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Abstract 

 

Mirror neurons in macaque area F5 fire when an animal performs an action, such as a 

mouth or limb movement, and also when the animal passively observes an identical or 

similar action performed by another individual. Brain imaging studies in humans 

conducted over the last 20 years have repeatedly attempted to reveal analogous brain 

regions with mirror properties in humans, with broad and often speculative claims about 

their functional significance across a range of cognitive domains, from language to 

social cognition. Despite such concerted efforts, the likely neural substrates of these 

mirror regions have remained controversial, and indeed the very existence of a distinct 

subcategory of human neurons with mirroring properties has been questioned. Here we 

used activation likelihood estimation (ALE), to provide a quantitative index of the 

consistency of patterns of fMRI activity measured in human studies of action 

observation and action execution. From an initial sample of more than 300 published 

works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis 

revealed 14 separate clusters in which activation has been consistently attributed to 

brain regions with mirror properties, encompassing 9 different Brodmann areas. These 

clusters were located in areas purported to show mirroring properties in the macaque, 

such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral 

premotor cortex, but surprisingly also in regions such as the primary visual cortex, 

cerebellum and parts of the limbic system. Our findings suggest a core network of 

human brain regions that possess mirror properties associated with action observation 

and execution, with additional areas recruited during tasks that engage non-motor 

functions, such as auditory, somatosensory and affective components. 



1. Introduction 

Mirror neurons were originally described as visuomotor neurons that fire both when an 

action is performed, and when a similar or identical action is passively observed 

(Rizzolatti and Craighero, 2004). These neurons were first discovered using single-cell 

recordings in macaque area F5 (di Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti 

et al., 1996a) and later in the PF/PFG complex within the inferior parietal cortex 

(Gallese et al., 2002). Since these original studies there has been an explosion of interest 

in mirror neurons, both in the scientific literature and the popular media, in part because 

of their purported role in a diverse range of cognitive functions, from imitation and 

action understanding to social cognition (Iacoboni, 2005, 2009; Iacoboni et al., 2005; 

Fogassi et al., 2005; Keysers et al., 2010; Rizzolatti & Fabbri-Destro, 2008 ; Rizzolatti 

& Sinigaglia, 2010). Mirror neurons have also been implicated in a range of 

neurological and psychiatric disorders, including multiple sclerosis (Rocca et al., 2008), 

schizophrenia (Arbib and Mundhenk, 2005), autism spectrum disorder (ASD) (Cattaneo 

et al., 2007; Dapretto et al., 2006; Iacoboni and Dapretto, 2006; Williams, 2008) and 

alexithymia (Moriguchi et al., 2009). Other investigators have argued that evidence for 

the existence of human mirror neurons is lacking (Dinstein et al., 2008a; Dinstein et al., 

2008b; Jonas et al., 2007; Lingnau et al., 2009; Turella et al., 2009), or have challenged 

claims for the role of mirror neurons in language function (Johnson-Frey, 2003), action 

understanding (Hickok, 2009) and imitation (Makuuchi, 2005; Molenberghs et al., 

2009). 

 

Immediately following the initial reports of mirror neurons in the macaque brain, 

investigators sought evidence for an analogous mechanism in humans. Based on early 

human brain-imaging studies that compared neural activity during perceived and 

executed actions (Rizzolatti et al., 1996b; Decety et al., 1997; Iacoboni et al., 1999), it 



was widely assumed that the ventral premotor cortex and the pars opercularis of the 

posterior inferior frontal gyrus (Brodmann area 44) are human homologues of macaque 

mirror area F5; and that the rostral inferior parietal lobule (IPL) is the human equivalent 

of mirror area PF/PFG (Rizzolatti et al., 2001; Rizzolatti, 2005; Rizzolatti and 

Craighero, 2004). Subsequent investigations have used behavioural approaches, 

transcranial magnetic stimulation (TMS), electroencephalography (EEG), functional 

magnetic resonance imaging (fMRI) and human single cell recordings (Mukamel et al., 

2010) to provide further evidence for fronto-parietal mirror neuron regions in humans 

(for recent reviews see Iacoboni and Dapretto, 2006; Fabbri-Destro and Rizzolatti, 

2008; Keysers and Fadiga, 2008; Keysers et al., 2010; Cattaneo and Rizzolatti, 2009; 

