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Digital signal processing algorithms often rely heavily on a large number of multiplications, which is both
time and power consuming. However, there are many practical solutions to simplify multiplication, like
truncated and logarithmic multipliers. These methods consume less time and power but introduce errors.
Nevertheless, they can be used in situations where a shorter time delay is more important than accuracy.
In digital signal processing, these conditions are often met, especially in video compression and tracking,
where integer arithmetic gives satisfactory results. This paper presents a simple and efficient multiplier
with the possibility to achieve an arbitrary accuracy through an iterative procedure, prior to achieving the
exact result. The multiplier is based on the same form of number representation as Mitchell’s algorithm,
but it uses different error correction circuits than those proposed by Mitchell. In such a way, the error
correction can be done almost in parallel (actually this is achieved through pipelining) with the basic
multiplication. The hardware solution involves adders and shifters, so it is not gate and power consum-
ing. The error summary for operands ranging from 8 bits to 16 bits indicates a very low relative error per-
centage with two iterations only. For the hardware implementation assessment, the proposed multiplier
is implemented on the Spartan 3 FPGA chip. For 16-bit operands, the time delay estimation indicates that
a multiplier with two iterations can work with a clock cycle more than 150 MHz, and with the maximum
relative error being less than 2%.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Multiplication has always been a hardware-, time- and power-
consuming arithmetic operation, especially for large-value oper-
ands. This bottleneck is even more emphasized in digital signal
processing (DSP) applications that involve a huge number of mul-
tiplications [3,6–8,12–14,18,20,22,25]. In many real-time DSP
applications, speed is the prime target and achieving this may be
done at the expense of the accuracy of the arithmetic operations.
Signal processing deals with signals distorted with the noise
caused by non-ideal sensors, quantization processes, amplifiers,
etc., as well as algorithms based on certain assumptions, so inaccu-
rate results are inevitable. For example, a frequency leakage causes
a false magnitude of the frequency bins in spectrum estimations.
The signal-compression techniques incorporate quantization after
a cosine or wavelet transform. When transform coefficients are
quantized, instead of calculating high-precision coefficients and
then truncating them, it is reasonable to spend less resources
and produce less accurate results before the quantization. In many
signal processing algorithms, which include correlation computa-
tions, the exact value of the correlation does not matter; only the
ll rights reserved.
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maximum of the correlation plays a role. Additional small errors
introduced with multipliers, as mentioned in the application de-
scribed and others, do not affect the results significantly and they
can still be acceptable in practice. Other applications that involve a
significant number of multiplications are found in cryptography
[4,5,10,11,19,26,27]. In applications where the speed of the calcu-
lation is more important than the accuracy, truncated or logarithm
multiplications seem to be suitable methods [14,21].
1.1. Integer multiplication methods

The simplest integer multiplier computes the product of two n-
bits unsigned numbers, one bit at a time. There are n multiplication
steps and each step has two parts:

1. If the least-significant bit of the multiplicator is 1, then the mul-
tiplicand is added to the product, otherwise zero is added to the
product.

2. The multiplicand is shifted left (saving the most significant bit)
and the multiplicator is shifted right, discarding the bit that was
shifted out.

A detailed implementation and description of this multiplica-
tion algorithm are given in [9]. Such an integer multiplication,
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where the least-significant bit of the multiplicator is examined, is
known as the radix-2 multiplication.

To speed up the multiplication, we can examine k lower bits of
the multiplicand in each step. Usually, the radix-4 multiplication is
used, where two least-significant bits of the multiplicand are
examined. A detailed explanation of the radix-4 multiplication
can be found in [9].

Another way to speed up the integer multiplication is to use
many adders. Such an approach typically requires a lot of space
on the chip. The well-known implementation of such a multiplier
is an array multiplier [9], where n � 2 n-bits carry-save adders
and one n-bits carry-propagate adder are used to implement the
n-bits array multiplier.

1.2. Truncated multipliers

Truncated multipliers are extensively used in digital signal pro-
cessing where the speed of the multiplication and the area- and
power-consumptions are important. However, as mentioned be-
fore, there are many applications in DSP where high accuracy is
not important. The basic idea of these techniques is to discard
some of the less significant partial products and to introduce a
compensation circuit to reduce the approximation error [13,21,23].

1.3. Logarithmic multiplication methods

Logarithmic multiplication introduces an operand conversion
from integer number system into the logarithm number system
(LNS). The multiplication of the two operands N1 and N2 is per-
formed in three phases, calculating the operand logarithms, the
addition of the operand logarithms and the calculation of the anti-
logarithm, which is equal to the multiple of the two original oper-
ands. The main advantage of this method is the substitution of the
multiplication with addition, after the conversion of the operands
into logarithms. LNS multipliers can be generally divided into
two categories, one based on methods that use lookup tables and
interpolations, and the other based on Mitchell’s algorithm (MA)
[17], although there is a lookup-table approach in some of the
MA-based methods [16]. Generally, MA-based methods sup-
pressed lookup tables due to hardware-area savings. However, this
simple idea has a significant weakness: logarithm and anti-loga-
rithm cannot be calculated exactly, so there is a need to approxi-
mate the logarithm and the antilogarithm. The binary
representation of the number N can be written as:

N ¼ 2k 1þ
Xk�1

i¼j

2i�kZi

 !
¼ 2kð1þ xÞ ð1Þ

where k is a characteristic number or the place of the most significant
bit with the value of ‘1’, Zi is a bit value at the ith position, x is the
fraction or mantissa, and j depends on the number’s precision (it is
0 for integer numbers). The logarithm with the basis 2 of N is then:

log2ðNÞ ¼ log2 2k 1þ
Xk�1

i¼j

2i�kZi

 ! !
¼ log2ð2

kð1þ xÞÞ

¼ kþ log2ð1þ xÞ ð2Þ

The expression log2(1 + x) is usually approximated; therefore, loga-
rithmic-based solutions are a trade-off between the time consump-
tion and the accuracy.

