
University of Ljubljana

Faculty of computer and information science

Matic Horvat

An Approach to Order Picking

Optimization in Warehouses

DIPLOMA THESIS

UNDERGRADUATE UNIVERSITY STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Mentor: Acad. Prof. Ivan Bratko, PhD

Ljubljana 2012

Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Matic Horvat

Pristop k optimizaciji zbiranja blaga

za odpremo v skladǐsčih

DIPLOMSKO DELO

UNIVERZITETNI ŠTUDIJSKI PROGRAM PRVE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: akad. prof. dr. Ivan Bratko

Ljubljana 2012

Rezultati diplomskega dela so intelektualna lastnina avtorja in Fakultete za ra-

čunalnǐstvo in informatiko Univerze v Ljubljani. Za objavljanje ali izkorǐsčanje

rezultatov diplomskega dela je potrebno pisno soglasje avtorja, Fakultete za raču-

nalnǐstvo in informatiko ter mentorja.

Besedilo je oblikovano z urejevalnikom besedil LATEX.

Izjava o avtorstvu diplomskega dela

Spodaj podpisani Matic Horvat, z vpisno številko 63090032, sem avtor

diplomskega dela z naslovom:

Pristop k optimizaciji zbiranja blaga za odpremo v skladǐsčih

S svojim podpisom zagotavljam, da:

• sem diplomsko delo izdelal samostojno pod mentorstvom akad. prof.

dr. Ivana Bratka,

• so elektronska oblika diplomskega dela, naslov (slov., angl.), povzetek

(slov., angl.) ter ključne besede (slov., angl.) identični s tiskano obliko

diplomskega dela

• soglašam z javno objavo elektronske oblike diplomskega dela v zbirki

”Dela FRI”.

V Ljubljani, dne 11. julija 2012 Podpis avtorja:

Za mentorstvo, vodenje in pomoč se zahvaljujem dr. Ivanu Bratku.

Posebej se želim zahvaliti dr. Mateju Guidu, ki me je, skorajda dobesedno,

naučil pisati.

Iskrena zahvala gre dr. Aleksandru Sadikovu, ki je bil tudi ob nemogočih

urah pripravljen prediskutirati mnoge zagate. Pogovori ob tabli bodo ostali

najljubši del izdelovanja diplomske naloge.

Za razvoj in neprestano izbolǰsevanje programske opreme za simuliranje

skladǐsč ter za potrpežljivost pri mnogih vprašanjih, ko se je zataknilo pri

programiranju, se zahvaljujem Nejcu Škofiču.

Zahvaljujem se tudi podjetju 3R.TIM in Dejanu Reichmannu za odpiranje

okna v svet logistike.

Na koncu se želim zahvaliti vsem domačim za podporo in razumevanje skozi

študijska leta. Hvala.

Contents

Razširjeni povzetek

Abstract

1 Introduction 1

2 Order picking and existing solutions 3

2.1 Warehousing operations . 4

2.2 Order picking . 4

2.3 Order picking systems . 5

2.4 Order picking optimization . 7

3 Our approach 17

3.1 Overview of our approach . 18

3.2 Order batching . 18

3.3 Item selection . 24

3.4 Item reselection . 29

3.5 Storage policy . 30

4 Experimental setup 35

4.1 Warehouse layout . 37

4.2 Warehouse inventory . 37

4.3 Customer orders . 39

CONTENTS

5 Results 41

5.1 Warehouse order level . 41

5.2 Feasibility . 44

5.3 Item reselection . 45

5.4 Product clustering . 47

6 Discussion 49

7 Conclusions 53

Bibliography 55

List of Figures

2.1 Classification of order picking systems 6

2.2 Typical order picker’s time distribution 9

2.3 Order picking optimization approaches 10

2.4 An example of routing strategies 14

3.1 FCFS algorithm pseudocode 19

3.2 Seed algorithm pseudocode . 20

3.3 An example of seed algorithm heuristics 22

3.4 Savings algorithm pseudocode 23

3.5 RTA* pseudocode . 26

3.6 Hierarchical clustering pseudocode 28

3.7 Storage algorithm pseudocode 32

4.1 An example of warehouse layout 38

5.1 Order level results . 42

5.2 Sectors per product type results 43

5.3 Picking tour reduction results 44

5.4 Feasibility results . 45

5.5 Item reselection picking tour length results 46

5.6 Item reselection computation time results 46

5.7 Product clustering picking tour length results 47

5.8 Product clustering computation time results 48

Razširjeni povzetek

Pobiranje naročil je ena izmed vsakodnevnih operacij v skladǐsčih, katere na-

men je zbiranje produktov iz skladǐsčnih lokacij za izpolnitev naročil strank.

Po mnogih ocenah operacija pobiranja naročil v povprečju predstavlja več

kot 50% vseh operativnih stroškov vodenja skladǐsča. Glavni vzrok za to

je pogosto zaposlovanje človeških pobiralcev, saj avtomatiziranje pobiranja

naročil zahteva velike investicije. Pobiranje naročil v zadnjih letih med stroko

zato postaja vse bolj privlačno področje za izbolǰsevanje produktivnosti v

skladǐsčih.

Nizkonivojski sistemi pobiralec-k-produktom predstavljajo klasični način

pobiranja naročil v skladǐsčih. Pobiralec naročil se namreč sprehaja ali vozi

po skladǐsču s pobiralno napravo, ki je pogosto neke vrste voziček ali vo-

zilo s prostorom za shranjevanje produktov, ter na njej zbira produkte, ki

jih je potrebno pobrati, da izpolni naročila strank. Tak tip pobiralnih sis-

temov predstavlja več kot 80% vseh pobiralnih sistemov v Zahodni Evropi.

Kljub njihovi razširjenosti pa so pogosto zapostavljeni s strani akademskih

raziskovalcev, ki večji poudarek dajejo optimizaciji drugih tipov pobiralnih

sistemov. V tem diplomskem delu se osredotočimo na optimizacijo v nizko-

nivojskih sistemih pobiralec-k-produktom.

Optimizacija pobiranja naročil v skladǐsčih po ugotovitvah raziskovalcev

omogoča pomembne prihranke pri stroških dela in zaradi kraǰsih časov do-

stave izbolǰsa kvaliteto storitev za stranke. Pri optimizaciji se osredotočamo

na zmanǰsanje celotnega časa potrebnega za pobiranje naročil. Delovni čas

pobiralcev naročil je sestavljen iz večih podnalog, ki so: premikanje po

LIST OF FIGURES

skladǐsču, iskanje produkta, pobiranje produkta in priprava. Čas, ki ga

pobiralec porabi za iskanje in pobiranja, se pogosto smatra za konstanten,

medtem ko je čas priprave zanemarljiv. Na drugi strani čas premikanja pred-

stavlja 50% celotnega delovnega časa pobiralca naročil. Če predpostavimo,

da se pobiralci gibljejo s konstantno hitrostjo, cilj optimizacije postane ce-

lotna prepotovana razdalja, ki jo pobiralci naročil prepotujejo, da izpolnijo

vsa naročila strank.

K optimizaciji pobiranja naročil je mogoče pristopiti s spreminjanjem

večih medsebojno odvisnih taktik. Med pogosto optimiziranimi taktikami

so: taktika uskladǐsčevanja, taktika združevanja naročil in taktika usmerja-

nja pobiralcev naročil. Pri načrtovanju novega skladǐsča je pomembna tudi

optimizacija ureditve skladǐsča. S slednjo se v tem delu ne bomo ukvarjali.

Taktika uskladǐsčevanja ureja shranjevanje prispelih produktov v skla-

dǐsčne lokacije. Namensko uskladǐsčevanje ohranja eno ali več sosednjih

skladǐsčnih lokacij za shranjevanje enega tipa produkta. Na drugi strani

naključno uskladǐsčevanje vsakemu prihajajočemu tipu produkta dodeli na-

ključno prazno skladǐsčno lokacijo.

Taktika združevanja naročil ureja preoblikovanje naročil strank v seznam

pobiranja. Seznam pobiranja je seznam produktov, ki jih pobiralec zbere v

enem obhodu po skladǐsču, preden se vrne na izhodǐsčno mesto in jih zloži s

pobiralne naprave. Pobiranje produktov enega naročila stranke v večih ob-

hodih po skladǐsču pogosto ni dovoljeno, saj povzroči dodatne nesprejemljive

stroške sortiranja. Pri taktiki posameznega pobiranja naročil pobiralec hkrati

zbira produkte le enega naročila stranke. Pri taktiki množičnega pobiranja

naročil pobiralec hkrati zbira produkte večih naročil strank. Slednji način po-

biranja naročil je mogoč, ko je velikost naročil strank majhna v primerjavi s

kapaciteto pobiralne naprave. Množično pobiranje naročil povzroči nov opti-

mizacijski problem razvrščanja naročil v skupine, ki jih pobiralci obravnavajo

hkrati. Ker gre za težak problem, se ga pogosto rešuje s pomočjo hevrističnih

metod. Te lahko razdelimo v tri glavne pristope: algoritme osnovane na

prednostnih pravilih, semenske algoritme in algoritme s prihranki. Nekateri

LIST OF FIGURES

raziskovalci so se lotili reševanja tega problema z uporabo metahevristik, kot

sta lokalno preiskovanje in populacijske metode.

