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Abstract 

This paper proposes a Bayesian method for structural model updating and damage detection 

using modal data. A recently developed Markov chain Monte Carlo (MCMC) algorithm is 

adopted to handle the model updating problem. The proposed Bayesian method focuses on 

calculation of the posterior probability distribution function (PDF) of uncertain model 

parameters. In addition to the most probable values of the uncertain parameters, the 

associated uncertainties can be calculated with consideration of the effects of both the 

modeling error and the measurement noise. An experimental case study was carried out with 

a shear building model under laboratory conditions to study the identifiability of the model 

updating problem following the proposed Bayesian method. The results demonstrate the 

change in the posterior PDF of the uncertain parameters with the amount of measured 

information. It also demonstrates the ability of the proposed method to handle unidentifiable 

problems. The proposed Bayesian method is then applied for structural damage detection by 

calculating the probability distribution of the extent of damage to various structural 

components. To demonstrate the proposed Bayesian damage detection method, ambient 

vibration tests were carried out on a two-story steel frame with bolted connections. Joint 

damage was simulated by loosening some bolts at the target beam-column connection. The 

model updating results show that the uncertainty associated with the rotational stiffness of the 

steel joints was very high, rendering the problem almost unidentifiable. Although the problem 

is almost unidentifiable, the calculated probability distribution of the damage extent can still 
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locate the damaged joint and estimate the damage extent (i.e., the percentage reduction in 

rotational stiffness) together with the associated uncertainty.  

Keywords: Bayesian modal analysis, Bayesian model updating, Bayesian damage detection, 

MCMC, uncertainty assessment, ambient vibration test. 

1. Introduction 

Modal analysis [1-2] and model updating [3-5] have been hot research topics because their 

integration is useful for detection of structural damage [6-8]. Modal analysis is first carried 

out to extract the modal parameters (e.g., modal frequencies and mode shapes) from the 

measured ambient vibration data. Model updating is then conducted to update the stiffness 

distribution of the computer model so that the model-predicted and identified modal 

parameters (from the ambient data) are similar. After model updating of the undamaged and 

possibly damaged structure, possible structural damage can then be identified by comparing 

the stiffness distributions of the structure at different statuses. Bayesian modal analysis [9-11] 

has been successfully developed and applied in field tests [12-14]. This paper focuses on the 

development in Bayesian structural model updating and damage detection. 

The efficient performance of model updating and reasonable prediction of the uncertainties in 

the results is a challenging task. Many deterministic approaches have been developed [15-18], 

but most of them attempt to conclude a single solution while ignoring other equally important 

possibilities. Deterministic approaches cannot provide the uncertainties of the results. 

Probabilistic approaches have been developed to overcome these problems. Beck and 

Katafygiotis [19] proposed a Bayesian model updating method in which the optimal model 

was identified by maximizing the posterior PDF of the uncertain structural parameters with 

optimization techniques. This method works well when the model updating problem is 

globally or locally identifiable (which may be the case with a large amount of measured data 

and a low number of uncertain model parameters). The posterior PDF of the uncertain 

parameters can then be represented by a weighted sum of multivariate Gaussian distributions 

centered on a finite number of isolated most probable models obtained by minimizing the 

discrepancy between the measured and model-predicted responses. Note that Katafygiotis 

and Beck [20] unified the multiple optimums theoretically and developed a computationally 

efficient numeric algorithm to locate all output-equivalent models in the parameter space of 

interest. When the information in the data is not sufficient, the model updating problem may 

become unidentifiable, and the use of Gaussian distributions to approximate the posterior 
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PDF may not necessarily be accurate. To overcome this difficulty in approximation, a series 

of well-structured points was generated in the important region in which the value of the 

posterior PDF exceeded a predefined threshold value [20-21]. One limitation of their method 

is that the required computational effort grows as the number of uncertain model parameters 

increases. One advantage, however, is that the points generated in the important region are 

approximately equally spaced. Once this set of points is available, approximation of the 

posterior PDF is straightforward and can be very accurate. One promising approach to the 

solution of unidentifiable model updating problems is to generate samples in the important 

region(s) of the posterior PDF using MCMC [22]. The posterior PDF is then approximated 

using the samples. The high-dimension integrals encountered in Bayesian inference can be 

efficiently computed by Monte Carlo simulation because the computational efficiency does 

not depend on the dimension of the parameter space. The attractive computational efficiency 

of MCMC has led to its application for Bayesian model updating and model class selection 

[23-24], as well as structural health monitoring [25]. 

In unidentifiable problems with great uncertainties, the posterior PDF is distributed in the 

neighborhood of an extended and usually highly complex manifold of the parameter space 

that cannot be calculated in an explicit manner [20-21]. In other words, a continuum of 

solutions can fit the measured data almost equally well. When more than one optimal model 

is available, it is essentially impossible to compare the stiffness distributions of undamaged 

and possibly damaged structures, and damage detection thus becomes difficult or even 

impossible. Rather than considering a continuum of models in the manifold (i.e., the region 

with high PDF values), the MCMC method applied in this paper makes it possible to generate 

a finite number of samples on the manifold for representation (or approximation) of the 

posterior PDF in unidentifiable cases. It is demonstrated with experimental cases that the 

method proposed in this paper can handle damage detection even when the corresponding 

model updating problems are unidentifiable. 

This paper proposes a Bayesian method for structural model updating and damage detection 

using modal data. In the following, the fast Bayesian fast Fourier transform (FFT) modal 

identification method [9-11] is first reviewed because of its importance in the proposed 

method. Next, Bayesian model updating based on MCMC is formulated that is applicable for 

both identifiable and unidentifiable problems. The behavior of the posterior PDF is then 

experimentally studied using a shear building model when the model updating problem 

gradually becomes unidentifiable. Furthermore, the Bayesian method for detection of 
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structural damage is established by calculating the probability distribution of the extent of 

damage based on the MCMC samples from model updating of undamaged and possibly 

damaged structures. The method is especially useful for structural damage detection in 

unidentifiable problems. The proposed Bayesian damage detection method was verified 

experimentally by detecting joint damage in a 2-story steel frame. From the literature, most 

Bayesian model updating and damage detection methods are studied by means of computer 

simulation. One of the contributions of this paper is to demonstrate the applicability of the 

Bayesian approach with experimental data. 

