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A B S T R A C T

The classic snap-through problem of shallow arches is revisited using the so-called generalised path-following
technique. Classical buckling theory is a popular tool for designing structures prone to instabilities, albeit with
limited applicability as it assumes a linear pre-buckling state. While incremental-iterative nonlinear finite ele-
ment methods are more accurate, they are considered to be complex and costly for parametric studies. In this
regard, a powerful approach for exploring the entire design space of nonlinear structures is the generalised
path-following technique. Within this framework, a nonlinear finite element model is coupled with a numerical
continuation solver to provide an accurate and robust way of evaluating multi-parametric structural problems.
The capabilities of this technique are exemplified here by studying the effects of four different parameters on
the structural behaviour of shallow arches, namely, mid span transverse loading, arch rise height, distribution
of cross-sectional area along the span, and total volume of the arch. In particular, the distribution of area has a
pronounced effect on the nonlinear load-displacement response and can therefore be used effectively for elastic
tailoring. Most importantly, we illustrate the risks entailed in optimising the shape of arches using linear assump-
tions, which arise because the design drivers influencing linear and nonlinear designs are in fact topologically
opposed.

1. Introduction

Structural nonlinearities, particularly those of an elastic nature, are
gaining considerable momentum within engineering applications, and
are being viewed as a positive design feature [1]. Nonlinear structural
problems have been discussed in the literature for decades, however
they are seldom exploited outside of the academic environment. This
general reluctance engineers harbour for nonlinear structures is jus-
tified by two prevailing statements: (i) the lack of sufficiently robust
computational tools, and (ii) the time-consuming nature of solving
incremental-iterative problems, especially when multi-parametric stud-
ies for optimisation or imperfection sensitivity are conducted.

Across all length scales, slender and thin-walled structures are com-
monly used in engineering applications for a number of reasons. In
micro- and meso-scale applications thin-walled structures are exploited
for their ease of manufacture and ability to deform significantly without
failure, thus providing unparalleled functionality that relies on nonlin-
ear behaviour. In macro-scale applications, such as the aerospace and

* Corresponding author.
E-mail addresses: Bradley.Cox@bristol.ac.uk (B.S. Cox), Rainer.Groh@bristol.ac.uk (R.M.J. Groh), Daniele.Avitabile@nottingham.ac.uk (D. Avitabile), Alberto.Pirrera@bristol.ac.uk

(A. Pirrera).

automotive sectors, thin-walled shell structures are used for their struc-
tural efficiency.

Although more efficient in their load carrying capacities, macro-
scale thin-walled and slender structures are susceptible to structural
instabilities. Small-scale structures relying on nonlinearities for func-
tionality and large scale structures being prone to instabilities, it is evi-
dent that geometric nonlinearities need to be accounted for at all stages
of the design process.

Arched structures, which are the focus of this paper, are known to
exhibit instabilities and are a textbook example of classic snap-through
buckling behaviour. In fact, snap-through instabilities of arched struc-
tures occur in a wide range of applications, from the tailorable design
of micro-electromechanical systems (MEMS), to the meso-scale light-
switch type structures, and further, to the failure of macro-scale civil
structures.

Large scale arched structures, particularly those whose loading
capacity is intrinsically linked to the deformations sustained, are par-
ticularly prone to instabilities. Carpinteri et al. [2] present an industrial
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example illustrating the importance of nonlinear analysis for a mod-
ern roof-structure. Carpinteri concludes that current linear methods are
insufficient in predicting the post-buckled state and, most importantly,
the load-carrying capacity of the roof.

The same buckling behaviour is also observed on the micro-scale
within the field of MEMS [3–5], a discipline which has seen signifi-
cant growth in recent years. Micro-electromechanical systems provide
a particularly challenging problem since the topic couples a number
of disciplines, from solid and fluid mechanics to thermomechanics and
electromagnetism. All of these fields can introduce their own forms of
nonlinearity and these can interact in a complex manner to yield emer-
gent phenomena that are difficult to predict.

Established methods for exploring a nonlinear design space require
onerous parametric studies. With the application of the generalised
path-following technique, however, the design space can be evaluated
within a single solution process, for any number of parameters.

1.1. History of arched beam structures

Concave load-bearing structures are one of the oldest structures
known to man. In this sense, a clear demarcation between masonry
arches introduced in antiquity, i.e. concave structures constructed by
a series of rigid building blocks joined with little to no tensile load-
ing, and elastic arches, capable of resisting both membrane forces and
bending moments, is necessary. For a fascinating history of arch con-
struction, and its theoretical development from arch theory to compu-
tational mechanics, the interested reader is directed to chapter 4 of ref-
erence [6]. Throughout this paper we refer to compliant elastic arches
which use snap-through for functionality and hence the research pre-
sented herein is restricted to slender arches. Such compliant arches,
which utilise elastic snap-through “failure” well before plastic deforma-
tions occur, are being used in MEMS devices [7] and for novel meta-
materials [8].

