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Abstract: A method for detecting vocalization of giant barred frogs
(Mixophyes iteratus) in noisy audio is proposed. Audio recordings from
remote wireless sensor nodes were segmented into individual sounds
and from each sound a small set of features was extracted. Feature
vectors were compared to those of example calls using a Euclidean dis-
tance formula as a detection system. The system achieved a sensitivity
of 0.85 with specificity of 0.92 when distinguishing M. iteratus calls
from other species’ calls and sensitivity of 0.88 with specificity 0.82
against background noise.
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1. Introduction

Audio data recorded by wireless sensor networks (WSNs) can provide important in-
formation about species diversity and population. However, manual surveying of the
data is laborious and often impractical, necessitating methods of automatic detection.
Multiple instances of giant barred frog (Mixophyes iteratus) calls, an endangered spe-
cies endemic to a small region on the east coast of Australia (Koch and Hero, 2007),
were recorded by a remote WSN deployed along a stream in a reservoir catchment
area over a period of six months. While there is a large body of literature on automatic
species detection techniques, much of it concerns species-specific methods, that perform
poorly with the typical noisy, low-quality audio recorded by WSNss.

This work presents a simple yet effective and computationally efficient method
of accurately detecting M. iteratus calls in noisy recordings using both temporal and
frequency features. Since no current work specifically addresses M. iteratus detection,
our proposed technique is compared with spectrogram correlation used by Baumgart-
ner et al. (2008) to identify instances of sei whale calls in noisy underwater recordings.
The performance of the two methods are evaluated using audio recorded from the
remote WSN and the results are compared.

Feature vectors have been previously used for classification of animal calls
such as baleen whales (Baumgartner and Mussoline, 2011), but the work presented
here shows a small set of features extracted directly from spectrograms is sufficient for
detecting the frog calls. Simplicity was a desirable feature in designing the methodol-
ogy to allow implementation on embedded devices as a next step.

2. Methodology

M. iteratus calls are short, low frequency “grunts” of about 0.1 to 0.2s in duration with
a peak frequency around 650 Hz. A sample spectrogram of a call is shown in Fig. 1(b).
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The audio was recorded next to a running stream which dominated background
noise in the 250 Hz to 1 kHz range—a similar frequency range to M. iteratus calls.

The audio was recorded at 16 kHz with 16-bit depth giving a full bandwidth
of 8 kHz. Recording temperature ranged from 14.5°C to 29.2°C for full dataset. A
bandpass filter was applied to the audio to isolate the frequency range of M. iteratus
calls. The filter was designed and implemented as a digital infinite impulse response
(ITR) filter, and was specified to have a passband with center frequency of 650 Hz and
a bandwidth of 900 Hz. After filtering, spectrograms of the audio were calculated using
a 256 sample window (16 ms) with a 50% overlap. Spectrograms in this paper are rep-
resented by S, where 1 <i< N is the index of a frame and 1 <;j< M is the index of a
frequency band. N and M are the maximum frame and frequency indices, respectively.

2.1 Background noise rejection

Candidate sounds were found in each recording before being classified as M. iteratus
calls by identifying recording segments with a higher energy level than the background
noise. Summing each spectrogram frame over all frequencies gives short time average
of the signal energy at a particular point in time (i.e., at a particular spectrogram
frame). Therefore energy at frame 7 is E;,=X; Sj;.

The recordings had mostly constant background noise levels punctuated by
the occasional animal call or other sound. A naive method for identifying regions of
audio with animal calls was to declare portions of audio with E; greater than a thresh-
old as sounds. This method failed when the energy of a call fluctuated above this level
as was the case with M. iteratus calls. Lowering the threshold level only leads to this
effect occurring with lower-energy calls.

The method used in this work specifies a maximum amount of time for which
the energy level may dip below a threshold. This was modeled as a simple finite state
machine [Fig. 1(a)]. A timeout period 70 was specified, as was a threshold level /.
The timeout was specified in seconds, but was converted into a number of spectrogram

timer = TO, store sound E; < h and timer < TO,
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Fig. 1. (Color online) (a) Process of detecting a sound in the presence of background noise with the finite state
machine (top) and sound levels annotated with a corresponding state (bottom): Initially the sound level is below
the threshold (state 1) before rising above it (state 2). The level briefly falls below the threshold but not long
enough to indicate the end of the sound (state 3 then state 2). Eventually the level remains below the threshold
and the section of audio is marked as a sound. (b) Spectrogram of a sample M. Iteratus call from the WSN re-
cording showing the five attributes used as a feature vector. Sound levels averaged along the time axis (right) are
used for the spectral properties [(i)—(iii)] and sound levels averaged along the frequency axis (top) are used for
the temporal properties [(iv),(V)].
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frames. The following process for detecting sounds iterates over each spectrogram
frame in the recording. The index i is initialized to 1 and incremented with each step.