This paper presents a simple iterative solution for multiplica-
tion with the possibility to achieve an arbitrary accuracy through
an iterative procedure, based on the same form of numbers repre-
sentation as Mitchell’s algorithm. The proposed multiplication
algorithm uses different error correction formulas than MA. In such
a way, the error correction can be started with a very small delay
after the main computation and can run almost in parallel with
the main computation. This is achieved through pipelining.

The paper is organized as follows: Section 2 presents the basic
Mitchell’s algorithm and its modifications, with their advantages
and weaknesses. Section 3 describes the proposed solution. In Section
4 the hardware implementations of the proposed algorithm are
discussed. Section 5 gives a detailed error analysis and the experi-
mental evaluation of the proposed solution. Section 6 shows the
usability of the proposed multiplier and Section 7 draws a conclusion.

2. Mitchell’s algorithm based multipliers

A logarithmic number system is introduced to simplify multi-
plication, especially in cases when the accuracy requirements are
not rigorous. In LNS two operands are multiplied by finding their
logarithms, adding them, and after that looking for the antiloga-
rithm of the sum.

One of the most significant multiplication methods in LNS is
Mitchell’s algorithm [17]. An approximation of the logarithm and
the antilogarithm is essential, and it is derived from a binary rep-
resentation of the numbers (1).

The logarithm of the product is

log2ðN1 � N2Þ ¼ k1 þ k2 þ log2ð1þ x1Þ þ log2ð1þ x2Þ ð3Þ
The expression log2(1 + x) is approximated with x and the logarithm
of the two numbers’ product is expressed as the sum of their char-
acteristic numbers and mantissas:

log2ðN1 � N2Þ � k1 þ k2 þ x1 þ x2 ð4Þ
The characteristic numbers k1 and k2 represent the places of the
most significant operands’ bits with the value of ‘1’. For 16-bit num-
bers, the range for characteristic numbers is from 0 to 15. The frac-
tions x1 and x2 are in range [0,1).

The final MA approximation for the multiplication (where
Ptrue = N1 � N2) depends on the carry bit from the sum of the mantis-
sas and is given by:

PMA ¼ ðN1 � N2ÞMA ¼
2k1þk2 ð1þ x1 þ x2Þ; x1 þ x2 < 1

2k1þk2þ1ðx1 þ x2Þ; x1 þ x2 P 1

(
ð5Þ

The final approximation for the product (5) requires the comparison
of the sum of the mantissas with ‘1’.

The sum of the characteristic numbers determines the most sig-
nificant bit of the product. The sum of the mantissas is then scaled
(shifted left) by 2k1þk2 or by 2k1þk2þ1, depending on the x1 + x2. If
x1 + x2 < 1, the sum of mantissas is added to the most significant
bit of product to complete the final result. Otherwise, the product
is approximated only with the scaled sum of mantissas. The pro-
posed MA-based multiplication is given in Algorithm 1.

Algorithm 1 (Mitchell’s algorithm).

1. N1, N2: n-bits binary multiplicands, PMA = 0:2 n-bits approxi-
mate product

2. Calculate k1: leading one position of N1

3. Calculate k2: leading one position of N2

4. Calculate x1: shift N1 to the left by n � k1bits
5. Calculate x2: shift N2 to the left by n � k2 bits
6. Calculate k12 = k1 + k2

7. Calculate x12 = x1 + x2

8. IF x12 P 2n (i.e. x1 + x2 P 1):
(a) Calculate k12 = k12 + 1
(b) Decode k12 and insert x12 in that position of Papprox

ELSE:
(a) Decode k12 and insert ‘1’ in that position of Papprox

(b) Append x12 immediately after this one in Papprox

9. Approximate N1 � N2 = PMA
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A step-by-step example illustrating Mitchell’s algorithm-based
multiplication is shown in Example 1.

Example 1 (Mitchell’s multiplication of 234 and 198).