Rizzolatti and Fabbri-Destro, 2010; Rizzolatti & Sinigaglia, 2010). These studies have 

used a variety of tasks to uncover “mirror activity”. Some have employed action 

observation and execution tasks, analogous to those used in the original monkey 

investigations (e.g., Chong et al., 2008; Gazzola and Keysers, 2009; Kilner et al., 2009; 

Molenberghs et al., 2010). Others have used tasks involving stimuli across a range of 

modalities, including audition (e.g., Gazzola et al., 2006; Lewis et al., 2005; Tettamanti 

et al., 2005), somatosensation (e.g., Keysers et al., 2004; Schaefer et al. 2009), vision 

only (e.g., Molnar-Szakacs et al., 2006; Newman-Norlund et al., 2010); as well as tasks 

employing stimuli with emotional (affective) content (e.g., Carr et al. 2003; Leslie et al., 

2004). This wide variety of approaches in humans has led to an ever-expanding number 

of brain regions being implicated in mirror mechanism functioning. 

 

The aim of the current investigation was to draw together imaging results from all 

relevant fMRI studies of the human mirror regions, with the goal of determining the 

range and extent of brain regions implicated. Based upon the original single-cell 

findings in monkeys (di Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti et al., 



1996a; Gallese et al., 2002), it might be predicted that the human homologues of 

macaque areas F5 and PF/PFG – the inferior frontal gyrus and inferior parietal lobule, 

respectively – should be reliably engaged by tasks designed to elicit mirror neuron 

activity. On the other hand, it has recently been proposed that mirror activity is 

widespread in the human brain (e.g., Keysers and Gazzola, 2009; Heyes, 2010). If this is 

true, it might be predicted that brain regions outside the classically defined mirror 

network would be engaged, depending on task demands. To address these predictions, 

we performed a meta-analysis of all human fMRI studies in which the authors attributed 

their findings to mirror neuron functioning. We used a quantitative meta-analysis 

technique, known as activation likelihood estimation (ALE; Eickhoff et al., 2009), to 

investigate which brain regions are most reliably associated with human mirror neuron 

functions. Contrary to previous ALE studies that focused exclusively on action 

observation (Caspers et al., 2010), imitation (Caspers et al., 2010; Molenberghs et al., 

2009), and the role of the mirror system in action understanding (Van Overwalle and 

Baetens, 2009), our meta-analysis included all fMRI studies in which significant 

activations were attributed to the mirror system, regardless of task requirements. We 

also performed a label-based review to determine the Brodmann areas most consistently 

associated with mirror neuron regions. In follow-up analyses, we separated studies 

based on whether they targeted the “classical” (motor) mirror neurons, or instead 

examined activity during observation of auditory, somatosensory or emotional 

(affective) stimuli.  

 

2. Materials and Methods  

2.1. Literature Selection and Exclusion Criteria 

We searched the Web of Science database (http://apps.isiknowledge.com) using the 

keywords ‘fMRI’ and ‘mirror system’.  As of January 2011, this search revealed 438 

http://apps.isiknowledge.com/


published, peer-reviewed papers. The inclusion criteria for our analyses were as 

follows: 

1. Studies that explicitly mentioned the mirror system were included, whereas 

those that did not were excluded (e.g., the search also uncovered studies about 

“mirrored” hand movements). Three hundred and thirty (330) of the 438 papers 

met this criterion.  

2. Studies that used fMRI were included, whereas those that employed other 

techniques (positron emission tomography (PET), single-photon emission 

tomography (SPECT), magnetoencephalography (MEG), TMS, behavioural 

measures and review articles) were excluded. We restricted our study to fMRI 

data because we wanted to have approximately comparable spatial and temporal 

resolution for the ALE analyses. One hundred and ninety (190) of the remaining 

330 papers met this criterion. 

3. Studies that failed to reveal significant “mirror” activation were excluded (e.g., 

Lingnau et al. (2009) failed to find cross-modal adaptation for observed and 

executed motor acts). One hundred and eighty one (181) of the remaining 190 

papers met this criterion. 

4. Studies in which the authors did not attribute their fMRI results directly to the 

mirror system were excluded (e.g., Cross et al. (2009) talk about an “action 

observation network” (AON) rather than a “mirror neuron system”). One 

hundred and forty (140) of the remaining 181 papers met this criterion. 

5. Studies in which the authors interpreted their results as reflecting activity within 

the mirror system, but did not report the co-ordinates of the activation clusters, 

were excluded from the analysis. One hundred and twenty five (125) of the 

remaining 140 papers met this criterion. 

