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Université de Strasbourg, Illkirch, France

Accepted 11 November 2017

Abstract. The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs),
but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity,
inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer’s disease (AD) amyloid-� (A�) peptide
whose own antimicrobial role is now increasingly secure. PRNP and A� share membrane-penetrating, nucleic acid-binding,
and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal
nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration
process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious
agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded
‘anti-PRNP’ function. These findings suggest that PRNP, like LL-37 and A�, is likely to be a component of the innate
immune system, with implications for the pathoetiology of both AD and TSE.
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INTRODUCTION

Several brain conditions, including Alzheimer’s
disease (AD) and the transmissible spongiform
encephalopathies (TSEs)—Creutzfeld–Jakob dis-
ease (CJD) in human, scrapie in sheep, and bovine
spongiform encephalopathy (BSE) in cattle—are
associated with the presence of abnormal protein
deposits in brain. For years it was thought that the
amyloid-� (A�) in AD brain might cause the disease,
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but emerging evidence argues that A� is an antimicro-
bial defense peptide induced in response to infection
[1–5], raising the prospect that AD might be asso-
ciated with brain infection (e.g., [6]). Indeed, it has
been argued, notably by Kagan and colleagues, that
amyloid peptides in general may have antimicrobial
properties [7, 8]. This paper addresses whether PRNP,
the central component of the proteinaceous ‘prion’
deposits found in the TSE disease brain, might also
have antimicrobial activity.

Starting with a brief overview of prion theory,
this article examines findings that PRNP associates
directly with the antimicrobial peptide A�, that PRNP
and A� are codeposited in disease brain, and that
PRNP (like A�) binds to both membranes and nucleic
acids and displays antiviral activity. We then examine
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in more depth how herpes simplex virus (HSV-1)
usurps PRNP protein. We conclude by examining the
nucleic acid-binding properties of PRNP, and sug-
gest that oligomerization of the protein in response to
abnormal nucleic acids may represent an entrapment
and sequestration mechanism as a central component
of PRNP antimicrobial activity.

PRION DISEASE

TSEs include diverse neurodegenerative diseases,
including scrapie in sheep, BSE in cattle, and CJD
in human. For more than 40 years it has been known
that brain tissues from individuals with TSE diseases
contain aggregated protein deposits [9–11]. These
fractions are infectious upon reinoculation into a new
host, and infectious fractions are enriched in protease-
resistant aggregates of the host protein ‘PrP’ [12,13],
a processing product of the native precursor protein,
PRNP, encoded by the PRNP gene in human, Prnp in
mouse.

The basic tenet of the prion theory [14, 15] is
that, in disease, a cellular form of PRNP, dubbed
PrPc, undergoes a conformation change, generating
the ‘scrapie-specific’ form PrPsc. In turn, PrPSc binds
to PrPc and promotes PrPc−→PrPsc conversion, lead-
ing to amplification of (supposedly neurotoxic) PrPsc

and disease ([16–18] for review).
In support of the protein-only hypothesis, no

agent other than PRNP protein has been routinely
detected in purified infectious fractions from dis-
ease brain. Moreover, the agent is resistant to some
treatments that normally inactivate nucleic acids, and
any prospective nucleic acid that might be asso-
ciated with infectious PRNP must be short [19],
thereby excluding a conventional virus. However,
this has been widely debated (e.g., [20–23] and ref-
erences therein) and, although innate immune cells
and molecules including interferons and interleukins
have been implicated in TSE disease progression
(reviewed in [24]), the precise pathoetiology of TSEs
and the normal role of PRNP remain enigmatic.

PRNP IS WIDELY DISTRIBUTED IN
INTRACELLULAR AND
EXTRACELLULAR COMPARTMENTS

PRNP is generally thought of as a cell-surface
molecule that is attached to the membrane by a gly-
cosyl phosphatidylinositol (GPI) anchor. However,
common PRNP isoforms lacking the GPI anchor are

widely distributed across multiple intracellular com-
partments, including the nucleus, as well as in the
extracellular milieu. The human, mouse, hamster,
and sheep PRNP coding sequences contain methion-
ine triplets downstream of the usual initiation codon,
and 10–15% of PRNP polypeptides in human and
hamster are generated by translation initiation at
these downstream sites [25], generating an intracel-
lular protein. Cell-surface PRNP is also cleaved by
�-secretase and other cellular proteases to liberate
extracellular fragments (e.g., [26–28]) or is released
from the membrane by the action of phospholipases;
furthermore, cell-surface and extracellular PRNP can
be re-internalized by several routes including direct
endocytosis (e.g., [29–31]).