The critical buckling of shallow arches, either by symmetric
snap-through or by an asymmetric bifurcation, is a seemingly well-
understood problem. Once the solution space is opened up to more
parameters beyond a simple load factor, however, it quickly becomes
apparent that this problem is more intricate and complex than at first
sight.

1.2. Generalised path-following in structural mechanics

There appears to be little question that the so-called incremental-
iterative methods represent by far the most popular procedures for
the solution of nonlinear continuum mechanics. Conventional path-
following techniques are based on a single parameter, either: displace-
ment [9,10], load [11,12], external work [13,14], arc-length [15–18],
or others [19], and these result in a single load-displacement curve, as
illustrated in Fig. 1a. This curve is, however, only a single equilibrium
locus on a multi-dimensional solution manifold parametrised by any
number of other variables that can influence the behaviour of the struc-
ture, e.g. material properties, geometric dimensions, imperfections, etc.
Hence, traditional arc-length methods available in commercial finite
element solvers are degenerate cases of a generalised path-following tech-
nique restricted to the forcing parameter-displacement space, and it is
cumbersome or impossible to change two or more parameters simul-
taneously, which for example is required for tracking bifurcations.
Whereby the only parameter that can be actively varied in these com-
mercial solvers is the loading factor. The capabilities of a generalised
path-following technique exceed those of conventional path-following
methods by enabling visualisation of the structure’s behaviour in multi-
dimensional space. This technique allows any number of parameters
to be continued, i.e. treated akin to a loading factor, during a single
solution run and thus eliminates the necessity for extensive parametric
studies.

Historically, the generalised path-following technique has been used
extensively in the fields of applied mathematics and physics [20–23],
where the term numerical continuation is a more common designation. In
structural engineering applications, however, path-following is a familiar
term and therefore generalised path-following, as introduced by Eriksson
and co-workers [24], is a more intuitive designation as it differentiates
from conventional path-following in load-displacement space.

In the 1960’s Sewell introduced the notion of the equilibrium sur-
face [25], whose shape could be used to identify the stability of the
underlying structure with respect to changes in the governing parame-
ters. With the advent of catastrophe theory in structural mechanics this
interest intensified, mostly in an analytical setting [26–28], but a gener-
alised computational framework was not introduced to the community
until the 1980’s by Rheinboldt [29–31]. The concepts introduced by

Fig. 1. (a) Fundamental equilibrium path for a baseline case of an arched beam, illustrating classic snap-through behaviour. Numbers and colours on curve segments denote the degree
of instability; (b) A solution surface created by the generalised path following technique, here the arch rise height is varied from zero to a predefined maximum. The colours on curve
segments, once again, denote the degree of instability. On both figures the different colour segments are separated by critical points, where the stability of the structure with respect
to the loading parameter changes. The colour blue denotes a stable equilibrium solution, red denotes an unstable equilibrium solution with one negative eigenvalue of the tangential
stiffness matrix, green denotes an unstable equilibrium solution with two negative eigenvalues of the tangential stiffness matrix. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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Rheinboldt allowed, for example, loci of bifurcation and/or limit points
to be traced directly with respect to an additional parameter (load fac-
tor being the first) without having to compute an entire set of load-
displacement curves.

During the mid 1990’s, Eriksson and co-workers [24,32,33] estab-
lished themselves as the main proponents and developers of generalised
path-following, presenting numerous examples where the approach
proved to be of great benefit, while also providing details on how the
technique could be incorporated into commercial nonlinear finite ele-
ment codes. More recently the technique has been embraced for the
analysis of bistable plates and shells for morphing structures [34–36]
and is also being considered as an optimisation tool [37].

In parallel, numerical bifurcation analysis techniques have been
developed for generic dynamical systems, from the pioneering work of
Doedel, Keller, and Kervenez [38,39], to cover a wide range of differen-
tial equations, including delay-differential equations [40], partial differ-
ential equations [41], integro-differential equations [42], and stochastic
evolution equations [43]. We refer the readers to [44,45] for a recent
review and tutorial, respectively.

The wealth of literature on each of the topics illustrates a consid-
erable interest in the (in)stability of shallow arched structures; path-
following of solutions in algebraic and differential equations; and also
in structural optimisation, but there is little that brings together all
three, this paper aims to do exactly that.

