A method of predicting variable speed rail corrugation growth using standard statistical moments

R. D. Batten, P. A. Bellette and P. A. Meehan

School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, Australia

ABSTRACT

Wear-type rail corrugation is a significant problem in the railway transport industry. Some recent work has suggested that speed control can be used as an effective tool to minimize the rate of corrugation growth. This has brought about the need to model corrugation growth under variable passing speed. Variable speed rail corrugation growth modelling normally consists of either numerical simulation of a sequence of varied speed wheel passes or direct integration of a probabilistic passing speed distribution function; both of which are computationally expensive. This paper investigates the use of the statistical moments of the speed probability density function to greatly improve the computational speed of variable speed corrugation growth models and compares results of changing standard deviation and skewness to numerical integration models. It also identifies the effects of individual statistical moments on corrugation growth to provide better insight into control methods. The new modelling method correlated well with the numerical integration models for small standard deviations in speed (less than 10%) and highlighted a need to consider kurtosis in predicting the performance of speed control based corrugation mitigation schemes. For larger standard deviations in speed, higher than 4th order effects need to be considered.

INTRODUCTION

Wear-type rail corrugation is a periodic wear pattern that develops on running rail heads with extended use. It has a characteristic wavelength of 25-400 mm and occurs in rail networks worldwide (Sato et al., 2002). This surface irregularity grows as a function of train passages causing serious unwanted noise and vibration (see Hempelmann and Knothe, 1996). Figure 1 shows a corrugation profile after approximately 9 months of passenger rail traffic.

Currently, variable speed corrugation growth modelling methods consist of either, A: direct integration of an assumed speed distribution function (Bellette et al., 2008, Batten et al., 2010) or B: simulation of multiple single wheel or bogie passes to find an equivalent distributed speed growth rate (Meehan et al., 2009). Method A has also been used to model growth of corrugation on road surfaces under stochastically varying speed in Hoffmann and Misol (2008). Machine tool chatter has also been modelled with speed variance effects, showing that speed variation may increase the area of regions in parameter space where chatter does not occur. However, such chatter models only model a deterministic speed sequence, not probabilistic (see Namachchivaya and Beddini, 2003). That is, the speed is a chosen function of time, making analysis simpler but not appropriate for corrugation growth modelling as tracking a predefined speed sequence with a high enough accuracy is unrealistic in practice.

Of the two previously developed methods, integration of a speed distribution function (A) provides much more accurate predictions of growth rate but requires significant computational complexity to accurately integrate the distribution curve numerically. Simulation of successive wheelset passages (B) removes the need for numerical integration but accurate representation of a known speed distribution requires many simulated passes, also increasing the computational expense.

This paper aims to present a new method of modelling variable speed corrugation growth, based on the truncated series expansion of the expectation of the frequency domain corrugation growth spectrum in terms of the moments of the speed
probability density function. Results are benchmarked against the model presented in Meehan et al. (2009) using Gaussian distributions of speed to analyse standard deviation and triangular distributions to analyse standard skewness like those in Batten et al., (2011). An investigation was also performed using this new modelling technique to predict and provide insight into the effects of higher order statistical speed moments (such as kurtosis) on corrugation growth.

MODELLING

The following subsections demonstrate, firstly, how an existing variable speed corrugation growth model is used to investigate standard deviation and standard skewness effects on rail corrugation growth on straight track and, secondly, how the same results can be produced using a simpler linearised model based on standard statistical moments instead of integrating a variable passing speed probability density function.

Probabilistic speed corrugation growth on straight track

The single pass corrugation growth model used in this paper is based on that presented in Meehan et al., (2009). A single mode approximation is made of a field-measured corrugation growth spectral density plot and the parameters used to calculate the effects of a distributed passing speed. The full equation for single-mode dominant corrugation growth rate spectrum, G_r, under a distributed passing speed function, $p(x)$, is given below, where K_r is the sensitivity of wear depth to dynamic normal force, ω is the natural frequency, ζ is the damping ratio and K_c represents the modal sensitivity of the wheel/rail displacement to a change in longitudinal rail profile (all given in Appendix A).

$$G_r(\omega) = \left| \frac{Z_{ex}}{Z_x} \right| - 1 = \exp \left\{ \int \ln f(x, \omega) \ p(x) \ dx \right\} - 1 \tag{1}$$

where,

$$f(x, \omega) = \ln \left\{ \frac{\omega^2 (1 - K_r \omega^2 / (1 + K_r)) - x^2 \omega^2}{(\omega^2 - x^2 \omega^2)^2 + (2 \zeta \omega x \omega)^2} \right\} \tag{2}$$

Two different speed distribution shapes were used to observe the effect of altering standard deviation and standard skewness in speed distribution on corrugation growth rate under fixed kurtosis. For the purpose of analysing standard deviation effects, both Gaussian and triangular distributions with 4 standard deviations were integrated using equation (1). The triangular distributions were also used with a series of 5 standard skewnesses to show the effects of speed distribution asymmetry. Appendix B provides the equations and input parameters used for the Gaussian and triangular speed distributions.