Taktika usmerjanja pobiralcev ureja vrstni red, v katerem pobiralci pobi-

rajo produkte s seznama pobiranja, na način, da je prepotovana razdalja čim

kraǰsa. Pri individualnem usmerjanju je vsak seznam pobiranja optimiziran

posamezno. Za določene ureditve skladǐsč obstajajo optimalni algoritmi za

rešitev tega problema. Pogosteje se za reševanje uporabljajo hevristike, saj so

optimalni algoritmi neprilagodljivi različnim ureditvam skladǐsč ter pogosto

uredijo seznam pobiranja na način, ki se pobiralcem zdi kompleksen in ne-

logičen. Med hevristikami se najpogosteje uporablja standardizirano usmer-

janje z uporabo usmerjevalnih strategij. Mednje sodijo: vrnitvena strategija,

strategija S-oblike in strategija največje vrzeli. Eksperimentalne raziskave so

pokazale, da se strategija največje vrzeli najbolj približa optimalni rešitvi (v

povprečju je 9-10% slabša). Ta strategija maksimizira neprehojeno razdaljo

v prehodih skladǐsča.

Naštete taktike so medsebojno odvisne in le njihova hkratna rešitev bi

vodila k globalno optimalni rešitvi problema optimizacije pobiranja naročil.

Vendar njihova hkratna optimizacija v enem modelu predstavlja neobvladljiv

problem. Običajno se raziskovalci osredotočijo na eno ali dve izmed naštetih

taktik hkrati, medtem ko se v praksi o taktikah odloča zaporedno.

V tem diplomskem delu smo raziskali medsebojni vpliv taktike uskladi-

ščevanja, specifično različice naključnega uskladǐsčevanja, in treh pristopov

k reševanju problema razvrščanja naročil v skupine. Vendar je naključno

uskladǐsčevanje vpeljalo nov problem izbire produkta, saj je produkt istega

tipa shranjen na večih lokacijah po skladǐsču. Zato smo pripravili običajen

pristop k optimizaciji pobiranja naročil in ga razširili z novim korakom izbire

produktov, ki smo ga rešili z uporabo algoritma RTA*.

Celoten pristop optimizacije pobiranja naročil je sestavljen iz večih za-

porednih korakov. Sprva z uporabo algoritma RTA* izberemo specifične

produkte v skladǐsču, ki jih bodo pobiralci zbrali. Nato razvrstimo naročila

strank v skupine, ki jih pobiralci naročil obravnavajo hkrati. Na koncu z

LIST OF FIGURES

uporabo strategije največje vrzeli določimo vrstni red pobiranja produktov

znotraj ene skupine naročil strank.

Za rešitev problema izbire produkta smo uporabili hevristični preisko-

valni algoritem RTA*. Ker preiskovalni prostor raste eksponentno z veliko-

stjo skladǐsča in naročil, smo dodatno razvili metodo za zmanǰsanje preisko-

valnega prostora z uporabo hierarhičnega razvrščanja produktov. Problem

izbire produkta je v praksi najpogosteje rešen z uporabo principa FIFO,

kjer je izbran produkt, ki je najdlje v skladǐsču. Izbira produktov po dru-

gih principih lahko privede do staranja inventarja skladǐsča in slabše porabe

prostora. Čeprav se s tem problem nismo neposredno ukvarjali v tem di-

plomskem delu, pa RTA* omogoča uporabo kombinirane hevristike, ki bi

upoštevala tako bližino produktov kot tudi njihovo starost.

Za rešitev problema razvrščanja naročil v skupine smo uporabili tri algo-

ritme kot predstavnike treh pristopov k reševanju tega problema. Algoritem

FCFS naročila razvršča v skupine glede na vrstni red, v katerem so bila nare-

jena, kar najpogosteje pomeni naključni vrstni red. Ta algoritem se pogosto

uporablja kot osnovni algoritem, s katerim se primerjajo napredneǰsi pristopi.

Dodatno smo uporabili dva konkurenčna algoritma, semenski algoritem in al-

goritem s prihranki, ki temeljita na napredneǰsih hevristikah, ki upoštevajo

razdalje med produkti v skladǐsču.

Uporaba taktike namenskega uskladǐsčevanja povzroči popolnoma ure-

jeno skladǐsče, saj se vsak tip produkta nahaja na eni sami lokaciji v skladǐsču

ali na večih sosednih lokacijah. Uporaba taktike naključnega uskladǐsčevanja

povzroči popolnoma neurejeno skladǐsče, saj se produkti istega tipa nahajajo

v večih skupinah po vsem skladǐsču. Taktike uskladǐsčevanja nismo modeli-

rali eksplicitno, saj bi to zahtevalo simuliranje prihajanja novih produktov v

skladǐsče. Namesto tega smo oblikovali algoritem, ki prazno skladǐsče napolni

z izdelki po vzoru naključnega in namenskega uskladǐsčevanja. Algoritem na-

mreč s parametrom omogoča upravljanje urejenosti skladǐsča, ki se razteza

od popolnoma urejenega do popolnoma neurejenega.

Naš pristop smo ovrednotili z eksperimenti v simuliranem okolju skladǐsča.

LIST OF FIGURES

Eksperimente smo izvedli v treh skladǐsčih različnih velikosti. Za vsako izmed

skladǐsč smo naključno zgradili 50 množic naročil strank, katere smo upora-

bili za ocenjevanje različnih vidikov našega pristopa k optimizaciji pobiranja

naročil. V prvi vrsti smo želeli ugotoviti odnos med urejenostjo skladǐsča in

skupno dolžino obhodov po skladǐsčih. Dodatno nas je zanimala izvedljivost

našega pristopa pri naraščujoči velikosti skladǐsč in števila naročil.

Rezultati eksperimentov so pokazali, da ima nizek nivo urejenosti skladǐsča

za posledico tudi do 14% zmanǰsanje dolžin obhodov pobiralcev po skladǐsču

v primerjavi z visokim nivojem urejenosti. Tako zmanǰsanje je primerljivo

z zmanǰsanjem doseženim z uporabo semenskega algoritma namesto osnov-

nega algoritma FCFS. Eksperimenti so prav tako pokazali, da se naš pristop

dobro obnese pri velikih skladǐsčih in večjem številu naročil.

Naše rešitve problema izbire produkta na žalost nismo mogli eksperimen-

talno primerjati z drugimi pristopi iz literature, saj je bil predlagan le en pri-

stop reševanja tega problema, ki ni združljiv z ostalimi deli našega pristopa.

Na drugi strani bi bila primerjava z de facto pristopom FIFO nepravična,

saj pristopa optimizirata dva različna cilja: dolžino prehojene poti in starost

skladǐsča. Taka primerjava zahteva simulacijo skladǐsčnih operacij v dalǰsem

časovnem obdobju in merjenje potencialnega staranja inventorija skladǐsča.

V tem diplomskem delu se takih simulacij nismo lotili, a predstavljajo zani-

mivo področje za nadaljne delo.

Ključne besede

Skladǐsče, Pobiranje naročil, Optimizacija

Abstract

The conventional approach to order picking optimization divides the process

in three main decision areas: storage policy, order consolidation policy, and

routing policy. In practice, we encountered variants of randomized storage in

warehouses that range from completely ordered to completely unordered. We

investigated the effect of the order level of the warehouse on the picking tour

length. An additional problem encountered in warehouses with randomized

storage that is not addressed by the conventional methods of order picking

optimization is item selection. The item selection problem is concerned with

selecting a single product to pick from multiple products throughout the

warehouse so as to satisfy a customer order. We extended the conventional

approach to order picking optimization by proposing a solution to the item

selection problem using RTA* algorithm. Alongside established solutions

to the order batching and picker routing problems, we integrated this into

a complete sequential approach to order picking optimization. We evalu-

ated our approach by experiments in simulated warehouse environment. We

demonstrated that low order level of the warehouse is to be preferred com-

pared to high order level as it results in shorter picking tours. Additionally,

we have shown that our approach scales well with increasing warehouse size

and number of orders.

Keywords

Warehouse, Order picking, Optimization

Chapter 1

Introduction

Order picking is a warehousing operation that deals with picking products

from storage locations in order to satisfy customer orders. It has been es-

timated that order picking accounts for up to 50% of the total warehouse

operating costs [1]. This is in large part due to the fact that order pick-

ing still often requires involvement of human order pickers, as automating

order picking systems necessitates large investments [2, 3]. Because of this,

order picking has in recent years become an area of increased interest among

warehouse professionals for improving productivity in warehouses [2].

The conventional approach to order picking optimization divides the pro-

cess in three main decision areas: storage policy, order consolidation policy,

and routing policy. Although they are strongly interdependent and only a

simultaneous solution to all of them could lead to a global optimal solution to

order picking optimization problem [4], inclusion of all decisions in one model

is never done in practice because it is computationally intractable [2]. In-

stead, researchers focus on one or two of these decision areas simultaneously,

while in practice decisions are made sequentially [2].

In this thesis, we investigate the interaction between storage policy, specif-

ically a variant of randomized storage, and three different approaches to

solving order batching problem with a fixed routing strategy. However, ran-

domized storage introduces a new problem as the same type of product is

1

2 CHAPTER 1. INTRODUCTION

stored at multiple locations in the warehouse. A specific product to be picked

can be chosen from any of these locations. We refer to this as the item se-

lection problem and propose a sequential solution using the RTA* algorithm.

We implement the optimization approach and evaluate it with simulation

experiments.

We demonstrate that low order level of the warehouse results in up to

14% shorter picking tours compared to high order level. This is a significant

reduction in picking tour lengths, which, surprisingly, hasn’t been discussed

in the research literature. The second main contribution of this thesis is

highlighting the problem of item selection, which has been a subject of a

single optimization attempt so far, and proposing a solution to solving it

using heuristic search.

The remainder of this thesis is organized as follows. In the next chapter

we introduce the domain of warehouses and order picking, and highlight

the optimization problem we are trying to solve. In Chapter 3, we explain

our approach to optimizing the order picking. In Chapter 4, we give an

overview of the experiments used to evaluate our approach. The results of

the experiments are presented in Chapter 5. We discuss the implications of

the results in Chapter 6 and conclude the thesis with Chapter 7.