2. Proposed Bayesian method 

2.1. Fast Bayesian FFT modal identification  

In this paper, modal parameters identified from ambient data are used for damage detection. 

Reliable modal parameters are crucial for the success of damage detection. The fast Bayesian 

FFT modal identification method [9-11] makes use of ambient excitations, such as wind 

excitation and excitations from daily operation of the structure. The method is briefly 

summarized in this section. The measured acceleration responses at n measured degrees of 

freedom (DOFs) are defined as ˆ : 1,2, ,n

j R j N u , where the subscript j represents the 

sample index and N represents the total number of time steps measured at each DOF. To 

simplify the formulation, it is represented by  ˆ
ju . The FFT of the measured acceleration 

responses is defined as: 
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where the subscript k is the frequency index corresponding to frequency  1 / ( )kf k N t   ; 

i
2
 = 1; Fk and Gk are the real and imaginary parts of the FFT, respectively; and t  is the 

sampling interval. Nq = int[N/2]+1, where int[.] is the integer operator, which returns the 

integer part of a number. The modal parameters to be identified are the natural frequency f, 

the damping ratio ζ, the spectral density of the modal excitation S, and the spectral density of 

the prediction error σ
2
. To facilitate analysis and computation, the negative log likelihood 

function can be expressed as [9] 
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       2 2 2 2 ˆ, , , ln 2 1 ln ln
f f k

k

L f S nN n N SD d     


         (2) 

where Nf is the number of FFT values of the selected frequency band, which should be 

selected so that it includes only one spectral peak in the power spectral density (PSD). Dk is 

given as follows. 

    
1

2 22
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k k k
D  
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    (3) 
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 (4) 
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k

A D  (6) 

T T

k k k k k
 D F F G G  (7) 

̂  is the maximum eigenvalue of A, which is given by 

  
1

2
1 /

k k

k

SD


 A D  (8) 

A summary of the modal identification procedures for a single mode is given as follows. 

(1) Measure the acceleration time responses at n DOFs of the target structure  ˆ
ju . 

(2) Select the frequency band in the PSD so that it includes only one spectral peak, and 

calculate the FFT sequence defined by Eq. (1). 
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(3) Minimize Eq. (2) to obtain the most probable values of {f, ζ, S, σ
2
}. The minimization is 

conducted within the selected frequency band. The initial guess of the modal parameters can 

be found in [9]. The initial guess of the natural frequency fin can be obtained at the spectral 

peak in the PSD. The initial guess of the damping ratio ζin is set to 1%. The initial guess of 

the spectral density of the prediction error σin
2
 is computed according to 

 
2 0

1
in

f

d

n N








 (9) 

where 
0  is the maximum eigenvalue of A0. The initial guess of the spectral density of the 

modal excitation Sin is computed as follows 

2 2ˆ 4in k in inS D    (10) 

where ˆ
kD  represents the maximum eigenvalue of Dk calculated at the spectral peak. 

(4) With the most probable values of {f, ζ, S, σ
2
} from the minimizing process of step 3, the 

most probable value of mode shape Φ is obtained as the eigenvector of A in Eq. (8) 

corresponding to the largest eigenvalue. 

2.2. MCMC-based Bayesian model updating 

2.2.1. Posterior PDF 

The original modal-domain Bayesian formulations of the posterior PDF use the variance of 

the measured data as the variance of the prediction error [27]. By doing so, the effects of 

modeling error, which are generally much greater than the effects of measurement noise, are 

not considered. As a result, the calculated posterior PDF underestimates the uncertainties 

associated with the model parameters. In this study, the effects of both modeling error and 

measurement noise are considered by using the fractional error (in a percentage sense). The 

fractional errors of the natural frequency and mode shape of the a
th

 mode are defined as [28] 

 
,

ˆ

ˆ
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f
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x
 (11) 
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where the subscript a denotes the mode index;
 

ˆ
af  denotes the identified natural frequency 

of the a
th

 mode (from the measured ambient data);  af x  is the model-predicted frequency 

whose dependence on uncertain parameter vector x is emphasized; and ˆ
aψ  and  aψ x  

denote the ambient data identified and model-predicted mode shapes, respectively. 

The uncertainty in ,f a  and ,ms a  is modeled by independent Gaussian distributions with 

zero mean and the same variance 2 . The likelihood of the natural frequencies and mode 

shapes can then be formulated based on the PDFs of the fractional errors. By assuming the 

uniform PDF as the prior PDF, the posterior PDF of the uncertain parameter vector x is 

obtained as follows, according to the Bayesian theorem [28]. 

   2

1
exp

2
p c J



 
  

 
x xD  (13) 

where D consists of identified natural frequencies and mode shapes (from the measured 

ambient data); c is a normalizing constant; and the goodness-of-fit function is given as 

follows 

 
 

  
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a a T
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f f
J

f

  
    
    


x

x ψ ψ x  (14) 

where r is the number of modes and the identified and predicted modes shapes are 

normalized so their 2-norms both equal 1. 

2.2.2. Markov chain Monte Carlo algorithm  

To conduct Bayesian model updating, the posterior PDF must be evaluated. The posterior 

PDF in practice is usually complicated, and it is not a “well-behaved” PDF. Evaluation of the 

posterior PDF is therefore a challenging task, especially for unidentifiable problems. The 
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difficulties were discussed in the Introduction. Our recently developed MCMC algorithm 

[26-29] is applied in this paper to draw samples according to the posterior PDF. The samples 

are then used to approximate the posterior PDF. We illustrate that the MCMC algorithm can 

handle both identifiable and unidentifiable problems. The MCMC algorithm for Bayesian 

model updating is introduced in the following section. 