N1 ¼ 234 ¼ 11101010; N2 ¼ 198 ¼ 11000110
k1 ¼ 0111; x1 ¼ 11010100 k2 ¼ 0111; x2 ¼ 10001100
k1 þ k2 ¼ 1110
x1 þ x2 ¼ 101100000 P 28 k12 ¼ 1110þ 1 ¼ 1111
PMA ¼ 101100000000000 ¼ 45056 Ptrue ¼ 46332
Er ¼ Ptrue�PMA

Ptrue
¼ 2:754%

The MA produces a significant error percentage. The relative er-
ror increases with the number of bits with the value of ‘1’ in the
mantissas. The maximum possible relative error for MA multiplica-
tion is around 11%, and the average error is around 3.8% [15,17].
The error in MA is always positive so it can be reduced by succes-
sive multiplications. Mitchell analyzed this error and proposed the
following analytical expression for the error correction:

ðN1 � N2ÞMAC ¼
PMA þ 2k1þk2 ðx1 � x2Þ; x1 þ x2 < 1

PMA þ 2k1þk2 ð1� x1Þ � ð1� x2Þ; x1 þ x2 P 1

(
ð6Þ

where 2k1þk2 ðx1 � x2Þ and 2k1þk2 ð1� x1Þ � ð1� x2Þ are the correction
terms proposed by Mitchell. To calculate the correction terms we
have to:

1. calculate x1 � x2 or (1 � x1) � (1 � x2) depending on x1 + x2 in the
same way as described in (5),

2. scale the correction term by the factor 2k1þk2 ,
3. add the correction term to the product PMA.

The error correction can be done iteratively and the error can be
reduced to an arbitrary value. One important observation (from
Algorithm 1) is that the error correction can start only after the
term x1 + x2 is calculated.

Numerous attempts have been made to improve the MA’s accu-
racy. Hall [7], for example, derived different equations for error
correction in the logarithm and antilogarithm approximation in
four separate regions, depending on the mantissa value, reducing
the average error to 2%, but increasing the complexity of the real-
ization. Abed and Siferd [1,2] derived correction equations with
coefficients that are a power of two, reducing the error and keeping
the simplicity of the solution. Among the many methods that use
look-up tables for error correction in the MA algorithm, McLaren’s
method [16], which uses a look-up table with 64 correction coeffi-
cients calculated in dependence of the mantissas values, can be se-
lected as one that has satisfactory accuracy and complexity. A
recent approach for the MA error correction, reducing the number
of bits with the value of ‘1’ in mantissas by operand decomposition,
was presented by Mahalingam and Rangantathan [15]. They pro-
posed and implemented the Operand Decomposition-based Mitch-
ell multiplier (OD-MA). The proposed OD-MA multiplier decreases
the error percentage of the original MA multiplier by 44.7%, on
average, but almost doubles the gates and power required when
compared to the original MA multiplier.

3. Proposed solution

The proposed solution simplifies logarithm approximation
introduced in (5) and introduces an iterative algorithm with vari-
ous possibilities for achieving the multiplication error as small as
required and the possibility of achieving the exact result. By sim-
plifying the logarithm approximation introduced in (5), the correc-
tion terms could be calculated almost immediately after the
calculation of the approximate product has been started. In such
a way, the high level of parallelism can be achieved by the principle
of pipelining, thus reducing the complexity of the logic required by
(5) and increasing the speed of the multiplier with error correction
circuits.

Looking at the binary representation of the numbers in (1), we
can derive a correct expression for the multiplication:

Ptrue ¼ N1 � N2 ¼ 2k1 ð1þ x1Þ � 2k2 ð1þ x2Þ

¼ 2k1þk2 ð1þ x1 þ x2Þ þ 2k1þk2 ðx1x2Þ ð7Þ

To avoid the approximation error, we have to take into account
the next relation derived from (1):

x � 2k ¼ N � 2k ð8Þ

The combination of (7) and (8) gives:

Ptrue ¼ ðN1 � N2Þ

¼ 2ðk1þk2Þ þ ðN1 � 2k1 Þ2k2 þ ðN2 � 2k2 Þ2k1 þ ðN1 � 2k1 Þ

� ðN2 � 2k2 Þ ð9Þ

Let

Pð0Þapprox ¼ 2ðk1þk2Þ þ ðN1 � 2k1 Þ2k2 þ ðN2 � 2k2 Þ2k1 ð10Þ

be the first approximation of the product. It is evident that

Ptrue ¼ Pð0Þapprox þ ðN1 � 2k1 Þ � ðN2 � 2k2 Þ ð11Þ

The proposed method is very similar to MA. The error is caused
by ignoring the second term in (11). The term ðN1 � 2k1 Þ � ðN2 � 2k2 Þ
requires multiplication. If we discard it from (11), we have the
approximate multiplication that requires only few shift and add
operations. Computational equation to MA multiplier (5) requires
the comparison of the addend x1 + x2 with 1. Instead of ignoring
it and instead of approximating the product as proposed in (5),
we can calculate the product ðN1 � 2k1 Þ � ðN2 � 2k2 Þ in the same
way as Pð0Þapprox and repeat the procedure until exact result is ob-
tained. The evident difference between the proposed method and
the method proposed by Mitchell is that the proposed method
avoids the comparison of the addend x1 + x2 with 1. In such a
way, the error correction can start immediately after removing
the leading ones form the both input operands N1 and N2. This is
a key factor that allows further pipelining and reduces the required
gates as we will show lately. For this reason, an iterative calcula-
tion of the correction terms is proposed, as follows.