Chapter 2

Order picking and existing

solutions

”Warehousing is an integral part of every logistics system” [5, p266]. It forms

a link between producers and customers to ensure constant and timely deliv-

ery of products. The main purpose of warehousing is storage and buffering

of products, ranging from raw materials and parts, to finished goods. Ware-

housing can be used at any point in the supply chain: at producer (e.g.

factory warehouse), at customer (e.g. shopping centre warehouse), and at

any point in between [5].

The term ’warehouse’ therefore refers to a facility where the main function

is storage and buffering of products. Instead of ’warehouse’ other terms are

sometimes used. While they are similar they can not be used interchangeably

when defining their main functions. We use the term ’distribution center’

(DC) when the emphasis is moved from storage to distribution of predom-

inantly high-demand products. When storage of products is of lesser or no

importance the terms ’transshipment’, ’cross-dock’, and ’platform’ center are

used. In these facilities products are rarely stored for a long period of time

and are usually moved directly from receiving to shipping dock [5, 2].

As our focus is order picking from storage, we will use the term ’ware-

house’ throughout the thesis.

3

4 CHAPTER 2. ORDER PICKING AND EXISTING SOLUTIONS

The remainder of this chapter is organized as follows. In Section 2.1 we

briefly describe the main warehousing operations. In Section 2.2 we focus on

order picking operation. We continue with the description of order picking

systems in Section 2.3, and finish the chapter with Section 2.4 dealing with

order picking optimization.

2.1 Warehousing operations

Warehousing operations can be divided into several functions [5, 2], mainly:

• Receiving, which consists of unloading of products from transportation

vehicles to receiving docks, inspection of products for deficiencies or

missing products, and updating warehouse inventory records to reflect

changes,

• Transfer or put away, which includes moving products from receiving

dock to assigned storage locations, shipping dock or other areas in the

warehouse, and moving products between these areas,

• Order picking, which consists of collecting required quantities of speci-

fied products from storage locations in order to satisfy customer orders,

• Shipping, which includes loading products onto transportation vehi-

cles, inspection of products to be shipped, and updating warehouse

inventory records. It can additionally include sorting and packaging of

products.

2.2 Order picking

Order picking is based on customer orders. A customer order consists of

order lines, each line specifying the product and required quantity. Order

picking is therefore a warehouse operation that satisfies customer orders by

picking the required products from storage locations and bringing them to an

2.3. ORDER PICKING SYSTEMS 5

area dedicated for collecting the assembled customer orders, usually referred

to as a depot [6, 3].

It has been estimated that order picking accounts for up to 50% of the

total warehouse operating costs [1]. This is in large part due to the fact that

order picking often still requires the involvement of human order pickers, as

automating order picking systems necessitates large investments [2, 3]. Be-

cause of this, order picking has in recent years become an area of increased

interest among warehouse professionals for improving productivity in ware-

houses [2].

2.3 Order picking systems

Order picking can be performed in a variety of high-level approaches often

referred to as order picking systems (OPS). According to Dallari et al. [7]

their design depends on several warehousing elements, ranging from products

(e.g. number, size, value), customer orders (e.g. number, size), to design and

layout of warehouse areas.

In this thesis, we use the classification of order picking systems proposed

by Dallari et al. [7]. Their classification is based on four decisions made

when designing the order picking systems: (1) who will pick products from

storage locations (i.e. humans or machines), (2) who will move in the picking

area (i.e. pickers or products), (3) are conveyors used to transport picked

products, and (4) what is the picking strategy. The resulting classification

of order picking systems is shown in Figure 2.1.

We will describe the four OPS in order of increasing level of automation

while omitting the description of completely automated picking as it is rarely

used in practice.

Picker-to-parts system involves human pickers that move along the

aisles picking products on foot using carts or riding on specialized vehicles.

Pickers can pick a single order at a time or a batch of multiple orders. These

OPS are further divided in low-level picker-to-parts systems, in which prod-

6 CHAPTER 2. ORDER PICKING AND EXISTING SOLUTIONS

Figure 2.1: Classification of order picking systems (taken from Dallari et al.

[7]).

ucts are directly accessible from warehouse floor, and high-level picker-to-

parts systems (also referred to as man-on-board systems), where a lifting

truck or a crane is needed to pick products from high storage racks [7].

Pick-to-box system divides the picking area in multiple zones each as-

signed to one or more pickers. Each picker only picks the part of the order

that is in his assigned zone. An order can be picked sequentially, zone after

zone, or simultaneously in all zones. The picking area zones can be connected

by a conveyor belt, which carries the boxes of partially or fully completed or-

ders. The main benefits of pick-to-box systems compared to picker-to-parts

systems are the reduction of travel time of pickers as they are confined to a

smaller area, and the resulting reduction of traffic congestion. It also enables

pickers to become familiar with their area and therefore reducing search time

and consequently enabling faster retrieval of products from storage locations

[2, 7].

Pick-and-sort system no longer requires an order to be picked in its

2.4. ORDER PICKING OPTIMIZATION 7

entirety in one picker tour. Instead, products are picked independently of

orders and placed on a conveyor which takes them to a sorting area, where an

automated sorter assembles individual products into customer orders. As the

picking locations are visited less frequently, this results in a reduction in travel

time and increase in productivity. However, implementing an automated

sorter requires a large investment [7].

Parts-to-picker system uses automated devices to retrieve bins or pallets

from storage aisles to pick locations, where pickers select the required number

of products and the rest are returned to storage by an automated device.

Types of automated devices include carousels, modular vertical lift modules,

mini-loads, and automated storage and retrieval systems (AS/RS). As there

is no need for pickers to move through picking area, use of such systems

results in reduced order picking time [2, 7]

2.4 Order picking optimization

In this thesis, we concentrate on optimization of low-level picker-to-parts

systems. Picker-to-parts systems are the most commonly encountered OPS

in practice, with low-level order picking systems representing more than 80%

of all order picking systems in Western Europe. Despite their prevalence,

they are often neglected by academic researchers, who put more emphasis on

optimization of high-level picker-to-parts systems and AS/RS [2].

Optimizing order picking is reported to result in significant savings in

labour costs. In the short term, it reduces the need for overtime and em-

ployment of temporary staff, while in the long term, it provides an option for

decreasing the number of permanent staff. Additionally, customer service is

improved due to shorter delivery times [3, 4].

Before proceeding with discussion of order picking optimization, we need

to clarify some common terms used in low-level picker-to-parts systems:

• A warehouse employee that is tasked with order picking is referred to

as order picker or picker.

8 CHAPTER 2. ORDER PICKING AND EXISTING SOLUTIONS

• The order picker uses a picking device to collect products. The picking

devices vary between warehouses, but are usually a form of a cart or a

motorized vehicle with storage capacity.

• A pick list is an ordered list of products to be picked in specified quan-

tities. A pick list should not be confused with a customer order. The

difference is that a pick list contains products with assigned storage

locations in the warehouse, whereas customer order does not.

• A picking tour is the path that the order picker traverses to fulfil a

single pick list. It starts at the depot with an empty picking device.

The products are picked and placed on the picking device according to

the pick list order. When the pick list is completed, the order picker

returns to the depot to unload the picking device. The number of

products that can be picked in a single picking tour and therefore the

number of products specified on the pick list is limited by the capacity

of the picking device.

In low-level picker-to-parts systems splitting of customer order between

multiple pick lists is usually not permitted, since ”it would result in an ad-

ditional, non-acceptable sorting effort” [3].

Order picking optimization focuses on reducing the total order picking

time [4]. The time of a single picking tour is comprised of [8, 3]:

• Travel time between pick locations, and between pick locations and the

depot,

• Search time for products after arriving at the pick location,

• Pick time for picking products from storage locations and placing them

on a picking device,

• Set-up time for administrative tasks (e.g. inventory updating), and

emptying of picking device at the depot.

2.4. ORDER PICKING OPTIMIZATION 9

Figure 2.2: [9] Typical order picker’s time distribution.

Figure 2.2 shows the typical distribution of order picker’s time.

Travelling is the most time consuming subtask of order picking. Pick and

search times are constant regardless of picking tour composition, while set-

up time is most often neglectable [3]. Therefore, we are left with travel time

as the optimization objective. However, we can assume that order pickers

travel at constant speed, which results in optimization of total travel distance

[10, 3].

There are several interdependent policies that need to be considered when

optimizing order picking. According to Wäscher [4] these are primarily: stor-

age policy, order consolidation policy, and routing policy. When designing

a new warehouse, layout optimization also presents an important aspect of

optimizing order picking. However, as we focus on order picking optimization

in existing warehouses, we will not discuss layout optimization. Figure 2.3

shows an overview of order picking approaches.

2.4.1 Storage policy

Storage policy is concerned with assigning products to storage locations when

new products arrive in the warehouse.

10 CHAPTER 2. ORDER PICKING AND EXISTING SOLUTIONS

Figure 2.3: Order picking optimization approaches. The methods and poli-

cies displayed in bold are presented in the following sections.

Dedicated storage policy maintains a single storage location (or a number

of adjacent locations) for each product type over a relatively long period of

time [4]. Dedicated storage policy helps pickers become familiar with ware-

house inventory locations and can over time result in reductions of order

picking time [2, 4]. However, the downside is the low warehouse space uti-

lization as storage locations are reserved even though they are not currently

used [2].

Randomized storage policy assigns a random empty location to every

type of incoming product. This results in products of the same type being

spread throughout the warehouse [4]. Randomized storage policy has a high

space utilization [2]. However, in de Koster et al. [2] the authors argue that

randomized storage is only possible in a computer-guided warehouse.