 



2.2. Selection of Activated Voxels 

From the 125 studies that passed the Exclusion Criteria listed above, we included all 

voxels that the authors explicitly interpreted as reflecting significant mirror mechanism 

activity. If the voxels reported in the original study were reported in MNI space we 

transformed them to Talairach space using the icbm2tal algorithm (Lancaster et al., 

2007) used in the Ginger ALE software (Eickhoff et al., 2009). In total, 1036 foci were 

included in the overall analysis. 

 

2.3. Activation Likelihood Estimation (ALE) 

To identify regions of consistent activation, we performed an activation likelihood 

estimation (ALE) analysis (Eickhoff et al. 2009; Version 2.0). The advantage of Version 

2.0 over earlier ALE algorithms (Turkeltaub et al., 2002; Laird et al., 2005) is that rather 

than testing for an above-chance clustering between activated foci, it assesses above-

chance clustering of activated foci between experiments, thus permitting random-effects 

inference. The ALE analysis was conducted using the standard settings in the Ginger 

ALE software (Eickhoff et al. 2009). The test was corrected for multiple comparisons 

using the false discovery rate (FDR) method with p<0.05, and a standard minimum 

volume of 100 mm³ voxels was used to define a cluster. The maps of the ALE values 

were superimposed on a ch2better.nii.gz atlas using MRIcron software 

(http://www.mricro.com/mricron/install.html).  

 

2.4. Label-based Review of Brodmann Areas 

We conducted a label-based review by importing all the relevant voxels into the 

Talairach Daemon software (http://www.talairach.org/daemon.html; Lancaster et al. 

2000) using the ‘search for nearest gray matter’ function. We defined Brodmann areas 

http://www.mricro.com/mricron/install.html
http://www.talairach.org/daemon.html


for each voxel and calculated how many studies attributed their result to a specific 

Brodmann area. 

 

3. Results 

3.1 Meta-Analysis Across all Included Studies 

The ALE meta-analysis of all 125 included studies (Supplementary Table 2) revealed 14 

significant clusters in total (See Figure 1, Figure 6 and Table 1 for details), extending 

over 9 different Brodmann areas and the cerebellum. 

[Insert Figure 1 and Table 1 here] 

Consistent with previous claims for a “classical” fronto-parietal mirror regions in 

humans (Rizzolatti et al., 2001), we found evidence for consistent activation in the left 

and right inferior frontal gyrus, the ventral premotor cortex, and the inferior parietal 

lobule. The ALE analysis also revealed statistically reliable activation in other regions, 

including the superior parietal lobule, dorsal premotor cortex, insula and inferior, 

middle and superior temporal gyri. The label-based review of Brodmann areas found 

that mirror activity was associated with 34 different Brodmann areas (See Table 2 for 

details). Unexpectedly, 13 of the included studies reported significant activation within 

the cerebellum. Brodmann areas in which significant activity was reported by the largest 

percentage of studies included BA 44 (21 % of the studies), BA 7 (27 % of the studies), 

BA 9 (38 % of the studies), BA 6 (40 % of the studies) and BA 40 (48 % of the studies). 

[Insert Table 2 here] 

 

3.2 Meta-Analyses of Motor versus Non-Motor Studies 

In addition to the main analysis of all 125 papers, we conducted a series of follow-up 

meta-analyses of activation patterns from subsets of studies in which non-visuomotor 

tasks were used. Some investigators have suggested that mirror neurons might be tuned 



to stimuli in other (non-visual) sensory modalities, or to tasks and stimuli that have 

affective significance (Keysers and Gazzola, 2009). In the macaque, for example, 

ventral premotor neurons respond to the sounds of actions, such as a peanut being 

broken open (Kohler et al. 2002; Keysers et al., 2003). Analogous results have been 

claimed for auditory stimuli in humans (Bangert et al., 2006; Gazzola et al., 2006; 

Ricciardi et al., 2009). Human fMRI studies have also found evidence for mirror-like 

activity in association with somatosensory and affective stimuli (Carr et al., 2003; 

Keysers et al., 2004). 

 

We first examined activations from all studies (n = 76) that employed visual images of 

actions and/or studies that required participants to execute motor actions. For present 

purposes we have labeled this “classical mirror studies”. The studies included within 

this category investigated human movements involving the hands, feet or mouth. The 

ALE meta-analysis revealed 13 significant clusters in total (see Figure 2, Figure 6 and 

Supplementary Table 1). Reliable activations were found in areas that have typically 

been associated with the classical (visuomotor) mirror regions, including the inferior 

parietal lobule, posterior inferior frontal gyrus and adjacent ventral premotor cortex. In 

addition, we found consistent activations in the dorsal premotor cortex, the superior 

parietal lobule, the posterior portion of the middle temporal gyrus, and the cerebellum. 

