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The charge mobility of molecular semiconductors is limited by the large fluctuation of in-

termolecular transfer integrals, often referred to as off-diagonal dynamic disorder, which

causes transient localisation of the carriers’ eigenstates. Using a recently developed theo-

retical framework, we show here that the electronic structure of the molecular crystals de-

termines its sensitivity to intermolecular fluctuations. We build a map of the transient lo-

calization lengths of all high-mobility molecular semiconductors to identify what patterns of

nearest neighbour transfer integrals in the 2D high-mobility plane protect the semiconductor

from the effect of dynamic disorder and yield larger mobility. Such map helps rationalising

the transport properties of the whole family of molecular semiconductors and is also used

to demonstrate why common textbook approaches fail in describing this important class of

materials. These results can be used to rapidly screen many compounds and design new ones
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with optimal transport characteristics.

In the comparison of the charge transport properties of families of materials it is very de-

sirable to identify few key parameters that can be used to rationalize the observed differences

in charge mobility. For example, effective masses and mean free paths can be used for wide

band semiconductors, hopping rates between nearest neighbour sites would characterize molecu-

lar solids where molecular orbital overlaps are very weak, and relatively simple phenomenological

theories are available to describe transport in highly disordered materials. Such a simple reduction

is not yet established for the class of high mobility molecular semiconductors, i.e. those displaying

mobilities exceeding ∼ 1 cm2/Vs and the most interesting from the technological point of view.

As noted many times in the past 1–4 band transport models are unsatisfactory for these materials

because of a too short mean free path and, similarly, hopping theories yield unphysically high hop-

ping rates 5 alongside incorrect temperature dependences, even when they reproduce the absolute

mobility.

A number of authors have contributed over the years to develop a transport model that seems

suitable for this class of materials and that has now reached a high level of predictive power 4, 6. A

starting point is the observation that the transfer integrals between nearest neighbouring molecules

undergo large fluctuations 7: due to the softness of the intermolecular interaction and the sensitiv-

ity of the transfer integrals to small nuclear displacements8–10, the amplitude of these fluctuations

is comparable to the average value of the transfer integrals. Developing on this idea, the car-

rier dynamics has been studied in models that capture the essential physics, both numerically and
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analytically 7, 11–18, or performing non-adiabatic molecular dynamics simulations in models with

atomistic detail 19, 20. All these studies revealed a common microscopic origin for the unconven-

tional charge transport of organic semiconductors: the dynamic disorder broadens the density of

states (DOS) and causes a localisation of the instantaneous eigenstates. This phenomenon, whose

origin is genuinely quantum-mechanical, is especially strong at the band edges where charge car-

riers reside 12, and is intuitively associated with a suppressed mobility. As disorder fluctuates in

time, however, one cannot speak of localisation in the traditional sense 21. Based on extensive

numerical evidence 6, 7, 11–14, 16 it was proposed13, 14 that the effect of dynamic disorder is to cause a

transient localisation over a length Lτ within a fluctuation time given by the inverse of the typical

inter-molecular oscillation frequency, τ ∼ 1/ω0. The fact that this initial localisation time must

be overcome before charge diffusion can actually take place is responsible for the long known

breakdown of semiclassical transport, causing the mobility to fall below the Mott-Ioffe-Regel limit

(apparent mean free paths shorter than the inter-molecular distance) 3.

The effects of transient localisation were given a mathematical basis using a relaxation time

argument 13, 14, resulting in the following analytical formula for the charge mobility:

µ =
e

kBT

L2
τ

2τ
, (1)

with e the electron charge, kB the Boltzmann constant and T the temperature. The theory embodied

in Eq. (1), which has been shown to agree quantitatively with the most accurate numerical studies

presently available 4, 15, goes beyond the semi-classical band transport approaches (as it contains

quantum localization corrections) and it is alternative to traditional hopping theories (which as-

sume that the wavefunction coherence is lost at each hop, an assumption that does not hold in
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high mobility materials). This allows us to reliably and efficiently compute the mobility of actual

semiconducting materials, treating all possible molecular structures of interest on the same footing

and with an affordable numerical effort.