1.3. Aims and objectives

The aim of this paper is twofold. First, by means of an exploratory
exercise we investigate the mechanics of compliant shallow arched
structures to determine a shape-optimised arch for maximising the
first instability load, and show that the design drivers for the non-
linear mechanics of arches are opposite to what would be expected
from a linear analysis. Hence, the risks inherited in shells optimised
with linear assumptions observed by Lee and Hinton are confirmed
herein [46]. Second, we wish to illustrate how nonlinear structures with
multi-parameter dependent characteristics can be designed robustly and
quickly using a systematic approach. In this sense, the generalised path-
following technique is introduced as an advanced design and analysis
tool which can be used to explore a bounded multi-dimensional design
space within a finite element context. The overarching aim is to fur-
ther evolve the engineer’s capability to design structures by employing
nonlinearities to potentially extend the concept of structural efficiency
into the nonlinear elastic regime or include additional functionality by
exploiting compliance and large reversible deformations which may
replace more complex mechanisms.

The remaining sections of the paper are structured as follows.
Section 2 introduces a general overview of the mathematical framework
of coupling the numerical continuation technique to the nonlinear finite
element method. Section 3 discusses the application of the generalised
path-following framework to a shallow arched beam problem, presents
the results obtained and provides a discussion of key findings. The prob-
lem definition is presented, followed by a robust four-parameter anal-
ysis of the structural response. The cross-sectional area is distributed
along the beam span, and this optimum distribution is then analysed
further by evaluating the effect of arch mass and arch rise height on the
structural response, whereby the optimality criterion is defined as the
maximum stiffness before instability occurs.

2. Problem formulation

In principle, it is desirable to understand how structures behave
when one or more design parameter are varied. During the design
of engineering structures, parametric studies are the conventional
approach, whereby multiple simulations for different configurations are
performed. Generally speaking, analytical methods are more popular
for these parametric studies, as they are less computationally demand-

ing than finite element methods and therefore allow for quicker itera-
tion in the evaluation of the design space. For nonlinear problems, ana-
lytical techniques that allow rapid parametric design are found wanting
such that the design space investigated is often restricted. In a nonlinear
setting, robust computational tools for parametric studies are therefore
indispensable and the generalised path-following technique is presented
here as such a tool to investigate the entire design space.

Consider a classic force-displacement equilibrium path of an arch
loaded by a transverse point load at its mid-span, as illustrated in
Fig. 1a. The mid-span applied load is parametrised and the correspond-
ing vertical displacement of the centre is measured. The chosen colour
code denotes the degree of instability of the system. The blue segments
of the curve correspond to stable equilibrium paths (all eigenvalues of
the tangential stiffness matrix are positive), red segments denote one
unstable mode (one negative eigenvalue) and green segments denote
two unstable modes (two or more negative eigenvalues). The points
separating different colour segments are called critical points, i.e. points
where at least one eigenvalue of the tangential stiffness matrix is exactly
zero, and these can either be saddle-node bifurcation points (limit
points), pitchfork bifurcation points, or a coincidence of both known
as hilltop-branching points with two zero eigenvalues.

A saddle-node bifurcation (limit) point describes an extremal point
(maximum or minimum) with respect to the control parameter, where
equilibrium of the system switches from stable to unstable, or vice
versa, but symmetry of the system is maintained. As the control param-
eter increases (or decreases) beyond a limit point, the structure snaps
to an adjacent stable equilibrium state at the specified load, as shown
by the dotted arrow. On the contrary, at a pitchfork bifurcation point
the symmetry of the system is broken such that a secondary equilib-
rium path branches away from the fundamental path (not shown in
Fig. 1a). Depending on the stability of this bifurcating branch, stable or
unstable, the structure may transition onto this path or snap to another
stable point. In Fig. 1a, the maximum limit point precedes the bifurca-
tion point for a typical loading history starting from the unloaded state,
but this is not necessarily always the case, and the order in which they
appear may reverse for other configurations.

From this didactic example we can deduce particular points that are
of interest to the engineer of practical nonlinear structures: (i) limit
loads that induce snapping, (ii) bifurcation points that lead to branch
switching or snapping, and (iii) classical design points where critical
stress values or displacement values are exceeded. To optimise the non-
linear structure (for any given criteria – weight, cost, strength, etc.), it
is important to understand the variables (material properties, geometric
dimensions, etc.) that affect the structural response. More specifically,
how do these variables affect the characteristics of the aforementioned
three solution points?

Conventional design philosophy requires a complete re-analysis of
the problem with different values for each variable. The re-evaluation
of the structural behaviour can be avoided, however, when using gen-
eralised path-following. The comprehensive computational framework
is discussed by Eriksson [33] (also see Ref. [47]), but in principle,
an additional variable is introduced as a control parameter and the
solution space explored in this third dimension using standard path-
following techniques, see Fig. 1b, generating a two-dimensional sur-
face. Therefore, the generalised path-following process involves tracing
one-dimensional curves in a higher-dimensional solution space.

