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We present the first direct determination of meson-baryon resonance parameters from a scattering
amplitude calculated using lattice QCD. In particular, we calculate the elastic I ¼ 3=2, p-wave nucleon-
pion amplitude on a single ensemble of Nf ¼ 2þ 1 Wilson-clover fermions with mπ ¼ 280 MeV and
mK ¼ 460 MeV. At these quark masses, the Δð1232Þ resonance pole is found close to the N − π threshold
and a Breit-Wigner fit to the amplitude gives gBWΔNπ ¼ 19.0ð4.7Þ in agreement with phenomenological
determinations.

DOI: 10.1103/PhysRevD.97.014506

I. INTRODUCTION

Accurate and precise predictions of hadron-hadron
scattering amplitudes from first principles are desirable
for many phenomenological applications. While lattice
QCD has been successful in calculating many single-
hadron properties, hadron-hadron scattering amplitudes
have been more difficult. Since lattice QCD simulations
are performed in Euclidean time and finite volume, real-
time infinite-volume scattering amplitudes cannot be cal-
culated directly [1]. Instead, the finite volume may be
exploited to determine scattering amplitudes using the
shift of interacting two-hadron energies from their non-
interacting values [2].
However, these calculations have been hampered by the

difficulty in evaluating correlation functions with two-
hadron interpolating operators. Thanks to algorithmic
advances in the treatment of all-to-all quark propagators
[3,4] and increasing computational resources, lattice QCD
studies of scattering amplitudes have undergone substantial
recent progress. As reviewed in (e.g.) Ref. [5], many
calculations of resonant meson-meson amplitudes have

been performed. Elastic meson-meson scattering amplitudes
are therefore quickly entering an era of high precision,
while first progress has been made on amplitudes with
multiple coupled meson-meson scattering channels and on
amplitudes coupled to external currents [6–35].
The situation with meson-baryon scattering amplitudes

is considerably less advanced. There are calculations of
non-resonant amplitudes and scattering lengths [36–39],
as well as first steps towards resonant N − π amplitudes
[40,41]. Nonetheless, to date published determinations of
meson-baryon resonance parameters from amplitudes cal-
culated using lattice QCD are lacking. Unpublished pre-
liminary progress toward a calculation of the amplitude
considered in this work was communicated privately in
Fig. 17 of Ref. [42].
The Δð1232Þ is the lowest-lying baryon resonance,

but remains phenomenologically interesting. For instance,
as discussed in Ref. [43] nucleon-Δð1232Þ transition form
factors are an important phenomenological input for
neutrino-nucleus scattering experiments such as NOνA
and DUNE. The scattering amplitude calculated in this
work is a required first step in the calculation of such form
factors using lattice QCD.
There are many difficulties associated with meson-

baryon scattering amplitudes. First, the exponential deg-
radation in the signal-to-noise ratio is typically worse in
correlation functions containing baryon interpolators than
in the pure-meson sector. Second, the additional valence
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quark results in increased computational and storage costs,
as well as a proliferation of the necessary Wick contrac-
tions. Furthermore, resonant meson-baryon amplitudes
require ‘annihilation diagrams’ which are present in corre-
lation functions between single-baryon and meson-baryon
interpolators. Finally, nonzero baryon spin complicates the
construction of irreducible meson-baryon operators [44]
and the extraction of scattering amplitudes [45].
Despite these difficulties, we present here the first lattice

QCD calculation of the resonant I ¼ 3=2, N − π amplitude
in the elastic region on a single ensemble of gauge
field configurations with Nf ¼ 2þ 1 dynamical flavors of
Wilson-clover fermions generated as part of the coordinated
lattice simulations (CLS) consortium [46]. Although this
ensemble is at unphysically heavy (degenerate) light quark
mass corresponding to mπ ¼ 280 MeV, we observe an
analogue of theΔð1232Þ resonance close toN − π threshold.
Using a variety of moving frames [47,48], we employ

finite-volume energies to determine the amplitude at six
points in the elastic region. The energy dependence of the
resultant amplitude is well-described by a Breit-Wigner
resonance shape, yieldingmΔ¼1344ð20ÞMeV and gBWΔNπ ¼
19.0ð4.7Þ already at our heavier-than-physical light quark
masses.
This letter is organized as follows. We first detail the

lattice QCD ensemble employed here, our method for
extracting the spectrum, and the subsequent determination
of the amplitude. This is followed by the presentation and
analysis of the results. Finally, we close with conclusions
and an outlook.