State 1. If E;<h, no action is taken.

State 2. If E;>h, a sound is started and the start location a =i is recorded.

State 3. When E; <A, the sound may or may not have finished. The temporary
end time b =1 is recorded. A timer is incremented every iteration. If E; >/ at any point
before the timeout is reached, the process returns to state 2, b is discarded, and the
timer reset. If the timer is greater than 70, the sound is declared to have finished, with
a and b marking the start and end points.

Using this method, ¢ and » mark the exact start and end of the sound when
compared to the threshold. Since animal calls typically ramp up and down in volume, a
buffer of length 70 was added to the start and end of each sound in an effort to capture
the entire call. Therefore, the frames of the recording spectrogram from a«— 7O to
b+ TO were marked as a sound. In this work the timeout was set at 0.1s and the
threshold level set as 10dB above the mean energy level of the recording. This allowed
the threshold level to adaptively vary with the intensity of each recording. As a result, a
higher threshold level was used for recordings with more intense background noise.

2.2 Feature vector detection

A feature vector was assigned to each individual sound identified using the method in
Sec. 2.1. The features were chosen to include both temporal and spectral properties of
a sound as well as some information about its shape. These features shown in Fig. 1(b)
were (1) dominant frequency, (ii) frequency difference between the lowest and dominant
frequency, (iii) frequency difference between the highest and dominant frequencies, (iv)
time from the start of the sound to the peak volume, and (v) time from the peak vol-
ume to the end of the sound.

The start and end of a sound were defined as the points when the energy was
10dB below the peak. The highest and lowest frequencies were defined similarly. Fea-
tures relating to frequency [(i), (ii), and (iii)] were represented as a fraction of the maxi-
mum frequency—S8 kHz in this case since the recordings were sampled at 16 kHz. This
was done as a means for feature normalization. Time-related features [(iv) and (V)]
were measured in seconds. Similar orders of magnitude were desired since feature vec-
tors were compared in terms of Euclidean distance, and all features were to be
weighted equally.

To classify a sound as a M. iteratus call, the sound’s feature vector was calcu-
lated and compared to the feature vector of an example call. The Euclidean distance
between the two was calculated and compared to a threshold level.

2.3 Evaluation

The system was evaluated by creating three sets of sounds. The first contained only
M. iteratus calls and was constructed by segmenting 6 randomly selected recordings
with M. iteratus calls into individual sounds, then manually removing all other sounds
from the set.

The second set comprised other frog calls occupying the same frequency band
as M. iteratus calls—50Hz to 1kHz. Since no such calls were found in the audio
recorded by the WSN, sample recordings were manually constructed by mixing CD-
quality recordings onto a recording of background noise in the area (Stewart, 1999).
Care was taken to balance the frog call signal to noise levels to closely match the field
recordings. The frog species used were Litoria caerulea, Philoria loveridgei, Limnody-
nastes salmini, Philoria sphagnicola, and Philoria kundagungan.

The third set contained background noise sounds, and was designed to simu-
late loud bursts of noise which may erroneously be detected as sounds by the mecha-
nism described in Sec. 2.1. This was achieved by running the sound detection algo-
rithm on a recording of background noise with a low threshold level.

EL402 J. Acoust. Soc. Am. 131 (5), May 2012 B. Croker and N. Kottege: Feature vector based frog call detection



B. Croker and N. Kottege: JASA Express Letters [http://dx.doi.org/10.1121/1.3702792] Published Online 13 April 2012

Each set had 100 to 130 sounds, which was reduced to a random sample of 100
sounds for each set to provide uniform size. A sample vector was constructed by averaging
the feature vectors from two M. iteratus calls considered to be “representative” of the spe-
cies” calls. They were the two highest intensity calls picked from the first week of record-
ings. The Euclidean distance between each sound in each set and the sample vector was
calculated with distances under a certain classification threshold (¢) returning a positive
classification. The different true and false positive rates achieved by varying hc are sum-
marized in Sec. 3. The performance was measured in terms of the ability to distinguish
M. iteratus calls from other frog calls (sets 1 and 2), as well as from bursts of background
noise (sets 1 and 3).