[Insert Figure 2 here] 

We then examined activations from studies (n = 12) in which participants listened to 

action sounds (e.g., professional pianists listening to piano music (Bangert et al. 2006)), 

with or without a corresponding action-execution condition. The ALE meta-analysis 

revealed 9 significant clusters (see Figure 3, Figure 6 and Supplementary Table 1). In 

addition to classical mirror regions, such as the inferior parietal lobule, posterior inferior 



frontal gyrus and adjacent ventral premotor cortex, this analysis revealed additional 

activation clusters in and around the primary auditory cortex.  

[Insert Figure 3 here] 

We also examined activations from a small set of studies (n = 4) in which participants 

watched an actor receiving somatosensory stimulation (e.g., watching video clips of a 

person’s leg being touched (Keysers et al. 2004)), with or without a condition in which 

the participants themselves received corresponding somatosensory stimuli. The ALE 

meta-analysis revealed two significant clusters (see Figure 4, Figure 6 and 

Supplementary Table 1), one located in the ventral part of the postcentral gyrus (BA2) 

and the other in the dorsal part of the postcentral gyrus (BA5). 

[Insert Figure 4 here] 

Finally, we examined activation patterns for studies (n = 21) that focused on the 

execution and/or observation of expressions of emotion (e.g., happiness, fear, disgust; 

Van der Gaag et al., 2007). The ALE meta-analysis revealed 12 significant clusters (see 

Figure 5, Figure 6 and Supplementary Table 1). In addition to classical mirror regions, 

such as the posterior inferior frontal gyrus and adjacent ventral premotor cortex, the 

analysis also revealed consistent activation in the amygdala, insula and cingulate gyrus. 

[Insert Figure 5 here] 

[Insert Figure 6 here] 

4. Discussion 

The last 20 years has seen a rapid growth in studies on mirror neurons first described in 

the macaque by Rizzolatti and his colleagues (di Pellegrino et al., 1992; Gallese et al., 

1996). The aim of the current investigation was to draw together all relevant findings 

from published fMRI studies on human mirror neuron regions, with the goal of 

determining which areas are most reliably active in tasks designed to tap mirror 

mechanism functioning. 



 

The most striking outcome of our ALE analyses of 125 studies was how widespread 

were the regions of consistent activation. In addition to areas predicted on the basis of 

the monkey studies – the inferior frontal gyrus, ventral premotor cortex, and the inferior 

parietal lobule – we also observed significant activation clusters in unexpected areas, 

such as early visual cortex and the cerebellum. Indeed, our label-based review showed 

that significant clusters of activation encroached upon 34 separate Brodmann areas. 

These findings indicate that, taken as a whole, fMRI studies in humans have implicated 

an extensive network of brain regions whose activity is assumed to reflect some aspect 

of mirror functioning. Despite the claims of some authors, it is unlikely that all these 

regions possess mirror properties. For example, it is widely recognised from monkey 

studies that individual neurons within early visual cortex and superior temporal cortex 

do not exhibit motor-related activity (Rizzolatti and Craighero, 2004). 

 

One important observation to arise from our findings is that very few of the human 

fMRI studies (30% of the 76 “classical mirror” studies) included both an “observe” and 

a corresponding “execute” condition, even though the original single-cell investigations 

imply that a neuron must respond under both conditions to be considered a mirror 

neuron. In this context, it is noteworthy that Gallese et al. (1996) found that only 92 out 

of 532 neurons (17%) in F5 of the macaque had so-called “mirror” properties. On the 

other hand, the mere observation of a graspable object can activate cells in motor areas 

in the absence of any self-generated action, but these neurons have been labeled 

“canonical neurons” rather than mirror neurons (Rizzolatti et al., 1988; Murata et al., 

1997), and might subserve distinct functions. 

 



In an effort to make sense of the extensive network of brain areas implicated in our 

global meta-analysis, we subdivided the studies to take into account the different classes 

of stimuli that have been used to investigate mirror neuron activity in humans. We 

initially defined “classical” mirror mechanism regions, based on studies that 

incorporated visual images of actions and/or a requirement to execute motor actions. 