Statistical moment variable speed corrugation growth

The objective here was to use a Taylor approximation of the logarithm growth expression to obtain a simpler and more tangible expression in terms of the statistical moments of the speed distribution; average, μ, standard deviation, σ, standard skewness, S, and kurtosis, k, in place of the integrated speed distribution function. By taking a third order Taylor expansion of equation (2) about the average speed, μ, the following equation is produced.

$$f(x, \omega) \approx f(\mu, \omega) + \frac{df(\mu, \omega)}{dx}(x-\mu) + \frac{d^2 f(\mu, \omega)}{dx^2} \frac{(x-\mu)^2}{2} + \frac{d^3 f(\mu, \omega)}{dx^3} \frac{(x-\mu)^3}{6}$$

When multiplied with the distribution function, $p(x)$, and integrated for the full domain of speeds as per equation (1), the first four statistical moments appear in the result.

$$\int f(x, \omega) p(x) \ dx \approx f(\mu, \omega) + \frac{d^2 f(\mu, \omega) \sigma^2}{2} + \frac{d^3 f(\mu, \omega) \sigma^4}{6} + \frac{d^4 f(\mu, \omega) k \sigma^4}{24} \tag{3}$$

Where, the integral expressions for the first four statistical moments are as follows.

$$\mu = \int x \cdot p(x) \ dx \tag{5}$$

$$\sigma^2 = \int (x-\mu)^2 \ p(x) \ dx \tag{6}$$

$$S = \int (x-\mu)^3 \ p(x) \ dx / \sigma^3 \tag{7}$$

$$k = \int (x-\mu)^4 \ p(x) \ dx / \sigma^4 \tag{8}$$

The mean, μ, defines the centroid of the area enclosed by the distribution function, $p(x)$. The variance, or standard deviation squared, σ^2 measures the spread of the distribution about the mean. The skewness, S, defines the asymmetry about the mean and the kurtosis, k, compares the difference in density between the centralized coordinates (i.e. close to the mean) and the tail sections of the distribution shape. For clarity, the kurtosis and skewness effects on distribution shape are shown in Figure 2.

![Figure 2 – Effects of kurtosis and skewness on distribution shape](image)

Equation (4) can be substituted back into equation (1) to obtain the variable speed growth rate in terms of the first three statistical moments instead of an integral of the distribution function.

$$G_r(\omega) \approx \exp \left\{ \frac{f(\mu, \omega)}{\sigma^2} + \frac{d^2 f(\mu, \omega) \sigma^2}{2 \sigma^4} + \frac{d^3 f(\mu, \omega) \sigma^4}{6 \sigma^6} + \frac{d^4 f(\mu, \omega) k \sigma^4}{24 \sigma^8} \right\} - 1 \tag{9}$$
So the corrugation growth rate at a given frequency for an arbitrary speed distribution shape can be approximated based on standard statistical measures, the single pass growth rate at the average speed and the double, triple and quadruple derivatives of growth rate at the average speed. For a more complex single pass corrugation growth function of speed, finite difference approximations of the double and triple derivatives may be used but for this paper the analytical derivatives of the single mode approximation were used (see Appendix B for input parameters).

The analytical equations for the first to forth derivatives were derived with the use of Matlab’s symbolic functions. These were adequate for representing a highly damped frequency spectrum of corrugation growth but lower damping ratios caused the Taylor approximation to break down at a much narrower band of speeds since higher order effects were much more significant. Finite difference approximations with large step sizes would be more effective at representing these functions at larger standard deviations of speed from the average but this technique wasn’t used in this paper.

The following subsections present the simulation results for both the numerically integrated distribution shapes and the equivalent statistical moment expansions.

RESULTS

Equations (1) and (2) were solved numerically using the midpoint method for 500 equally spaced speeds and 100 equally spaced frequencies in Matlab using an Intel (R) Core 2 Duo 1.73 GHz CPU with 2 GB of RAM and a Windows XP Operating System. Both triangular and Gaussian distributions with an average speed of 55 km/h were solved for with a speed range of 16 times the standard deviation used in each case. Statistical moment results were obtained by solving Equation (9) for 100 frequencies with insertion of analytical solutions of derivatives provided by Matlab’s symbolic functions.

Firstly, the case of symmetric distributions of speed is investigated with both triangular and Gaussian distributions of zero skewness and varying standard deviation. 4 standard deviations were simulated and the results for the two modelling techniques compared. To test asymmetric cases, a series of 10 triangular distributions of two different standard deviations and 5 different skewnesses with equally spaced modes from $\sigma \sqrt{2}$ to $\sigma \sqrt{2}$ are then simulated.

Standard deviation and kurtosis effects on growth rate

To validate this modelling technique against predictions of increasing standard deviation on corrugation growth rate as per Meehan et. al. (2009), a series of Gaussian normal distributions and symmetric triangular distributions were integrated with the one mode single pass growth function as per equation (1) and the results of standard deviation against maximum corrugation growth rate (in frequency) were compared for the two modelling techniques. Second and third order Taylor expansions were used to observe the effect of the speed kurtosis on these predictions. The difference in the 2nd and 4th order approximations is directly related to the speed distribution kurtosis which provides insight into how kurtosis will affect corrugation growth rate. The results of these simulations are shown in Figure 3.

![Figure 3 – Gaussian and triangular distributions with varying standard deviation and their 2nd and 4th order statistical moment approximations](image)

By inspection, as would be expected, the 4th order approximation matches closely to the numerically integrated solutions for narrower speed distributions but begins to diverge at higher standard deviations. By equation (9), the 4th term in the statistical moment expansion is proportional to the kurtosis and the standard deviation to the power of 4. This means that the difference between the 2nd and 4th order approximations of the Gaussian distribution is equal to the change in corrugation growth rate for an increase in kurtosis of 3. So by inspection of Figure 3, an increase in kurtosis of 3 equates to a decrease in corrugation growth rate of 17% from that achieved with a standard deviation of 11%.