Expressed widely in multiple tissues including the
immune system, the true biological role of PRNP has
remained elusive, and laboratory pathogen-free Prnp
knockout mice display only subtle and irreproducible
deficits in parameters such as synaptic plasticity (not
reviewed). As we will see, binding partners of PRNP
may cast light on its role.

PRNP BINDS TO A�

It has recently emerged that the AD peptide A� is
a potent antimicrobial molecule that mediates broad-
spectrum resistance against a variety of infectious
agents including viruses, bacteria, and yeasts [1–5].
An interaction between PRNP and A� could argue
that the two polypeptides are components of the same
pathway.

The first indication that PRNP interacts with APP-
derived molecules came from investigation of PRNP
binding partners. Schmitt-Ulms et al. performed in
vivo crosslinking of normal mouse brain proteins with
formaldehyde; stable complexes were retrieved using
anti-PRNP antibody and bound proteins were ana-
lyzed by mass spectrometry. APP fragments were
among the major binding partners of PRNP [32], indi-
cating that the two proteins are in close proximity in
the absence of disease.

Lauren et al. [33] subsequently performed a screen
of 225 000 mouse cDNA clones for polypeptides
binding specifically to A�: only two positive clones
were retrieved, and both corresponded to PRNP.
Binding did not require the disease-specific PrPsc

configuration. High-affinity binding has been con-
firmed for human PRNP [34–36]; these studies report
two A� binding sites within PRNP, one within a
central segment (residues 95–110) and a second
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Fig. 1. Domains of Human PRNP Protein. The graph plots the
charge of the mature protein (residues 23–253) analyzed with
EMBOSS (http://www.bioinformatics.nl/cgi-bin/emboss/charge;
windowsize = 20). Grey, basic regions. Abbreviations: A�, bind-
ing sites for A� peptide; FPR, formyl peptide receptor binding
site; �-HR, �-helical region; IDR, intrinsically disordered region;
R, octapeptide repeats; SS, signal sequence.

close to the N-terminus (residues 23–27) (Fig. 1).
A direct interaction between A� and PRNP has
now been demonstrated by multiple biochemical and
biophysical techniques including immunoprecipita-
tion, tagged recombinant proteins, surface plasmon
resonance, dissociation-enhanced lanthanide fluores-
cence immunoassay, and fluorescence polarization
(e.g., [37, 38]).

Interestingly, in the study of Schmitt-Ulm et al.
[32], other proteins binding to PRNP in this assay
included the APP-like protein APLP2 and APOE;
this latter is notable because APOE is an immune
mediator [39] and mutations in APOE govern sus-
ceptibility to AD (reviewed in [40]). Indeed, APOE
also binds to A�, and APOE alleles also modu-
late susceptibility to several different microbes (e.g.,
Chlamydophila, Klebsiella, malaria, hepatitis C, HIV,
HSV; not reviewed), as well as to CJD (e.g., [41]).

PRNP and Aβ are codeposited in disease brain

Do PRNP and A� associate in disease brain in
vivo? Esiri and colleagues [42] screened brain sam-
ples from unselected postmortem cases, and reported
that in 42% of cases low levels of PRNP immunore-
activity were associated with AD-type plaques.

A similar finding of punctate PRNP immunoreac-
tivity in AD plaques was reported by Ferrer et al.
[43], whereas Kovacs found colocalization with tau
aggregates in AD [44], another signature of the dis-
ease. More recently it has been reported that A�
predominantly interacts with aggregated forms of
PRNP in AD brain [36, 45]. Zou et al. reported
that A� in AD brain forms coaggregates with a
PrPsc-like form of the molecule, termed PrPi, that
copurifies with A� on gel filtration, and the two
proteins coimmunoprecipitate with either anti-A�
or anti-PRNP antibody from extracts of human AD
brain [36].