As the transient localisation length Lτ is what ultimately determines how a given material

performs, regardless of the detail of the model it would be particularly useful to be able to assess

this quantity — and, at once, make quantitative predictions for the charge mobility — without

going each time through a complex quantum dynamics simulation. To this aim we proceed to

study systematically an ensemble of models, emcompassing in practice all the different physical

situations that can be encountered in organic semiconductors. We start by observing that, with the

exception of fullerene derivatives, virtually all molecular semiconductors pack into crystal struc-

tures where it is easy to identify a high mobility plane (where the pi-stacking interaction is found),

while the mobility perpendicular to this plane is one-two orders of magnitudes smaller 22. Because

of the weak interactions between molecules, considering a tight binding model with one orbital

per molecular site already provides a very accurate description of the electronic structure. We shall

therefore consider a 2D lattice with unit vectors ~a and~b as depicted in Fig. 1a where each molecule

is surrounded by 6 neighbours and the nearest neighbour transfer integrals take three different aver-

age values Ja, Jb, Jc in the three directions. If we allow for some of the transfer integrals to be null

or a pair of parameters to be identical, such lattice can represent practically all of the high-mobility

molecular semiconductors discovered so far including the polyacenes (e.g. pentacene, rubrene),

substituted pentacenes 23, thienoacenes 24, phthalocyanines 25, and perylenediimide derivatives 26.
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Based on the present theoretical framework, we can now investigate how different systems

respond to the dynamic disorder that is intrinsic to organic semiconductors. We are interested

in computing the localisation characteristics of a large set of Ja, Jb, Jc. In practice, we choose

J2
a + J2

b + J2
c = J2 = const., defining a one-to-one correspondence between points on a spherical

surface and a molecular semiconductor with a given set of transfer integrals. This mapping of an

entire set of materials into a spherical surface is very appealing because one can visualise specific

properties for all materials into one single graph, as will become clear below. As far as molecular

disorder is concerned, we consider the fluctuations of the transfer integrals to be uncorrelated

among molecular pairs, a situation that is realised in organic semiconductors owing to the presence

of many low frequency phonons which are thermally populated 27 (see SI for details). To make a

meaningful comparison between different structures while keeping the number of free parameters

to a minimum, we fix the fluctuation to a fraction of the average coupling that is the same in all

bond directions, i.e. ∆Ja/Ja = ∆Jb/Jb = ∆Jc/Jc ≡ ∆J/J , but this assumption can be released

straightforwardly. The values of both J and ∆J/J will be varied within the range that is computed

for realistic materials (see table I in the SI). The value of the fluctuation time τ instead does not

vary much between materials and its effect on the mobility is rather weak (details in SI). We shall

terefore take a constant h̄/τ = 5 meV throughout this work, corresponding to a period of molecular

oscillation ∼ 1 ps.

For each given structure, we first evaluate the localisation properties of the states of energy

E (`2τ (E), shown in Fig. 1b), and then average this quantity over the thermally populated states

in order to obtain the transient localisation length that enters in Eq. (1) (see SI for details). We
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explicitly consider holes (top edge of the band), but the extension to electrons is straightforward

by exchanging any sign of the J’s. Fig. 1c reports the resulting map of L2
τ at room temperature

for all possible values of Ja, Jb, Jc on the sphere, for a typical J = 0.1eV and disorder strength

∆J/J = 0.5. The first observation is that the range of localisation is extremely broad, spanning

almost two orders of magnitude between few and πL2
τ ∼ 102 molecules, i.e. different electronic

structures respond very differently to similar amounts of disorder. Consequently, because it is

directly proportional to L2
τ , the mobility also varies by more than one order of magnitude for

the different systems across the ensemble. The symmetry of the map reflects the symmetry of the

electronic Hamiltonian which remains identical if any two transfer integrals are interchanged or the

sign of two transfer integrals is changed at the same time (24 symmetry elements). This imposes

that three points are symmetry-independent critical points: (1, 0, 0), (α, α, α) and (−α, α, α) with

α = 1/
√

3. The point (1, 0, 0) has the strongest localisation (lowest mobility), as expected because

it corresponds to a one-dimensional system. Point (α, α, α) represents a system that is isotropic

in the conducting plane, and the global maximum of the L2
τ map. (−α, α, α) is a local maximum

with a much smaller L2
τ , despite being also isotropic, as explained further below.