2.4 Spectrogram correlation

The results of feature vector detection were compared to spectrogram correlation—a
method used by Mellinger and Clark (2000) to detect low frequency whale calls in the
presence of background noise. The problem bears some similarity to detecting M. iteratus
calls, and was used to evaluate the performance of the feature vector detection scheme
proposed in this paper.

Spectrogram correlation involves cross correlating an example spectrogram
(kernel) with a recording potentially containing calls of interest. High values in the
resulting cross correlation indicate likely instances of the example call in the record-
ing. It is desired for the kernel have zero sum over all frequencies for each frame,
ie., X; K;;=0 Vi, where K is the kernel spectrogram. This ensures that the cross cor-
relation of the kernel and white noise is 0. To achieve this, each kernel frame was
constructed as a “Mexican hat” wavelet as described by Mellinger and Clark (2000)
and Baumgartner er al (2008). However, since the frequency distribution of the
M. iteratus call is asymmetric [see Fig. 1(b)], different standard deviations were used
for the positive and negative regions of the wavelet.

Two sample M. iteratus calls were taken, and an average spectrogram S calcu-
lated, then normalized. The kernel was calculated as

Kj = Ci(l - U%ﬁ) exP(%jz)Z)

where C;=max[S;], 1 <j< M, fi=arg max, <;< p[S;], and o is the distance (in indi-
ces) from the peak frequency to the frequency 7 dB down from the peak in either the
positive (a,,) or negative (g,,) direction. Therefore, 6 =g, for j> f; and ¢ =0, for j <f,.

The kernel was cross correlated with individual sounds extracted from the
recordings. Correlation scores exceeding a particular threshold indicated a match. The
performance of this system was tested using the method described in Sec. 2 and results
are discussed in the following section.

3. Results

The performance of the detection systems are summarized in Table 1, with receiver op-
erator characteristic (ROC) curves shown in Fig. 2. ROC curves plot the false positive

Table 1. Overall performance of the feature vector detection (FV) and spectrogram correlation (SC) showing
the max accuracy, sensitivity, and specificity.

Method Set Accuracy Sensitivity Specificity

FV Frogs 0.89 0.85 0.92
Noise 0.85 0.88 0.82

SC Frogs 0.73 0.78 0.68
Noise 0.94 0.94 0.94
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Fig. 2. (Color online) ROC curves of (a) detection with feature vectors, and (b) detection with spectrogram cor-
relation showing the performance of each method distinguishing M. iteratus calls from other frog calls and from
bursts of background noise while varying the classification threshold /. The dashed line represents the expected
performance of a random guess.

rate P/(P;+ N,) against the true positive rate P/(P,+ N, for different s values where
P,, P; N, and N,are the number of true positives, false positives, true negatives, and
false negatives, respectively. The accuracy of the system is given by (P,+ N,)/
(P;+ P+ N+ Ny). Sensitivity of the system is the same as the true positive rate while
specificity is 1 - false positive rate.

Compared to the established method of spectrogram correlation, feature vec-
tor detection performed better at detecting M. iteratus calls against other frog calls,
but had lower performance against background noise. Depending on the application,
performance against other species may be more critical, since most background noise
is discarded during the sound segmentation process.

The improvement in sensitivity and specificity, shown by comparing the ROC
curves in Fig. 2 indicates that feature vector detection is more effective than spectro-
gram correlation in applications where M. iteratus calls need to be distinguished from
other frog calls.

In addition to comparable performance, feature vector detection requires less
computation than spectrogram correlation. Feature vector detection requires sums over
the frequency and time axes of the spectrogram, and iteration over the sums to find
the features. This process results in N(M — 1)+ M(N — 1) addition and N+ M compari-
son operations for an individual sound with spectrogram size N x M. Spectrogram cor-
relation involves convolving a kernel with the sound and summing the result, requiring
(N — Ni+1) M N multiplications and (N — Ny+1) M N additions, where the kernel
spectrogram has dimensions Ny x M.

4. Conclusions

A method for detecting M. iteratus calls in noisy audio was proposed based on com-
paring small sets of features extracted from individual sounds. Compared to spectro-
gram correlation, an established method for detecting low frequency animal calls in
the presence of noise, the proposed method achieved higher performance in distin-
guishing calls of M. iteratus in the presence of other frog species calling in the same
frequency band albeit with slightly less robustness against noise. Due to its simplicity
and low computational cost, the proposed method is suitable for use in embedded
devices such as WSN nodes.
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