Increasing the standard deviation from zero will always cause a reduction in corrugation growth rate at the dominant wavelength since the double derivative of growth rate with speed will always be negative here due to the nature of it being a local maximum. This is because, for any given wavelength of corrugation, there will be a critical speed at which corrugation growth will be promoted most. If the probability density at the critical speed for the dominant wavelength is reduced, without significantly altering that dominant wavelength, then there are less wheel passages close to resonant/critical conditions and hence corrugation growth will be reduced.

Kurtosis may cause an increase or decrease in corrugation growth rate, depending on the sign of the fourth derivative at the dominant wavelength as per Equation (9). At small standard deviations in speed the critical speed for corrugation growth at the dominant wavelength will be close to the mean so increasing kurtosis will reduce this probability density (see Figure 2) and subsequently reduce the corrugation growth at that wavelength. For larger standard deviations, however, the most critical speed for the dominant wavelength may be far enough away from the mean that increasing kurtosis will actually increase the probability density at that speed.

Standard skewness effects on growth rate

To validate the third order statistical moment approximations of skewness effects, five triangular distributions of varying skewness were integrated using equation (1) with a constant standard deviations of 7.3% and 3.6% and the same skewness values were used in a third order statistical moment approximation of each using equation 9. A constant was added to the statistical moment results representing higher than 4^{th} order effects to account for the discrepancies seen in Figure 3 b) for the symmetric case. The results are shown below.
Figure 4 – Skewness effects on corrugation growth rate from integrated triangular distributions and statistical moment expansion for standard deviations of 3.6% and 7.3%.

Figure 4 shows the analytical statistical moment model matches the numerical results for small standard deviations (<10%). This indicates that higher than 3rd order statistical moment expansion is unnecessary for accurately predicting skewness effects on corrugation growth if the standard deviation is <10%. For larger standard deviations the approximation rapidly diverges from the solution obtained via integration. This indicates that the higher order effects which relate to speed distribution asymmetry, much like the third and fourth order terms in equation (9), are scaled with a factor of standard deviation.

Figure 3 also shows a slight increase in corrugation growth rate as skewness is increased. The reason that the trend in growth rate with skewness is opposite of that presented in Batten et al. (2011) is that cornering effects are not considered and the single mode growth spectrum is dissimilar to 5 mode system presented previously.

Increasing or decreasing skewness will not always have the same effect on corrugation growth rate because it’s dependent on the sign of the third derivative of growth rate with speed at the dominant wavelength. The results of these simulations and the results of the simulations performed in Batten et al. (2011) show that the third derivative may be positive or negative, depending on site conditions. Under an increase in speed, the spectral density peaks will always widen in the spatial frequency domain as discussed in Batten et al. (2011). If the frequency spectrum for a single pass is symmetric about its peak this will cause the third derivative of growth rate with speed at the dominant frequency to be negative. If there is a large enough reduction in slope magnitude in the wavelength domain comparing either side of the peak in growth rate then this effect may be countered, causing the third derivative at the dominant wavelength to be positive as was the case in this paper. Under cornering on under-canted track though, increasing skewness (i.e. biasing lower speeds) will most likely decrease corrugation growth rate since under-canted cornering conditions cause large increases in corrugation growth rate at higher speeds, much larger than the changes in growth rate presented here (see Batten et al., 2011).

DISCUSSION OF RESULTS

The new model was able to produce results much quicker than the integration and multiple pass models. Using an Intel (R) Core 2 Duo 1.73 GHz CPU with 2 GB of RAM running a Windows XP Operating System it took 77.9 s to solve one corrugation growth rate via integration of a Gaussian distribution as compared to 0.012s for the analytical approximation of equation (9). This is a significant saving in computational expense of almost 4 orders of magnitude (10^4). For standard deviations of less than 10% the 4th order statistical moment approximations closely matched the numerically integrated results for symmetric Gaussian and triangular distributions. For asymmetric triangular distributions, at standard deviations below 4% the 3rd order statistical moment approximation was accurate in determining changes in corrugation growth rate with standard skewness.

As can be seen when comparing the two sets of integrated distributions, the kurtosis effect is minimal between the Gaussian and triangular distributions. The question must then be raised: can kurtosis change enough to significantly alter predicted results of increasing speed standard deviation? As part of a project undertaking field experiments to validate modelling predictions of corrugation growth under varying train speed (see Meehan et al., 2009 and Batten et al., 2010), a speed control system was installed on a site with a tight radius corner in suburban Brisbane that is known to rapidly corrugate on the low rail. Standard statistical measurements were taken before and after implementation of the speed control system which was designed to make the trains follow a new distribution having increased variance. The kurtosis decreased by 4.8 which is more than the difference between the 2nd and 4th order moment approximations. These approximations showed a factor of 1.8 difference in the effectiveness of widening passing speed when kurtosis was included. This means that for any speed control based corrugation mitigation system, the kurtosis change can be significant in predicting the effectiveness in reducing corrugation growth rate.

For every extra term considered in the truncated Taylor series expansion of equation (2) one extra statistical moment appears in the final growth rate equation. Every successive term included will have a diminishing effect on the corrugation growth rate function and will be scaled by a function of the first statistical moment, standard deviation. The trend in corrugation growth rate change for altering each statistical moment will be dependent upon the sign of its equivalent derivative from the single pass growth function, equation (2). The only universal effect will be that increasing standard deviation will decrease the corrugation growth rate at the dominant wavelength since the double derivative of corrugation growth at the dominant frequency will always be negative. Odd numbered terms represent effects relating to speed distribution asymmetry so these terms will equate to zero for a symmetric distributions of speed.