2.2.2.1. Metropolis-Hastings algorithm 

The standard Monte Carlo method, which generates samples directly from the posterior PDF, 

is not a possible method for model updating. It should be noted that evaluation of the 

normalizing constant c in Eq. (13) usually requires high-dimension integration, which implies 

that the constant term in the posterior PDF is not available. This is the common problem for 

Bayesian methods. Therefore, sampling directly from the posterior PDF is not feasible. Even 

if the constant is known, the complicated form of the posterior PDF may still prohibit direct 

sampling. The Metropolis-Hastings (MH) algorithm [30-31], as an MCMC simulation 

algorithm, does not require the target PDF p(x) to be expressed analytically, and it can be 

known only up to a multiplicative constant. This is suitable for the solution of Bayesian 

inference problems. The MH algorithm is given in the following.  

Given the current sample x
(i)

, 

(1) Generate the candidate sample 
  ~
i

q X x . 

(2) The next sample is 

  
    

( 1)
with probability , ,

with probability 1 , ,

i

i

i i










 




X x X
x

x x X
 

where   
   
   

/
, min ,1

/

p y q y x
x y

p x q x y


  
  

    

The superscript i denotes the sample index. The proposal density 
  i

q  x  is a conditional 

density that generates samples to approximate the target PDF. 
  ,
i

 x X  is called the 

acceptance probability. The candidate sample has a probability of 
  ,
i

 x X  to be accepted; 
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therefore, the probability for the candidate sample to be rejected is 1  
  ,
i

 x X . If the 

candidate sample is rejected, the current sample will be treated as the next sample. Note that 

the candidate sample is always accepted as the next sample 

if           / /
i i i

p q p qX X x x x X . The MH algorithm will generate samples that 

constitute a Markov chain whose limit distribution is the target distribution. 

Two difficulties prohibit sampling of the posterior PDF with the MH algorithm. First, the 

posterior PDF in Eq. (13) is not even known up to a scaling constant because κ
2
 is 

undetermined. Second, the important region of the posterior PDF may be much smaller than 

the parameter space. If one draws samples with the MH algorithm with the posterior PDF 

treated as the target PDF (assume that the posterior PDF is point-wise known up to a scaling 

constant), it is very likely that the number of distinct samples will be very small because most 

candidate samples will be generated in the region of low probability and will be rejected. The 

sampling process will be very inefficient. In the next section, a sampling scheme is proposed 

to address these two difficulties and to sample from the complicated posterior PDF. 

2.2.2.2. Sampling scheme 

The multiple-level sampling scheme [28] like simulated annealing [32-33] is applied in this 

paper. This sampling scheme is enhanced based on the work in [26]. The multiple-level idea 

is to divide the entire sampling process into multiple levels and bridge the gap between the 

initial (prior) PDF and the posterior PDF. A bridge PDF with a large important region is used 

to generate samples at the beginning of the sampling process. When the sampling process 

proceeds from one level to the next, the important region of the bridge PDF is reduced in a 

controlled manner. This process is repeated until the bridge PDF approaches the target 

posterior PDF. At each level, the MH algorithm is used for sampling, with the bridge PDF as 

the target PDF at that level. The proposal density of the MH algorithm is the approximation 

of the bridge PDF constructed by kernel density estimation [34-36] with samples from the 

previous level. Since the kernel density is constructed by Gaussian PDFs, the applicability of 

the method depends on the dimension of the problem (i.e., the number of uncertain 

parameters) [37]. With an appropriate change of the bridge PDF in successive levels, the 

samples can smoothly travel to the important region of the posterior PDF. The samples 

generated by the bridge PDF in the final level will be used to approximate the posterior PDF. 
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The bridge PDF in the g
th

 sampling level is constructed as follows according to Eq. (13) 

 2

1
exp

2
g g

g

p c J


 
   

 

x  (15) 

where κg
2
 reflects the size of the important region of the bridge PDF in the g

th
 sampling level. 

The relation of κ
2
 in two successive sampling levels is given by 

2 2

1

1
g g

A
    (16) 

where A (> 1) is an algorithmic parameter that controls the level-to-level change of the bridge 

PDF. If the value of A is too high, the reduction in the important region within one sampling 

level is too large. As a result, the MH algorithm will collapse because too many samples will 

be rejected. If the value of A is too low, many sampling levels will be required and the overall 

efficiency of the MCMC simulation will be significantly reduced. The rule of choosing A can 

be found in reference [28]. The value of κg
2
 is reduced by a factor of 1/A at each level. To 

ensure that the sampling process covers a wide range of parameter space, κ1
2
 is set to 100% at 

the first sampling level, which is very high in terms of percentage. Following Eq. (16), κg
2
 is 

reduced at the following levels, which reflects the decrease of the size of the important region 

covered by the bridge PDF. Note that an alternative that can efficiently change κ
2
 in different 

levels is the transitional Markov chain Monte Carlo (TMCMC) method [38-39]. The 

efficiency of TMCMC has been verified on small-scale and full-scale structures. 

The sampling process continues until the bridge PDF approaches the target posterior PDF. A 

stopping criterion is thus needed, which is crucial, especially for damage detection. If the 

sampling process stops too early, the samples of the uncertain parameters spread out in wide 

regions and the important region of the posterior PDF cannot not be identified. As a 

consequence, the samples are not informative, and damage cannot be detected. If the 

sampling process stops too late, the samples of the uncertain parameters are concentrated in 

narrow regions and the important region of the posterior PDF is underestimated. A stopping 

criterion is applied so that the MCMC method can be used for damage detection. The 

stopping criterion is obtained by determining the best estimate of the measure of prediction 

error, κ
*2

, of the bridge PDF in the final sample level 
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*
*2 J

r
   (17) 

where J
*
=J(x

*
) is the value of the goodness-of-fit function in Eq. (14) evaluated at the 

“optimal” point x
*
. Note that κ

2
 denotes the variance of the fractional error of one mode. The 

goodness-of-fit function in Eq. (14) is the sum of the squares of the fractional difference 

between the identified (from the ambient data) and calculated modal parameters for all modes. 

Eq. (17) is therefore the square of the prediction error averaged over all modes and is a 

reasonable estimate of the κ
2
 value of the target posterior PDF at the final sampling level. 