The conventional equilibrium of internal and external forces can be
expressed as a function of a loading parameter, 𝜆, and the displacement
state variables, u, in the form:

F(u, 𝜆) = f (u) − p(𝜆) = 0, (1)

where p(𝜆) is the external (non-follower) load vector and f (u) is the
internal force vector. For generalised path-following, Eq. (1) is adapted
to incorporate any number of additional parameters, such that,

F(u,𝚲) = f (u,𝚲1) − p(𝚲2) = 0, (2)
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where 𝚲 = [𝚲⊤

1 ,𝚲
⊤

2 ]
⊤ = [𝜆1,… , 𝜆p]⊤ is a vector containing p control

variables. 𝚲1 corresponds to parameters that influence the internal
forces (e.g. material properties, geometric dimensions, temperature and
moisture fields) and 𝚲2 relates to externally applied mechanical loads
(e.g. forces, moments, tractions).

The n number of equilibrium equations in Eq. (2), correspond
directly to the n number of displacement degrees of freedom in the
system. Because the structural response is parametrised by p additional
parameters a p-dimensional solution manifold in ℝ(n+p) exists, named
the equilibrium surface by Sewell [25]. By defining additional auxiliary
equations, g, specific solution subsets on the p-dimensional solution
manifold are defined. Hence, we wish to evaluate solutions to the aug-
mented system

G (u,𝚲) ≡
(

F(u,𝚲)
g(u,𝚲)

)
= 0. (3)

For r auxiliary equations, the solution to Eq. (3) becomes (p − r)-
dimensional and hence p − 1 auxiliary equations are required to define
a one-dimensional curve. As outlined by Eriksson [33] these subset
equations can define fundamental equilibrium paths, i.e. the funda-
mental load parameter is varied and all other parameters are constant;
secondary equilibrium paths (parameter paths), i.e. a different parame-
ter is varied; bifurcation branching paths (pitchfork bifurcation paths);
critical paths where the tangential stiffness matrix is singular (foldline
path); etc.

Throughout this paper we exclusively evaluate one-dimensional
curves, such that r = p − 1. This means that one additional constrain-
ing equation needs to be specified to uniquely solve the system of equa-
tions for a point on the curve. Hence, a specific solution v = (u, 𝚲) on
the subset curve is determined from

GN (v) ≡
⎛⎜⎜⎜⎝
F(v)

g(v)

N(v)

⎞⎟⎟⎟⎠ = 0, (4)

where N is a scalar equation which plays the role of a multi-dimensional
arc length constraint throughout the continuation along a specific sub-
set curve. A specific solution to Eq. (4) is determined by a consistent
linearisation coupled with a Newton-Raphson algorithm

vj+1 = vj −
(

GN
,v(vj)

)−1
· GN(vj), (5a)

with

GN
,v =

⎛⎜⎜⎜⎝
F,u F ,𝚲

g,u g,𝚲
N⊤
,u N⊤

,𝚲

⎞⎟⎟⎟⎠ , (5b)

where j corresponds to the jth increment and the comma notation
has been used to denote differentiation.

For visualisation purposes it is convenient to reduce the dimension-
ality of the presented results from (n + p)-dimensional solution space to
a more palatable two- or three-dimensional space. The approach used
for this is to consider a particular norm of the displacement field, e.g.
the displacement at a specific point of interest u = uref, and to continue
solution subsets in one parameter at a time.

As a result, all figures presented herein are shown in two or three
dimensional plots. More precisely, we will visualise results by project-
ing them on a space (𝜆i, d(u)) ∈ ℝ2, or on a space (𝜆i,d(u), 𝜆j) ∈ ℝ3,
where 𝜆i and 𝜆j are suitably chosen control parameters, and where d(u)
is the displacement of the computed equilibrium at 𝜆i or (𝜆i, 𝜆j). The
choice of control parameters will be made explicit in all cases, whereas
we will henceforth suppress the dependence of d on u for notational
convenience.

From an algorithmic viewpoint, we have opted for a simple yet
affordable choice: we compute one-parameter families of equilibria (in
the parameter 𝜆i), as the secondary parameter 𝜆j is held constant, and
we repeat the calculation for various values of 𝜆j. In this way, we
parametrise the solution manifold using level sets at constant 𝜆j. An
attractive alternative approach (which has not been pursued here for
simplicity) is to cover the solution manifold with polygons, as proposed
by Henderson [48] and implemented in the software package MULTI-
FARIO. In some instances, however, it is also possible to compute loci
of branching points as 𝜆i and 𝜆j vary simultaneously, using standard
two-parameter continuation of bifurcation points.

3. Instability analysis using generalised path-following

We now proceed to the evaluation of the arched beam struc-
ture, using generalised path-following techniques to elucidate physical
insight into the underlying mechanics of the system. A shallow arched
beam with encastré boundary conditions at either end, ubiquitous in
the structural mechanics literature [49–51], is an ideal problem for this
purpose.