The absolute error after the first approximation is

Eð0Þ ¼ Ptrue � Pð0Þapprox ¼ ðN1 � 2k1 Þ � ðN2 � 2k2 Þ ð12Þ

Note that E(0) P 0. The two multiplicands in (12) are binary num-
bers that can be obtained simply by removing the leading ‘1’ in
the numbers N1 and N2 so we can repeat the proposed multiplica-
tion procedure with these new multiplicands

Eð0Þ ¼ Cð1Þ þ Eð1Þ ð13Þ

where C(1) is the approximate value of E(0) and E(1) is an absolute er-
ror when approximating E(0). The combination of (11) and (13) gives

Ptrue ¼ Pð0Þapprox þ Cð1Þ þ Eð1Þ ð14Þ

We can now add the approximate value of E(0) to the approximate
product Papprox as a correction term by which we decrease the error
of the approximation

Pð1Þapprox ¼ Pð0Þapprox þ Cð1Þ ð15Þ

If we repeat this multiplication procedure with i correction
terms, we can approximate the product as
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PðiÞapprox ¼ Pð0Þapprox þ Cð1Þ þ Cð2Þ þ � � � þ CðiÞ ¼ Pð0Þapprox þ
Xi

j¼1

CðjÞ ð16Þ

The procedure can be repeated, achieving an error as small as
necessary, or until at least one of the residues becomes a zero. Then
the final result is exact: Papprox = Ptrue. The number of iterations re-
quired for an exact result is equal to the number of bits with the
value of ’1’ in the operand with the smaller number of bits with
the value of ‘1’. The proposed iterative MA-based multiplication
is given in Algorithm 2.

Algorithm 2 (Iterative MA-based Algorithm with i correction
terms).

1. N1, N2: n-bits binary multiplicands, Pð0Þapprox ¼ 0 : 2n-bits first
approximation,C(i) = 0: 2n-bits i correction terms, Papprox = 0:
2n-bits product

2. Calculate k1: leading one position of N1

3. Calculate k2: leading one position of N2

4. Calculate ðN1 � 2k1 Þ2k2 : shift ðN1 � 2k1 Þ to the left by k2 bits
5. Calculate ðN2 � 2k2 Þ2k1 : shift ðN2 � 2k2 Þ to the left by k1 bits
6. Calculate k12 = k1 + k2

7. Calculate 2ðk1þk2Þ: decode k12

8. Calculate Pð0Þapprox: add 2ðk1þk2Þ, ðN1 � 2k1 Þ2k2 and ðN2 � 2k2 Þ2k1

9. Repeat i-times or until N1 = 0 or N2 = 0:
1. Initialization:

N1 ¼ 234 ¼ 11101010 N2 ¼ 198 ¼ 11000110
Ptrue ¼ 46332

2. Calculate Pð0Þapprox:

k1 ¼ 0111;N1 � 2k1 ¼ 01101010 k2 ¼ 0111;N2 � 2k2 ¼ 010001
k1 þ k2 ¼ 1110
ðN1 � 2k1 Þ2k2 ¼ 011010100000000 ðN2 � 2k2 Þ2k1 ¼ 01000110000

2ðk1þk2Þ ¼ 100000000000000
Pð0Þapprox ¼ 1001100000000000 ¼ 38912 Eð0Þr ¼ 16:014%

3. Calculate C(1) and Pð1Þapprox:

Nð1Þ1 ¼ 01101010 Nð1Þ2 ¼ 01000110

kð1Þ1 ¼ 0110;Nð1Þ1 � 2kð1Þ
1 ¼ 00101010 kð1Þ2 ¼ 0110;Nð1Þ2 � 2kð1Þ

2 ¼ 000001

kð1Þ1 þ kð1Þ2 ¼ 1100

Nð1Þ1 � 2kð1Þ1

� �
2kð1Þ2 ¼ 101010000000 Nð1Þ2 � 2kð1Þ2

� �
2kð1Þ1 ¼ 0001100000

2 kð1Þ
1
þkð1Þ

2ð Þ ¼ 1000000000000
Cð1Þ ¼ 1110000000000 ¼ 7168
Pð1Þapprox ¼ 46080 Eð1Þr ¼ 0:543%

4. Calculate C(2) and Pð2Þapprox:

Nð2Þ1 ¼ 00101010 Nð2Þ2 ¼ 00000110

kð2Þ1 ¼ 0101;Nð2Þ1 � 2kð2Þ1 ¼ 00001010 kð2Þ2 ¼ 0010;Nð2Þ2 � 2kð2Þ2 ¼ 000000

kð2Þ1 þ kð2Þ2 ¼ 0111

ðNð2Þ1 � 2kð2Þ1 Þ2kð2Þ2 ¼ 0101000 ðNð2Þ2 � 2kð2Þ2 Þ2kð2Þ1 ¼ 1000000

2 kð2Þ1 þkð2Þ2ð Þ ¼ 10000000
Cð2Þ ¼ 11101000 ¼ 232

Pð2Þapprox ¼ 46312 Eð2Þr ¼ 0:043%

5. Calculate C(3) and Pð3Þapprox:
(a) Set: N1 ¼ N1 � 2k1 , N2 ¼ N2 � 2k2

(b) Calculate k1: leading one position of N1

(c) Calculate k2: leading one position of N2

(d) Calculate ðN1 � 2k1 Þ2k2 : shift ðN1 � 2k1 Þ to the left by k2

bits
(e) Calculate ðN2 � 2k2 Þ2k1 : shift ðN2 � 2k2 Þ to the left by k1

bits
(f) Calculate k12 = k1 + k2

(g) Calculate 2ðk1þk2Þ: decode k12

(h) Calculate C(i): add 2ðk1þk2Þ, ðN1 � 2k1 Þ2k2 and ðN2 � 2k2 Þ2k1P

10. PðiÞapprox ¼ Pð0Þapprox þ iC

ðiÞ.