Closest open location storage policy is derived from randomized storage

if the order pickers are able to choose the empty location themselves [2].

2.4. ORDER PICKING OPTIMIZATION 11

2.4.2 Order consolidation policy

Order consolidation policy is concerned with transforming customer orders

to unordered picking lists.

With single order picking policy a customer order is directly transformed

into a picking list, which results in one order being picked at a time.

With order batching policy multiple orders forming a batch are picked

at the same time. Order batching is possible when order size is small com-

pared to the capacity of picking device. Order batching gives rise to order

batching problem, i.e. what orders should be picked at the same time so as

to minimize total order picking distance [4]. The problem was proven to be

NP-hard if the batches consist of more than two orders, which means it is

only possible to solve it optimally for small problem instances [10]. Usually

the problem is solved using heuristic methods. There exist three conven-

tional approaches to solving the order batching problem. We describe these

approaches below. Additionally, metaheuristics, such as local search, tabu

search, and population based approaches have been used to solve the order

batching problem.

Priority Rule-Based algorithms consist of two phases. In the first

phase, priority is assigned to every customer order. In the second phase,

customer orders are sequentially assigned to batches in the decreasing order

of priority while ensuring the capacity of the batch does not exceed the

capacity of the picking device. A specific batch for a customer order can be

chosen according to Next-Fit, First-Fit, or Best-Fit rule. The priority of a

customer order can be determined in a variety of approaches. However, the

most straightforward one is the First-Come-First-Served (FCFS) rule, which

assigns higher priority to the customer orders that arrived earlier. In most

situations, this results in a random sequence of customer orders. However,

the results obtained with FCFS rule are commonly used as a baseline solution

with which other order batching heuristics are compared with [3].

Seed algorithms construct batches sequentially. A batch is constructed

in two phases. In the first phase, a seed order is chosen according to the seed

12 CHAPTER 2. ORDER PICKING AND EXISTING SOLUTIONS

selection rule. In the second phase, additional orders are added to the batch

according to the accompanying-order selection rule until there are no orders

left that can be added to the batch without violating the picking device

capacity constraints. Batches are constructed until all customer orders have

been assigned to a batch [3].

Accompanying-order selection rules are usually based on the ’distance’

from the seed [2]. In the second phase, we distinguish two ways of determin-

ing the seed: the seed is the first customer order that was assigned to the

batch (single mode), or the seed consists of all the customer orders that were

assigned to the batch so far (cumulative mode) [3].

There exist a large number of seed selection and accompanying-order

selection rules. Some examples of seed selection rule are: random cus-

tomer order, smallest number of picking locations, greatest number of pick-

ing locations, and smallest number of picking aisles [11]. Some examples

of accompanying-order selection rule are: random customer order, smallest

number of additional picking locations, smallest number of additional picking

aisles, and greatest number of identical picking locations [11].

Savings algorithms are based on the well-known Clarke and Wright

algorithm for the vehicle routing problem [12, 4]. The central idea of the

savings algorithms is a saving, i.e. the reduction in distance travelled if

two orders or batches are picked in the same tour compared to the combined

distance of individual tours. Customer orders are added to batches according

to the largest saving without violating the capacity constraint. The savings

are recalculated every time a customer order is added to a batch or two

batches are joined together [3].

2.4.3 Routing policy

Routing policy is concerned with ordering a pick list in a sequence that will

minimize the travel distance of an order picker.

With individual routing policy each pick list is optimized individually.

This optimization is a variant of the well-known Travelling Salesman Prob-

2.4. ORDER PICKING OPTIMIZATION 13

lem (TSP) [13]. Such problems are usually solved using approximation and

heuristic algorithms which provide suboptimal solutions. However, for some

warehouse layout configurations optimal polynomial-time algorithms exist,

most notably the algorithm proposed in Ratliff and Rosenthal [13].

In practice, optimal and heuristic approaches for individually optimizing

the length of a picking tour are not often used [3], due to the following

reasons. Firstly, the optimal algorithm presented in Ratliff and Rosenthal

[13] is complex and not easily adaptable to different warehouse layouts [8].

Secondly, the sequences produced with such algorithms are often not straight-

forward and seem illogical to order pickers, who then as a result deviate from

the calculated routes [8, 10], defeating the purpose of optimizing picking

tours. Thirdly, aisle congestion is not accounted for in a standard optimal

routing algorithm, while it is possible to avoid it using specific heuristic

methods [2].

Instead, standardized routing with various routing strategies is often used

in practice [4]. The most well known routing strategies include return strat-

egy, S-shape strategy, and largest gap strategy. An example of the aforemen-

tioned strategies is shown in Figure 2.4.

When using a return strategy the order picker visits an aisle if there are

pick locations in that aisle. He enters it from the front cross aisle and picks

the products from the pick list in that aisle. When he picks the most distant

product, he returns to the front cross aisle.

In S-shape strategy the order picker traverses an entire aisle that contains

at least one pick location. This results in the order picker alternating between

entering aisles from front and back cross aisle.

Largest gap strategy tries to maximize the distance in the aisle that is

not traversed. A gap is the distance between the start of an aisle and the

first pick location, two adjacent pick locations, and last pick location and

end of the aisle. The order picker returns to the start of the aisle at the pick

location that is part of the largest gap. If there are pick locations yet to be

visited in this aisle, he will visit them by entering the aisle from back cross

14 CHAPTER 2. ORDER PICKING AND EXISTING SOLUTIONS

Figure 2.4: An example of a picking tour constructed using different routing

strategies. Black squares represent products that need to be picked (pick

locations).

2.4. ORDER PICKING OPTIMIZATION 15

aisle later in the pick tour.

Petersen [14] compared six routing strategies, including return, S-shape,

and largest gap, with optimal routing algorithm at different warehouse lay-

outs. The results showed that the best heuristic routing strategies, largest

gap and composite, produced on average 9 to 10 percent longer picking tours

compared to the optimal algorithm.

16 CHAPTER 2. ORDER PICKING AND EXISTING SOLUTIONS

Chapter 3

Our approach

The conventional approach to optimizing order picking in low-level picker-

to-parts systems in existing warehouses has been described in Section 2.4. It

divides the process of order picking optimization in three main decision areas:

storage policy, order consolidation policy, and routing policy. Although they

are strongly interdependent and only a simultaneous solution to all of them

could lead to a global optimal solution to order picking optimization problem

[4], inclusion of all decisions in one model is not done in practice because it

is intractable [2]. Instead, researchers focus on one or two of these decision

areas simultaneously, while in practice decisions are made sequentially [2].

In this thesis, we investigate the interaction between storage policy, specif-

ically a variant of randomized storage, and three different approaches to solv-

ing order batching problem with a fixed routing strategy. However, random-

ized storage introduces a new problem as the same type of product is stored

at multiple locations in the warehouse. A specific product to be picked must

be chosen from any of these locations. We refer to this as the item selection

problem. We propose a sequential solution for solving it.

The remainder of this chapter is organized as follows. We first provide

a general overview of our solution approach in Section 3.1. In Section 3.2

we present our implementation of three algorithms used to solve the order

batching problem. In Section 3.3 we describe the item selection problem, and

17

18 CHAPTER 3. OUR APPROACH

our approach to solving it. We propose an attempt at improving the existing

picking tours with item reselection in Section 3.4. Finally, in Section 3.5 we

describe the implementation of storage policy.

3.1 Overview of our approach

The proposed approach to order picking optimization consists of several se-

quential steps. First, we use the RTA* algorithm to assign specific products

to customer orders. Then the customer orders are batched using one of the

order batching algorithms. The result of order batching is a number of pick-

ing tours. Optionally, item reselection is applied after the order batching.

Finally, picker routing orders the picking tours according to a routing policy.

For the routing policy we implemented the largest gap strategy. We base

our decision on the comparison made by Petersen [14] that was discussed in

the previous chapter. The rest of the steps in our approach are explained in

detail in the following sections.

3.2 Order batching

In the previous chapter, we described the order batching problem as choos-

ing what orders should be picked at the same time to minimize total order

picking distance [4]. We briefly described three conventional approaches to

solving it: priority rule-based algorithms, seed algorithms, and savings algo-

rithms. For our approach to the order picking optimization we implemented

a representative algorithm for each of the three approaches using specific

heuristics. In the following subsections, we present each of the three algo-

rithms we implemented in more detail, including the heuristics used where

applicable.

3.2. ORDER BATCHING 19

3.2.1 First-Come-First-Served (FCFS) algorithm

The First-Come-First-Served algorithm is an example of the priority rule-

based algorithms. It assigns the customer orders a priority based on the

order they arrived in. In most situations this results in a random sequence

of customer orders. However, the results obtained with FCFS rule are com-

monly used as a baseline solution which other order batching heuristics are

compared with [3]. For this reason we present it here in greater detail.

The pseudocode of the algorithm is shown in Figure 3.1. The algorithm

expects the list of customer orders sorted by the time of arrival as its input.

In our model, all customer orders are made at the same time, therefore the

ordering is random.

Input: order list: list of customer orders ordered by time of arrival

Output: batch list: list of batches

initialize batch list: empty list of batches;

for order in order list do

assigned = false;

for batch in batch list do

if batch size + order size <= picking device capacity then

add order to the batch;

assigned = true;

break;

end

end

if not assigned then

create a new batch and add it to batch list;

add order to the batch;

end

end

Figure 3.1: FCFS algorithm pseudocode

20 CHAPTER 3. OUR APPROACH

In the algorithm, orders are sequentially assigned to batches according to

the First-Fit rule, i.e. to the first batch (according to the order they were

opened) that provides free sufficient capacity not to violate the picking device

capacity constraint. If no such batch exists, a new batch is opened and the

order is assigned to it.