II. LATTICE QCD METHODS

Ensemble details: The gauge field ensemble employed
here is from the CLS consortium [46,49], which has
generated a large set of Nf ¼ 2þ 1 flavor ensembles at
several lattice spacings and quark masses. This single
ensemble is detailed in Tab. I and does not have the quark
masses set to their physical values but belongs to a quark
mass trajectory where 2ml þms is kept fixed as ml ¼
mu ¼ md is lowered to its physical value. Therefore we
have both mπ > mphys

π and mK < mphys
K .

This ensemble also employs the open temporal boundary
conditions of Ref. [51]. In order to ensure a Hermitianmatrix
of correlation functions, our interpolating operators are

always separated from the temporal boundaries by at least
tbnd, wheremπtbnd ¼ 3.5. Using the zero-momentum single-
pion correlation function, which is the most precisely
determined correlation function, we have demonstrated that
this separation is sufficient to reduce temporal boundary
effects below the statistical precision. Temporal boundaries
are therefore neglected in all subsequent analysis.
Correlation functions: In order to efficiently treat the all-

to-all quark propagators required in two-hadron correlation
functions, we employ the stochastic LapH method [4].
While brute-force calculation of the entire quark propagator
is intractable, this method projects it onto a low-dimensional
subspace spanned by Nev eigenmodes of the stout link-
smeared [52] gauge-covariant 3-D Laplace operator. This
projection is a form of quark smearing, a common technique
used to reduce unwanted excited state contamination in
temporal correlation functions.
The stochastic LapH method [4] then introduces sto-

chastic estimators for the smeared-smeared quark propa-
gator Qðx; yÞ in this subspace spanned by time (“T”),
spin (“S”), and Laplacian eigenvector (“L”) indices. The
variance of these estimators may be improved via dilution
[53]. In each index we shall either consider full dilution,
denoted “F,” or n uniformly interlaced dilution projectors,
denoted “In”. Furthermore, it is beneficial to employ differ-
ent dilution schemes for “fixed” quark lines, where x0 ≠ y0,
and for “relative” quark lines, where x0 ¼ y0. Fixed and
relative dilution schemes are denoted by the subscripts “F”
and “R,” respectively. Information on the stochastic LapH
implementation is given in Table II. This scheme together
with the Nt0 ¼ 2 source times for our fixed quark lines
results in ND ¼ 1152 Dirac matrix inversions per configu-
ration. Using this algorithm, all required Wick contractions
are evaluated as described in Ref. [40] while only a single
permutation of the stochastic quark line estimates is
employed. To increase statistics we average over all irrep
rows and a subset of equivalent total momenta P.
Energy calculation: Shifts of the finite-volume N − π

energies from their noninteracting values are calculated
directly by fitting the ratios [35]

RnðtÞ ¼
ĈnðtÞ

Cπðp2
π;n; tÞCNðp2

N;n; tÞ
;

Ĉn ¼ ðvnðt0; tdÞ; CðtÞvnðt0; tdÞÞ ð1Þ

TABLE I. Parameters of the CLS ensemble used in this work.
After the ensemble ID in the first column, we list the gauge
coupling, lattice spacing and dimensions, pseudoscalar meson
masses, number of gauge configurations, and number of source
times. A precise lattice spacing determination can be found in
Ref. [50].

ID β aðfmÞ L3 × T mπ , mKðMeVÞ Nconf Nt0

N401 3.46 0.0765 483 × 128 280, 460 275 2

TABLE II. Parameters of the stochastic LapH implementation
used in this work. ðρ; nρÞ are the stout link smearing parameters,
Nev the number of Laplacian eigenvectors, and NR the number of
independent stochastic sources quark lines for fixed and relative
quark lines. Notation for the dilution scheme is explained in
the text.