The basic model is illustrated in Fig. 2a for a circular cross-section
with baseline quantities of height-to-span ratio of 1/10, an axial rigid-
ity of EA = 6.5 × 1011N, a shear rigidity GA = 2.8275 × 1011N, a
bending rigidity EI = 1.68107 × 1011Nm. Additionally, some of the
arch characteristics are explicitly defined as active parameters that can
be varied throughout the analysis. These four parameters are the load-
ing factor, 𝜆1, quadratic distribution of cross-sectional area, 𝜆2 (See
Fig. 2b), average cross-sectional area (defined as a ratio of bending
and axial rigidity EI/EA = A/4𝜋), 𝜆3, and arch height normalised by
span, 𝜆4 which are detailed in Table 1. The baseline geometry of the
arch is defined as 𝜆2 = 1 (no spanwise variation of the cross-section),
circular cross-sectional area with 𝜆3 = I/A = 0.2586 and arch height
normalised by span 𝜆4 = 0.1.

Fig. 2. Schematic diagram of the cylindrical arch with (a) describing geometry, boundary condition and applied loading, and (b) the control variable 𝜆2, which governs the distribution
of cross-sectional area along the arch span.
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Table 1
List of parameters used to investigate the nonlinear structural behaviour of the arch.

Parameter Quantity Units 𝜆min
i 𝜆max

i

𝜆1 Loading factor [−] 0 300
𝜆2 Quadratic spanwise area distribution [−] 0.999515 1.00095
𝜆3 Average cross-sectional area [m2] 0.2586 0.5570
𝜆4 Arch height-to-span ratio [−] 0 0.1

For generality, the parameters are linearly mapped to a unit domain
for post-processing, such that

J(𝜆, 𝜆) ∶ [𝜆min
i , 𝜆

max
i ] → [𝜆

min
i , 𝜆

max
i ] = [0, 1],

J(𝜆, 𝜆) = 𝜆
min
i +

(
𝜆∗i − 𝜆min

i

)(
𝜆

max
i − 𝜆

min
i

)
𝜆max

i − 𝜆min
i

= 𝜆
∗
i ,

(6)

where 𝜆∗i is an arbitrary value of 𝜆i within the pre-defined bounds out-
lined in Table 1.

The problem is solved via a simple one-dimensional finite element
formulation using fifty quadratic, three node, nonlinear Timoshenko
beam elements with von Kármán strains (See Ref. [52] for formula-
tion). This element choice is merely for simplicity as the model arch
problem considered here is governed by moderate rotations. Indeed
initial convergence studies showed that more elaborate beam formu-
lations, e.g. the finite strain theory by Reissner [53], produced identical
results for the constitutive and geometric parameters studied through-
out. The mechanics of slender shallow arches are typically governed
by snap-through instabilities and not material nonlinearities. The anal-
ysis is therefore restricted to only geometrical nonlinearities, however
the strains are assessed throughout the loading history to ensure elastic
behaviour is maintained. Finally, geometric symmetry of the structure
is not exploited to reduced computational expense as this eliminates the
possibility of asymmetric bifurcations.

3.1. Instabilities with varying arch height, 𝜆4

The preliminary process in using the generalised path-following
technique requires the solution of a fundamental load-displacement
equilibrium path for a baseline problem. As defined above the baseline
configuration corresponds to 𝜆2 = 1, 𝜆3 = 0.2586 m2 and 𝜆4 = 0.1
and for this configuration the solution path illustrates the classic snap-
through behaviour illustrated in Fig. 1a.

It is from this fundamental path that other parameters are now
explored. For every solution point on the fundamental path it is possi-
ble to follow a one-dimensional subset equilibrium curve, expanding the
design space from a single-parameter space (𝜆1-d), to a dual-parameter
space (𝜆1-d-𝜆i).

Fig. 3 shows how the load-displacement response (𝜆1 versus mid-
span displacement d) varies with arch height. For 𝜆4 = 0 the arch
reduces to a flat beam, whereas for 𝜆4 = 1 the arch height-to-span ratio
is at a maximum 1/10. Curves (I) and (II) shown in the bottom plot of
Fig. 3 represent the load-displacement response for these two extremal
values of 𝜆4, respectively. Hence, as the rise of the arch increases the
structural behaviour smoothly transitions from curve (I) to curve (II),
where the former is indicative of nonlinear bending of a flat beam and
the latter of symmetric snap-through behaviour of an arched beam.

