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Current estimates indicate that only

about 1.2% of the mammalian genome

codes for amino acids in proteins. How-

ever, mounting evidence over the past

decade has suggested that the vast major-

ity of the genome is transcribed, well

beyond the boundaries of known genes, a

phenomenon known as pervasive tran-

scription [1]. Challenging this view, an

article published in PLoS Biology by van

Bakel et al. concluded that ‘‘the genome is

not as pervasively transcribed as previous-

ly reported’’ [2] and that the majority of

the detected low-level transcription is due

to technical artefacts and/or background

biological noise. These conclusions attract-

ed considerable publicity [3–6]. Here, we

present an evaluation of the analysis and

conclusions of van Bakel et al. compared

to those of others and show that (1) the

existence of pervasive transcription is

supported by multiple independent tech-

niques; (2) re-analysis of the van Bakel et

al. tiling arrays shows that their results are

atypical compared to those of ENCODE

and lack independent validation; and (3)

the RNA sequencing dataset used by van

Bakel et al. suffered from insufficient

sequencing depth and poor transcript

assembly, compromising their ability to

detect the less abundant transcripts outside

of protein-coding genes. We conclude that

the totality of the evidence strongly

supports pervasive transcription of mam-

malian genomes, although the biological

significance of many novel coding and

noncoding transcripts remains to be ex-

plored.

Previous Evidence for Pervasive
Transcription

The conclusion that the mammalian

genome is pervasively transcribed (i.e.,

‘‘that the majority of its bases are associ-

ated with at least one primary transcript’’

[1]) was based on multiple lines of

evidence. Both large-scale cDNA sequenc-

ing and hybridization to genome-wide

tiling arrays were the major empirical

sources of data. Analysis of full-length

cDNAs from many tissues and develop-

mental stages in mouse showed that at

least 63% of the genome is transcribed and

identified thousands of novel protein-

coding transcripts and over 30,000 long

noncoding intronic, intergenic, and anti-

sense transcripts [7–9]. In parallel, whole

chromosome tiling array interrogation of

the RNA content of a variety of human

tissues and cell lines revealed that, collec-

tively, at least 93% of genomic bases are

transcribed in one cell type or another

[1,10–13].

Since it is well established that highly

expressed mRNAs dominate the non-

ribosomal portion of the polyA+ transcrip-

tome [7,8,10,14–19], normalization ap-

proaches were used to reduce the quantity

of highly expressed transcripts in these

cDNA analyses [7,8], and are implicit in

tiling array approaches. This was neces-

sary to allow the detection of rarer (often

cell type–restricted [1,13,16,19,20]) tran-

scripts.

The evidence for pervasive transcription

also includes observations from a wide

variety of other independent techniques

(see reviews [21] and [22] for references).

Indeed, a simple query of currently

available human spliced EST data in

GenBank shows that documented tran-

scripts cover 57.09% of the genome.

Because ESTs are largely generated from

polyadenylated RNAs and do not exhaus-

tively sample the transcriptome, this cov-

erage represents the lower bound of

genomic transcription.

Based on an analysis of genome-wide

tiling arrays and short read RNA sequenc-

ing data, van Bakel et al. report that ‘‘most

‘dark matter’ transcripts (i.e., novel tran-

scripts of unknown function) are associated
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with known genes’’ [2], a well-established

and uncontroversial conclusion that has

been reported previously [1,8,10,13,14,

19,23–25] (see Text S1). Controversially,

however, they also concluded that ‘‘the

genome is not as pervasively transcribed as

previously reported’’ [2]. The authors

suggested that the discrepancy is explained

by tiling arrays producing more false

positive signals than previously appreciat-

ed, although they do not reconcile their

conclusions with the extensive transcrip-

tome cataloged by cDNA analyses [7,8]

and other approaches [21,22]. The multi-

centre ENCODE pilot project, for exam-

ple, found that 74% of the bases in the

genome areas analyzed were covered by

primary transcripts identified by two

independent technologies [1].