To best appreciate the quantitative variations ofL2
τ , we now study this quantity along the Jb =

Jc cut illustrated in Fig. 1c (dashed line). This cut includes both the point of maximum symmetry

(α, α, α) corresponding to θ0 = arccos(1/
√

3) ' 0.955, and the one-dimensional structures at

θ = 0, π. Note that, following the symmetry properties discussed in the preceding paragraph, a

cut with Jb = −Jc (or, considering electrons instead of holes) is equivalent to exchanging θ with

π − θ. Fig. 1d reports L2
τ vs. the azimuthal angle θ for three different values of J = 0.05, 0.1
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and 0.15 eV, illustrating a key finding of this work that validates the generality of our spherical

map: the mobility in the transient localisation regime depends only marginally on the absolute

magnitude of the transfer integrals J . This can directly be contrasted with the results of band

theory, µ ∝ 1/m∗ ∝ J , and hopping theory, µ ∝ J2, which both predict this parameter to be

determinant for charge transport. In view of this result, the broadly accepted strategy of increasing

the molecular overlaps to improve the material performances does not appear to be a very efficient

one: as Fig. 1d suggests, experimental efforts should rather focus on optimising the relative values

of the Js in the different bond directions.

The linear cut in Fig. 1d confirms that the transient localisation is strongest for the one-

dimensional structures at θ = 0, π, where Lτ becomes comparable with the lattice spacing a, while

localisation effects are considerably weaker for more isotropic band structures 21, leading to larger

localisation lengths and proportionally larger mobilities. An immediate consequence is that the

highest performing materials should be sought among the ones close to the critical point at θ = θ0,

where the materials are less susceptible to the effect of dynamic disorder. This corresponds to

molecular systems where the transfer integrals with the non-equivalent nearest neighbours are as

close as possible in absolute value and their product has a positive sign (a negative product would

correspond instead to the much lower maximum at π − θ0).

To assess the validity of the present map, in Fig. 3 we compare our theoretical results with

the experimental mobility of several compounds for which a mobility decreasing with temperature

has been demonstrated, to which the theory applies. The map works very well despite sizeable

7



variations in transfer integrals between the considered compounds. For example, the calculated

transfer integral in the direction of largest mobility in TMTES-Pn is Ja = 258 meV and only 76.8

meV in C10-DNBDT, from which one could naively expect the mobility of the former to be larger

than that of the latter, which is opposite to the experimental situation. The remarkable agreement

shown in Fig. 1d provides experimental confirmation that the absolute value of J is not a key

parameter in determining the mobility, as expected from transient localisation theory. According

to the map, the very high mobility observed for C10-DNTT and C10-DNBDT can be explained

by their vicinity to the ”hot-spot” with similar hopping integrals in magnitude and sign. The low

mobility of TMTES-pentacene is due to its quasi one-dimensional pattern of transfer integrals

which, expectedly, is not beneficial for transport. Much more surprising and excellently captured

by our model is the relatively small mobility measured for pentacene, a long standing mystery

of organic electronics. The hopping integrals are large and fairly isotropic for this material but

their product is negative, i.e. pentacene is on the ”wrong” side of the semiconductor map, where

the mobility is bound to be 4-5 times lower according our model. Finally, the very low mobility

measured in TIPS-pentacene can be easily explained from the anomalously large thermal disorder

present in this material (see Table I in SI and Fig. 4 below) which leads to a very suppressed L2
τ

when compared to the universal curve.

Having developed an ensemble of systems and having a broadly applicable theory at our dis-

posal, we can look at further important aspects of the charge transport mechanism systematically.

For example, the temperature dependence of the mobility is often used to discriminate between

different transport models. The exponent of the observed power-law dependence, µ ∼ T−p, can be
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monitored along the parameter θ to study its dependence on the electronic structure. We find, as

illustrated in Fig. 3a, that for the considered type and level of disorder the exponent p varies in the

range 0.7 < p < 1.3, with the largest value found for a band structure similar to that of rubrene.