CONCLUSIONS

This report presents a method by which variable speed corrugation growth can be rapidly approximated without the computational burden of numerical integration of a speed distribution function or simulation of many passes. Analytical equations were used to find the first four derivatives of growth rate in the frequency domain with train speed. These were used with standard statistical moments of standard deviation, skewness and kurtosis and the results compared with
numerically integrated triangular and Gaussian speed distribution functions. Results showed a good correlation between the 4th order statistical moments for the increased standard deviation simulations up to a standard deviation of 10% and between the 3rd order statistical moments and the varying skewness simulations when the standard deviation was small (less that 4% of the mean). Higher than 4th order statistical moments are expected to have increasing effect with larger standard deviations since the 4th order approximations matched closely with numerical solutions of standard deviation changes. Also, 3rd order approximations matched closely with results of skewness changes if the standard deviation was small but diverged rapidly as standard deviation was increased.

It was also shown how kurtosis can have significant effects on the performance of a speed control based corrugation mitigation scheme. Comparing the triangular and Gaussian distribution, results showed little difference but the 2nd and 4th order statistical moment results show a difference in predicted growth rate of 12% from that of the single pass growth rate. These correlated to a change in kurtosis of 3. The change in growth rate (17%) is significant when compared to the 27% caused by increasing the standard deviation to 11%. These effects will always depend on the 4th derivative of the growth rate function with speed so it is possible that under some conditions this trend will be reversed, as with those observed for skewness changes. Under cornering conditions though, the third derivative will normally be negative because of significant increases in wear sensitivity to normal force with higher speeds so reduction in skewness will cause a decrease in corrugation growth rate (see Batten et. al., 2011). The only universal effect will be that increasing standard deviation will always decrease corrugation growth at the dominant wavelength.

This paper shows that the method of modelling variable speed rail corrugation growth via statistical moment expansion will work for narrow speed distributions. As standard deviation increases however, higher order effects become more apparent and must be considered. Future work will consider the possibility of using a widely spread finite difference approximation to find the derivatives of growth rate with speed so as to improve lower order approximations at large standard deviations at the cost of diminished accuracy for small standard deviations.

ACKNOWLEDGEMENTS

The authors are grateful to the CRC for Rail Innovation (established and supported under the Australian Government’s Cooperative Research Centres program) for the funding of this research as part of Project No. R3.158 Corrugation Control. The authors are also very grateful for the support of Queensland Rail, Railcorp and the Australian Rail Track Corporation.

REFERENCES

APPENDICES

Appendix A – Simulation parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural frequency [rad/s]</td>
<td>(\omega_n)</td>
<td>850</td>
</tr>
<tr>
<td>Wear sensitivity [m/N]</td>
<td>(K_\lambda)</td>
<td>2.4×10^-6</td>
</tr>
<tr>
<td>Modal sensitivity</td>
<td>(K)</td>
<td>0.785</td>
</tr>
<tr>
<td>Damping ratio</td>
<td>(Z)</td>
<td>0.14</td>
</tr>
<tr>
<td>Average speed [m/s]</td>
<td>(\mu)</td>
<td>15.3</td>
</tr>
<tr>
<td>Kurtosis of distribution, Gaussian, triangular</td>
<td></td>
<td>3, 2.387</td>
</tr>
</tbody>
</table>

Appendix B – Speed distribution functions

The Gaussian distribution function is given by the following equation.

\[
p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \tag{B.1}
\]

The triangular distribution must have a predefined mode, \(x_m \) which ranges from the root of two times the standard deviation either side of the defined mean.
\[x_{\text{min,max}} = \mu \pm \sigma \sqrt{2} \] \hspace{1cm} (B.2)

Based on this mode, the upper and lower limits of speed can be calculated.

\[x_{\text{min,max}} = \frac{3\mu - x_m \pm \sqrt{-3x_m^2 + 6\mu x_m - 3\mu^2 + 24\sigma^2}}{2} \] \hspace{1cm} (B.3)

With the domain limits and speed mode set, the distribution function, \(p(x) \), is then bound by the following equations.

If \(x < x_m \) \hspace{2cm} (B.4)

\[p(x) = \frac{2(x - x_{\text{min}})}{(x_{\text{max}} - x_{\text{min}})(x_m - x_{\text{min}})} \]

If \(x > x_m \) \hspace{2cm} (B.5)

\[p(x) = \frac{-2(x - x_{\text{max}})}{(x_{\text{max}} - x_{\text{min}})(x_{\text{max}} - x_m)} \]
Publication Information

Title: Proceedings of Acoustics 2011
Editors: David J. Mee and Ian D.M. Hillock
Date: October 2011

ISBN 978-0-9757855-8-4

Published by The Australian Acoustical Society
C/o Professional Centre
Private Bag 1
Darlinghurst NSW 2010

Copyright Notice
The proceedings of 'Acoustics 2011: Breaking New Ground' have been reproduced from author-submitted files. The authors are solely responsible for the technical content and opinions expressed therein. The opinions expressed are not necessarily those of the Australian Acoustical Society.