One of the advantages of the proposed solution is the possibility
to achieve an arbitrary accuracy by selecting the number of itera-
tions, i.e., the number of additional correction circuits, but more
important is that the calculation of the correction terms can start
immediately after removing the leading ones from the original
operands, because there is no comparison of the sum of the man-
tissas with 1. The step-by-step example illustrating the proposed
iterative algorithm multiplication with three correction terms is
shown in Example 2. With three correction terms, in Example 2
the correct result is achieved.

Example 2 (Proposed multiplication of 234 and 198 with three
correction terms).
10

0000

10

00

10



Nð3Þ1 ¼ 00001010 Nð3Þ2 ¼ 00000010

kð3Þ1 ¼ 0011;Nð3Þ1 � 2kð3Þ
1 ¼ 00000010 kð3Þ2 ¼ 0001;Nð3Þ2 � 2kð3Þ

2 ¼ 00000000

kð3Þ1 þ kð2Þ2 ¼ 0111

ðNð3Þ1 � 2kð3Þ
1 Þ2kð3Þ

2 ¼ 100 ðNð3Þ2 � 2kð3Þ
2 Þ2kð3Þ

1 ¼ 000

2 kð3Þ
1
þkð3Þ

2ð Þ ¼ 10000
Cð3Þ ¼ 10100 ¼ 20

Pð3Þapprox ¼ 46332 Eð3Þr ¼ 0:0%

Ptrue ¼ Pð3Þapprox
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4. Hardware implementation

In order to evaluate the device utilization and the performance
of the proposed multiplier, we implemented different multipliers
on the Xilinx xc3s1500-5fg676 FPGA [28]. We implemented the
16-bit Mitchell’s multiplier (MA), the 16-bit Operand-decomposi-
tion multiplier (OD-MA) and eight 16-bit proposed multipliers: a
multiplier with no correction terms, three multipliers with one,
two and three correction terms and a pipelined multiplier with
no correction terms and three pipelined multipliers with one,
two and three correction terms. The MA and OD-MA multipliers
are implemented without pipelining as described in [17,15]. The
proposed iterative multipliers are implemented as follows.
PRIORITY
ENCODER

BARREL
SHIFTER

LEFT

DECODER

N1

k1

+

LOD

2k1 +

N1 -2 k1

( N1 -2   )2 k1 k2

Fig. 1. Block diagram of a basic block o
4.1. Basic block

A basic block (BB) is the proposed multiplier with no correction
terms. The task of the basic block is to calculate one approximate
product according to (10). The 16-bit basic block is presented in
Fig. 1. This basic block consists of two leading-one detectors
(LODs), two encoders, two 32-bit barrel shifters, a decoder unit
and two 32-bit adders. Two input operands are given to the LODs
and the encoders. The implementation of the 4-bit LOD unit is pre-
sented in Fig. 2. It is implemented with multiplexers 2-to-1 and 2-
input AND gates.

The LOD units are used to remove the leading one from the
operands, which are then passed to the barrel shifters. The LOD
PRIORITY
ENCODER

BARREL
SHIFTER

LEFT

N2

k2

+

+

LOD

 k2 

N2 -2 k2

( N2 -2   )2 k2 k1

+( N1 -2   )2 k1 k2 ( N2 -2   )2 k2 k1

P (0)
approx

f the proposed iterative multiplier.



BASIC BLOCK

N1

+

BASIC BLOCK

N2

C(1)

(1)N1

(1)N2

P (1)
approx

P (0)
approx

Fig. 3. Block diagram of the proposed multiplier with error-correction circuit.

Fig. 2. 4-bit leading-one detector (LOD) circuitry.
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units also include zero detectors, which are used to detect the zero
operands. The LOD units and the zero detectors are implemented
as in [1], while the barrel shifters are used to shift the residues
according to (10). The decode unit decodes k1 + k2, i.e. it puts the
leading one in the product. The leading one and the two shifted
residues are then added to form the approximate product. The ba-
sic block is then used in subsequent implementations to imple-
ment correction circuits.
4.2. Implementation with correction circuits

To increase the accuracy of the multiplier, we implemented
multipliers with error-correction circuits (ECC). The error-correc-
tion circuit is used to calculate the term C(1) in (14) and thus
approximates the term ðN1 � 2k1 Þ � ðN2 � 2k2 Þ in (9). To implement
the proposed multipliers, we used the cascade of basic blocks. A
block diagram of the proposed logarithmic multiplier with one er-
ror-correction circuit is shown in Fig. 3. The multiplier is composed
of two basic blocks, of which the first one calculates the first
approximation of the product Pð0Þapprox , while the second one calcu-
lates the error-correction term C(1). We have implemented three
multipliers: with one error-correction circuit, with two error-cor-
rection circuits and with three error correction circuits. Each cor-
rection circuit is implemented as a basic block and is used to
approximate the product according to (16).
4.3. Pipelined implementation of the basic block