Because J(x) is an implicit function of x, the “optimal” value for x* is numerically obtained 

by the active-set algorithm [40] in this study. The value of J* can then be evaluated 

numerically using x*. Once J
*
 is obtained, the κ

*2
 value of the bridge PDF in the final level 

can be calculated by Eq. (17). Furthermore, according to Eq. (16), the required number of 

sampling levels, gr, can be calculated 

 *21

2
ln1

int 1
ln

g

g rg
A A




   
          

 (18) 

where κ1
2
=1 is used. 

2.3. Bayesian structural damage detection 

Conventional damage detection methods [17-18] identify an undamaged (reference) model 

and a damaged model, and the stiffness distributions of the undamaged and damaged 

structures are compared to detect damage. These methods cannot address the uncertainties of 

measurement noise and modeling error and are applicable only for identifiable problems. For 

unidentifiable problems with great uncertainties, an infinite number of models can fit the 

measured data almost equally well. Keeping only one model and discarding the rest for 

damage detection will bias the model-predicted results and conclusions on damage. A more 

rational approach is to consider each of the plausible important models for damage detection. 

However, when more than one optimal model is available, comparison of the stiffness 

distributions on a one-to-one basis is impossible. The Bayesian probabilistic method 

proposed in this paper is applied to address this problem. Instead of pinpointing only one 

model, multiple models in a model class are included, and their relative plausibility is 
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considered by their posterior probabilities according to the Bayesian theorem [19, 24-25, 27]. 

The probability of damage is then calculated based on the class of models for damage 

detection. In the following section, the probability of damage is derived using the MCMC 

samples. 

Structural damage in this study is defined as the reduction in stiffness (damage extent) of a 

structural component 

 
   

 
ud d

f

ud

i i
d i

i




x x

x
 (19) 

where x denotes the uncertain parameter vector, which consists of the stiffness factors for 

different components of the target structure. Multiplying the stiffness factors to the nominal 

stiffness values gives the stiffness of the structure. x(i) denotes the i
th

 component of the 

vector x. The subscripts ud and d denote the quantity in the undamaged and potentially 

damaged states, respectively. Usually, the structure is considered to be damaged if one or 

more of its components exceeds the predefined threshold value of stiffness reduction. In this 

study, the probabilities of damage for different components of the structure are calculated. 

Engineers can then make judgments regarding the structure’s damage status. The probability 

of damage for the i
th

 component of the structural system is formulated according to the total 

probability theorem as follows. 

Eq. (20) computes the probability that the stiffness of the i
th

 component of the structure has 

been reduced by a fraction larger than df, given the identification results of the modal 

parameters of the undamaged and possibly damaged structures, Dud and Dd. The integration 

in Eq. (20) is usually in high dimension. It cannot be evaluated analytically, nor can it be 

evaluated in a straightforward manner by means of numerical integration. Approximation of 

Eq. (20) by the MCMC samples is proposed. 

        

           

, 1 ,

1 ,

d

i f ud d d f ud ud d

d f ud ud d ud ud ud

P d P i d i

P i d i i p i d





  

  

x x

x x x x x

D D D D

D D

 (20) 
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where the superscript h denotes the sample index. The probability 

            1 ,
h h

d f ud ud dP i d i i x x x D  can be approximated by a similar manner using the 

MCMC samples as 

where H(u) is a step function. If u > 0, H(u) = 1. Otherwise, H(u) = 0. By substituting Eq. (22) 

into Eq. (21), the probability of damage can be obtained 

The probabilities of damage for different extents of damage df can be calculated with Eq. (23). 

The cumulative distribution function (CDF) of the damage extent can then be used to identify 

the damage location and the corresponding damage extent as illustrated in the experimental 

verification. 

2.4. Summary of the proposed Bayesian damage detection method  

The main idea is to conduct MCMC-based Bayesian model updating for the undamaged and 

possibly damaged structures. The probability of damage can then be calculated using the two 

sets of MCMC samples (see Eq. (23)). The procedure is summarized below. 

(1) Set up the initial uniform PDF (which is used as the initial proposal density) of the 

uncertain model parameters. Decide the value of A, which controls the change in the 

bridge PDF at each sampling level. Calculate the required number of sampling level gr 

with Eq. (18). Set the number of samples Nss in each sampling level. As a rule of thumb, 

the number of samples should be increased when the complexity of the model class and 

the number of uncertain model parameters increase.  

              
1

1
, 1 ,

ssN
h hd

i f ud d d f ud ud d

hss

P d P i d i i
N 

   x x xD D D  (21) 

                      
1

1
1 , 1

ssN
h h h z
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zss
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N 

     
 x x x D x x  (22) 

           2
1 1

1
, 1

ss ssN N
h zd

i f ud d f ud d

h zss

P d H d i i
N  

   
  x xD D  (23) 
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(2) At the first sampling level (i.e., Level 1): Draw Nss samples with the MH algorithm. 

Consider the initial uniform PDF as the non-informative PDF and use it as the initial 

proposal density  q  x  in the first sampling level. The target PDF of the first 

sampling level p(x) is constructed by Eq. (15) with the variance κg
2
 = κ1

2
 = 1 (= 100%). 

(3) At the g
th

 sampling level (i.e., Level g): The kernel density of the g
th

 sampling level is kg, 

which approximates the bridge PDF in the previous level using samples generated at 

Level g−1. This kernel density kg is used as the proposal density in the MH algorithm 

and is given by 

 
  

  ( )

1 1 1

1
1

1 1
,

ss

x

N
hh

g g o g gn
h

hss
o g

k w
N w




  




 x S CN  (24) 

where nx is the dimension of the uncertain parameter vector x. Sg-1 is an nx by Nss matrix, 

which consists of Nss samples of x. ( )

1

h

gS  denotes the h
th

 sample of x in Level g−1. N(c, d) 

denotes the Gaussian distribution with mean c and covariance matrix d. Cg−1 is the 

sample covariance matrix computed using samples in S g−1. wo and 
 

1

h

g   are the optimal 

window bandwidth and the optimal local bandwidth, respectively, whose physical 

meaning and calculation are given in references [28, 34]. To sample from the kernel 

density kg, a sample index I
(h)

 is first drawn from 1 to Nss with the probabilities calculated 

by 

 

  

  

1

1
1

1

1

x

ss

x

n
h

o gh

N

n
h

h
o g

w
W

w













 (25) 

By using the sample with the index I
(h)

 and the covariance matrix Cg−1, the Gaussian 

distribution N(•,•) in Eq. (24) is used to generate a candidate sample at the current level 

(i.e., the g
th

 sampling level). The MH algorithm with the target PDF constructed by Eq. 