This analysis yielded significant activation clusters in the inferior frontal gyrus, ventral 

premotor cortex and inferior parietal lobule. The locations of these clusters are broadly 

consistent with what one might predict based upon the monkey single-cell physiology 

(Gallese et al., 1996, 2002). This analysis also yielded significant activation clusters in 

the superior parietal lobule and dorsal premotor cortex. Action observation is known to 

be represented in a somatotopic manner in both the premotor cortex and parietal lobule 

(Buccino et al., 2001). Observation of foot actions, for example, activates more dorsal 

regions such as dorsal premotor cortex and superior parietal lobule compared with hand 

and arm actions. 

 

We also analyzed a subset of studies in which participants listened to action sounds, 

with or without a corresponding action-execution condition. This analysis yielded 

clusters in “classical” mirror areas, but also revealed significant activations in the 

primary auditory cortex (BA41) and the left posterior segment of BA22 (corresponding 

to Wernicke’s area). Activation of these additional regions is of course expected on the 

basis of the auditory nature of the stimuli and tasks employed in these studies. For 

example, Bangert and colleagues (2003) found that professional pianists exhibit greater 

activation in these auditory regions compared with non-musicians, both when playing 

piano music without auditory feedback and when passively listening to piano music. On 

the basis of these findings, Bangert et al. (2003) suggested that for professional piano 



players, imagery or mental sensations of sound are triggered automatically during 

playing, and motor planning areas are activated by passive listening to piano music.  

 

 We also conducted an ALE analysis on studies in which participants watched an actor 

receiving somatosensory stimulation, or in which they were stimulated via touch 

themselves. Because this analysis was based on a very limited number of studies (n=4), 

the results should be interpreted with caution. It will be important that future studies 

seek to verify the consistency of these preliminary results. The analysis revealed two 

regions, one region was located in the ventral part of the postcentral gyrus (BA2). 

Keysers et al. (2004) found that the secondary somatosensory cortex was activated both 

when participants observed another person being touched, and when they were touched 

themselves. Ebisch et al. (2008) found that observing another person being touched can 

also activate the primary somatosensory cortex, especially when the action is 

intentionally made by a person rather than accidentally by an object (Ebisch et al. 2008). 

The other region was located in the dorsal part of the postcentral gyrus (BA5). This 

region is known to be involved in higher order somatosensory processing (Sakata, 

1973).  Although no motor activation is involved in observing touch, it seems that as 

with auditory stimuli, the mere observation of someone being touched is sufficient to 

activate somatosensory cortex vicariously (Keysers and Gazzola, 2009; Keysers et al., 

2010). 

 

Finally, we analyzed a subset of studies that focused on the execution and/or 

observation of expressions of emotion. Most studies used facial expressions and mouth 

actions are represented more ventrally than foot and arm/hand actions. This probably 

explains why the premotor regions in this analysis were located more ventrally. 

Additionally, this analysis revealed vicarious activity in regions known to be involved 



in emotion processing, including the insula, amygdala and cingulate gyrus. The insula 

connects regions for action representation with the limbic system (Carr et al., 2003), and 

is believed to be involved in mirroring disgust (Wicker et al., 2003). The amygdala, on 

the other hand, has been implicated in the processing of threat-related emotions, 

including anger and fear (Phan et al., 2002; though see also van der Gaag et al., 2007; 

Sergerie et al., 2008). Different subregions of the cingulate gyrus seem to represent 

different emotions, with the subgenual subregion of the ACC (sACC) involved in 

negatively valenced events, and the pregenual region (pACC) engaged in positively 

valenced events (Vogt, 2005).  

 

To summarize, based on a meta-analysis of 125 studies, we have uncovered a core 

network of brain areas, including the inferior frontal gyrus, dorsal and ventral premotor 

cortex, and the inferior and superior parietal lobule, which in humans is reliably 

activated during tasks examining the classic mirror mechanism, typically involving the 

visual observation and execution of actions. Our subanalyses showed that additional 

areas involved in somatosensory, auditory and emotional processing complement these 

areas depending on the sensory modalities involved. These results suggest that brain 

regions with mirror properties extend beyond those identified as being part of the mirror 

network in previous meta-analyses (Caspers et al., 2010; Molenberghs et al., 2009). It 

seems that in human participants, overlapping brain regions are activated through 

simulation when observing or executing certain actions. The precise regions that are 

activated depends on the modality of the task (e.g., visual, auditory, somatosensory). 