3.2.2 Seed algorithm

We discussed general properties of seed algorithms in the previous chap-

ter. Here we present our implementation of the algorithm using competitive

heuristics in greater detail. The algorithm pseudocode is shown in Figure 3.2.

Input: order list: list of customer orders

Output: batch list: list of batches

initialize batch list: empty list of batches;

while order list is not empty do

open a new batch;

select an order from order list according to seed selection rule;

add the order to the batch and remove order from order list;

while orders can be added to the batch do
select an order from order list according to accompanying-order

selection rule that does not violate capacity constraint;

add the order to the batch and remove it from order list;

end

add the batch to batch list;

end

Figure 3.2: Seed algorithm pseudocode

In the algorithm, the batches are constructed sequentially until there are

no customer orders left to be assigned to a batch. Each batch is initialized

with a seed order. The seed order is selected using a seed selection rule.

Orders are then added to the new batch according to the accompanying-order

3.2. ORDER BATCHING 21

selection rule, until there are no orders that can be added to the batch without

violating the picking device capacity constraint. The algorithm works in

cumulative mode, i.e. the batch seed is made of all customer orders added

to the batch so far.

In the previous chapter, we mentioned a few examples of seed selection

and accompanying-order selection heuristics. Ho and Tseng [11] compared

the performance and interaction between nine seed selection rules and ten

accompanying-order selection rules, majority of which are either aisle-based

or location-based rules. They found that the combination of heuristics Small-

est Number of Picking Aisles (SNPA) as seed selection rule, and Smallest

Number of Additional Picking Aisles (SNAPA) as accompanying-order selec-

tion produce the shortest picking tours. For this reason we chose them for

our implementation of the seed algorithm. We briefly describe them below.

An example of the heuristics is shown in Figure 3.3.

Smallest Number of Picking Aisles is a seed selection rule that chooses a

customer order that needs to pick products from as few aisles as possible. As

the number of aisles that need to be visited will often produce a tie, we use

the order size as the tie breaker. A customer order that visits the smallest

number of aisles and contains the largest number of products to be picked is

therefore chosen as the seed order.

Smallest Number of Additional Picking Aisles is an accompanying-order

selection rule that chooses the order that contains products to be picked in

smallest number of aisles that were not yet going to be visited by picking

products from the seed. As the algorithm works in cumulative mode, the seed

contains all orders currently in the batch. As the rule will often produce a

tie, we again use the order size as a tie breaker.

3.2.3 Savings algorithm

The general properties of savings algorithms were discussed in the previous

chapter. Here we present our implementation of the algorithm in greater

detail.

22 CHAPTER 3. OUR APPROACH

Existing customer order(s)

Order B; APA: 3,7; Number of APA: 2
Order A; APA*: 4,7; Number of APA: 2

Aisles

1 2 3 4 5 6 7 8 9

Order B; PA: 2,3,7,8; Number of PA: 4
Order A; PA*: 2,4,7; Number of PA: 3

Aisles

1 2 3 4 5 6 7 8 9

*PA = Picking Aisles
*APA = Additional Picking Aisles

Smallest Number of Picking Aisles

Smallest Number of Additional Picking Aisles

Figure 3.3: An example of the seed selection heuristic SNPA and

accompanying-order selection heuristic SNAPA.

3.2. ORDER BATCHING 23

The algorithm is based on time savings. A time saving is the reduction

in distance travelled if two orders or batches, i and j, are combined in one

batch, ij, compared to the sum of distances travelled if orders are picked

individually. Therefore, a time saving is:

sij = ti + tj − tij (3.1)

The distance travelled is calculated by ordering the picking tour according

to the largest gap strategy and computing its distance.

The algorithm pseudocode is shown in Figure 3.4.

Input: order list: list of customer orders

Output: batch list: list of batches

initialize batch list: every customer order forms its own batch;

repeat

calculate savings for every pair of batches in batch list;

create a combined batch of the pair with largest saving that does

not violate capacity constraint;

remove individual batches of the pair from batch list;

add the combined batch to the batch list
until there were no batches merged in previous iteration;

Figure 3.4: Savings algorithm pseudocode

In the algorithm, we start by constructing a number of batches each

containing one customer order. We then calculate the saving that combining

each pair of batches would result in. The combined batch with the largest

saving that does not violate the capacity constraint is then constructed and

added to the list of current batches, while the individual batches that were

joined to form the combined batch are removed from the list. The process is

repeated until no batches can be combined due to capacity limit.

24 CHAPTER 3. OUR APPROACH

3.3 Item selection

Most models of the order picking problem found in the literature today as-

sume that all stock of a particular product is stored at a single storage lo-

cation in the warehouse [15]. However, this assumption does not hold in

practice. Some products might have stock larger than the capacity of a sin-

gle storage location and must be therefore stored in multiple adjacent storage

locations. With randomized storage policy we are investigating in this thesis,

the discrepancy is even more apparent as products are intentionally stored

at random storage locations throughout the warehouse. Therefore, if a prod-

uct is available at several storage locations in the warehouse one particular

location must be chosen. This is usually solved by selecting products based

on First In First Out (FIFO) policy [16], i.e. choosing the product that first

arrived in the warehouse.

However, a FIFO policy rarely results in optimal solutions with regard

to picking tour length. Van den Berg [16] argues that choosing products

based on evaluation other than FIFO is often not acceptable as it causes

(1) inventory ageing, and (2) increased storage capacity requirements due

to several partially empty pallets of the product stored in the warehouse

at the same time. Later in this section, we propose a solution to the item

selection problem that enables evaluation of items based both on distances

and product age.

To the best of our knowledge there has been only one attempt at solv-

ing the item selection problem in the relevant literature. Daniels et al. [15]

formulate a model for simultaneously solving the item selection and picker

routing problem. They achieve this by generalizing the travelling salesman

problem, proving that the new problem formulation is NP-complete, and

proposing several extensions of TSP heuristics and a tabu search algorithm

for solving it. However, the proposed approach is incompatible with order

batching as order batching heuristics rely on product locations for determin-

ing which orders to batch together. In the proposed solution the locations of

products are unknown until after the picker routing and item selection have

3.3. ITEM SELECTION 25

been optimized, therefore preventing the use of order batching techniques.

Additionally, routing strategies presented in the previous chapter can not be

used with the proposed solution approach.

As order batching enables significant improvements in order picking times

compared to picking individual customer orders [6], we propose a sequential

solution to the item selection problem using a heuristic search algorithm

Real-time A* (RTA*). The sequential solution enables the use of modern

approaches to solving the order batching and picker routing problems. As

the search space of the RTA* grows exponentially with increasing order and

warehouse size, we additionally present a solution to reduce branching factor

and consequently the search space using hierarchical clustering.

While not present in our implementation of the RTA* algorithm, the

RTA* heuristics can be extended to include the time a product has been in

the warehouse as part of the product evaluation. By doing so, we would

address one of the concerns over using methods other than FIFO for item

selection mentioned by Van den Berg [16] - warehouse ageing. Determining

the success of such a heuristic would, however, require simulating the ware-

house operations over a long period of time to measure the possible inventory

ageing.

3.3.1 The Real-time A* algorithm

We chose the heuristic search algorithm Real-time A* to solve the item se-

lection problem sequentially, i.e. the products to be picked are chosen inde-

pendently of order batching.

With RTA* algorithm we are able to provide suboptimal solutions. With

increasing warehouse and order size it becomes computationally too expen-

sive to calculate the optimal solution in a reasonable time. RTA* is an

incomplete search method, meaning that it does not guarantee finding an

optimal solution. One of the main benefits it provides is decreased search

time which we are also able to control with the lookahead parameter.

Products are selected for one customer order at a time, which means that

26 CHAPTER 3. OUR APPROACH

the RTA* algorithm is applied to every customer order individually.

The simplified structure of RTA* is outlined in Figure 3.5. A customer

order is transformed into a list of products and their respective quantities

called the goal list. The current state is the model of the warehouse, in-

cluding the location of every product and the position of the order picker

in the warehouse. The successors of the current state are all models of the

warehouse in which the order picker has moved and picked one product.

current state s = start state;

while goal not found do

Plan: evaluate successors of s by fixed depth lookahead;

Execute: current state s = successor with minimum backed-up f;

end

Figure 3.5: RTA* pseudocode

In the planning stage the algorithm branches on every successor state in

which the order picker picks a product that reduces the goal list. The search

is recursively conducted until a fixed depth lookahead is reached.

The successor state n is evaluated using formula f(n) = g(n)+h(n), where

g(n) is the distance from the current state to n and h(n) is the heuristic

evaluation of the node n. If n is at the lookahead horizon it is evaluated

statically, otherwise the evaluation is backed-up from successor nodes of n.

The distance is measured in the Number of Additional Picking Aisles

that the order picker would have to visit in order to pick the product being

evaluated. Note that the proposed distance measure is compatible with the

accompanying-order selection heuristic for seed algorithms described in Sub-

section 3.2.2. For a single move in the search tree, the distance can either

be one or zero. The tie breaking criterion is the true distance that the or-

der picker would need to travel to pick all products currently on the picking

list with addition of the product being evaluated, and return to the depot.

The distance is calculated from the picking tour obtained using largest gap

3.3. ITEM SELECTION 27

routing strategy.

For heuristic evaluation of nodes at lookahead horizon we use a greedy

algorithm. The static evaluation of the node is therefore the Number of Ad-

ditional Picking Aisles of the remaining plan that is constructed using greedy

approach, always choosing the product with smallest number of additional

picking aisles and true travelling distance as a tie breaking criterion. This

heuristic is pessimistic, as it never underestimates the number of additional

picking aisles of the remaining plan. As shown in Sadikov and Bratko [17],

pessimistic heuristics produce better results than optimistic when used with

incomplete search methods such as RTA*.