(15) is used to decide whether this candidate sample is accepted or rejected. This process 

is continued until all Nss samples are generated and stored in Sg. 
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(4) Set g = g + 1, and repeat steps (3) and (4) until samples of gr sampling levels are 

generated. 

(5) The posterior PDF and the posterior marginal PDFs of each uncertain parameter are 

determined by using the samples in the final sampling level gr. Note that the posterior 

marginal PDFs can be easily obtained by analytical integration of the kernel density in 

Eq. (24). The posterior marginal PDF of the i
th

 component in x can be calculated as 

           
1

, ,
ss

r r

N
h h

g g

h

k i W i i i


x S CN  (26) 

where 
   

r

h

g iS  denotes the i
th

 component of the h
th

 sample from the final level gr; the 

variance  ,
rg i iC  is the i

th
 diagonal element of the sample covariance matrix calculated 

by the samples in the final level; and the weightings W
(h)

 can be calculated using Eq. (25) 

by replacing the level index g−1 with gr. 

(6) Conduct steps (1) to (5) (i.e., the model updating process) separately using the identified 

modal parameters from the undamaged and possibly damaged status to calculate the 

posterior marginal PDFs of all uncertain parameters in both statuses. The posterior 

uncertainties of the uncertain parameters are assessed using the posterior marginal PDFs. 

By following the procedures in section 2.3, the probabilities of damage to different 

components of the structure are calculated using the MCMC samples in the final 

sampling level for damage detection. 

Some remarks about the computational cost of the proposed method is given here. If the 

number of uncertain parameters is large, in other words the dimension of the uncertain 

parameter vector is high, the required number of samples will be large in order to identify the 

important regions of the posterior PDF. This in turn will increase the computational time as 

one has to conduct finite element analysis many times. 

3. Experimental case study I: Bayesian model updating of a shear building model 

3.1. Ambient vibration test and modal analysis of the shear building 

A four-story shear building model was constructed in the laboratory (see Figure 1(a)) to 

illustrate the proposed algorithm for prediction of posterior uncertainties. The shear building 
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model was made by connecting four rigid steel plates with four steel columns, which were 

fixed onto the steel base plate by welding. The nominal value of Young’s modulus of steel is 

200 GPa. Only the vibration along the weak direction is considered, and only translational 

modes are identified. The dimensions and material properties of the shear building model are 

summarized in Table 1. 

The equipment used in the experiment and the experimental configuration are shown in 

Figure 1. The vibration was measured with four accelerometers fixed with wax at the middle 

of the edge of each floor (see Figure 1(a)). Sensors 1 to 4 were installed at floors 1 to 4, 

respectively, from the bottom to the top. The measured accelerations were transferred through 

the cables with a special coating, processed with the analog-to-digital device modules (see 

Figure 1(c)), and recorded by the laptop with LABVIEW. An electric fan (see Figure 1(b)) 

was used to provide ambient excitation to the shear building to simulate ambient vibration. In 

the test, 10 minutes of data were measured at a sampling frequency of 2048 Hz. The 

measured data were then decimated (down-sampled) to 128 Hz for analysis. 

The measured acceleration response (unit: g = 9.81m/s
2
) from sensor 1 is shown in Figure 2. 

The vibration of the shear building under wind excitation is apparently statistically stationary. 

The time domain data were transformed to the frequency domain via FFT (defined in Eq. (1)). 

The PSDs of the four measured DOFs are plotted together in Figure 3. The four peaks 

(highlighted with arrows) from the PSDs of the four measured DOFs are consistent, which 

shows that they are likely to be the four structural modes of the shear building. The 

corresponding frequencies of the four peaks were used as the initial guess for modal 

identification using the fast Bayesian FFT method discussed in section 2.1. In total, four 

modes were identified. The identified natural frequencies are summarized in Table 2, and the 

identified mode shapes are shown in Figure 4. 

3.2. MCMC-based Bayesian model updating 

In the structural model for model updating, it is assumed that the masses (see Table 1) are 

lumped at each floor. The nominal values of the inter-story stiffness k1 to k4 of floors 1 to 4 

(see Table 1) can be calculated on the basis of the stiffness of the four columns between two 

floors. By solving the eigenvalue problem, the natural frequencies and mode shapes of the 

shear building model can be calculated. 
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Bayesian model updating was carried out by following the MCMC algorithm in section 2.4. 

The uncertain parameter vector x contains four stiffness factors that correspond to the 

inter-story stiffness of floors 1 to 4. (The numerical values of the inter-story stiffness were 

equal to the nominal stiffness value multiplied by the corresponding stiffness factor.) To 

construct the initial uniform PDF of x, which is the initial guess about the prior distribution of 

x, the upper and lower bounds of x were set to [0;0;0;0] and [5;5;5;5], respectively. The 

sampling was conducted at multiple levels, and the parameter space was explored with a 

probabilistic search. The samples of the final level are shown in Figure 5. In the Figure, two 

uncertain parameters are plotted against each other. The label of the axis, say x(1), denotes 

the first component of x, which is the stiffness factor that corresponds to the first floor of the 

shear building. It can be observed that the samples converge to one region, and the model 

updating problem is considered to be globally identifiable. The posterior marginal PDFs were 

calculated using kernel density estimation and are shown in Figure 6 with different markers. 