Permission is hereby granted for any person to reproduce a fractional part of any paper herein provided that permission is obtained from its author(s) and credit is given to the author(s) and these proceedings. An author or his research sponsor may reproduce his or her paper in full, crediting these proceedings. This permission is not assignable.
Preface

Welcome to the Proceedings of ACOUSTICS 2011. This volume contains papers presented at the 2011 Annual Conference of the Australian Acoustical Society that was held on the Gold Coast in November 2011. The annual conference of the Australian Acoustical Society has a long history and has developed as an important forum for the dissemination of information relating to the science and practice of acoustics in Australia.

The theme for ACOUSTICS 2011 was Breaking New Ground. This theme was chosen to provide a focus for the Conference on the substantial infrastructure development projects currently being undertaken and being planned in the Australasian region. Major infrastructure for transportation, industry and mining, present challenges in noise and vibration, whether these are in assessment, modelling or mitigation or in the need to provide appropriate legislative and regulatory frameworks. The Proceedings of ACOUSTICS 2011 do break new ground with papers reviewing recent developments and addressing the challenges and opportunities presented by the construction and operational phases of such infrastructure.

The response to the call for papers from the acoustical community was outstanding. 140 abstracts were submitted for inclusion in the technical program for the Conference. These abstracts covered a broad range of topics. The theme was well supported with papers proposed for noise associated with major infrastructure projects and construction in contexts ranging from urban through to mining projects. Many abstracts were also submitted in the other major topics for which papers were called for the conference, underwater acoustics / marine bioacoustics, railway noise and vibration and road transport. Other abstracts on more general noise and vibration were received. The abstract review committee reviewed the abstracts and authors of abstracts accepted for the conference were invited to submit full papers. The larger Technical Review Committee, which included over 50 acoustics academics and professionals, reviewed the full papers. Each paper was reviewed by two to three members of the committee. After the outcome of the reviewing process, the final technical program for the conference included 103 papers.

Five workshops were included in the technical program for the conference. These were on Wheel Rail Noise Control, Building Design for Transportation Noise, Wind Turbines and Low Frequency Noise, Sleep Disturbance and Low-Noise Road Surfaces. These workshops were organised to be run within the program for the conference. In addition, a Short Course entitled, "Environmental Noise Assessment" was held in conjunction with the conference.

The editors of these proceedings would like to thank all authors for their efforts in preparing of their papers. Thanks also go to the Scientific Review Committee for their assistance in reviewing the large number of papers. As these proceedings are being published prior to the Conference, we look forward to the exciting technical program to a successful ACOUSTICS 2011.

David Mee
Ian Hillock

October 2011
Bibliographic Information

Title: Acoustics 2011: Breaking New Ground
Subtitle: Proceedings of the Annual Conference of the Australian Acoustical Society
Format: CD-ROM
Publication Date: November 2011
Recommended Retail Price: AUD $100.00
ISBN: 978-0-9757855-8-4
Edited by: David J. Mee and Ian D.M. Hillock
© Australian Acoustical Society, Queensland Division 2011.

Information for Higher Education Research Data Collection (HERDC)

The HERDC is the annual collection of statistics from Australian universities about research output and income. It is currently collected by the Department of Innovation, Industry, Science and Research.

The following information is provided for authors intending to claim their research publications as part of the HERDC.

Title of conference publication Acoustics 2011: Breaking New Ground
Proceedings of the Annual Conference of the Australian Acoustical Society
Name of Conference Acoustics 2011: Breaking New Ground
Publisher The Australian Acoustical Society
Queensland Division
Publication format CD-ROM
Editors David J. Mee and Ian D.M. Hillock
Location of Conference Gold Coast, Queensland, Australia
Date of Conference 24 November 2011

Proof of peer review

Each of the manuscripts accepted to 'Acoustics 2011: Breaking New Ground' was reviewed by at least two members of a scientific committee comprising 42 members. The names of referees were kept anonymous from the authors. The referees reviewed the papers to ensure they were of high standard for the conference, and provided written feedback on the quality of the manuscripts. Where doubt remained after this process, the papers were reviewed by the scientific committee chairman. The referee criteria included: technical content, originality, clarity, English expression, technical significance. Papers were matched where possible to referees in the same field with similar interests and area of expertise as the authors. Authors were advised to make all changes recommended by the reviewers, or provide the editor with a technical justification for not making particular changes. The responses from authors were then reviewed by the editor.

The organising committee wishes to thank the scientific committee and the authors for their cooperation and time to enable this review process to occur.
Scientific Committee

Claire Richardson, Con Doolan, Dragana Carevic, John Savery, John Smith, Marshall Hall, Ron Rumble, Alec Duncan, David Spearritt, Iain Parnum, James Forrest, Martin Veidt, Renzo Tonin, Roger Treagus, Xia Pan, Yuxing Wang, Bob Randall, Colin Hansen, Daniel Naish, John Davy, John Shearer, Li Chen, Michael Hayne, Norm Broner, Adrian Jones, Alex Zinoview, Carl Howard, Chris Schulten, Emma Charlton, James Heddle, Jie Pan, Kym Burgemeister, Nicole Kessissoglou, Stephen Pugh, Anthony Zander, Dave Anderson, Matt Terlich, Paul Meehan, Russell Brown, Ian Hillock, Michael Caley, David Mee

Acoustics 2011 Organisation

Congress Chair Matthew Terlich
Technical Review Committee Chair Ian Hillock
Congress Treasurer Claire Richardson
Congress Secretary David Mee
Organising Committee Michael Hayne
 Michael Caley
 Matthew Goodfellow
 Richard Devereux

Editors of Conference Proceedings David J. Mee
 Ian D.M. Hillock

Exhibition Coordinator Norm Broner

Copyright Notice

The proceedings of 'Acoustics 2011: Breaking New Ground' have been reproduced from author-submitted files. The authors are solely responsible for the technical content and opinions expressed therein. The opinions expressed are not necessarily those of the Australian Acoustical Society, or the University of Adelaide.