From Fig. 3 it is evident that arch height significantly affects the
structural behaviour, and this is depicted by the chosen colour code.
As previously defined, blue curves denote stable equilibria, red curves
denote one unstable mode and green curves two unstable modes. As
indicated by the blue region, the flat beam is stable throughout the
entire loading range, 𝜆1 ∈ [0, 150], and this remains the case for very
shallow arches. A limit point is first observed for an arch height of
𝜆4 = 0.1155, which relates to a height-to-span ratio of 0.0115. This
point is clearly visible by the appearance of red curve segments in Fig. 3

Fig. 3. Parameter 𝜆4, corresponding to the normalised arch-height, is varied from a min-
imum of zero, i.e. a flat beam, to a maximum of 0.1, corresponding to a height-to-span
ratio of 10%. I and II correspond to the load-displacement curves at a height-to-span ratio
of zero and 1/10, respectively. The colours blue denote a stable equilibrium solution path,
red denote an unstable equilibrium solution with one negative eigenvalue of the stiffness
matrix, and green denotes an unstable equilibrium solution with two negative eigenval-
ues of the stiffness matrix. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

and is characterised by a broken pitchfork bifurcation in the 𝜆4 − d
plane. As the arch height increases further an additional instability
arises denoted by green curve segments, which corresponds to a bifur-
cation point on the fundamental load-displacement path. The first limit
point and first bifurcation points asymptotically converge (see point B
in Fig. 3), however they do not cross for the parameter range investi-
gated here. However, there is a coincident point of the limit and bifur-
cation loads present in Fig. 3 which illustrates this exact phenomenon
of two instabilities converging and then diverging (point C).

In many engineering applications of arch structures, height is a
design specification and therefore fixed a priori. From the results pre-
sented in Fig. 3 it may already be possible to design for the application
in mind, however, in the event that the load carrying capacity or the
deformations sustained are not appropriate for the given application,
further evaluation is required. Parameters 𝜆2 and 𝜆3 are now introduced
to tailor the structural response to a specific application.

3.2. Optimising distribution of mass, 𝜆2

The second parameter 𝜆2, evaluated herein relates to the distribu-
tion of cross-sectional area along the span of the arch.

A quadratic distribution of the cross-sectional area symmetric about
the mid-span is implemented as follows,

5
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A(s) = as2 + c, (7)

where s = s∕S is the arc-length co-ordinate normalised to total arch-
length, S, with s = 0 at the mid-span, and s = [−0.5, 0.5] at the two
ends. Therefore the total arch volume, V, is given by

V = ∫
0.5

−0.5

(
as2 + c

)
ds = a

12
+ c ⇒ c = V − a

12
, (8)

which means that the distribution of the cross-sectional area reduces to

A(s) = a
(

s2 − 1
12

)
+ V , (9)

where the total volume, V, is conserved throughout the rest of the anal-
ysis, i.e. mass is conserved. The parameter that varies the distribution
of area is defined by 𝜆2 = 1 + a and certain limits need to be imposed
on a to enforce that the cross-sectional area remains positive. Thus, for
reducing area towards the ends A(s = ±0.5) > 0, and similarly for reduc-
ing area towards the mid-span A(s = 0) > 0. These constraints result in
the following limits on a,

−6V < a < 12V . (10)

A physical connection between the distribution of area and the dis-
tribution of second moment of area is maintained with I(s) = 𝛼A2,
where 𝛼 = 1/4𝜋, which means that a circular cross-section is assumed
throughout all analyses. Although Eq. (10) represents the bounds of
a, additional precautions were taken to constrain the limits further
in order to maintain a well-conditioned numerical system. The two
extreme physical configurations of 𝜆2 are conceptually illustrated in

Fig. 2b, to be used as reference when referring to the results presented
in Fig. 4a.

Fig. 4a presents three distinct regions, each corresponding to a
different degree of stability: blue, stable equilibria; red, one unstable
mode; green, two or more unstable modes. Of course, the red and green
segments of the equilibrium path are unstable and therefore of rela-
tively little practical use to the practical engineer, but it is often impor-
tant to include these regions as they are important for imperfection
sensitivity. Increased awareness of the characteristics of the unstable
regions mitigates the uncertainty, and thus improving the robustness,
of prospective designs. Furthermore, awareness of the unstable regions
becomes far more significant for dynamic behaviour and thus a com-
plete investigation of these regions is important.