Congruency of Tiling Array and
Short Read RNA Sequencing
Data

A major feature of van Bakel et al.’s

argument was based on their comparison

of precision recall (PR) curves generated

from tiling arrays and RNA sequencing

(RNA-seq), from which they concluded

that tiling array results suffer from high

false positive rates. These PR curves in

principle measure the order in which

transcribed regions are detected when

the expression detection threshold is

lowered in a stepwise manner. This

analysis performed by van Bakel et al.

indicated a large difference between tran-

scribed regions detected by tiling arrays

(referred to as transfrags or TARs since

they are most often parts of longer

transcripts) compared to those detected

by RNA-seq (seqfrags). They showed that

RNA-seq discovers known protein-coding

exons at higher thresholds compared to

unannotated transfrags, while tiling arrays

found a larger fraction of non-exonic

regions, even at high thresholds, from

which they conclude a lower accuracy of

tiling arrays.

There are two major limitations to this

analysis (see also Text S1). First, the

implication of lower accuracy of tiling

arrays is made in the absence of an

independent validation of the false positive

rate (which, by contrast, was routinely

conducted in previous tiling array studies

using techniques such as RT-PCR, see e.g.,

[10,13]). As explained later, correlating

individual tiling array probes and RNA

sequencing depth is not an appropriate

comparison and cannot substitute as a

validation method. Thus, the false-positive

claim by van Bakel et al. is impossible to test

precisely with the presented data.

Second, while RNA-seq offers linear

quantification over a wide range, tiling

arrays saturate at the upper end of signal

strength. As a consequence, arrays are less

reliable in distinguishing highly expressed

known exons from less highly expressed

novel transfrags, resulting in a lower

precision value for any given recall in the

PR curves. This fact explains much of the

difference in shape between the curves,

but does not imply that the regions

detected by either technology are false

positives, only that quantification by

arrays is less linear than by RNA-seq,

which is well understood.

We performed a similar PR curve

analysis using ENCODE tiling array data

for K562 cellular RNA, and found results

that are substantially different from those

reported by van Bakel et al., but consistent

with a recent analysis of a sample-matched

nematode RNA-seq and tiling array data-

set by Agarwal et al. (2010) [26]. Briefly,

we identified transfrags on the tiling arrays

with a range of different thresholds.

Similar to the analysis by van Bakel

et al., every transfrag that overlapped

any annotated exon was scored as positive,

while all others were scored negative. The

resulting PR curve was dramatically dif-

ferent from the curve presented in

Figure 1A of van Bakel et al. Moreover,

the shape of the PR curve and the

precision for any given recall level for

our tiling arrays is much closer to the van

Bakel et al. sequencing data and to our

own sequencing data from a matched

K562 sample (Figures 1 and S1). These

results suggest that, while decreased dy-

namic range of tiling arrays leads to an

increased number of non-exonic regions

being detected at high thresholds (lower

initial precision values; see Figure 1), the

difference between sequencing and tiling

arrays is not large and the discrepancies

identified by van Bakel et al. appear to be

specific to their analysis.

A second argument for lower accuracy

of tiling arrays by van Bakel et al. was

based on the observation that there is a

relatively low correlation between individ-

ual probe-level signals from arrays and

sequencing read depth. Unfortunately,

such a statement reveals a fundamental

lack of understanding of tiling array

technology. Tiling arrays are neither

intended nor designed to give reliable

signals from each individual probe. The

more appropriate analysis for correlation

is at the level of transcribed regions such as

exons or transfrags, as has been done

previously [26] and which generally shows

a good correlation. This also points to

another problem in the van Bakel et al.

study, which used tiling arrays with 36-bp

spaced probes, offering only very few

probes for each exon. The 5-bp spaced

(7X resolution) arrays used for ENCODE

(and in many published human transcrip-

tome studies) offer more power to filter

individual probe-level noise (Figures S2,

S3, and S4). Overall it appears that, while

RNA-seq offers better linearity of quanti-

fication and much higher resolution for

boundaries of transcribed regions, the

overall detection accuracy of tiling arrays

is not significantly lower. This is also in

agreement with the recent analysis by

Agarwal et al. [26], which consistently

observed intergenic and intronic transcrip-

tion.