The posterior uncertainties of the uncertain parameters can be assessed in Figure 6 by 

observing the decay of the PDF away from the most probable value (i.e., the peak). It can be 

concluded that the posterior uncertainties associated with all four inter-story stiffness values 

are relatively small and that they are similar. Furthermore, all marginal PDFs look like 

Gaussian distributions. For purposes of comparison, the sample means and sample 

coefficients of variation (COVs) of the uncertain parameters were calculated with the MCMC 

samples and their corresponding weightings. The sample means and sample COVs are 

summarized in Table 3 (refer to the four-mode case). It is clear from the table that the sample 

COVs of all four uncertain parameters are small because the full set of modal data was used 

and the posterior uncertainties were small in this case. 

The small posterior uncertainties were expected because all modes of the system were 

considered. In the following, the number of modes used for model updating was reduced 

step-by-step to study the effects of using different amounts of data on the posterior 

uncertainties. 

3.2.1. Using two modes in model updating 

In this part of the study, only the first two identified modes (i.e., modes 1 and 2) were used in 

the model updating process, and samples were generated using the algorithm in section 2.4. 

The posterior marginal PDFs are plotted in Figure 7. The posterior marginal PDF of the first 

uncertain parameter is flat across a wide region. The posterior uncertainties of the other three 
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uncertain parameters are similar to those with all four modes considered in the model 

updating process. For this case with two identified modes, the sample means and COVs 

computed with the MCMC samples are shown in Table 3. When this case is compared to the 

case with four modes, it is found that the sample COV of the first uncertain parameter 

increases dramatically and that the sample COVs of the other parameters are similar. The 

results here show that the posterior uncertainties associated with the identified uncertain 

parameters are sensitive to the amount of data used in model updating, as expected. The 

proposed MCMC algorithm provides a systematic and convenient method to assess and 

compare these uncertainties. 

3.2.2. Using one mode in model updating 

In this part of the study, only the first identified mode (i.e., mode 1) was used for model 

updating, and the other conditions were unchanged. The posterior marginal PDFs are shown 

in Figure 8. The posterior marginal PDFs of the first and fourth uncertain parameters (i.e., the 

first and fourth inter-story stiffness) are flat, indicating that an infinite number of models can 

produce the modal parameters that match the identified ones almost as well. The second and 

third uncertain parameters are still well-identified, and their posterior marginal PDFs are 

apparently Gaussian. Judging from the posterior marginal PDFs, it can be concluded that the 

posterior uncertainties of the case with one mode increase dramatically when they are 

compared with those of the cases with four and two modes. From Table 3, the sample COVs 

of the first and fourth uncertain parameters in the one-mode case are much larger than those 

in the cases with four and two modes. 

It can be concluded that a given uncertain parameter could be sensitive to some modes but 

not to the others. If the sensitive modes are not considered in the model updating process, the 

uncertainty associated with that uncertain parameter could increase significantly. It can be 

further concluded that when only the first two modes are considered, the model updating 

problem becomes unidentifiable and one of the uncertain parameters is unidentifiable. When 

only one mode is considered, the unidentifiable problem becomes serious, and two of the four 

uncertain parameters are unidentifiable. 

4. Experimental case study II: structural joint damage detection of a steel frame 

4.1. Ambient vibration test and modal analysis of the steel frame 



19 
 

A two-story steel frame (see Figure 9) was used to conduct damage detection to verify the 

proposed method. The width of this steel frame was about 2.00 m, and its height was about 

2.50 m. There were six connections: (1) the top-left beam-column joint, (2) the top-right 

beam-column joint, (3) the middle-left beam-column joint, (4) the middle-right beam-column 

joint, (5) the bottom-left column-base joint, and (6) the bottom-right column-base joint. The 

numbering of the joints is given in Figure 9(a), where x denotes the vector of the uncertain 

parameters and x(1) to x(6) are stiffness coefficients of six equivalent rotational springs to 

model the flexibility in the joints. Note that the joints were bolted connections and that 

neither the beam-column joints nor the column-base joints were completely rigid (see Figure 

9(c, d)). Rotational springs were used at the six joints in the computer model of this steel 

frame to capture the system’s semirigid behavior. 

The equipment used was the same as that in shear building case study I (Section 3). An 

electric fan (see Figure 9(b)) was used to simulate the wind excitation. Only 11 

accelerometers were available for this vibration test. To obtain the mode shapes of the steel 

frame, four setups of measurements were designed and implemented. Eleven sensors were 

used for each setup. The configurations of the sensors in the four setups and the instrumented 

locations (represented by circular marks) are presented in Figure 10. In the figure, the 

numbers denote the numbering of the sensors. The sensors installed on the columns measure 

only the horizontal vibration, and the sensors installed on the beams measure only the vertical 

vibration. It can be seen that the four setups in Figure 10(a), (b), (c), and (d) are configured to 

the measurements of the left column, the upper beam, the lower beam, and the right column, 

respectively. The repeated sensors among the four setups, such as sensors 1, 9, 10, and 11, 

were reference sensors that were used to assemble the partial mode shapes identified from 

different setups. 

The experiment for the undamaged steel frame was conducted first. The PSDs corresponding 

to the first setup are shown in Figure 11. The PSDs of all DOFs in the first setup are plotted 

in the same figure. Seven structural modes were identified, and their spectral peaks are 

highlighted by arrows in Figure 11. The identified natural frequencies and mode shapes of the 

steel frame are presented in Table 4 and Figure 12. Except for the first and second modes, in 

which the vibration of the beams is small and the column vibration dominates, it can be seen 

that beam vibration couples with column vibration for the rest of the modes. The “sine curve” 

shape in the beams and columns shows that these modes are typical bending modes. These 

seven modes were used in the model updating of the steel frame. 
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4.2. Bayesian model updating for the undamaged steel frame using MCMC 

The computer model of the steel frame was established using the finite element method. 