We can use our results to benchmark the predictions of standard textbook approaches, which

ignore the crucial quantum effects that are instead retained here. Within Marcus theory, as well as

any other non-adiabatic hopping theory, the mobility depends strongly on the absolute value of the

transfer integrals (µ ∝ J2), but very little (< 5%) on their relative values in different directions,

which is incompatible with the experimental results reported in Fig. 2. Moreover, because they rely

on inter-molecular transfer probabilities rather than on quantum mechanical amplitudes, hopping

theories cannot capture the dramatic difference between molecular structures where the sign of one

transfer integral is exchanged (i.e. θ and π − θ on the map), and would therefore provide totally

wrong predictions in materials such as pentacene (cf. Fig. 1d). This is shown in Fig. 3b, where

we have reported the θ-dependence of the hopping mobility considering a fixed reorganization

energy across the ensemble and properly including the effect of inter-molecular fluctuations on the

transfer rates (see SI). The mobility computed from semiclassical band-theory, to lowest order in

the molecular fluctuations (see SI), is also reported in Fig 3b. Here some trends of Eq. 1d are

qualitatively reproduced, in particular the existence of an absolute maximum at the isotropic point

θ = θ0. However, the band-theory mobility is generally largely overestimated, because it does

not account for the initial localisation processes that are a key aspect of the transport mechanism

in organic semiconductors 4, and the predicted dependence on J is again incompatible with the

experimental observations. Finally, band transport is unable to reproduce the systematic variations
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of the power-law exponent of the temperature dependence, especially where localisation effects

are the strongest (θ ' 0, π, see Fig. 3a).

The anisotropy of the mobility is another experimentally relevant parameter that has been

used to distinguish between competing transport models. We show in Fig. 3c that even though

the mobility itself is both qualitatively and quantitatively different from the predictions of band

transport theory, the ratio µy/µx closely follows the anisotropy of the effective mass, at least within

our choice of an isotropic relative disorder ∆J/J (this is true everywhere except at θ = 2θ0,

where the effective massm∗
x diverges). Therefore, measuring a sizeable transport anisotropy which

coincides with the predictions of band theory is by no means a guarantee of semiclassical band-like

behaviour.

While the mobility with its anisotropy and temperature dependence are very sensitive to

the electronic structure we have found that other parameters have a fairly uniform effect across

our ensemble. If we include the presence of randomness in the on-site energies to reproduce the

effect of a moderate (static) extrinsic disorder we find a mobility reduced below the intrinsic values

calculated in the clean limit (Fig. 4) but the suppression factor is rather weakly dependent on the

material band structure (in the ∼ 0.55 − 0.7 range in the case considered here of a Gaussianly

distributed site-disorder of spread ∆ = 0.7J). For larger levels of disorder, the intrinsic transport

is eventually washed out and Eq. (1) breaks down, and alternative approaches based on incoherent

hopping should be used instead.28, 29 It was proposed theoretically 4, 14 on the basis of Eq. (1), and

used as an experimental guide 30, 31 that improved materials can be designed if the dynamical off-
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diagonal disorder is overall reduced. We have verified (also in Fig. 4) that a reduction of dynamical

disorder of 20% causes an increase of the mobility of a factor of about 1.5 − 2 for all values of θ.

The fact that the reduction of on-site (extrinsic) disorder or off-diagonal (intrinsic) disorder have

the same effect regardless of the electronic structure is a valuable insight for the design of new

materials. In practice one should attempt to reduce both of these while, independently, trying to

identify materials that are close to the optimal points with θ=θ0. We predict that a factor up to∼ 10

in mobility is controlled solely by the sensitivity to the dynamic disorder, which is described by our

semiconductor map. We also note that the idea that good materials should display a weak coupling

between charge carrier and intramolecular vibrations to produce a weaker band renormalization

32 is not challenged by this approach: local electron-vibration coupling, which is not sufficiently

strong to induce polaronic localisation, renormalises J and ∆J isotropically and in equal measure,

because intramolecular modes are much faster (in the 100-220 meV range and with ∼ 2 order

of magnitude smaller amplitude) and therefore uncorrelated with low frequency modes. Finally,

existing computational tools for organics 33 can be easily adapted to evaluate the mobility with

material specific parameter sets, including anisotropic or correlated fluctuations, i.e. relaxing some

of the simplifications introduced here to build a universal map. An illustration of the excellent

accuracy that can be reached when transient localisation theory is supplemented by an ab initio

determination of the relevant microscopic parameters is given in Fig. S3 of the SI file.