Finally, it is difficult to reconcile the

purported high false positive nature of the

tiling array results with numerous previous

studies that validated up to 94% identified

transcripts using independent techniques

such as RT-PCR, RACE, and Northern

blot analyses [10–13,27].

Detection and Interpretation of
Low-Level Transcription

We suggest that the overarching con-

clusions drawn by van Bakel et al.—that

there is only spasmodic (not pervasive)

low-level transcription of much of the

genome, and that much of this transcrip-

tion has ‘‘random character’’ [2]—are the

result of a number of debatable aspects of

their logic and analysis. These may be

summarized as (1) insufficient sequencing

depth and breadth and poor transcript

assembly, together with the sampling

problems that arise as a consequence of

the domination of sequence data by highly

expressed transcripts; compounded by (2)

the dismissal of transcripts derived from

introns; (3) a lack of consideration of non-

polyadenylated transcripts; (4) an inability

to discriminate antisense transcripts; and

(5) the questionable assertion that rarer

RNAs are not genuine and/or functional

transcripts.

1. Sequencing depth, breadth, and assembly.

The conclusions of van Bakel et al. about

the pervasiveness of transcription were

based on transcript read number, not the

extent of genomic coverage of the observed

transcripts (which is the correct metric),

stating ‘‘the vast majority of sequence reads

in polyA+ samples correspond to known

genes and transcripts, arguing against

widespread transcription to the extent

reported previously’’. The former fact does

not justify the consequential argument.

This also highlights a key caveat of RNA

sequencing—i.e., diminishing returns—

whereby abundant transcripts constitute
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the majority of reads, making rare tran-

scripts difficult to find in the absence of

normalization approaches. This problem is

clearly evidenced in the van Bakel et al.

dataset, where ,88% of unique polyA+
sequences mapped to exons of known

genes, which comprise just over 2% of the

genome. Therefore, the transcription in the

remainder of the genome was sampled by

only ,12% of the reads.

This insufficient depth of sequencing is

illustrated by comparing the rates of

discovery for exonic, intronic, and inter-

genic sequences as sequencing depth

increases. Despite continuing to constitute

most reads, the area covered by exons

quickly moves towards saturation, while

the area covered by intronic and interge-

nic transcripts was found to ‘‘keep increas-

ing at roughly constant rates’’ [2]. Thus,

the sequence coverage of the vast majority

of the genome is not saturated, and

potentially includes many novel protein-

coding and noncoding transcripts insuffi-

ciently sampled at the given read depth.

Underscoring the importance of ade-

quate transcriptome sampling, concurrent-

ly published deep sequencing studies, with

two to three times greater depth of data

from polyA+ RNAs from cultured cells,

were still not saturating [16,28]. Nonethe-

less, and unsurprisingly, the increased

sequencing depth led to increased novel

transcript discovery, as only 70% of the

identified splice junctions were derived

from ‘‘known genes’’ in a mouse myoblast

cell line [28], compared to 94% reported by

van Bakel et al. Re-analysis of transcript

assembly at different sequencing depths

also suggested, crucially, poor assembly and

poor recovery of lowly expressed transcripts

at the deepest level of sequencing used by

van Bakel et al. [28].

The lack of sequencing depth in the van

Bakel et al. study was exacerbated by the

pooling of 10 tissues/cell lines and the use

of such a highly complex tissue as brain.

Increasing the complexity of the sample

dilutes the relative proportion of tissue-

and cell type–specific transcripts. Using

the brain (170 billion cells) [29], we

calculate that a cell type–specific transcript

present at ,10 copies per cell (a common

level of abundance) in 0.1% of cells would

have only a ,50% chance of being

detected by any reads at the depth of

sequencing utilized by van Bakel et al., let

alone of being assembled into a complete

transcript (see Text S1).