When the planning stage is finished, the successor with the best backed-up

evaluation is chosen and a move is made as a part of the execution stage. This

move represents the algorithm choosing to pick up one particular product.

The goal is found when the list of products and respective quantities is empty,

i.e. when the customer order has been fulfilled. Usually, the RTA* algorithm

stores already visited states. In warehouse domain such storage is not needed,

as the states do not repeat themselves.

Increasing the search horizon (the lookahead parameter) increases the

amount of computation per move, but decreases the number of moves re-

quired to solve the problem [18]. However, in our formulation of the problem,

the number of moves depends solely on the number of products customer re-

quested and therefore does not change with the lookahead parameter. It is

therefore reasonable to expect that increasing the search horizon increases

the amount of computation while the length of constructed picking tour de-

creases.

3.3.2 Hierarchical clustering

However, even with limited lookahead the search space grows exponentially

with the size of the warehouse and the size of customer orders. We propose

a solution to reduce branching factor in the search tree. We use clustering

to group nearby products in clusters as part of the preprocessing and branch

28 CHAPTER 3. OUR APPROACH

only by one representative product from each cluster during plan construction

which greatly reduces the algorithm search space. This can result in longer

picking tours due to ’errors’ that accumulate because of item clustering.

We can control the size of the errors and consequently the length of the

constructed picking tours by limiting the maximum size of the clusters.

We chose hierarchical clustering algorithm for grouping products into

clusters. The reason for this is that hierarchical clustering is relatively simple

algorithm with which we can easily limit the cluster size. The downside is

high time complexity of O(n3). However, this does not affect the picking

tour construction times as it is a one-time operation.

Each product forms a separate cluster, Ci = {Xi}, Xi ∈ U ;

while there is more than one cluster do

find closest clusters Ca and Cb, d(Ca, Cb) = minu,vd(Cu, Cv);

join clusters Ca and Cb in cluster Cab = Ca ∪ Cb;

replace clusters Ca and Cb with Cab;

end

Figure 3.6: Hierarchical clustering pseudocode

The basic algorithm is given in Figure 3.6. The distance between two

products is defined as the distance that order picker has to travel to get

from one product to the other. For calculating the distance between two

clusters we used complete linkage method. The distance is computed as the

maximum distance between a pair of products, one being in the first cluster,

and the other being in the second (3.2).

dmax(Cu, Cv) = max
X,Y
{d(X, Y)|X ∈ Cu, y ∈ Cv} (3.2)

Complete linkage enables us to effectively limit the maximum size of the

cluster. This is achieved by interrupting the hierarchical clustering algorithm

when the distance between the closest clusters surpasses the specified value.

3.4. ITEM RESELECTION 29

Thus we get clusters which contain products that are at most the specified

distance apart. We will refer to this value as the cut-off parameter.

Hierarchical clustering produces clusters of the same product type. It is

applied to every product type in the warehouse, resulting in a number of

clusters for every product type in the warehouse. A cluster of products is

therefore a group of products of the same products type that are relatively

close to each other.

When presented with a customer order which requests a product, instead

of branching on every product of this type in the warehouse, we pick a random

product from every cluster of this product type and branch on these. Instead

of choosing a random product from a cluster, we could choose a product

based on FIFO policy. By doing so we would partially address the concerns

expressed by Van den Berg [16] (and discussed earlier in the thesis) regarding

warehouse ageing.

3.4 Item reselection

Item reselection is an additional attempt at improving the constructed pick-

ing tours. Specific products to be picked are selected with RTA* algorithm

based on individual customer order prior to the order batching. We attempt

to improve the products selected based on the new information about the

picking tour after the order batching was performed. The picking tour then

includes a number of customer orders instead of only one.

The algorithm for item reselection is identical to the RTA* algorithm

used to solve the item selection problem. The difference is the input to

the algorithm. Instead of a single customer order, the algorithm receives a

larger customer order consisting of all the customer orders in the batch. It is

then applied to every batch individually. Clustering to reduce the branching

factor can still be applied. The search space of the RTA* algorithm grows

exponentially with the size of customer orders. As the batches are larger than

individual customer orders the clustering of nearby products should results

30 CHAPTER 3. OUR APPROACH

in substantial reduction of computational time.

3.5 Storage policy

Storage policy is concerned with assigning products to storage locations when

new products arrive in the warehouse. In the previous chapter we described

three examples of storage policy: dedicated storage, randomized storage, and

closest open location storage.

Dedicated storage policy assigns each arriving product to a fixed storage

location (or a number of adjacent locations) that remains unchanged over a

relatively long period of time.

Randomized storage assigns each arriving product to a random empty

storage location in the warehouse.

Dedicated storage results in a completely ordered warehouse, i.e. every

product type is stored in a single storage location or a number of adjacent

storage locations. On the contrary, randomized storage results in a completely

unordered warehouse, as the products of the same type are stored throughout

the warehouse.

The randomized storage is often used in approaches studying problems

other than the storage policy (for examples see [6], [11]). However, it is rarely

modelled as a complete storage policy as that would require simulation of

incoming products over a long period of time. Instead, it is simulated by gen-

erating a randomized initial warehouse inventory that is used for simulation

experiments.

We use a similar approach of generating an initial warehouse inventory.

However, in our experience, the completely randomized initial inventory is

unrealistic compared to the warehouse inventories encountered in practice.

Products often arrive in larger quantities. Even though the storage location

assigned to them is chosen randomly, all the arriving products of the same

type are stored at the randomly chosen storage location and adjacent stor-

age locations if required. Therefore, the product of the the same type forms

3.5. STORAGE POLICY 31

clusters of individual products that are stored in different parts of the ware-

house. If we extend previous definition of ordered warehouse to the idea of

clusters, the warehouse is completely ordered if each product type is located

only in one cluster in the warehouse. On the other hand, the warehouse is

completely unordered when products of the same product type are stored in

a number of clusters throughout the warehouse.

The pseudocode of the proposed algorithm for filling an empty warehouse

is shown in Figure 3.7. It enables the control of warehouse order level using

a parameter.

The algorithm expects the list of <product type, quantity> pairs as its

input. The pair <product type, quantity> denotes the quantity of a product

type to be stored in the warehouse. We discuss the random generation of the

pairs in Chapter 4. Additionally, the algorithm requires the sector size cutoff

parameter as its input. With the parameter we are able to control the order

level of the warehouse.

The storage policy algorithm uses two important procedures. The create-

Sectors procedure employs a hierarchical clustering algorithm to construct

sectors, i.e. a group of storage locations that are relatively close to each other.

Hierarchical clustering algorithm was already presented in Subsection 3.3.2

when we discussed our solution to the item selection problem. Here, the

algorithm is employed in a similar fashion. However, instead of products

it clusters storage locations. Additionally, we used average linkage method

instead of complete linkage method for calculating the distance between two

sectors. The distance is computed as the average distance between every pair

of storage locations, one being in the first sector, and the other being in the

second (3.3):

d(Cu, Cv) =

∑
X∈Cu

∑
Y ∈Cv

d(X, Y)

|Cu||Cv|
(3.3)

The hierarchical clustering algorithm is interrupted when the average dis-

tance between the closest sectors surpasses the sector size cutoff parameter.

32 CHAPTER 3. OUR APPROACH

Input: product list: list of pairs <product type, quantity>

Input: sector size cutoff : integer

sector list = createSectors(sector size limit);

while product list is not empty do

sort product list according to decreasing quantities;

for <product type, quantity> in product list do

sec = sector from sector list with largest free capacity;

if sec free capacity < quantity then

assignStorageLocations(sec, <product type, quantity>);

<product type, quantity> = <product type, quantity - sec

free capacity>

end

else if sec free capacity == quantity then

assignStorageLocations(sec, <product type, quantity>);

remove <product type, quantity> from product list;

end

else

sec = sector selected according to Best-Fit rule;

assignStorageLocations(sec, <product type, quantity>);

remove <product type, quantity> from product list;

end

end

end

Figure 3.7: Storage algorithm pseudocode

3.5. STORAGE POLICY 33

With the parameter we are then able to control the size and the number of

sectors that make up the warehouse and consequently the order level of the

warehouse. Small sector size results in a high number of sectors existing in

the warehouse. As the products are assigned to individual sectors, the size of

the sector determines whether the products of the same type will be stored at

adjacent storage locations or spread throughout the warehouse. When sec-

tors are large enough to store all products of the same type, every product

of that type is stored in adjacent storage locations.

The second procedure is assignStorageLocations. It stores the required

number of products to the storage by choosing specific storage locations in

the sector. Additionally, the procedure updates the free capacity of the

sector.

34 CHAPTER 3. OUR APPROACH

Chapter 4

Experimental setup

We evaluated our approach to order picking optimization with experiments

using a simulated warehouse environment. With the experiments we would

like to show:

• the relation between increasing order in the warehouse and total length

of picking tours,

• the feasibility of our approach with increasing size of the warehouse

and number of customer orders,

• the effect of reselection on the length of picking tours,

• the effect of product clustering on the computation time.

The length of a picking tour is measured in meters. The order level of

the warehouse is measured in meters as the cut-off parameter used when

constructing sectors. The computation time is measured in seconds.

The experiments published in the order picking optimization literature

are not conducted in a standard experimental warehouse setting and con-

sequently vary greatly among researchers [3]. We attempt to emulate most

of the warehouse setting from prominent researchers in the area. However,

we were unable to avoid choosing some parameters to resemble warehouses

encountered in practice to the best of our knowledge.

35

36 CHAPTER 4. EXPERIMENTAL SETUP

A summary of the warehouse parameters is presented in Table 4.1. The

parameters are explained in greater detail in the following sections.