Similar interactions are reported in TSE. Hain-
fellner et al. [46] analyzed brain samples from
individuals with confirmed CJD and non-CJD con-
trols. AD-type pathology was seen in 10–20% of
both groups, which the authors ascribed to age-related
changes, but it was observed that PRNP deposits fre-
quently accumulate at the periphery of A� plaques.

Colocalization has also been reported in mice.
For example, in double Prnp/App transgenic
mice—expressing AD-associated mutant APP as
well as hamster PRNP—extensive brain amyloid
deposition was seen, and A� and PRNP colocalized
in almost all plaques [47].

On balance it appears that, when PRNP amyloid
is present, in both AD and TSE, it tends to colo-
calize with A� plaques, providing evidence that the
interaction detected in vitro is reiterated in vivo. This
supports the view that the two polypeptides are part
of the same biological pathway.

PRNP promotes the generation and fibrillization
of Aβ in disease

In further support of an interaction, Parkin et al.
[48] studied the effect of PRNP on the release of
A� peptide from its precursor protein APP. In AD,
two specific protease cleavages are required to release
A�—one at the N-terminus, the so-called �-secretase
site, and a second at the C-terminus of the molecule,
the �-secretase site. Downregulation of PRNP by
antisense or knockout led to increased levels of A�
processing; the authors inferred that PRNP normally
inhibits �-secretase cleavage and A� release [48].
It was suggested that PrPc−→PrPsc conversion may
release inhibition, leading to dual upregulation of
PrPsc and A� in disease, consistent with a syner-
gistic role for the two peptides. Indeed, A� levels
are increased several-fold in TSE infection [48, 49].
In addition, there is evidence from knockout cells

http://www.bioinformatics.nl/cgi-bin/emboss/charge
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that PRNP not only promotes A� release but also
fibrillization of the molecule [50].

PRNP alleles constitute a risk factor for AD

If AD-related A� interacts with PRNP, then dif-
ferent allelic variants of PRNP might be anticipated
to modulate A� function. An association between
PRNP mutations and AD has been documented.
Several studies have addressed the specific link-
age between the common codon 129 polymorphism
(a risk factor for CJD) and AD, but failed to find
an association (e.g., [51]). However, when the influ-
ence of APOE alleles was taken into account, PRNP
variants were reported as a significant contributing
factor to AD (e.g., [52, 53]). Different meta-analyses
of PRNP variants have reported a positive association
between PRNP with AD [54–56], and indeed carriers
of some PRNP mutations are primarily diagnosed as
AD (e.g., [57]). In short, PRNP genotype is a modifier
of AD risk, arguing again that the in vitro interaction
between PRNP and A�/APP is functional in vivo.

EVIDENCE THAT PRNP IS ITSELF A
DEFENSE MOLECULE

The above studies demonstrate that PRNP is a pri-
mary binding partner of the antimicrobial peptide A�,
both in vitro and in vivo. This opens the possibility
that PRNP may also be a component of the innate
immune system.

Antimicrobial peptides

Antimicrobial peptides are a large and diverse
group of evolutionarily ancient proteins that pre-date
the adaptive immune system. For example, the A�
sequence is conserved between humans and prim-
itive fish [5]. They have potent activity against a
wide range of bacteria, viruses, and yeasts, and clas-
sically exert their actions in multiple ways (reviewed
in [58–60]). First, by physical association with mem-
branes that can lead to membrane penetration and/or
antimicrobial activity via receptor blockade. Second,
by recruiting immunomodulators to the site of infec-
tion. Third, by the formation of extensive protein
networks (amyloids) that act as traps for pathogens,
sequestering them into an insoluble fraction from
which they cannot escape. Other mechanisms include
the local generation of toxic reactive oxygen species,
the induction of cell death ‘beneficial suicide’

pathways (e.g., [61]), and modulation of viral nucleic
acid synthesis.

The crucial importance of these broad-specificity
anti-infection mechanisms is illustrated by the
antimicrobial peptide cathelicidin LL-37; if
untreated, genetic deficiency in human leads to death
from infection in the first year of life [62].