Importantly, because the genomic

strand from which individual sequence

reads were derived was unknown in their

study, the method that van Bakel et al.

employed to assemble these reads into

transcriptional units required that contigs

in the vicinity of known genes be bounded

by splice sites or cross a splice site,

automatically excluding (i) nearly all 59

and 39 UTRs; (ii) deep sequencing reads,

other than the splice site, in genes with a

single intron (Figure 2); (iii) transcripts

from single exon genes, such as the highly

expressed metastasis associated lung ade-

nocarcinoma transcript 1 (MALAT1) (Fig-

ure S5), and transcripts (not containing a

splice site) originating from introns [30];

and (iv) perhaps most importantly, any

known transcript for which there was no

identifiable splice junction in the dataset.

This methodology therefore discriminates

against lowly expressed transcripts, heavily

biasing in favor of common mRNAs.

2. Intronic transcripts. Despite the data

showing that 51.4% of the genomic area

Figure 1. Precision recall curves for the overlap of transcribed regions (transfrags) detected in different experiments and
annotated exons (from GENCODE version 4 and the UCSC known genes track from the UCSC Genome Browser). The Clark et al.
transfrags are based on data generated as part of the ENCODE transcriptome project from K562 cell polyA+ RNA. The transfrags are generated from
5-bp two-color tiling arrays (MinRun = 40 bp, MaxGap = 40 bp). The seqfrags are based on 200 million paired-end 76 bp reads generated on the
Illumina sequencing platform. Any detected region that overlaps an annotated exon is scored positive, all others negative. Fewer exons are detected
overall (compared to van Bakel et al. [2]), likely reflecting the difference between a relatively homogeneous cell line and complex tissue like brain.
doi:10.1371/journal.pbio.1000625.g001
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covered by their human reads aligns with

intronic regions, van Bakel et al. presump-

tively dismissed these sequences as mainly

derived from unprocessed pre-mRNAs,

due to their ‘‘low coverage and ubiquitous

character’’. Intronic regions, which corre-

spond to more than a third of the genome,

are by definition transcribed, and hence

must be included in estimates of the

amount of transcription across the ge-

nome. It is also important to note that

many introns are not fixed entities and

whether a genomic region is intronic,

intergenic, or exonic depends on the cell

type and physiological state of the cell. In

addition, the number of functional RNAs

that may be derived from introns is

unknown, although there is considerable

evidence that they can produce a diversity

of discrete stable RNA products from both

the sense and antisense strands [12,15,31,

32–34], including novel RNAs with vali-

dated functions (e.g., [35]).

3. Non-polyadenylated RNAs. The data

used by van Bakel et al. to support the

conclusion that ‘‘dark matter transcripts

make up a small fraction of the total

sequenced transcript mass’’ focused on

polyadenylated RNA. However, previous

transcriptomic analyses showed that over

40% of non-ribosomal transcripts are non-

polyadenylated [13], and more recent deep

sequencing of total RNA has revealed that

over 45% of uniquely mapping sequence

reads originate from intronic and intergenic

regions [36,37], compared to only 10% in

the polyA+ RNA from equivalent samples

examined by van Bakel et al.

4. Antisense and overlapping transcription.

Tiling array, cDNA, EST, and RNA se-

quencing evidence all indicate that consider-

able interleaved transcription occurs on both

strands [1,9,23,36], with at least 66% of all

protein-coding genes in mouse showing

evidence of overlapping or antisense tran-

scription [9]. However, van Bakel et al.

concluded that their data ‘‘argue against

widespread interleaved transcription of pro-

tein-coding genes’’. This discrepancy can be

explained in large part by the lack of strand

information in the RNA sequencing data

used by them to assemble transcriptional

units (TUs). Indeed, the assembled TUs

covered less than 26% of the genome

(compared to over 40% spanned by RefSeq

genes) and, tellingly, less than 2% of RefSeq

annotated 39UTR sequences. This lack of

coverage and strand information resulted in a

large underestimate of the extent of antisense

and overlapping transcription (Figures S6

and S7), for which functional evidence is also

emerging (see e.g., [38]).