Parameter Warehouse 1 Warehouse 2 Warehouse 3

Number of storage locations 960 1600 3200

Number of racks 240 400 800

Number of aisles 7 11 21

Number of product types 30 50 100

Fill percentage 75% 75% 75%

Order size [2, 10] [2, 10] [2, 10]

Order picker capacity 24 24 24

Number of orders 30 50 100

Warehouse width 24 m 24 m 24 m

Warehouse length 26 m 42 m 82 m

Aisle width 2 m 2 m 2 m

Aisle length 20 m 20 m 20 m

Table 4.1: Parameters for the three warehouse situations.

Preliminary experiments showed that increasing the lookahead parameter

did not significantly improve the length of picking tours, while increasing the

computation time. Therefore, all of the experiments reported in this thesis

were conducted with RTA* algorithm lookahead value of one.

Preliminary experiments also showed that clustering significantly decreased

the computation time. However, as discussed in Section 3.3, cut-off values

greater than zero resulted in longer picking tours. The total computation

time of our optimization approach is short. Consequently, we did not use

clustering above the cut-off parameter of zero so as to not increase the length

of the constructed picking tours.

Clustering with a cut-off parameter of zero clusters together the products

of the same type that are stored in the same rack or in the racks on the

opposing sides of the aisle. This is because the order picker can pick them

4.1. WAREHOUSE LAYOUT 37

from the same location, effectively making the distance between them zero.

Therefore, clustering with a cut-off parameter of zero does not result in any

increase in the picking tour lengths, while the effect on computation time is

evaluated with the experiments.

4.1 Warehouse layout

In the low-level picker-to-parts warehouses used in the simulations, prod-

ucts are stored in a number of storage locations. Storage locations are of

equal size (1m×1m×0.5m). Each storage location can store one product.

The storage locations are located in a number of parallel aisles of the same

width and length. Additionally, two cross aisles are used for switching the

parallel aisles, one at the front and one at the back of the warehouse. The

described warehouse layout is often referred to as single-block layout in order

picking optimization literature and is a standard warehouse layout used for

experiments [3, 4]. The depot, where order pickers start and end the picking

tours, is located in the left corner of the front cross aisle. In the standard

layout usually there is only one storage location per rack. In our warehouse

layout we use racks with four storage locations stacked vertically. However,

the pick time is equal for each of the stacked storage locations and therefore

remains constant. An example of the described warehouse layout is shown

in Figure 4.1.

The experiments are conducted in three warehouses of increasing size.

The size is increased by adding a certain number of additional picking aisles

to the warehouse, increasing the length of the warehouse while the width

remains constant.

4.2 Warehouse inventory

The algorithm for filling an empty warehouse was described in Section 3.5.

Here we briefly describe the generation of the <product type, quantity>

38 CHAPTER 4. EXPERIMENTAL SETUP

Front cross aisle

Back cross aisle

Depot

Pa
ra
lle
l a
is
le

Ra
ck

Figure 4.1: An example of warehouse layout.

pairs.

As the warehouses in practice are rarely completely full, the warehouse

is only filled to 75% of its maximum capacity.

The number of pairs and consequently the number of product types in the

warehouse is predetermined according to the warehouse size so that the mean

quantity of the product type is the same in all warehouse sizes. The quantities

for the product types are generated according to a normal distribution with

the mean value of 24 and standard deviation of 10. If the quantity is less than

or equal to zero no products of this product type are stored in the warehouse.

This results in larger warehouses storing proportionally larger number of

product types, while the mean quantity of an individual product type does

not change. The mean value of 24 was chosen to reflect the capacity of the

picking device.

The set of pairs to be stored in the warehouse is the same for every

experiment conducted in the warehouse of the same size. By using a random

4.3. CUSTOMER ORDERS 39

seed with the storage policy algorithm presented in Section 3.5, we therefore

construct an identical warehouse state at the beginning of every simulation

conducted on the warehouse of the same size.

4.3 Customer orders

A customer order consists of a list of products and respective quantities to

be picked. The size of the customer order, i.e. the sum of all quantities

of products to be picked, is in the interval [2, 10] for all warehouse sizes.

When generating customer orders the order size is determined according to

a triangle distribution with the mean value of 6. The product types and

quantities of a customer order are generated randomly with the limitation

of the minimum and maximum order size and the actual availability of the

products in the warehouse so that the customer order can be fulfilled.

A single simulation consists of picking a set of customer orders. The

number of customer orders to be picked depends on the warehouse size. It

was chosen so that on average the set of customer orders picked 25% of the

warehouse inventory. While the number may seem large it is important to

note that every storage location contains a single item that is picked as a

whole, which may not hold true in practice.

Each data point in the experiment is evaluated on 50 sets of customer

orders. The sets of customer orders are the same for warehouses of the equal

size.

40 CHAPTER 4. EXPERIMENTAL SETUP

Chapter 5

Results

The results for each of the four experiments are presented in the following

sections. All simulations were conducted on a PC with Intel i5-2430M 2.40

GHz processor and 8 GB of memory.

5.1 Warehouse order level

With the order level experiment we wanted to show the relation between

the increasing order in the warehouse, as described in Section 3.5, and total

length of picking tours.

The experiment was conducted in the medium-sized warehouse (Ware-

house 2 in Table 4.1). We solved the order batching problem using three

different approaches: FCFS, seed algorithm, and savings algorithm. No res-

election was used, while product clustering had a cut-off parameter of 0.

The results are shown in Figure 5.1. It demonstrates the relation between

average total picking tour length and increasing order level of the warehouse.

It is evident that increasing the order level of the warehouse results in longer

picking tours.

However, unusually, the picking tour lengths reach their peak at 2.5 me-

ters and fall slightly when the order level is increased further. This is ex-

plained by the nature of the algorithm used for filling the warehouse with

41

42 CHAPTER 5. RESULTS

Figure 5.1: Average total picking tour lengths at increasing order level of

the warehouse for 3 order batching algorithms. We sometimes substitute the

term ’maximum average sector size’ for simpler ’order level’.

products. When every product type is stored inside a single sector, we defined

the warehouse as completely ordered.

This occurs exactly at order level 2.5 m, as it is evident from Figure 5.2.

The figure presents an additional measure of average number of sectors per

product type, normalized by the number of products. From order level 2.5 m

and onwards, the average number of sectors reaches its minimum, meaning

that every product is inside a single sector and warehouse is completely

ordered. Therefore, the data points with order level greater than 2.5 meters

are irrelevant to the experiment and are subject to anomalies introduced by

the warehouse filling algorithm. For this reason, the remaining experiments

presented in this chapter were conducted from the order level of 0 m to 2.5

m.

Additionally, in Figure 5.1 we can observe the behaviour of the three

order batching algorithms. As expected, the savings algorithm performs

best by consistently producing shorter picking tours. It is followed by the

5.1. WAREHOUSE ORDER LEVEL 43

Figure 5.2: Average number of sectors per product type, normalized by the

number of products, at increasing order level of the warehouse.

seed algorithm, while the FCFS, which was used as a baseline, produces the

longest picking tours. The seed algorithm on average produces approximately

14% shorter picking tours compared to FCFS, while the savings algorithms

produces approximately 26% shorter picking tours.

Figure 5.3 presents the reductions in average total picking tour length

compared to the average picking tour length in completely ordered warehouse

(at 2.5 m). As the values at 0 m and 0.5 m are almost identical we show

only values at order levels from 0.5 m to 2 m, while 2.5 m is used as the

reference point. From the figure we observe that reductions decrease with

increasing order of the warehouse. The maximum average reduction of 14.4%

is achieved using savings algorithm in completely unordered warehouse. This

reduction is comparable with the reduction achieved by using seed algorithms

instead of FCFS.

44 CHAPTER 5. RESULTS

Figure 5.3: Picking tour length reductions at increasing order level compared

to picking tour length in completely ordered warehouse for each of the three

algorithms.

5.2 Feasibility

With the feasibility experiment we wanted to show the feasibility of our

approach to the optimization of order picking with increasing size of the

warehouse and number of customer orders.

The experiment was conducted in all three warehouse situations presented

in Table 4.1. We solved the order batching problem using two competitive

approaches: seed algorithm and savings algorithm. No reselection was used,

while product clustering had a cut-off parameter of 0. The computation

time was evaluated at different order levels, consisting of 450 simulations per

warehouse - algorithm pair.

The results are shown in Figure 5.4. It shows that the computation time

increased with warehouse size and number of orders. It is also clear that

the computation time of the approach grows faster when savings algorithm

is used for solving the order batching problem. Indeed, the largest average

5.3. ITEM RESELECTION 45

Figure 5.4: Average computation time at different warehouse sizes and order

number for two competitive order batching algorithms.

computation time was measured when using the savings algorithm in the

largest of the warehouses. However, it is important to note that even in this

situation the average computation time is less than 5 seconds.

5.3 Item reselection

With the item reselection experiment we investigated the effect of reselection

on the length of picking tours and computation time. The experiment was

conducted in the medium-sized warehouse (Warehouse 2 in Table 4.1). We

solved the order batching problem using two competitive approaches: seed

algorithm and savings algorithm. Product clustering had a cut-off parameter

of 0.

The results are shown in Figures 5.5 and 5.6. Figure 5.5 demonstrates

the average total picking tour length with and without reselection for the two

algorithms. Note that the chart does not start at zero and the differences

may appear larger than they are. Despite this, it is clear that reselection does

not improve picking tour lengths. On the contrary, we observe a significant

46 CHAPTER 5. RESULTS

Figure 5.5: Average total picking tour length with and without reselection

for two competitive order batching algorithms.

increase in picking tour lengths when reselection is used with the savings

algorithm, while the difference is smaller with the seed algorithm.