PRNP resembles an antimicrobial peptide

PRNP displays many of these properties. First, like
A�, PRNP is substantially conserved through evo-
lution, and homologs can be traced back to frogs
and fish [63]. Second, PRNP shares the membrane-
binding/inserting [64–69] and nucleic acid-binding
properties of classical antimicrobial peptides (dis-
cussed in more detail below). Third, PRNP is a
powerful immunomodulator (reviewed in [70]) and,
like both the classical antimicrobial peptide LL-37
and A�, PRNP is a ligand for formyl peptide recep-
tors (reviewed in [71]), key components of the innate
immune system.

Centrally, the formation of polymeric aggregates
by PRNP reiterates the aggregation and pathogen
entrapment mechanisms attributed to A� and clas-
sical antimicrobial peptides. It is plausible to suggest
that the PrPc to PrPsc conversion might be part of
a pathway paralleling the conversion of APP to A�
and subsequent aggregation and entrapment activity
(discussed further below), perhaps in direct physical
association with A�.

In addition, for several antimicrobial peptides, cop-
per binding permits the generation of reactive oxygen
species that contribute to the inactivation of bound
pathogens. Like the recently uncovered antimicro-
bial peptide A�, PRNP binds tightly to copper ion
[72, 73]. It is not yet known whether copper bind-
ing contributes to the immune defense properties of
PRNP, and further work in this direction is warranted.

Finally, like other innate immune molecules,
PRNP expression is upregulated by infection. Cel-
lular infection with HIV-1 leads to increased PRNP
mRNA levels [74]. Upregulation was reported fol-
lowing infection with, among others, vesicular
stomatitis virus and murine leukemia virus [75],
adenovirus 5 [76, 77], hepatitis C virus [78, 79],
Epstein–Barr virus [80], and Mycobacterium bovis
[81]. Similar findings have been reported in vivo,
and PRNP was upregulated in brain of individuals
infected with HIV-1 as well as in cases of simian
immunodeficiency virus encephalitis in macaques
[82]. Interestingly, Voigtländer et al. reported striking
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Table 1
Antiviral Effects of PRNPa

Virus inhibited Virus type Ref.

Adenovirus 5 dsDNA virus, non-enveloped [77]
Coxsackievirus B3 ss(+)RNA virus, non-enveloped [85]
HIV-1 Retrovirus, ss(+)RNA, enveloped [84]
HSV-1 virus (del68) dsDNA virus, enveloped [89]
Murine leukemia virus Retrovirus, ss(+)RNA, enveloped [87]
Poliovirus type 1 Picornavirus, ss(+) RNA, non-enveloped [86]
a(+), positive sense genome; ds, double-stranded; ss, single-stranded.

upregulation of PRNP in AD [83], a condition now
increasingly linked to infection [6]. Notably, the
formation of the PrPsc form is induced by HIV-1
infection [84].

Antimicrobial activity of PRNP

There is direct evidence that PRNP plays a direct
protective role in defense against virus infection (the
special case of wild-type HSV is examined in the
next section). In cell culture, titers of coxsackievirus
B3 were 30–100-fold higher in Prnp knockout cells,
and cells could be rescued by expression of PRNP.
Protection corresponded to increased interferon pro-
duction and elevated apoptotic cell death as assessed
by DNA fragmentation [85]. Expression of PRNP
decreased HIV-1 gene expression and virus produc-
tion was reduced by eightfold [84]. Similar findings
have been reported for poliovirus type 1, where the
titer of virus was increased by a factor of 102 to
104 in Prnp knockout cells, and virus replication
was blocked by re-expression of PRNP [86]. Prnp
knockout was associated with a fivefold increase in
expression of murine leukemia virus [87]. Also in
cell culture, antisense blockade of PRNP expression
increased adenovirus 5 mRNA and DNA content by
up to 10-fold [77].

In vivo, although titers of encephalomyocarditis
virus were not significantly different between Prnp
wild-type and knockout mice following intracerebral
inoculation, wild-type mice had higher levels of brain
inflammation consistent with a more active response
[88]. Convincingly, however, in vivo titers of a mutant
HSV-1 virus (del68) were reduced by a factor of
600 in wild-type versus Prnp knockout mice ([89],
discussed further below).

Although more in vivo studies are required,
together these data indicate that PRNP, that is itself
upregulated in response to infection, leads to a dra-
matic fall (in the range 101 to 104) in the proliferation
of a diverse range of viruses (Table 1); one may reli-
ably conclude that PRNP is a defense molecule.