Rotational springs were used to model the semirigid behavior of the steel joints. The 

locations of the rotational springs are illustrated by six uncertain rotational stiffness 

parameters x(1) to x(6) in Figure 9(a). The rotational stiffness of the different joints need not 

be the same, and separate parameterization is thus necessary. The nominal values of 

rotational stiffness at the six locations are given in Table 5. For this type of structure, damage 

is common at the structural joints. Therefore, the purpose of this study focused on the 

detection of damage at the six joints of the steel frame. Six uncertain parameters x(1) to x(6) 

(see Figure 9(a)) were used to scale the nominal rotational stiffness of the joints. MCMC was 

then conducted to update the uncertain parameters for the undamaged steel frame to obtain a 

reference system. The initial uniform distribution of the uncertain parameters was constructed 

by assuming that they were uniformly distributed in a region whose lower and upper bounds 

were defined by [0;0;0;0;0;0] and [10;10;10;10;10;10], respectively. The posterior marginal 

PDFs are shown in Figure 13. The distributions of the rotational stiffness at locations 1 and 2 

(i.e., x(1) and x(2)) cover smaller regions than those of other distributions, implying that the 

uncertainties associated with the first two uncertain parameters are smaller than those 

associated with others based on the set of measured data. Because the parts of the PDFs for 

negative values of x were truncated, these PDFs do not follow Gaussian distributions. The 

posterior marginal PDFs of rotational stiffness at all joints show that the model updating 

problem is almost unidentifiable [41] because their uncertainties are very high, especially for 

x(5) and x(6). The projection of the posterior samples on the x(5)-x(6) plane is presented in 

Figure 14. The broad distribution of the samples on this plane can be observed. It leads to the 

broad single peak shown by each marginal PDF for x(5) and x(6). 

Many methods use a single “optimal” model for damage detection or response prediction. In 

this almost unidentifiable case, it is not reasonable to use a single “optimal” model for 

damage detection. It is clear from the posterior marginal PDF in Figure 13 that the important 

region of x occupies a wide range of the parameter space and that the “optimal” model is just 

one of many models that possess relatively high plausibility. The justification for keeping 

only the “optimal” model and discarding the rest is weak. A reasonable method of damage 

detection in this case is to consider all models in the important region of the parameter space, 

with the posterior PDF used to measure these models’ relative plausibility. The following 
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damage detection case shows that the proposed method can handle unidentifiable problems 

with acceptable computational effort. 

4.3. Bayesian damage detection of the steel frame 

Structural damage was physically simulated at the top right joint (i.e., x(2)). In this damage 

case, the bolts at the top angle were loosened to reduce the rotational stiffness and the bottom 

angle was untouched. The damage scenario is shown in Figure 15. The experiment was 

carried out in a manner similar to that of the undamaged case. MCMC was conducted to 

generate samples to obtain the posterior PDF of the rotational stiffness values at the six joints. 

The posterior marginal PDFs are plotted in Figure 16. It can be easily observed that the 

spread of the posterior marginal PDFs of all rotational stiffness values is very large (covering 

a wide range of parameter values) except for x(2). The model updating problem is almost 

unidentifiable. 

After model updating is conducted for the undamaged and damaged steel frame, damage 

detection can be carried out by calculating the probabilities of damage for the six rotational 

stiffness values. Note that the model updating problems that correspond to both the 

undamaged and damaged situations are almost unidentifiable. This significantly increases the 

difficulty of structural damage detection. Because both the undamaged and damaged cases 

have an infinite number of models with nearly equal posterior plausibility, it is challenging to 

make a direct comparison of the stiffness distributions from the undamaged and damaged 

cases. Eq. (23) was used to calculate the damage probabilities of the uncertain parameters for 

different damage extents df. The calculated probabilities of damage are summarized in Figure 

17, which is the plot of cumulative probability function (CDF). For a particular damage 

extent df in this figure, the probability that the damage extent of the target structural 

component is larger than df can be obtained. This figure enables the health status of the target 

structure to be assessed. First, it is observed that the curve for x(2) (i.e., the rotational 

stiffness at the top right joint of the frame) is the most outstanding curve and that it lies in the 

upper part of the figure, which indicates a high probability of damage at the top right joint 

(i.e., x(2)). This is consistent with the actual damage. Second, to confirm the damage, the 

median [42], is used to quantify the damage in an average sense. A bold horizontal line at a 

probability of 0.5 is drawn in Figure 17, and the intersections between the bold horizontal 

line and the six curves indicate the median losses of stiffness at the six joints. The median 

stiffness loss at the top right joint (x(2)) is 0.634 (i.e., 63.4% reduction in stiffness), which is 
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a great loss. The meaning is that the probability that the stiffness loss of x(2) is larger than 

0.634 is 0.5. It is worth noting that by loosening half of the joint (e.g., loosening only the top 

angle but not the bottom one), the loss in joint stiffness is approximately 50%. This value is 

near the predicted median stiffness loss of 63.4% by the proposed method. It demonstrates 

that the proposed Bayesian method can be used to identify the damaged location and to 

reasonably predict the extent of damage. Based on the damage detection result, the proposed 

method detected the damage at the top right joint, which was consistent with the actual 

damage. Moreover, the median losses of stiffness in the other five joints were low enough 

that these five joints were considered to be undamaged. 

4. Conclusions 

In this paper, a Bayesian method for structural model updating and damage detection based 

on MCMC was developed. One important contribution is that the experimental observations 

from the two case studies offer insights into the Bayesian framework, which is usually 

studied numerically in the literature. The main idea of the proposed method is to conduct 

Bayesian model updating to identify the posterior PDF of the stiffness distributions of 

undamaged and possibly damaged structures. The damage in the target structure is then 

detected by calculating the probability of damage at various structural components. In the 

proposed method, Bayesian model updating is carried out with MCMC. The posterior PDF is 

sampled to locate its important region. However, direct sampling is inefficient because the 

important region of the posterior PDF is small compared to the parameter space, and the 

chance of the sampling process hitting it is thus very small. To overcome this difficulty, a 

multiple-level sampling scheme was adopted to explore the parameter space. Bridge PDFs 

were constructed in multiple levels in such a way that their important regions decreased 

gradually and moved toward the important region of the posterior PDF. The difference 

between the bridge PDFs at two successive levels was sufficiently small for the samples to 

move smoothly toward that region. The MH algorithm was repeatedly applied at each level, 

and the bridge PDF was used as the target PDF. The kernel density, which approximates the 

bridge PDF, is used as the proposal density. The posterior marginal PDFs of the uncertain 

model parameters can be easily obtained on the basis of the samples from the final sampling 

level without high-dimensional numerical integration, and the posterior uncertainties can be 

assessed by the posterior marginal PDFs. Damage detection is based on the CDF of the 

damage extent, which is computed with the MCMC samples. This CDF allows the 
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assessment of damage location and extent together with the associated uncertainties. Damage 

detection for unidentifiable problems can be tackled using this CDF of the damage extent.  