5. Discriminating low signal strength from

background noise. The assertion of van Bakel

et al. that low sequence coverage (by

seqfrags) equates with transcriptional ‘‘by-

products’’ and/or ‘‘random initiation

events’’ is highly debatable. Such seqfrags

might equally, if not more, plausibly reflect

stochastic sampling of transcripts that are

less expressed, less stable, and more cell

specific [39]. This is not proof or even

evidence of irrelevance. Moreover, van

Bakel et al. infer non-functionality of rare

transcripts without any biological data, but

one cannot expect vast numbers of novel

coding and noncoding RNAs to be func-

tionally annotated coincident with their

discovery, especially if, as is likely, they have

many different functions [40]. The yeast

GAL10-ncRNA provides a good example:

despite a steady-state expression level of

around one transcript per 14 cells, it is

functional [41]. Similarly, the mammalian

HOTTIP RNA plays an important role in

epigenetic regulation despite an average

expression level of around 0.3 transcripts

per cell in expressing tissues [42]. There-

fore, while expression levels are important,

it cannot be assumed a priori that low

expression equates to non-functionality.

Summary

A close examination of the issues and

conclusions raised by van Bakel et al.

Figure 2. Poor coverage of single intron transcriptional units (TUs) by van Bakel et al. [2]. The figure shows the abundance of sequence
reads mapped to the HAR1A locus [43] (green) and the TU created from these tags by van Bakel et al. using TopHat (red) [44]. In contrast, the Clark
et al. TU created by reanalysis of sequence reads using Cufflinks [28] includes the extended 59 and 39 exonic sequences (dark blue).
doi:10.1371/journal.pbio.1000625.g002
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reveals the need for several corrections.

First, their results are atypical and gener-

ate PR curves that are not observed with

other reported tiling array data sets.

Second, characterization of the transcrip-

tomes of specific cell/tissue types using

limited sampling approaches results in a

limited and skewed view of the complexity

of the transcriptome. Third, any estimate

of the pervasiveness of transcription re-

quires inclusion of all data sources, and

less than exhaustive analyses can only

provide lower bounds for transcriptional

complexity. Although van Bakel et al. did

not venture an estimate of the proportion

of the genome expressed as primary

transcripts, we agree with them that

‘‘given sufficient sequencing depth the

whole genome may appear as transcripts’’

[2].

There is already a wide and rapidly

expanding body of literature demonstrat-

ing intricate and dynamic transcript ex-

pression patterns, evolutionary conserva-

tion of promoters, transcript sequences

and splice sites, and functional roles of

‘‘dark matter’’ transcripts [39]. In any

case, the fact that their expression can be

detected by independent techniques dem-

onstrates their existence and the reality of

the pervasive transcription of the genome.

Supporting Information

Text S1 Supplementary text.

Found at: doi:10.1371/journal.pbio.

1000625.s001 (0.22 MB DOC)

Figure S1 Comparison of the PR curve

transfrags from Clark et al. (ENCODE)

and van Bakel et al. data.

Found at: doi:10.1371/journal.pbio.

1000625.s002 (0.27 MB PDF)

Figure S2 Histogram of transfrag length

for van Bakel et al. [1] and Clark et al.

(ENCODE) transfrags.

Found at: doi:10.1371/journal.pbio.

1000625.s003 (0.26 MB PDF)

Figure S3 PR curve for transcripts.

Found at: doi:10.1371/journal.pbio.

1000625.s004 (0.23 MB PDF)

Figure S4 Genome browser screenshots

showing annotation and transfrags from

the van Bakel et al. and the ENCODE

tiling arrays using a threshold that gives

similar recall values for both.

Found at: doi:10.1371/journal.pbio.

1000625.s005 (0.14 MB PDF)

Figure S5 Known single exon tran-

scripts are missing from van Bakel et al.

TUs. Sequence reads (green) provide good

coverage of Malat1 gene but are not found

in the van Bakel et al. TUs (red).

Found at: doi:10.1371/journal.pbio.

1000625.s006 (0.19 MB PDF)

Figure S6 Lack of UTR coverage in

TUs prevents the detection of overlapping

transcripts.

Found at: doi:10.1371/journal.pbio.

1000625.s007 (0.22 MB PDF)

Figure S7 Lack of UTR coverage in

TUs prevents the detection of chains of

overlapping transcripts.

Found at: doi:10.1371/journal.pbio.

1000625.s008 (0.27 MB PDF)
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