To decrease the maximum combinational delay in the basic
block, we used pipelining to implement the basic block from
Fig. 1. The pipelined implementation of the basic block is shown
in Fig. 4 and has four stages. The stage 1 calculates the two charac-
teristic numbers k1, k2 and the two residues N1 � 2k1 , N2 � 2k2 . The
residues are outputted in stage 2, which also calculates
k1 þ k2; ðN1 � 2k1 Þ � 2k2 and ðN2 � 2k2 Þ � 2k1 . The stage 3 calculates
2k1þk2 and ðN1 � 2k1 Þ � 2k2 þ ðN2 � 2k2 Þ � 2k1 . The stage 4 calculates
the approximation of the product Pð0Þapprox.

4.4. Pipelined implementation with correction circuits

As the previous implementations with correction circuits show
a substantial increase in combinational delay as each correction
circuit is added, we used pipelining to implement the multiplier
with error-correction circuits. Actually, the two basic blocks from
Fig. 3 cannot really work in parallel in real-time, because the cor-
rection block cannot start until the residues are calculated from
the first basic block. As in the pipelined implementation of the ba-
sic block the residues are available after the first stage, the correc-
tion circuit can now start to work immediately after the first stage
from the prior block is finished. The pipelined multiplier with two
correction circuits is presented in Fig. 5. The multiplier is com-
posed of the three pipelined basic blocks, of which the first one cal-
culates an approximate product Pð0Þapprox, while the second and the
third ones calculate the error-correction terms C(1) and C(2), respec-
tively. The initial latency of the pipelined multiplier with two cor-
rection circuits is 6 clock periods, but after the initial latency, the
products are calculated in each clock period. We have imple-
mented three such pipelined multipliers: with one error-correction
circuit, with two error-correction circuits and with three error-cor-
rection circuits.

4.5. Device utilization

For the design entry, we used the Xilinx ISE 11.3 – WebPACK
[29] and designed with VHDL [32]. The design was synthesized
with the Xilinx Xst Release 11.3 for Linux [30].

The device utilization (the number of slices, the number of 4-in-
put look-up tables (LUTs) and the number of input–output blocks
(IOBs)) for all ten implemented multipliers are given in Tables 1
and 2.

From Table 1 we can see that the Mitchell’s multiplier (MA) re-
quires almost 17% more logic than the basic block (BB). This is be-
cause MA requires additional logic to approximate product
according to the addend (x1 + x2). Also, it can be observed from Ta-
ble 1 that OD-MA requires slightly more logic than BB with one
ECC.

The maximum frequencies for the non-pipelined and pipelined
implementations are given in Table 3.

4.6. Power analysis

To analyze the power consumptions in all eight multipliers we
used the Xilinx XPower Analyzer 11.3 [31]. To increase the accu-
racy of the power analysis we synthesized all eight multipliers in
the Xilinx xc3s1500-5fg676 FPGA [28] and assigned all I/O to pins.
The power consumption is estimated at a clock frequency of
25 MHz with a signal (toggle) rate of 12.5%. With the Xilinx XPow-
er Analyzer we have estimated the three main power components:
quiescent power, logic and signals power and the IOBs power. Qui-
escent power (also referred to as leakage) is the power consumed
by the FPGA powered on with no signals switching [31]. Quiescent
power does not depend on the design programmed in the FPGA
and is often referred to as power consumption of a non-pro-
grammed device. Typically, post-programmed quiescent power is
equal or close to the pre-programmed quiescent power. Logic
and signals power is average power consumption from the user
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logic utilization and switching activity. Logic power is typically
under the designer’s control and depends on the design being
implemented (number of LUTs used), clock speed and signal rate.

The estimated power consumptions for the non-pipelined
implementations are given in Table 4 and for the pipelined imple-
mentations are given in Table 5.

We can see that the total power consumption increases a little
with the error-correction circuits added. This is because most of
the total power consumption is due to quiescent power and the
power consumed in I/O blocks. The power consumed in logic
and signals is almost doubled with each correction circuit added,
but represents only 1.5–6 % of the total power. Most DSP appli-
cations require a number of multipliers. For example, N-point
convolution or correlation requires more than N2 multipliers,
where N is usually greater than 256. Therefore, it is of great
importance to implement multiplier with low logic and signals
power.
5. Error analysis

The relative error after the first approximation is given by

Eð0Þr ¼
Ptrue � Pð0Þapprox

Ptrue
¼ Eð0Þ

Ptrue
¼ ðN1 � 2k1 Þ � ðN2 � 2k2 Þ

Ptrue

¼ 2ðk1þk2Þx1x2

2ðk1þk2Þð1þ x1 þ x2 þ x1x2Þ
¼ x1x2

ð1þ x1 þ x2 þ x1x2Þ
ð17Þ

where 0 6 x1, x2 < 1.
The relative error after approximating with i correction terms is

a straightforward generalization of the above equation and is given
by

EðiÞr ¼
EðiÞ

Ptrue
¼

NðiÞ1 � 2kðiÞ
1

� �
� NðiÞ2 � 2kðiÞ

2

� �
Ptrue

ð18Þ
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Table 1
Device utilization for the non-pipelined implementations.