Replicated in Australia

For availability of the CD-ROM of the proceedings, contact the Australian Acoustical Society http://www.acoustics.asn.au

Permission is hereby granted for any person to reproduce a fractional part of any paper herein provided that permission is obtained from its author(s) and credit is given to the author(s) and these proceedings. An author or his research sponsor may reproduce his or her paper in full, crediting these proceedings. This permission is not assignable.
Acoustics 2011 -Sponsors and Trade Exhibition

The Queensland Division of the Australian Acoustical Society gratefully acknowledges the generous support from our Congress Sponsors.

Gold Sponsors

[Ortech Industries logo]

[Bradford logo]

Bronze Sponsors

AUTEX

peer Industries

BARRISOL®

Corporate Sponsor

SAVTek Pty Ltd
Sound and Vibration Technology
Acoustics 2011 Congress Exhibitors

Ortech Industries Pty Ltd
CSR Bradford Insulation
AUTEX
Peer Industries Pty Ltd
Barrisol Australia
SAVTech Sound and Vibration Technology
Embelton
Acoustic Research Laboratories
B&B Insulations Pty Ltd
Pyrotech
Marshall Day
ETMC Technologies
Envirospray 3000
Thermo Fisher Scientific
Brue & Kjaer
SoundPlan
Renzo Tonin and Associates (NSW) Pty Ltd
ACU - VIB ELECTRONICS
Martini Industries
Warsash Scientific
Instrulabs Pty Ltd
Technic Pty Ltd
HW Technologies Pty Ltd
Materialised
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Short Course: Environmental Noise Assessment</td>
</tr>
<tr>
<td></td>
<td>Basic Noise Theory</td>
</tr>
<tr>
<td></td>
<td>Presenter: Ron Rumble</td>
</tr>
<tr>
<td>10:30</td>
<td>Morning Tea</td>
</tr>
<tr>
<td>11:00</td>
<td>Computer Modelling</td>
</tr>
<tr>
<td></td>
<td>Presenter: Peter Karantonis</td>
</tr>
<tr>
<td>13:00</td>
<td>Registration</td>
</tr>
<tr>
<td>13:00</td>
<td>Technical Tour: Whale Watch Cruise</td>
</tr>
<tr>
<td>14:00</td>
<td>Lunch</td>
</tr>
<tr>
<td>14:00</td>
<td>Departs Surfers Paradise wharf (42 Ferny Avenue) at 14:00</td>
</tr>
<tr>
<td>14:00</td>
<td>Legislation</td>
</tr>
<tr>
<td></td>
<td>Presenter: Michael Hayne</td>
</tr>
<tr>
<td>15:30</td>
<td>Afternoon Tea</td>
</tr>
<tr>
<td>15:45</td>
<td>Development Assessment</td>
</tr>
<tr>
<td></td>
<td>Presenter: Ron Rumble</td>
</tr>
<tr>
<td>16:45</td>
<td>Open Forum</td>
</tr>
<tr>
<td></td>
<td>Moderator: Ron Rumble</td>
</tr>
<tr>
<td>17:00</td>
<td>Close Shortcourse</td>
</tr>
<tr>
<td></td>
<td>Disembark Surfers Paradise Wharf 17:30</td>
</tr>
<tr>
<td>19:00</td>
<td>Official Opening ACOUSTICS 2011 and Welcoming Barbeque</td>
</tr>
<tr>
<td>Time</td>
<td>Session 1A Infrastructure Development</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
</tbody>
</table>
Thursday 3 November 2011

ACOUSTICS 2011 Session 2

10:45

Morning Tea (Trade Exhibition Area)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 2A: Non-Destructive Testing</th>
<th>Session 2B: Sleep Disturbance Workshop</th>
<th>Session 2C: Music Acoustics</th>
<th>Session 2D: Noise Control Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:45</td>
<td>Chair: Martin Veidt Boulevard 1</td>
<td>Chair: Russ Brown Boulevard 2</td>
<td>Chair: Ben Hall Boulevard 3</td>
<td>Chair: Ian Hillock Palm 3 (Level 3)</td>
</tr>
</tbody>
</table>