Nevertheless, we would like to point out that some configurations
exhibit highly nonlinear solutions, as is the case for 𝜆2 = 0, whose
load-displacement curve is shown in Fig. 4b. This load-displacement
response exhibits numerous “flower petals” and for each limit point
(maximum or minimum) the arch transitions to a different mode shape,
i.e. the number of half-waves across the span changes. Hence, the solid
green line corresponds to degree of instability two with three half-
waves along the span, and the broken green line corresponds to a third
degree of instability or greater with five or more half-waves across
the span. These observations agree with the findings presented by Pi
et al. [54]. Additional bifurcation points are also observed on the dashed
curve, but omitted here for clarity. Second, we note that Fig. 4b shows
that the bifurcation points, when compared to the baseline configura-
tion (Fig. 1a), have migrated along the equilibrium path and are now

Fig. 4. (a) Solution surface in 𝜆1-displacement-𝜆2 space of an arched beam with a height-to-span ratio of 1/10. Coefficient 𝜆2 corresponds to the normalised symmetric quadratic
distribution of cross sectional area along the length of the beam. For 𝜆2 = 0 the arch is thinnest at the ends and for 𝜆2 = 1 it is thinnest at the mid-span. Blue: Stable; Red: Unstable,
one negative eigenvalue; Green: Unstable: two or more negative eigenvalues; (b) Load-displacement solution path for 𝜆2 = 0 with degree of instability denoted in circles; (c) and (d)
Partial solution surface for 0 < 𝜆2 < 1 highlighting points of interest (A) Peak, (B) Bifurcation in 𝜆2, (C) Snap-through initiates (cusp), (D) Limit point and bifurcation points coincide
(hilltop-branching point). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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observed before the limit points – restricting the stable, useful design
space.

Removing all solutions with degrees of instability three and above
from the surface solution in Fig. 4a produces a somewhat clearer rep-
resentation of the available design space as illustrated in Fig. 4c and
d, where Fig. 4c is an isometric projection of the equilibrium sur-
face, and Fig. 4d is an orthographic projection in the 𝜆2-displacement
plane. Fig. 4d shows a number of interesting points. Point (A) corre-
sponds to the greatest peak before snap-though, and thus the greatest
load-carrying capacity, therefore presenting the optimum load-carrying
configuration (in terms of maximum 𝜆1/d ratio). Point (B) illustrates
a bifurcation in 𝜆2 space. Point (C) represents the value of 𝜆2 for
which snap-through behaviour first occurs. Point (D) indicates a sin-
gle point where a bifurcation point has merged with a limit point to
form a so-called hilltop branching point, i.e. where the fundamental
path transitions from stable equilibrium to equilibrium with two unsta-
ble modes. Finally, dashed-line (E) corresponds to the configuration of
𝜆2 = 0.154525 with the greatest stiffness through deformation i.e. max-
imum 𝜆1/d which reaches its maximum at the first instability load at
point (A).

Given that engineering structures are typically designed for maxi-
mum load carrying capacity and minimum deflection for a given mass,
the distribution of cross-sectional area corresponding to 𝜆2 = 0.154525
is defined as the most efficient design. This particular configuration is
characterised by a redistribution of mass from the supported edges to
the centre of the arch, i.e. distribution of mass towards the centre of the
beam and away from the boundary conditions. This is not necessarily
an intuitive finding, and merits further discussion.

For comparison, the results for three different distributions were
evaluated, (i) constant cross-section 𝜆

const
2 = 0.337979, (ii) optimum

distribution 𝜆
opt
2 = 0.154525, and (iii) inverse-optimum distribution

𝜆
inv
2 = 0.521433. The inverse-optimum configuration was defined as the

inverse of the optimum value for 𝜆2 when compared to the constant
area 𝜆2 = 1 (a = 0), such that,

𝜆inv
2 = 𝜆const

2 +
(
𝜆const

2 − 𝜆
opt
2

)
, (11)

transformed to the normalised 𝜆
inv
2 parameter value using Eq. (6).

The critical buckling loads for all three configurations were found to
vary significantly, 𝜆const

1,crit = 91.97, 𝜆opt
1,crit = 104.5 and 𝜆inv

1,crit = 67.15. At
the respective critical buckling loads the overall deformation of the arch
was evaluated (See Fig. 5a) alongside the internal membrane energy Πm
(Fig. 5b) and membrane forces Nx (Fig. 5c and d), as well as the bending
energy (Fig. 5e) and bending moments (Fig. 5f and g).

As a result of reaching 1.56 times the critical snap-through load, the
optimum configuration deforms more than the inverse-optimum con-
figuration at the point of snap-through (see Fig. 5a). As this relative
increase in deformation is considerably less than the 1.56 times increase
in load, the stiffness of the optimum configuration is greater than the
inverse-optimum configuration. The mode shape of the optimum con-
figuration also suggests that the deformation is more uniform over the
central portion of the arch where snap-through occurs, suggesting that
the internal loads are being re-distributed to use the available material
more efficiently.