Multiplier 4-input LUTs Slices Slice FFs IOBs

MA 622 321 66 99
OD–MA 1187 604 101 99
BB 533 276 64 99
BB + 1 ECC 1099 564 80 99
BB + 2 ECC 1596 814 77 99
BB + 3 ECC 1937 993 78 99

Table 2
Device utilization for the pipelined implementations.

Multiplier 4-input LUTs Slices Slice FFs IOBs

BB 404 216 170 99
BB + 1 ECC 803 427 306 99
BB + 2 ECC 1189 635 440 99
BB + 3 ECC 1546 824 569 99

Table 3
Maximum frequency for the non-pipelined and pipelined implementations.

Multiplier Non-pipelined (MHz) Pipelined (MHz)

MA 50.554 –
OD–MA 40.330 –
BB 58.075 153.335
BB + 1 ECC 50.180 153.335
BB + 2 ECC 41.429 153.335
BB + 3 ECC 37.826 153.335

Table 4
Estimated power consumption for the non-pipelined implementations.

Multiplier Logic and
signals (mW)

IO Blocks
(mW)

Quiescent Total (mW)

MA 5.15 45.68 151.29 202.12
OD–MA 9.06 31.39 151.28 191.73
BB 3.05 45.69 151.29 200.02
BB + 1 ECC 5.3 45.69 151.31 202.3
BB + 2 ECC 8.25 46.63 151.38 206.25
BB + 3 ECC 10.15 48.8 151.44 210.39
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Table 5
Estimated power consumption at 25 MHz for the pipelined implementations.

Multiplier Logic and
signals
(mW)

IO Blocks
(mW)

Quiescent
(mW)

Total
(mW)

BB 3.72 51.26 152.06 207.04
BB + 1 ECC 7.32 51.62 152.66 211.6
BB + 2 ECC 10.66 51.67 153.03 215.36
BB + 3 ECC 13.37 51.93 153.42 218.72

Table 6
Maximum relative errors
per number of ECCs used.

ECCs Er,max (%)

0 25.0
1 6.25
2 1.56
3 0.39
4 0.097
5 0.024

Table 8
Average relative errors [%] for 0, 1, 2 and 3 correction terms.

No. bits BB BB + 1 ECC BB + 2 ECC BB + 3 ECC

8 8.9131 0.8337 0.0708 0.0048
12 9.3692 0.9726 0.1029 0.0106
16 9.4124 0.9874 0.1070 0.0117
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To show that the relative error decreases with adding the error-
correction circuits, we have to prove that the absolute error in the
current (i + 1)th iteration is lower than the absolute error in the
previous ith iteration, i.e.

Eðiþ1Þ
r < EðiÞr ð19Þ

Because we remove the leading ‘1’ from the multiplicands in each
iteration, the following inequalities hold

kðiÞ1 6 k1 � i; kðiÞ2 6 k2 � i ð20Þ

We can write

NðiÞ1 ¼ N1 � 2k1 �
Xi�1

j¼1

2kðjÞ1 ð21Þ

The same holds for NðiÞ2

NðiÞ2 ¼ N2 � 2k2 �
Xi�1

j¼1

2kðjÞ2 ð22Þ

From (20)–(22) we can write

Nðiþ1Þ
1 � 2kiþ1

1 < NðiÞ1 � 2ki
1 ð23Þ

and

Nðiþ1Þ
2 � 2kiþ1

2 < NðiÞ2 � 2ki
2 ð24Þ

Therefore,

Eðiþ1Þ
r < EðiÞr ð25Þ

If we assume the worst case when all the bits in the multiplicands
are ‘1’, then the characteristic numbers are decreased by one in each
iteration, i.e., the following holds

kðiÞ1 ¼ k1 � i; kðiÞ2 ¼ k2 � i ð26Þ

Then the maximum relative error in the ith iteration is

EðiÞr;max ¼
2ðk1�iþk2�iÞ � xðiÞ1 xðiÞ2

2ðk1þk2Þ � ð1þ x1 þ x2 þ x1x2Þ

¼ 2�2i � xðiÞ1 xðiÞ2

ð1þ x1 þ x2 þ x1x2Þ
ð27Þ

It is obvious that the maximum relative error decreases exponen-
tially with a ratio of at least 2�2i, and it reaches 0 when one of
the multiplicands is 0. Table 6 presents the maximum relative er-
rors for different numbers of ECCs.
Table 7
Relative error rate [%].

Error 8 bits 12 bits

1 ECC 2 ECC 3 ECC 1 ECC

<0.1% 32.9 79.9 99.0 20.6
<0.5% 54.8 96.9 100 48.1
<1% 69.9 99.6 100 65.6
In order to evaluate the average relative error (AER), the pro-
posed algorithm is applied to all combinations of n-bit non-nega-
tive numbers,and the average relative error is calculated from

AER ¼ 1
N

XN

i¼1

Er ð28Þ

where N is the number of multiplications performed. For example,
for 12-bit numbers, all the combinations of numbers ranging from
1 to 4095 are multiplied and the average relative error is calculated.
The AER calculation is made in four cases: without an error-correc-
tion circuit, with one correction, with two corrections and with
three corrections. The results from Table 7 represent the relative er-
ror rate for various cases. The results from Table 8 should be used
when we want to decide how many error-correction circuits are
necessary to achieve the desired average relative errors.