It should be noted that the rigorous approach is to include κ as an uncertain parameter and 

conduct sampling for κ. However, if sampling is also conducted for κ, the size of the 

important region of the bridge PDF will be difficult to control. It is possible that the sampling 

is conducted in a wide region of the parameter space and the convergence speed will be very 

slow, and the computational cost will be large for structures in practice (like the case in this 

paper). To maintain an affordable computational cost, κ is controlled such that it is decreased 

gradually level by level. In addition, κ is determined based on the measured data using Eq. 

(17) and the resulting value is considered to be the approximated most probable value. The 

posterior PDF is thus used without being conditional on κ. The rigorous approach will be the 

future work. 

It is also worth mentioning that the proposed method can be also considered to be an 

optimization algorithm. However, there are differences between the proposed method and 

traditional optimization algorithms. The proposed method systematically explores the 

parameter space, which has the promise of including all equally-important solutions. Most of 

traditional optimization algorithms try to pinpoint one solution and the locally-trapped 

solution may bias the performance of the identified model in a model updating problem. 

Moreover, when used as an optimization algorithm, the proposed algorithm can provide most 

probable values together with the corresponding uncertainties, whereas most traditional 

optimization algorithms give only optimal solutions.  

Experimental case studies were used to verify the proposed Bayesian method. In the first 

experimental verification, a shear building model was adopted. The ambient modal analysis 

was carried out to obtain the modal parameters, and different amounts of modal data were 

applied for model updating of this shear building. The results indicate that the proposed 

Bayesian method can predict the posterior uncertainties with reasonable accuracy. When all 

of the measured data are included, the problem is globally identifiable and the posterior 

uncertainties are small. When the amount of modal data is reduced, the uncertainties increase, 

as indicated by the flat posterior marginal PDF in a wide range. When the amount of modal 

data is further trimmed, some uncertain parameters become almost unidentifiable. 

Structural damage detection with the proposed method was investigated in a two-story steel 

frame, and the corresponding model updating problem is almost unidentifiable. There are 
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infinitely many solutions that provide a very similar fit to the measured data, so the stiffness 

reduction cannot be directly computed, which makes damage detection a difficult task. The 

experimental case study demonstrates that the location of damage can be identified and that 

the damage extent can also be reasonably predicted by assessing the CDF of damage. 
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Figure 1. Experimental setup. 

  
(a) Shear building model.  (b) Electric fan. 

 
(c) NI-9234 A/D converter 
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Figure 2. Acceleration response of sensor 1 of shear building. 
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Figure 3. PSDs of shear building. 
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Mode 1 Mode 2 Mode 3 Mode 4 

 

Figure 4. Identified mode shapes of shear building. 
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Figure 5. Samples of final level for shear building using four modes. 
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Figure 6. Posterior marginal PDFs for shear building using four modes.  
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Figure 7. Posterior marginal PDFs for shear building using two modes. 
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Figure 8. Posterior marginal PDFs for shear building using one mode. 
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(a) Dimensions of steel frame. (b) Steel frame under wind load. 

  
(c) Beam-column joint. (d) Column-base joint. 

Figure 9. Two-story steel frame.  
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Figure 10. Configuration of sensors. 
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(a) Setup 1. (b) Setup 2. 
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(c) Setup 3. (d) Setup 4. 
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Figure 11. PSDs of steel frame. 
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Figure 12. Measured mode shapes for undamaged steel frame. 

    

   
(a) mode 1 (b) mode 2 (c) mode 3 

   

(d) mode 4 (e) mode 5 (f) mode 6 

 
(g) mode 7 
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Figure 13. Posterior marginal PDFs of undamaged steel frame. 
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Figure 14. Projection of the posterior samples on the x(5)-x(6) plane. 
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Figure 15. Damage case of steel frame. 

  

(a) Location of damage. (b) Details of damaged joint. 
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Figure 16. Posterior marginal PDFs of steel frame in damage case. 
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Figure 17. CDF of damage extent of steel frame. 
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Table 1. Dimensions and material properties of shear building. 

  Story 1 Story 2 Story 3 Story 4 

Story height (m) 0.278 0.546 0.546 0.530 

Width of column (m) 0.025 

Thickness of column (m) 0.005 

Length of story plate (m) 0.45 

Width of story plate (m) 0.28 

Thickness of story plate (m) 0.025 

Young’s modulus of steel (GPa) 200 

Mass of story plate (kg) 26.64 27.17 27.14 26.07 

Inter-story stiffness (10
5
 N/m) 1.1636 0.1536 0.1536 0.1679 
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Table 2. Identified natural frequencies of shear building. 

Unit: Hz Mode 1 Mode 2 Mode 3 Mode 4 

 

1.39  4.08  6.03  10.07  
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Table 3. Sample means and COVs calculated with MCMC samples. 

  

x(1) x(2) x(3) x(4) 

Four-mode case 

Sample mean 0.8139  0.6854  0.7581  0.7690  

Sample COV 2.30% 3.48% 2.98% 2.03% 

Two-mode case 

Sample mean 1.0447  0.6836  0.7342  0.7520  

Sample COV 44.00% 4.79% 5.43% 3.12% 

One-mode case 

Sample mean 4.0834  0.6371  0.6764  1.2248  

Sample COV 77.43% 4.33% 7.53% 67.46% 
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Table 4. Identified natural frequencies for undamaged steel frame. 

 

 

Unit: Hz Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 

 

16.78 69.85 109.14 114.87 253.82 373.19 412.89 
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Table 5. Nominal values of rotational stiffness. 

 

 

Unit: 

Nm/rad 
Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 

 5×10
6
 5×10

6
 1×10

8
 1×10

7
 1×10

7
 1×10

7
 