| Time | Session 3A: Underwater Acoustics I
Chair: Alec Duncan
Boulevard 1 | Session 3B: Descriptors and Metrics
Chair: Peter Heinze
Boulevard 2 | Session 3C: Infrastructure Development
Chair: Gillian Adams
Boulevard 3 | Session 3D: Noise and Vibration Control II
Chair: Jia Pan
Palm 3 (Level 3) |
|-------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 12:30 | LUNCHEON (Trade Exhibition Area) | Plenary 2: James Lynch
025: Acoustical Oceanography and Shallow Water Acoustics
Chair: Alec Duncan
Boulevard 1 | | |
| 13:30 | | | | |
| 14:15 | 128: Listening to the ocean: insights into marine animals and the ocean environment.
Douglas H. Cato (Keynote) | 52: The Evolution of Aircraft Noise Descriptors over the Past Decade.
Carl Howard |
Huub Bakker | | | 69: Performance evaluation of an active headrest using the remote microphone technique.
Ben Cazzolato |
| 14:55 | 49: Recent Developments in Modelling Acoustic Reflection Loss at the Rough Ocean Surface.
Adrian Jones | 6: A brief review of road traffic noise indicators and correlations with the LA10(18hour).
Claire Richardson | 56: Hybrid Passive/Active Inertial Actuators to Attenuate the Structural and Acoustic Responses of a Submerged Hull.
Peter Gangemi |
Daniel Wilkes | 78: Government Environmental Noise Policy – A Personal Account of the Last 40 Years.
Roger Treagus | 130: Noise constraints for coal seam gas development and operations.
Xia Pan |
| Time | Session 4A: Underwater Acoustics II
Chair: Adrian Jones
Boulevard 1 | Session 4B: Environmental Noise
Chair: Dan Naish
Boulevard 2 | Session 4C: Vibrations
Chair:
Boulevard 3 | Session 4D: Flow Induced Noise I
Chair: David Mee
Palm 3 (Level 3) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15:35</td>
<td>Afternoon Tea (Trade Exhibition Area)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 16:00 | 87: How Wrong Can You Be? Can a Simple Spreading Formula Be Used to Predict Worst-Case Underwater Sound Levels?
Alec Duncan (invited) | 115: Soundscapes and Soundscape Planning.
Lex Brown (Invited) | 21: On the symmetry of the impedance matrix for acoustic radiation modes and sound power evaluation.
Herwig Peters | 44: Empirical Study of the Tonal Noise Radiated by a Sharp-edged Flat Plate at Low-to-moderate Reynolds Number.
Danielle Moreau |
Matthew Legg | 37: Noise Reduction through Facades with Open Windows.
Yuxing Wang | 46: The Effect of Trailing Edge Serrations on Flat Plate Self-noise at Low-to-moderate Reynolds Number.
Danielle Moreau |
| 16:40 | 120: Subarray Beamforming for Reducing the Effect of Flow Noise on Sonar Arrays.
James Leader | 15: Application of environmental criteria and the Queensland Development Code to proposed development contiguous with transport corridors.
Arthur Hall | 111: Gearbox Fault Simulation using Finite Element Model Reduction Technique.
Lav Deshpande | 47: Analysis Of Noise Generated By A Wall-Mounted Finite-Length Airfoil.
Narasimha M Thota |
| 17:00 | 134: Conceptual development of a dynamic underwater acoustic channel simulator.
Michael Caley | Workshop BUILDING DESIGN FOR TRANSPORTATION NOISE: TECHNICAL ACOUSTICS AND POLICY, GETTING THE BALANCE RIGHT
Chair: Daniel Naish | 95: Development of a magnetic levitation vibration isolator using inclined permanent magnetic springs.
Yann Frizenschaf | 43: Turbulent Trailing Edge Noise Estimation Using a RANS-based Statistical Noise Model.
Cristobal Albarracin |
| 17:20 | 97: Echo time spreading and the definition of transmission loss for broadband active sonar.
Yong Zhang | Panel:
Dave Southgate
Roger Treagus
Stephen Pugh
Stephen Moore | 53: Multipole Moment Preserving Condensation of Flow Induced Quadrupole Acoustic Sources.
Paul Croaker |
<p>| 17:40 | Close Day 1 | | | |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:00</td>
<td>Australian Acoustical Society Annual General Meeting (Palm 3)</td>
</tr>
<tr>
<td>19:00</td>
<td>Cocktail Reception (Boulevard Pre-function Area)</td>
</tr>
</tbody>
</table>
| 19:30 | \textbf{ACOUSTICS 2011 CONGRESS DINNER}
Speaker: Joe Wolfe |
| 23:30 | |
Friday 4 November 2011