These results are compared with the results from [15], since it is
the latest paper with a complete overview of the various solutions.
Comparing the 8-bit and 16-bit average error percentages, we can
see that our solution with only one error-correction circuits out-
performs the OD-MA multiplier. The OD-MA multiplier has an
average relative error between 2.07% and 2.15%, while the pro-
posed multiplier with one error correction circuit has an average
relative error between 0.83% and 0.99%.
6. Example

Let us consider two successive or near video frames, marked as
the reference frame and the observed frame. For a block from ob-
served frame (observed block), block matching techniques try to
find the best matching block in the reference frame. When the best
matching is found, the displacement is calculated and used as a
motion vector, in applications like MPEG video compression [24].
For efficient compression, a compromise between the speed of
the calculation and the accuracy of the motion vector is necessary.
16 bits

2 ECC 3 ECC 1 ECC 2 ECC 3 ECC

71.6 98.2 19.3 70.6 98.0
95.7 100 47.4 95.5 100
99.4 100 65.2 99.4 100



Table 9
Error analysis for block matching algorithm.

Region ECCs TAE (%) B False
vectors

Mismatching
percentage (%)

32 � 32 1 0.548 676 27 3.99
32 � 32 2 0.034 676 1 0.15
48 � 48 1 0.566 1764 56 3.17
48 � 48 2 0.035 1764 10 0.56
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We considered the matching techniques based on a block corre-
lation. If we denote the observed block with F(i, j), where i and j are
the pixels’ coordinates, and a respective block in the reference
frame with S(i, j), assuming the block size is N � N, then the corre-
lation coefficients C(x,y) are calculated for all positions (x,y) from
the reference region as follows:

Cðx; yÞ ¼
XN�1

i¼0

XN�1

j¼0

Fði; jÞ � Sðxþ i; yþ jÞ ð29Þ

The maximum value of the correlation coefficients determines
the motion vector coordinate. The method is simple but computa-
tionally expensive, because it requires a large number of multipli-
cations, especially when the block size is large.

Let us define a particular averaged error for the matching block,
individually:

PAE ¼ 1
NC

XNC

i¼1

jCa
i � Ct

i j
Ct

i

� 100% ð30Þ

where NC is the total number of correlation coefficients for one ob-
served block regarding all possible block positions in the reference
region, Ca

i is an approximated value of the correlation coefficient
(the multiplication was performed with the proposed solution)
and Ct

i is a true value of the correlation coefficient. The total aver-
aged error was calculated as

TAE ¼ 1
B

XB

i¼1

PAEi ð31Þ

where B is the total number of observed blocks in the reference
region.

In order to show the usability of the proposed multiplier for
motion-vector calculations, the described block-matching algo-
rithm was applied on a selected region of the successive CT scan
frames (Fig. 6). Observed blocks of dimensions 7 � 7 pixels were
chosen from the reference region and the correlation coefficients
were calculated for all positions in the reference region. The exper-
iments were performed with the reference region size of 32 � 32
and 48 � 48 pixels.

The results obtained with the proposed algorithm (one and two
correction terms) are compared with the results of the regular
multiplication and shown in Table 9. A mismatch is defined as
the percentage of false motion vectors obtained with the proposed
multiplier. The TAE error is calculated and possibility of the wrong
matching detection was examined.

From Table 9 we can conclude that the percentage of mismatch-
ing is very low. Due to the heavy computational requirements, the
Fig. 6. Motion vector detection on successive CT scan frames.
block matching is often performed in two stages, a rough estima-
tion of a moving vector and then an accurate refinement [24]. In vi-
deo compression, the errors in motion vectors will slightly
decrease the compression. Since the proposed solution speeds up
the compression algorithms, future investigation should address
the influence of the motion vector errors on the level of
compression.

7. Conclusions

In this paper, we have investigated and proposed a new ap-
proach to improve the accuracy and efficiency of Mitchell’s algo-
rithm-based multiplication. The proposed method is based on
iteratively calculating the correction terms but avoids the compar-
ison of the sum of mantissas with ‘1’. In such a way, the basic block
for multiplication requires less logic resources for its implementa-
tion and the multiplier can achieve higher speeds.

We have shown that the calculation of the correction terms can
be performed almost in parallel by pipelining the error correction
circuits. After the initial latency, the products are calculated in each
clock period, regardless the number of the error correction circuits
used.

The proposed approach improves the relative average error and
the error rate compared to the basic MA multiplication and OD-
MA. The proposed multiplier with only one error correction circuit
requires less logic resources than OD-MA and achieves smaller
average relative error than OD-MA.

The proposed multiplier consumes significantly less logic and
signals power than the MA multiplier. The power consumption
for the proposed multiplier with one error correction circuit con-
sumes only 58% of the logic and signals power consumed by OD-
MA, while achieving notably smaller relative error and combina-
tional delay than OD-MA.

The maximum combinational delay increases by 30–45% with
each added correction circuit, but this was significantly improved
by pipelining the four main stages in the basic block and pipelining
the correction circuits.
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