Our results are consistent with the view that vicarious brain activity made possible by 

mirror neurons (Keysers and Gazzola, 2009) extends beyond actions to include sharing 

of emotions and sensations of others as well.  
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Figure 1 – Overview of all significant clusters (FDR, p<0.05) in the ALE analysis 

(superimposed on a ch2better template using MRIcroN) of the 125 human fMRI studies 

in which the authors attributed their findings to mirror system functioning.  

 

 

 

 

 

  



 

Figure 2 – Overview of all significant clusters (FDR, p<0.05) in the ALE analysis 

(superimposed on a ch2better template using MRIcroN) of the studies that used visual 

images of actions and/or studies that required participants to execute motor actions.  

 

  



 

Figure 3 – Overview of all significant clusters (FDR, p<0.05) in the ALE analysis 

(superimposed on a ch2better template using MRIcroN) of the studies in which 

participants listened to action sounds with or without a corresponding action-execution 

condition.  

  



 

Figure 4 – Overview of all significant clusters (FDR, p<0.05) in the ALE analysis 

(superimposed on a ch2better template using MRIcroN) of the studies in which 

participants watched an actor receiving somatosensory stimulation, with or without a 

condition in which the participants themselves received corresponding somatosensory 

stimuli.   



 

Figure 5 – Overview of all significant clusters (FDR, p<0.05) in the ALE analysis 

(superimposed on a ch2better template using MRIcroN) of the studies that focused on 

the execution and/or observation of facial expressions of emotion.   

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6 – Overview of the significant clusters of activation (FDR, p<0.05) revealed by 

each of the ALE analyses, superimposed on a rendered ch2better template using 

MRIcroN. Note that only cortical activations are shown. Subcortical and cerebellar 

activations are displayed in the horizontal slices of Figures 1 – 4. 

  



Table 1 - Significant clusters (FDR, p<0.05) revealed by the ALE analysis of 125 

human fMRI studies in which the authors attributed significant brain activations to 

mirror system functioning.  

 

cluster Cluster size in mm³ Peak Talairach Coordinates (x, y, z) Anatomical region Brodmann Area 

1 29896 -48,6,28 Left Inferior Fronal Gyrus 9 

  -34,-50,50 Left Superior Parietal Lobule 7 

  -48,-32,38 Left Inferior Parietal Lobule 40 

  -50,22,14 Left Inferior Fronal Gyrus 45 

  -48,-30,22 Left Inferior Parietal Lobule 40 

  -50,-40,20 Left Superior Temporal Gyrus 13 

2 18824 30,-50,50 Right Precuneus 7 

  40,-30,40  Right Inferior Parietal Lobule 40 

  52,-20,38 Right Postcentral Gyrus 3 

  56,-34,16 Right Insula 13 

  54,-32,38 Right Inferior Parietal Lobule 40 

  6,-64,56 Right Superior Parietal Lobule 7 

  54,-20,24 Right Insula 13 

  46,-40,16 Right Insula 13 



3 13704 44,10,28 Right Inferior Frontal Gyrus 9 

  28,-8.54 Right Middle Frontal Gyrus 6 

4 3472 -46,-66,-2 Left Inferior Temporal Gyrus 37 

5 2400 -26,-8,50 Left Middle Frontal Gyrus 6 

6 1628 -34,-52,-24 Left Cerebellum   

7 1056 44,-56,2 Right Middle Temporal Gyrus 37 

  50,-54,-6 Right Inferior Temporal Gyrus 37 

8 800 14,-28,40 Right Cingulate Gyrus 31 

9 752 -36,-4,14 Left Insula 13 

10 496 -14,-62,60 Left Superior Parietal Lobule 7 

11 456 48,22,4 Right Inferior Frontal Gyrus 45 

12 424 36,-50,-20 Right Cerebellum  

13 288 -12,-28,38 Left Cingulate Gyrus 31 

14 240 -8,-6,60 Left Medial Frontal Gyrus 6 

  

  

 
  



Table 2 - Number of studies (from a total of 125) in which significant mirror-related 

activity was attributed to designated Brodmann areas (BA). N = number of studies. 

BA N BA N BA N BA N BA N region N 

1 1 7 34 18 5 28 1 38 1 44 26 

2 12 8 2 19 10 31 4 39 7 45 23 

3 11 9 48 20 2 32 5 40 60 46 15 

4 13 10 4 21 9 34 1 41 4 47 7 

5 4 13 29 22 19 36 1 42 3 Cerebellum 13 

6 59 17 3 24 4 37 15 43 4 other 26 

  

 

 

 
 
 