ACOUSTICS 2011 Session 5

| Time | Session 5A: Rail Noise I
Chair: Paul Meehan
Boulevard 1 | Session 5B: Wind Turbines I
Chair: Matt Terlich
Boulevard 2 | Session 5C: Road Traffic Noise I
Chair: Steve Pugh
Boulevard 3 | Session 5D: Flow Induced Noise II
Chair: Con Doolan
Palm 3 (Level 3) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00</td>
<td>Breakfast</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9:00 | Plenary 3: Professor David Thompson
009 The role of theoretical models in shaping railway noise policy and mitigation strategies.
Chair: Paul Meehan
Boulevard 1 | | | |
| 9:45 | 40: Predicting variable speed rail corrugation growth using statistical moments.
Ross Batten | 50: Comparison of Compliance Results from the Various Wind Farm Standards Used in Australia.
Jørgen Kragh (Keynote) | 54: A Simple Approach to Estimate Flow-Induced Noise from Steady State CFD Data.
Paul Croaker |
| 10:05 | 51: Railway rolling noise prediction under European conditions.
Shijie Jiang | 29: Contribution of Wind Farm Into Noise at a Distant Receiver in a Rural Environment.
Alex Zinoviev |
| 10:25 | Rail workshop session 1 | 30: Comparison of Predicted and Measured Wind Farm Noise Levels and Implications for Assessments of New Wind Farms.
Tom Evans | 100: Noise level variation in the CBD with height.
Sangarapillai Kanapathipillai | 105: The Characteristics of Sound Radiation by Turbulent Flow over a hydrofoil and a bare-hull Suboff.
Li Chen |
| 10:40 | | | | |
| Time | Session 6A Rail Noise II
Chair: Dave Anderson
Boulevard 1 | Session 6B: Wind Turbines II
Chair: Christophe Delaire
Boulevard 2 | Session 6C: Road Traffic Noise II
Chair: Arthur Hall
Boulevard 3 | Session 6D: Structural Vibration
Chair: Nicole Kessissoglou
Palm 3 (Level 3) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10:45</td>
<td>Morning Tea (Trade Exhibition Area)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11:10 | 98: Groundborne Noise and Vibration Control at
Performing Arts Centers using Elastomeric Bearings.
Steven Wolfe | 17: Concepts for the control of wind turbine noise.
Con Doolan | 39: Prediction of Carpark Noise in Australian Conditions.
Laurence Nicol | 141: Analysis of underwater vibration of a torpedo-shaped structure subjected to an axial excitation.
Jie Pan |
Steve Barlow | 57: Problems Measuring Low Frequency Sound Levels Near Wind Farms.
B. Rapley | Workshop:
Low Noise Road Surfaces | 66: The Effect of Distribution for a Moving Force.
Ahmed Reda |
| 11:50 | 88: A numerical study to evaluate dynamic responses of voided concrete sleepers to impact loading.
Sak Kaewunruen | 73: Wind Turbine Noise: why accurate prediction and measurement matter.
Bob Thorne | Panel:
Arthur Hall
Steve Pugh | 123: Structural vibration transmission in stiffened structures.
James Forrest |
| 12:10 | Rail workshop session 2 | 119: The Peril of Ignoring Insect Noise in the Assessment of Ambient Noise Levels.
Matthew Terlich | 36: Vibration characteristics of a cylinder with asymmetries.
Heye Xiao | |
| Time | Session 7A Rail Noise 3
| | Chair: David Thompson
| | Boulevard 1
| | Session 7B: Wind Turbines and
| | Low Frequency Noise
| | Chair: Norm Broner
| | Boulevard 2
| | Session 7C: Directivity and
| | Response
| | Chair: David Spearritt
| | Boulevard 3
| | Session 7D: Acoustical Sensor Networks
| | Chair: Michael Hayne
| | Palm 3 (Level 3)
| 12:30 | LUNCHEON (Trade Exhibition Area)
| 13:30 |
| | 122: Recent Developments in the
| | Practical State-of-the-Art in
| | Managing Rail Noise in Australia.
| | Dave Anderson (invited)
| | 28: A Preliminary Investigation Into
| | The Determination Of The
| | Inaudibility Level Of Mechanical
| | Plant And Music Noise In The
| | Presence Of Ambient Background
| | Noise.
| | Rodney Phillips
| | 99: Practical Considerations for
| | Designing Road Tunnel Public
| | Address Systems.
| | Peter Patrick (invited)
| | 89: Fibre optic acoustic sensing for
| | intrusion detection systems.
| | Gary Allwood
| 13:50 |
| | 19: Some Pitfalls in Using AS2377-
| | 2002 for Passby Noise
| | Measurement.
| | David Hanson
| | 23: Low-frequency and Tonal
| | Characteristics of Transformer
| | Noise.
| | Michael Gange
| | 137: Road tunnel acoustics.
| | Peter Ridley
| | 139: Development of a Photo-Acoustic
| | Trace Gas Sensor.
| | Christopher Kelly
| | (invited: RJ Hooker Bursary, QLD Div)
| 14:10 |
| | 79: Investigation about the effect
| | of angle of attack and relative
| | humidity on wheel squeal.
| | Xiaogang Liu
| | Workshop:
| | Wind Turbines and Low Frequency Noise
| | Chair: Norm Broner
| 14:30 |
| | 75: Determination of track decay
| | rate using field trials.
| | Wenxu Li
| | 76: Close-range variation in
| | binaural responses to orally-
| | radiated sources.
| | William Martens
| | 93: Sound Monitoring Networks New
| | Style.
| | Dick Botteldooren
| 14:50 | Rail workshop session 3
| |
| | 94: Acoustic source beam control
| | using a compact virtual
| | loudspeaker array.
| | Ken Stewart
| | 106: Acoustics and the Smart Phone.
| | Rhys Brown
| | 136: Applicability of spherical
| | microphone arrays in room
| | acoustics.
| | Magdalena BOECK
| | 14: UAV-Based Acoustic Tomography.
| | Anthony Finn
| |

Session 8A: Marine Bio-Acoustics
Chair: Doug Cato
Boulevard 1

15:40
101: **Acoustic methods to mitigate bycatch and depredation by marine mammals on commercial fishing operations in Australian waters: Fishermens options.**
 - Geoff McPherson (invited)

16:00
127: **Detection of beaked whale clicks in underwater noise recordings.**
 - Iain Parnum

16:20
91: **Measurements Of Snapping Shrimp Noise Along The Cooks River, Sydney.**
 - Marshall Hall

16:40
27: **Underwater environmental impact assessments on marine mammals and fishes from sound radiated by anthropogenic noise.**
 - Antoine David

Session 8B: Psychoacoustics and Design
Chair: Chris Schulten
Boulevard 2

15:40
140: **Noise level assessments: Subjective vs objective measures.**
 - Elizabeth Beach

16:00
3: **Emergency Vehicle Auditory Warning Signals: Physical and Psychoacoustic Considerations.**
 - Aaron Maddern

16:20
133: **Prediction of noise from Small to Medium Sized Crowds.**
 - Michael Hayne

16:40
112: **Acoustic Design Approach for Hospitals.**
 - Samuel Clarke

Other Events
- **15:10** Afternoon Tea (Trade Exhibition Area)
- **17:00** Close Day 2 - Conference Closes