HSV-1 HIGHLIGHTS PRNP-DEPENDENT
AUTOPHAGY AS A MECHANISM OF
ANTIVIRAL DEFENSE

As noted earlier, antimicrobial peptides typically
have multiple modes of action that centrally involve
membrane association. However, there is one area
in which we are beginning to understand the mech-
anism of action of PRNP in antiviral defense, and
studies on HSV-1 have been crucial. Indeed, the very
first studies on PRNP and virus resistance employed
HSV-1, but at that time it was not known that HSV-
1 deploys an ‘anti-PRNP’ strategy which has been
highly informative.

Titers of the HSV-1 mutant del68 (ICP34.5) are
reduced 600-fold in wild-type versus Prnp knockout
cells [89], as noted earlier. In vivo, all wild-type ani-
mals infected with the mutant virus survived, whereas
the majority of Prnp knockout animals died following
infection, demonstrating the protective role of PRNP.
By contrast, the wild-type virus displays an entirely
different pattern (next section).

It now emerges that wild-type HSV-1 virus has a
specific ‘anti-PRNP’ function. Orvedahl et al. [90]
reported that the virus function in question, ICP34.5
(infected cell polypeptide 34.5 kDa, that is altered
in the del68 mutant), binds to BECLIN1, a protein
involved in autophagy – a process in which a section
of the cytoplasm is enclosed in an isolation mem-
brane to generate ‘autophagosomes’, that then fuse
with lysosomes to permit degradation of the contents,
including infectious agents (reviewed in [91]).

Using a HSV ICP34.5 mutant selectively deficient
in BECLIN1 binding, Korom et al. [89] demonstrated
that PRNP normally blocks the neurovirulence of
the virus by targeting the virus for autophagosome-
mediated degradation. In the absence of ICP34.5,
a PRNP-dependent process is set in train that
blocks virus proliferation by autophagic mechanisms.
However, in wild-type virus (isolate 17) ICP34.5
stops this process in its tracks, permitting virus
proliferation [89].
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Fig. 2. Antimicrobial Activities of PRNP. In addition to the listed categories, other mechanisms are likely to include the generation of
reactive oxygen species, and binding to immunomodulatory molecules including APOE and formyl peptide receptors is likely to direct
the recruitment of other actors in innate immunity. Direct binding to A� (not depicted) and potential interactions with other antimicrobial
peptides that bind to A� (e.g., LL-37, �-synuclein) add a further dimension. Abbreviation: HSV, herpes simplex virus type 1.

These elegant studies demonstrate that autophagy
induction in response to virus infection is one major
route by which PRNP exerts antiviral activity. How-
ever, it is unlikely to be the only one, and distinct
targeted defense mechanisms may be invoked against
different infectious agents (Fig. 2). Moreover, as we
will see in the next section, HSV usurps PRNP.

HSV-1 NOT MERELY BLOCKS, BUT
EXPLOITS, PRNP

In apparent conflict with antimicrobial role of
PRNP, it was earlier reported that wild-type HSV-1
is not inhibited by PRNP, but in fact needs PRNP for
efficient proliferation. The discovery of the HSV-1-
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encoded ‘anti-PRNP’ function discussed above now
provides fresh insights into these earlier reports.

In a key paper, Thackray and Bujdoso [92] reported
that Prnp knockout mice are in fact much less sensi-
tive to wild-type HSV-1 (isolate SC16) than are Prnp
wild-type mice, and the survival of mice following
lethal challenge was remarkably increased by Prnp
knockout. Conversely, overexpression of wild-type
PRNP dramatically boosted virus proliferation. In a
follow-up paper, the same group confirmed earlier
findings and reported significantly increased acute
virus titers in brainstem of wild-type versus knockout
animals [93].

These instrumental data indicate that, in addition to
blocking PRNP-dependent antiviral autophagy, wild-
type HSV-1 depends upon, and usurps, PRNP to
foster virus proliferation. This is not unprecedented.
HIV-1 exploits the classical antimicrobial peptide
LL-37 to promote its own replication [94], and
viruses such as HIV-1 and HSV-1 exploit cell-surface
immunoreceptors which normally stimulate immu-
nity to facilitate virus infection of immune cells. The
mechanism by which HSV-1 usurps PRNP remains
unknown, but may involve membrane interactions
and/or nucleic acid binding (below).