ðρ; nρÞ Nev dilution scheme Nfix
R Nrel

R

(0.1,25) 320 ðTF;SF;LI16ÞFðTI8;SF;LI16ÞR 5 1
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to the ansatz RnðtÞ ¼ Ae−ΔEnt. In Eq. (1)CðtÞ is a correlator
matrix in a particular irreducible representation (irrep) and
vnðt0; tdÞ an eigenvector from the generalized eigenvalue
problem (GEVP) CðtdÞvn ¼ λnCðt0Þvn. Cπ and CN are
single-pion and single-nucleon correlation functions
(respectively) with momenta equal to those in the non-
interacting N − π level closest to En. While the GEVP
enables the extraction of excited states, it is also practically
advantageous to enhance ground-state overlap in correla-
tors with significant mixing between the operators and
eigenstates.
We include one single-site (smeared) Δ interpolating

operator and several nucleon-pion interpolators in the
GEVP for each irrep resulting in correlation matrices of
dimension Nop ≲ 5. We employ the ground state in each
irrep in our analysis, as well as a single precisely deter-
mined excited state. With our current level of statistics,
other levels in the elastic region have insufficient statistical
precision to constrain the amplitude.
Effects due to variation of ðt0; tdÞ and Nop are not visible

with our current statistical precision. Furthermore, as seen
in Fig. 1, we choose fit ranges ½tmin; tmax� with tmin large
enough so that the systematic error due to unwanted excited
state contamination is smaller than the statistical error.
It should be noted that the excited state contamination in
RðtÞ may be non-monotonically decreasing, leading to
‘bumps’ in the tmin-plots shown in Fig. 1. Nonetheless, the
overall magnitude of the excited state contamination is
considerably smaller than in single-exponential fits to just
the numerator of Eq. (1). Furthermore, the chosen tmin

values lie in the plateau region for individual effective
masses of both numerator and denominator, so we are
confident that RnðtÞ behaves asymptotically for t ≥ tmin.
Although multihadron correlation functions containing

baryons are more computationally intensive than those with
just mesons, the overall measurement cost is still dominated
by the Dirac matrix inversions, which we perform effi-
ciently using the DFL_SAP_GCR solver in openQCD [54].
However, the baryon functions defined in Eq. (23) of
Ref. [4] are the dominant storage cost.
Amplitude calculation: A variant of the methods of

Refs. [2,47] detailed in Refs. [45,48] is applied to relate
finite-volume N − π energies to the infinite-volume elastic
scattering amplitude. For each total momentum P and irrep
Λ, these relations are given as determinant conditions of
the form

detðK̂−1 − BðP;ΛÞÞ ¼ 0; ð2Þ
which hold up to exponentially suppressed residual finite
volume effects. The determinant is taken over indices
corresponding to the total angular momentum J, total orbital
angularmomentuml, total spinS, and an occurrence indexn
labellingmultiple occurrences of the partial wave in the irrep.
The (infinite dimensional) matrixB depends on the irrep and
encodes the reduced symmetries of the finite volume. It is
diagonal in S but (in general) dense in all other indices.
Expressions for all required elements of B up to J ¼ 13=2
and l ¼ 6 are given in Ref. [45]. K̂ is diagonal in J, equal to
the identity in n, and is related to the usual K-matrix via

K−1
lS;l0S0 ¼ q−ðlþl0þ1Þ

cm K̂−1
lS;l0S0 whereqcm is the center-of-mass

momentum.
For this first calculation we only include irreps in which

the Jη ¼ 3=2þ, p-wave is the lowest contributing partial
wave [48], namely ðP2;ΛÞ ¼ fð0; HgÞ; ð1; G2Þ; ð3; F1Þ;
ð3; F2Þ; ð4; G2Þg. In addition to ignoring the exponential
finite volume effects in Eq. (2), contributions from higher
l > 1 are expected to be negligible based on threshold
angular-momentum suppression. We assess the effect of
this truncation to l ¼ 1 by performing a fit also including
all l ¼ 2 contributions, namely the Jη ¼ 3=2− and 5=2−

partial waves. For this fit with the l ¼ 2 waves, we
additionally include the ground state energy in the
ð0; HuÞ irrep where the 3=2þ wave does not contribute,
but both the 3=2− and 5=2− are present.