Figure 5.6: Average computation time with and without reselection for two

competitive order batching algorithms.

Figure 5.6 shows the average computation time with and without res-

election for the two algorithms. It is evident that reselection significantly

increases the computation time with both algorithms. This is in large part

due to increased search space of the RTA* algorithm when it is used for

reselection of products for larger batches.

5.4. PRODUCT CLUSTERING 47

We can conclude that reselection does not provide any increase in quality

of the picking tours while increasing the computation time significantly.

5.4 Product clustering

With the clustering experiment we examined the effect of product clustering

on the computation time. We achieved this by conducting the experiment

using clustering with cut-off parameter of zero, and using no clustering at

all.

The experiment was conducted in the medium-sized warehouse (Ware-

house 2 in Table 4.1). We solved the order batching problem using savings

algorithm. No reselection was used.

Figure 5.7: Average total picking tour length with and without clustering.

The results are shown in Figures 5.7 and 5.8. From Figure 5.7 we can

observe that there is no significant difference between the length of picking

tours generated with or without the use of clustering. In contrast, using clus-

tering results in significantly less computation time to generate the picking

tours, as it is evident from Figure 5.8. This can be explained by the decrease

in the number of products to be evaluated by the RTA* during the item

selection step. It results in an important search space reduction.

48 CHAPTER 5. RESULTS

Figure 5.8: Average computation time with and without clustering.

Chapter 6

Discussion

As shown in Chapter 5, low order level of the warehouse results in up to

14% shorter picking tours compared to the high order level of the warehouse.

Despite this, we noticed from our interaction with warehousing professionals

that the warehouse managers are often hard to persuade to allow randomized

storage of products. The reason for this seems to be that with conventional

inventory tracking, the managers preferred to keep warehouses organized,

which enabled the order pickers to easily find the required products. However,

with the introduction of Warehouse Management Systems (WMS) and bar

coding of products, the warehouse inventory is always up-to-date and can be

effortlessly used to guide order pickers to correct product locations. Despite

this, the warehouse managers seem reluctant to change old habits, which is

the reason why randomized storage is not very popular.

Other storage policies that we did not investigate in this thesis may be

superior to the randomized storage. An example of such policy is class-based

storage. It assigns products to certain areas of the warehouse based on the

demand frequency, i.e fast moving items are stored closer to the depot [2].

The feasibility experiment showed that our approach scales well with

increasing size of the warehouse and number of customer orders. The size of

the largest warehouse (Warehouse 3 presented in Table 4.1) is comparable

with the largest experimental warehouses encountered in research literature.

49

50 CHAPTER 6. DISCUSSION

Even though using savings algorithm for solving order batching problem in

the largest warehouse resulted in a steep increase in computation time, the

average computation time remained below five seconds. This makes the

approach suitable for use in large warehouses in practice.

Our warehouse models assumed that only one product can be stored in a

single storage location. This assumption often doesn’t hold in practice. For

example, a box of products or a pallet containing multiple products could be

stored in a single storage location. It is often up to Warehouse Management

System to represent the various granularity levels as products to be used in

order picking optimization. However, even if each individual product is pre-

sented to our optimization approach, additional computation effort required

for picking tour construction can be alleviated using product clustering. We

observed that the quality of constructed picking tours will decrease in a lin-

ear fashion with increasing cut-off parameter. The computation time on the

other hand decreased exponentially. Therefore, the quality of the picking

tours can be traded for shorter computation time.

Unfortunately, we were unable to experimentally compare the proposed

solution to the item selection problem to other approaches. The reason for

this is that only one approach to solving it was proposed in relevant literature

and it is incompatible with our complete approach to the order picking op-

timization. On the other hand, comparing it with existing de facto solution,

the FIFO policy, would be unfair. Our approach would produce far superior

results in terms of picking tour length, while failing to account for the other

important part of the FIFO policy - warehouse ageing. The proposed algo-

rithm, however, enables the use of a combined heuristic that would account

for the time product is stored in the warehouse. Determining the success of

such a heuristic would require simulating the warehouse operations over a

long period of time to measure the possible inventory ageing. We did not

attempt to simulate such advanced warehouse environments in this thesis

and leave this as future work.

Product reselection was shown to be ineffective. It resulted in construc-

51

tion of picking tours of equal or greater length than without reselection while

significantly increasing the computation time. Additional approaches to im-

proving item reselection is an interesting topic for further work.

52 CHAPTER 6. DISCUSSION

Chapter 7

Conclusions

The conventional approach to order picking optimization divides the process

in three main decision areas: storage policy, order consolidation policy, and

routing policy.

In this thesis, we extended this approach by proposing a solution to the

item selection problem using RTA* heuristic search algorithm. The item

selection problem is concerned with selecting a single product to pick from

multiple products throughout the warehouse so as to satisfy a customer or-

der. However, the search space of the RTA* algorithm grows exponentially

with the warehouse and order size. We introduced product clustering us-

ing hierarchical clustering algorithm as a method of decreasing RTA* search

space. Alongside established solutions to the order batching and picker rout-

ing problems we integrated this into a complete sequential approach to order

picking optimization.

We evaluated our approach using experiments in simulated warehouse en-

vironment. We implemented a randomized storage algorithm that produces

a more realistic initial warehouse inventory for the simulation experiments.

It enables the control of the order level of the warehouse. We demonstrated

that low order level of the warehouse is to be preferred as it results in up to

14% shorter picking tours compared to high warehouse order level.

We showed that our approach scales well with the increasing warehouse

53

54 CHAPTER 7. CONCLUSIONS

size and number of orders, on average constructing picking tours in less than

five seconds even in large warehouses. Product clustering was shown to be an

important method for reducing the computation time in all warehouse sizes.

However, we were unable to compare the proposed item selection algo-

rithm with de facto FIFO policy as that would require simulating the ware-

house environment over a long period of time. This is an interesting topic

for future work.

Bibliography

[1] E. Frazelle, World-Class Warehousing and Material Handling. New

York: McGraw-Hill, 2001.

[2] R. de Koster, T. Le-Duc, and K. J. Roodbergen, “Design and control

of warehouse order picking: A literature review,” European Journal of

Operational Research, vol. 182, no. 2, pp. 481 – 501, 2007.

[3] S. Henn, S. Koch, and G. Wäscher, “Order batching in order pick-

ing warehouses: A survey of solution approaches,” in Warehousing in

the Global Supply Chain - Advanced Models, Tools and Applications for

Storage Systems. London: Springer-Verlag, 2012, pp. 105 – 137.

[4] G. Wäscher, “Order picking: a survey of planning problems and meth-

ods,” in Supply Chain Management and Reverse Logistics. Berlin:

Springer, 2004, pp. 324 – 370.

[5] D. M. Lambert, J. R. Stock, and L. M. Ellram, Fundamentals of Logistics

Management. Boston, MA: Irwin/McGraw-Hill, 1998.

[6] R. de Koster, E. Van der Poort, and M. Wolters, “Efficient orderbatching

methods in warehouses,” International Journal of Production Research,

vol. 37, no. 7, pp. 1479–1504, 1999.

[7] F. Dallari, G. Marchet, and M. Melacini, “Design of order picking sys-

tem,” The International Journal of Advanced Manufacturing Technol-

ogy, vol. 42, pp. 1–12, 2009.

55

56 BIBLIOGRAPHY

[8] R. de Koster, K. J. Roodbergen, and R. Van Voorden, “Reduction of

walking time in the distribution center of De Bijenkorf,” in New trends

in distribution logistics. Berlin: Springer, 1999, pp. 215–234.

[9] J. A. Tompkins, J. A. White, Y. A. Bozer, and J. Tanchoco, Facilities

Planning. New Jersey: Wiley, 2003.

[10] N. Gademann and S. Velde, “Order batching to minimize total travel

time in a parallel-aisle warehouse,” IIE Transactions, vol. 37, no. 1, pp.

63–75, 2005.

[11] Y.-C. Ho and Y.-Y. Tseng, “A study on order-batching methods of

order-picking in a distribution centre with two cross-aisles,” Interna-

tional Journal of Production Research, vol. 44, no. 17, pp. 3391–3417,

2006.

[12] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central

depot to a number of delivery points,” Operations Research, vol. 12, pp.

568–581, 1964.

[13] H. D. Ratliff and A. S. Rosenthal, “Order-picking in a rectangular ware-

house: A solvable case of the traveling salesman problem,” Operations

Research, vol. 31, pp. 507–521, 1983.

[14] C. G. Petersen, “An evaluation of order picking routeing policies,” In-

ternational Journal of Operations and Production Management, vol. 17,

pp. 1098 – 1111, 1997.

[15] R. L. Daniels, J. L. Rummel, and R. Schantz, “A model for warehouse or-

der picking,” European Journal of Operational Research, vol. 105, no. 1,

pp. 1 – 17, 1998.

[16] J. P. Van den Berg, “A literature survey on planning and control of

warehousing systems,” IIE Transactions, vol. 31, pp. 751–762, 1999.

BIBLIOGRAPHY 57

[17] A. Sadikov and I. Bratko, “Pessimistic heuristics beat optimistic ones in

real-time search,” in Proceedings of the 2006 conference on ECAI 2006:

17th European Conference on Artificial Intelligence August 29 – Septem-

ber 1, 2006, Riva del Garda, Italy. Amsterdam, The Netherlands: IOS

Press, 2006, pp. 148–152.

[18] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42,

no. 2-3, pp. 189 – 211, 1990.

	Studentska
	Horvat
	Horvat M.
	matic horvat
	matic horvat ang.

	Horvat
	Horvat
	Horvat
	Horvat
	Horvat