ANTIMICROBIAL PEPTIDES ALSO BIND
TO NUCLEIC ACIDS

Because antimicrobial peptides centrally target
membranes as part of their antimicrobial activity
[60, 95], they often also bind to nucleic acids. In verte-
brates, membranes are highly enriched in negatively
charged molecules including phospholipids and sul-
fated glycosaminoglycans, and bacterial membranes
containing teichoic acids and lipopolysaccharides are
also negatively charged. Thus, many antimicrobial
peptides also bind to nucleic acids.

LL-37 has been shown to bind tightly to extracel-
lular DNA plasmids and oligonucleotides [96, 97].
It can also migrate to the nucleus and modulate
gene transcription [98]. Similar findings have been
reported for A�. Structural analysis indicated that
A� exhibits the signature characteristics of a nucleic
acid-binding protein [99]. Moreover, direct binding
to DNA has been described [100–104], and A� is
reported to enter the nucleus to bind directly to DNA
to modulate transcription, targeting a specific A�-
interacting domain in the promoter regions of the
key APP, BACE1, and APOE gene promoters [105].
Nucleic acid binding by A� may also contribute to its

antiviral effects, such as by interfering with reverse
transcription activity. For example, Wang et al. [106]
found that A� oligomers, but not monomers, robustly
inhibited the reverse transcription activity of verte-
brate telomerase enzyme TERT, probably by binding
to the substrate RNA/DNA hybrid [106], raising the
prospect that A� nucleic acid binding might also
inhibit the proliferation of retroviruses.

Nucleic acid binding by PRNP: Inhibition of
translation and induced PrPc to PrPSc

conversion as a sequestration strategy

PRNP protein contains two basic regions in the
N-terminus of the molecule, and moreover this region
of the molecule is an ‘intrinsically disordered region’
(IDR) (Fig. 1). IDRs can refold around a molecule
such as RNA so as to grasp the ligand, and the
presence of an IDR is a characteristic of several RNA-
binding proteins [107].

It has been established for many years that PRNP
binds to nucleic acids ([108, 109], reviewed in [110,
111]). The presence of two basic regions (Fig. 1) sug-
gests that PRNP may contain two binding sites for
nucleic acids. In addition to binding to A�, PRNP
also interacts with several other nucleic acid-binding
proteins – RNA-binding proteins were among the
most significant hits in a microarray screen for PRNP
binding partners [112]. Nucleic acid binding could
contribute to the antiviral repertoire of PRNP. We
(J.L.D.) previously reported that PRNP binding to
HIV-1 mRNA blocks translation of the viral message,
and native PRNP inhibited HIV-1 replication [84].
This activity has been confirmed for human, mouse,
and hamster PRNP [113], and is thus evolutionarily
conserved.

Does PRNP bind to nucleic acids in vivo? The evi-
dence suggests that it does. For example, antibodies
and binding proteins against single- and double-
stranded DNA efficiently retrieve PRNP from TSE
brain (CJD, BSE, scrapie), but not from control brain
([114]; antibodies against RNA were not tested).
Importantly, specific nucleic acids precipitate the
conversion of PrPc to PrPSc, in which the protein
refolds to adopt a �-sheet configuration and sub-
sequently aggregates. Different nucleic acids differ
in their ability to catalyze this transition. Binding
of DNA can stimulate the �-sheet conversion, but
aggregation is inhibited [109]. In detailed studies,
Zeiler et al. [115] and Adler et al. [116] reported
that different RNAs have widely different affinities
for PrPc, with the highest binding being displayed
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by highly structured RNAs with multiple double-
stranded regions. In addition, only highly structured
RNAs perturbed the conformation of PRNP in such
a way as to promote the conversion of PRNP (PrPc)
to PrPSc [116]. The exact structural features are not
yet known, although it was speculated that PRNP
might be a sensor of abnormal RNAs containing non-
Watson–Crick base pairs in double-stranded RNA
[115], or of other motifs such as adjacent hairpins
or quadriplex structures [117], and further work in
this direction is certainly warranted.