In essence, our systematic study unveils the characteristics rendering holes in a molecular

semiconductor more insensitive to disorder and therefore displaying a higher mobility. This find-

ing, supported by the available experimental data, leads to a new design principle, distinct and
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complementary to those already known: in addition to reducing both intrinsic and extrinsic disor-

der, the top molecular semiconductors should have intermolecular transfer integrals with all their

six neighbours similar in magnitude and identical in sign, regardless of their overall absolute val-

ues. In principle, one could use this model to make hypotheses on the chemical structure of new

molecular semiconductors from scratch, relying on the ever improving field of crystal structure

prediction 34. However, one can more immediately and efficiently analyse databases of known

molecular crystals in search of compounds with the desirable electronic characteristics: it would

take few minutes per compound to establish its position on the map with the help of electronic

structure calculations, noting that the vast majority of known compounds have not been purified

and grown in large crystals to the point of displaying intrinsic mobility. This protocol will enable

a more systematic and rational process of material selection for organic electronics.

12



Methods

To calculate the transient localisation length for each choice of Ja, Jb, Jc on the the ensemble of

tight-binding models defined in Fig. 1a, we use transient localisation theory in the relaxation time

approximation (RTA) as described in Refs. 4, 13, 14 (more details can be found in the SI). The nu-

merical simulations of the carrier dynamics are performed using the efficient technique introduced

in Ref. 35 on clusters consisting of 320000 molecules, which is sufficient for convergence at the

considered levels of disorder and temperature. For the comparison with textbook approaches in

Fig. 3, the hopping mobility is evaluated assuming hopping rates proportional to the square of

the hopping integral, including an enhancement due to intermolecular fluctuations. For the band

transport theory calculations we consider the same ensemble of tight-binding models and evaluate

the mobility to lowest-order in the fluctuations of the transfer integral 12 as described in the SI.
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Figure 1 Electronic structure and transient localisation map. a, crystal structure

of a generic molecular crystal with lattice spacing a and three different nearest-neighbour

transfer integrals, Ja, Jb, Jc. b, DOS and energy resolved transient localization length

calculated for an isotropic electronic structure with J = 0.1eV, Ja = Jb = Jc = J/
√

3,

thermal fluctuation ∆J/J = 0.5 and fluctuation time τ = h̄/5 meV (lengths are in units of

a). c, map of the thermally averaged L2
τ on the spherical surface defined by J2

a +J2
b +J2

c =

J2. All data are calculated for kBT = 25meV and averaged over the two directions x and

y. d, L2
τ along the cut Jb = Jc shown in Fig. 1c, as a function of the azimuthal angle

θ = arccos(Ja/J), for three different values of J .

Figure 2 Experimental validation. The interval of values of L2
τ found in Fig. 1d (shaded

area) is compared here with the experimentally measured mobility in different compounds

(right axis). The experimental values have been divided by the area ∼ ab/2 per molecule

in the highly conducting plane to eliminate the trivial dependence on geometric lattice

parameters contained in Eq. (1). Source of experimental data and full chemical names

given in the SI.

Figure 3 Charge transport characteristics on the ensemble of organic semicon-

ductors. a, Power-law exponent of the mobility µ ∝ T−p. The inset shows the actual

temperature dependence calculated on the three points highlighted in light gray (one-

dimensional lattice), dark gray (transfer integral pattern of rubrene) and black (isotropic

transfer integrals). We have taken ∆J/J ∝
√
T from the equipartition principle and fixed
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the fluctuation to the reference value ∆J/J = 0.5 at T/J = 0.25 with J = 0.1 eV. The

dashed line is the result from semiclassical band transport theory. b, Mobility from non-

adiabatic hopping (dotted, in arbitrary units) and Boltzmann semiclassical transport theory

(dashed, calculated taking a representative value a = 7.2Å), compared with the results of

Fig. 1d at J = 0.1 eV; the mobility was obtained using Eq. (1) and taking a characteristic

fluctuation time τ = 0.13 ps (see SI). c, Anisotropy of transport, µy/µx compared with

the band mass anisotropy m∗
x/m

∗
y (dashed line). The x direction is parallel to the a unit

vector.

Figure 4 Effect of thermal and extrinsic disorder. Transient localisation calculated

by varying the amount of disorder in the samples, and mobility from Eq. (1) assuming

a = 7.2Å. Blue, circles: reducing the intrinsic thermal fluctuations of the transfer integrals

from ∆J/J = 0.5 to ∆J/J = 0.4. Gray, diamonds: adding a Gaussian extrinsic disorder of

spread ∆ = 0.7J .
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