III. RESULTS

Results for the I ¼ 3=2, p-wave elastic N − π scattering
amplitude are presented in Fig. 2, where the (rescaled) real
part of the inverse amplitude ðqcm=mπÞ3 cot δ3

2
1 is shown as

a function of the center-of-mass energy Ecm. This quantity
is smooth near the elastic N − π threshold and, unlike the
scattering phase shift, can describe both near-threshold
resonances and bound states. However it is a highly
nonlinear function of Ecm, so that conventional horizontal
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FIG. 1. Variation of tmin, the lower end of the range for
single-exponential fits to the correlator ratio in Eq. (1). The
vertical axis is the dimensionless center-of-mass momentum
u2cm ¼ L2q2cm=ð2πÞ2. Shown here are the ground state energies
from each of the five irreps ðP2;ΛÞ ¼ fð0; HgÞ; ð1; G2Þ;
ð3; F1Þ; ð3; F2Þ; ð4; G2Þg and a single first excited state from
the ð3; F2Þ irrep. For each fit tmax ¼ 25a while the dashed lines
indicate the chosen fit.
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and vertical error bars would be significantly correlated.
Instead of these, in Fig. 2 for each energy we display one
point for each of the central 68% of bootstrap samples.
This therefore gives a visual representation of the 1 − σ
confidence interval for each point in this two-dimensional
plot. Finally, in Fig. 2 ~Ecm ¼ ðEcm −mNÞ=mπ is shown on
the horizontal axis so that the elastic region is given
by 1 < ~Ecm < 2.
We describe the energy dependence of this amplitude

with a Breit-Wigner shape

�
qcm
mπ

�
3

cot δ3
2
1 ¼

�
m2

Δ
m2

π
−
E2
cm

m2
π

�
6πEcm

ðgBWΔNπÞ2mπ
ð3Þ

with fit parameters mΔ=mπ and gBWΔNπ . The fit is performed
using the method of [45] in which the residuals in the
correlated-χ2 are taken to be

Ωðμ; AÞ ¼ detðAÞ
det ½ðμ2 þ AA†Þ1=2� ;

where A ¼ K̂−1 − BðP;ΛÞ from Eq. (2). We take μ ¼ 1,
although fit parameters do not vary outside their statistical
errors when going from μ ¼ 1 to μ ¼ 10.
The results of this fit (which neglects l > 1 partial

waves) are

mΔ

mπ
¼ 4.738ð47Þ; gBWΔNπ ¼ 19.0ð4.7Þ;

χ2=d:o:f: ¼ 1.11;

where the errors are statistical only. While our small
number of data points makes fits to other parametrizations
difficult, we can attempt to describe this partial wave in a
nonresonant manner by truncating the effective range
expansion at leading order, yielding the one-parameter
fit form

�
qcm
mπ

�
3

cot δ3
2
1 ¼

1

m3
πa33

2
1

:

This fit gives ðmπa3
2
1Þ−3 ¼ −0.099ð14Þ with χ2=d:o:f: ¼

2.50, indicating a poorer description of the data compared
to the Breit-Wigner form of Eq. (3).
We can also assess the impact of the 3=2− and 5=2− d-

waves which are present in the irreps with nonzero total
momenta. In addition to the six energies included in the
previous fits, we add the ground state in the total zero
momentum Hu channel, where these two waves are the
lowest contributing partial waves. Although we only have
seven energy levels, we nonetheless perform a four-param-
eter fit including the leading term in the effective range
expansion for each of these additional waves

�
qcm
mπ

�
5

cot δ3
2
2 ¼

1

m5
πa53

2
2

;

�
qcm
mπ

�
5

cot δ5
2
2 ¼

1

m5
πa55

2
2

together with the parametrization of Eq. (3) for the 3=2þ
p-wave. The results of this fit are

mΔ

mπ
¼ 4.734ð56Þ; gBWΔNπ ¼ 19.0ð7.4Þ;

ðmπa3
2
2Þ−5 ¼ 0.00ð10Þ; ðmπa5

2
2Þ−5 ¼ 0.00ð12Þ;

χ2=d:o:f: ¼ 4.17:

The values for mΔ and gBWΔNπ are consistent with those
obtained from truncating to l ¼ 1, confirming our insen-
sitivity to these l ¼ 2 waves.
SincemN=mπ ¼ 3.732ð56Þ, there is no significant differ-

ence between mΔ and the elastic threshold at Eth=mπ ¼
1þmN=mπ . By employing the scale determination of
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FIG. 2. The real part of the inverse scattering amplitude for
I ¼ 3=2, p-wave elastic N − π scattering. Different colors
indicate different energy levels, for each of which a colored
circle is plotted for each of the central 68% of bootstrap samples
and a black square indicates the mean value. The solid and dotted
lines denote the mean values and bootstrap errors, respectively,
for the Breit-Wigner fit described in the text. The lower panel
focusses on the resonance region shown in the upper panel.
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Ref. [50] we obtain a mass in physical units of
mΔ ¼ 1344ð20Þ MeV, where the error on the scale has been
combined in quadrature. It is worth emphasising that the
quark masses for this ensemble are tuned to satisfy TrM ¼
2ml þms ¼ ðTrMÞphys asml is lowered to its physical value,
in contrast with the more standard choice wherems ¼ mphys