We surmise that disease-associated aggregation of
PRNP is likely to contribute to host defense, as it
is for other antimicrobial peptides such as A� [5].
In the case of A� the specific trigger is not yet
known, but for PRNP binding of specific abnormal
RNAs causes refolding of the molecule and genera-
tion of the aggregation-prone PrPSc form. Although
this remains to be formally demonstrated, one may
legitimately speculate that abnormal RNAs will thus
become entrapped in an insoluble aggregate where
they can no longer participate in cellular metabolism.
Plausibly, sequestration of abnormal RNAs could be
a component of the antimicrobial repertoire of PRNP
(Fig. 2).

CONCLUDING REMARKS

We have reviewed the enigmatic antiviral and
proviral roles of PRNP, as well as binding of PRNP to
AD A�, a protein that is itself increasingly implicated
as an antimicrobial agent [1–5]. The antimicrobial
activities of both PRNP and A� lend support to
the theory that amyloid peptides may generally have
antimicrobial activity [7, 8].

Both PRNP and A� are high-profile molecules
associated with human disease, and have thus been
subject to intense scrutiny. Possible association of
PRNP with other components of the innate immune
system in addition to A� has been less well inves-
tigated. Indeed, subtle deficits in cellular immunity
have been reported in Prnp knockout mice [118],
and PRNP has been implicated in defense against
other forms of immunological and pathophysiologi-
cal stress [119]. It is notable that both PRNP and A�
interact with the immunomodulatory protein APOE
[32, 120], and a functional interaction between PRNP
and �-synuclein, the protein deposited in Parkinson’s
disease brain, has also been reported [121], of impor-
tance because of recent evidence that �-synuclein
itself could be an antimicrobial peptide [122–124],

lending further weight to the suggestion that amyloid
peptides may generally have antimicrobial activity
[7, 8].

Potential interactions with other components of
the innate immune system such as LL-37, APP-
and PRNP-like molecules, and other actors remain
to be addressed in detail. Indeed, an interaction
between A� and LL-37 has recently been uncov-
ered [125], and �-synuclein was first discovered as
a molecule that, like PRNP, binds with high affin-
ity to A� ([126]; reviewed in [127]). This raises the
question of whether these molecules associate in a
complex that appears to contain PRNP, APP/A� and
paralogs, APOE, other antimicrobial peptides, and
RNA-binding proteins, among others. Do these con-
stitute a multiprotein complex that is sprung into
action following infection, and, if so, how would this
process be triggered?

The prominent antiviral activity of PRNP (Table 1),
reinforced by the finding that evolution has led
HSV-1 to develop an ‘anti-PRNP’ function, argues
that PRNP plays a role in innate immunity; PRNP
oligomerization in response to binding of abnormal
nucleic acids is also consistent with an innate immune
defense strategy. It is also an intriguing fact that
chain-terminating mutations in human PRNP are not
only associated with brain disease, but chronic diar-
rhea is also a prominent feature in these patients
[57], a typical presentation of innate immune defi-
ciency (e.g., NOD2 mutations in irritable bowel
syndrome). By contrast, cattle and goats lacking
PRNP appear to be overtly healthy [128, 129],
although the extent to which PRNP-like genes (dop-
pel, PRND, and shadoo, SPRN) might substitute for
PRNP function in ruminants is not known, and the
PRNP-deficient Norwegian goat line displays ele-
vated levels of interferon-responsive gene expression
that could be compatible with subclinical infection
[130]. Direct challenge experiments have not been
done.

Although in many scenarios PRNP acts to block
viral proliferation, PRNP appears to be usurped and
exploited by HSV-1. This is not unprecedented; for
example, the classical antimicrobial peptide LL-37
stimulates, rather than inhibits, the life cycle of
HIV-1 [94]. Looking wider, an antimicrobial role
for PRNP may have implications for the pathoeti-
ology of both TSEs and AD. Time will also tell
whether other agents, in addition to HSV-1, might
usurp the host defense roles of PRNP and/or A� to
ensure their own proliferation; further research into
the roles of PRNP and A� in innate immunity to infec-
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tious agents is clearly warranted. To close, we quote
Brentani and colleagues a decade ago: Time is ripe for
examining possible loss-of-immune-function com-
ponents of prion diseases in the context of peripheral
infection [70].
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