EMD, χ2, Jeffrey divergence, and Intersect
(from left to right, top to bottom).

EMD dissimilarity measure turns out to be the one that
performs the best both in terms of accuracy and robustness,
however it is slower and features used for matching are depen-
dent on the database. Downside of its usage is computational
cost, nevertheless fast implementation of EMD [8] used in

this experiment provides satisfactory performance. What is
still a potential problem with this approach is the fact that
it is dependent on the data from the training set - since it
is based on comparing the input with the training dataset. In
that sense - classifier regression based approach with invariant



statistical/shape/moment based features would be interesting.
Figure 6 show the results of volume matching using histogram
comparison for dissimilarity measures: L1 norm, L2 norm,
EMD, and χ2, Jeffrey divergence, and intersection (from left
to right, top to bottom). Predicted value is represented with
white square, while the true value is described with red circle.
Top 10 matching positions were shown as dots in jet color
space - ranging from red ones that represent high ranking till
the blue ones with low ranking. Estimation fails in case metric
was not properly chosen. EMD turns out to be the one that
performs the best both in terms of accuracy and robustness.

Fig. 7. Statistics for the absolute distance error between the position estimate
and the actual position.

Finally, histogram matching was performed individually on 50
randomly chosen objects while the rest were used for matching
with the test sample each time. Figure 7 shows the statistics
for the absolute distance error between the position estimate
and the actual position. Majority of discrepancies fall into 0-
50 voxel distance range which suggests that the object was
targeted. Usually, distances up to 50 absolute voxel values
do properly guess the object since the main task is rough
localization of the body region.
”Classifier regression” was based on independent features
(such as volume mean, standard deviation, image moments,
volume). As stated before - classifier score was the basis
for the data regression. 10-NN classifier was used to find
the neighbors in feature space and average the coordinates
associated with them in order to carry out the regression.
This process works much faster since it takes short time to
extract the features and there is no need for comparison. It
accomplishes the retrieval but the performance is lower as
shown in the figure 8.
Regression accuracy is worse than the one obtained using
histogram comparison and one of the causes is probably plain
averaging of the feature-space-nearest-neighbor coordinates

Fig. 8. Results of classifier regression (10-NN) based on independent features

(no weighting). The features used can influence the choice
of the nearest neighbors. Finally, Random Ferns [7] were
tested on position regression. They performed slightly slower
than 10-NN regression, but had an overall lower average
error calculated over 50 randomly chosen miniatures. Voxel
intensities were used as the source for making binary features
that this classification algorithm uses. Usage of statistic/shape
features that were supplied to 10-NN did not perform as well
as voxel intensities did. Binary features were chosen to be -1
or +1 for each possible pair of voxels. In case the first one
from the pair was higher - feature was set to +1 and -1 was
for the opposite case. Each miniature needed to be resized to
8×8×8 using Gaussian pyramides and even after the reduction
- quarter of the total number (every 4th) of the voxels was
used for matching in the experiment due to processing time
constrains. Results proved to be promising in spite of all the
constrains.

IV. CONCLUSION

This paper summarizes the results obtained while develop-
ing 3D content based image localization framework. Two
approaches have been examined - one based on comparing
the histograms and another one based on the classifier regres-
sion. 10-NN and Random Ferns classifiers were used for the
regression. The best performance in terms of accuracy was
achieved by comparing histograms using the EMD (Earth
Movers Distance) method. Classification regression using 10-
NN proved to be slightly less precise but significantly faster,
and the same conclusion can be made for Random Ferns
that found their best performance by taking voxel values as
features and compared the 3D patches for similarity. Average
error on position prediction calculated on 50 random samples
was lower than the one obtained using 10-NN. Neverthe-
less, Random Ferns classification was significantly constrained
with reducing the feature number for the computational time



purposes, therefore its performance can certainly improve.
Future work can include clustering of the coordinates into
crisp classes so that further evaluation of position prediction
performance can be estimated in a more appropriate way. 10-
NN regression can be improved by using weighted average
of the nearest neighbors or some additional features. Random
Ferns regression can perform better with more elegant way
of reducing features it uses. Finally, local feature extraction
methods such as 3D SIFT or 3D LBP can be used.
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