s

for all values of ml.
Comparison of gBWΔNπ can be made to experiment using

the experimental values mexp
Δ ≈ 1232 MeV and Γexp ≈

117 MeV from Ref. [55] and the relation ΓBW ¼
ðgBWΔNπÞ2q3Δ
6πm2

Δ
, where qΔ is the center-of-mass momentum cor-

responding to the resonance mass. Such a comparison
yields gBW;exp

ΔNπ ≈ 16.9, in agreement with our result.
An alternative convention for the ΔNπ-coupling is

provided by leading-order chiral effective theory [56],
which defines Γ as

Γ ¼ ðgLOπNΔÞ2
48πm2

N

EN þmN

EN þ Eπ
q3Δ;

where EN and Eπ are the energies of the nucleon and pion,
respectively, with momenta equal to qΔ. Using our calcu-
lated values for the resonance parameters andmN=mπ gives

gLOπNΔ ¼ 37.1ð9.2Þ:

Our result for gLOΔNπ can be compared to previous lattice
estimates using Fermi’s golden rule from Refs. [57,58],
which give gLOΔNπ ¼ 23.7ð0.7Þð1.1Þ at mπ ¼ 180 MeV and
gLOΔNπ ¼ 26.7ð0.6Þð1.4Þ at mπ ¼ 350 MeV. We can also
compare to a phenomenological extraction employing
LO nucleon-pion effective field theory [56] yielding
gLOΔNπ ¼ 29.4ð4Þ, and a phenomenological K-matrix analy-
sis [59] yielding gLOΔNπ ¼ 28.6ð3Þ.

IV. CONCLUSIONS AND OUTLOOK

This work presents the first lattice determination of
meson-baryon resonance parameters directly from the
scattering amplitude. It builds on demonstrably successful
algorithms from the meson-meson sector [35], in particular
the stochastic LapH method [4], which reduces computa-
tional and storage costs for multihadron correlation func-
tions containing baryons significantly compared to the
distillation approach of Ref. [3].
The I ¼ 3=2, p-wave, elastic N − π scattering amplitude

is calculated here on a single ensemble of gauge configu-
rations, and thus the usual lattice systematic errors due to
finite lattice spacing and unphysical quark masses are not
addressed. Furthermore while the magnitude of the expo-
nentially suppressed finite volume effects indicated in
Eq. (2) is presumably insignificant, this has not been
checked explicitly.

This first analysis also avoids the influence of l ¼ 0
partial wave mixing in Eq. (2) by judiciously choosing
irreps where this wave is absent and the J ¼ 3=2 p-wave is
the leading contribution. Future work will include also
irreps where the corresponding s-wave is present, which
can be analyzed as described in Ref. [45]. These additional
finite volume energies will better constrain the energy
dependence of the amplitude and enable a more precise
analysis of higher partial wave contributions. Furthermore,
this calculation employs only a single permutation of
stochastic quark line estimates. Additional “noise order-
ings” may significantly improve the statistical precision.
Furthermore, these results will soon be complemented

by measurements on other CLS ensembles. This will not
only enable a check of the lattice spacing and (exponential)
finite volume effects, but also elucidate the quark-mass
dependence by using ensembles along the TrM ¼ const..
trajectory down to mπ ≲ 200 MeV. While we have
employed the ground states in each irrep and a single
excited state from the ð3; F2Þ irrep here, at lighter pion
masses, as mΔ moves further above the elastic threshold,
more excited states will also be included to provide
additional points.
This first elastic Δð1232Þ → Nπ calculation may be

viewed as a stepping stone in several respects. First,
techniques for computing correlation functions, extracting
finite volume energies, and analysing determinant condi-
tions may be extended to other resonant meson-baryon
systems. Such systems of interest may present additional
complications like coupled scattering channels, as are
present when studying the Λð1405Þ resonance. Finally,
building upon this calculation of Δð1232Þ → Nπ will
ultimately enable lattice QCD calculations of Δð1232Þ
transition form-factors, for which the theoretical founda-
tions can be found in Ref. [60].
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