In fact, the distribution of the membrane forces over the arch span
can provide further physical insight into the optimal distribution of the
cross-sectional area. It is well known that many structural instabilities
are driven by destabilising compressive membrane forces. The equilib-
rium equation of shallow arches using Donnell-Kármán kinematics is

d2Ms
ds2 − Ns

R
+ Ns

d2w0
ds2 = 0, (12)

and given that Ms = −EI(s) d2w0
ds2

d2

ds2

(
EI(s)d

2w0
ds2

)
+ Ns

R
− Ns

d2w0
ds2 = 0, (13)

where w0 is the transverse displacement of the arch and Ns is the
membrane force. Note that for a shallow arch Nx and Ns are basically
indistinguishable. In the arch problem considered here, the transversely
applied load at the mid-span forces the ends of the arch to expand out-
wards, but because this is prevented by the encastré boundary condi-
tions a compressive reaction force is induced throughout the structure.
As this compressive membrane force − Ns increases (becomes more
negative), the effective bending rigidity provided by EI is reduced until
the arch loses its capability to support any form of transverse loading.

As the snap-through instability occurs at the mid-span of the arch, it
intuitively follows that increasing the load carrying capability of the
arch requires a re-distribution of the compressive membrane forces
away from the mid-span and towards the supported edges. In fact, this
mechanism is widely attributed to the improved load-carrying capa-
bility of variable-angle tow composite plates under compression [55].
Variable angle-tow plates are composite laminates manufactured from
orthotropic plies with the reinforcing fibres steered continuously over
the planform in curvilinear paths. As a result of this stiffness variation
compressive stresses can be tailored, i.e. re-distributed from the central
unsupported region of the plate to the supported edges, thereby signif-
icantly increasing the critical buckling load [55].

Precisely the same mechanism can be observed for the arch stud-
ied here. For example, consider the membrane energy in Fig. 5b. The
constant cross-section (blue) provides a relatively constant membrane
energy across the span. The optimum configuration (red) reduces the
membrane energy over the critical mid-span region where snap-through
occurs. It is clearly visible that membrane energy is distributed out-
wards away from the critical region and towards the supported edges.
Furthermore, the opposite distribution membrane energy is observed
for the inverse-optimum distribution – the membrane energy is max-
imised towards the centre.

The significance of this re-distribution is further emphasised in
Fig. 5c and d, which respectively show the membrane force Nx along
the length of the beam normalised by the respective critical buck-
ling load and the reaction force Nx at the boundary. Fig. 5c shows
that changes in distribution of cross-sectional area from the inverse-
optimum configuration (thicker towards the boundaries) to a constant
cross-sectional area and further to the optimum configuration (thicker
towards the mid-span) reduces the magnitude of the compressive load
across the arch. Furthermore, Fig. 5d illustrates that for the optimum
design not only the magnitude of the compressive load is reduced at
the critical mid-span region, but the distribution of Nx is also more uni-
form across the entire arch domain. Conversely, Fig. 5e–g shows that
the optimum cross-sectional area distribution leads to a concentration
of bending energy at the mid-span and greater magnitude of bending
moment over most portions of the arch, thereby maximising the out-
of-plane bending deformation before snap-through occurs as previously
noted for Fig. 5a. Hence, the optimum area distribution redistributes
some of the internal loading from membrane action to bending action.

The optimum design is found to be in agreement with the findings
observed by Rapp [50], whereby the critical buckling loads are evalu-
ated for non-uniform beams with three different volume distributions.
The only case directly comparable to the results presented within this
paper (m = 2 and n = 2 in Ref. [50]) agree with the findings herein.

The linear design of arch structures, such as masonry arches in antiq-
uity, is often based on minimising bending moments and maximising
the compressive thrust within the arch. This is because the mortar used
to bind together the rigid links of the arch fare poorly under tensile
loading. In this regard, a linear design of a masonry arch would be based
on maximising the compressive membrane force throughout the struc-
ture. As shown in Fig. 5c the compressive membrane force is uniformly
at the greatest value throughout the inverse-optimum structure. Hence,
the inverse-optimum distribution (thicker at the boundaries and thin-
ner towards the mid-span) could be viewed as an optimised design for
masonry arches, and this is indeed the case for many arch bridges and
aqueducts. This comparison illustrates the risks entailed in optimising
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Fig. 5. Plots of the (a) Deformation of the arch, (b) Membrane energy, Πm , (c) Membrane force, Nx , normalised with respect to critical buckling load, (d) Membrane force, Nx,
normalised with respect to the reaction load at the boundary, (e) Bending energy, Πb , (f) Bending moment, Mx, normalised with respect to critical buckling load, (g) Bending moment,
Mx, normalised with respect to the reaction moment at the boundary, all at the critical buckling load. The red curves correspond to the optimum spanwise distribution of area, the blue
corresponds to the constant spanwise area, and the green corresponds to the inverse-optimum spanwise distribution of area. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 6. Plots of the (a) Load-displacement behaviour of an arched beam with a height-to-span ratio of 1/10. Parameter 𝜆3 corresponds to the average cross-sectional area, and therefore
relates directly to total volume of the beam. The average area is varied within bounds of 𝜆3 = [0.2586, 0.5570], (b) An orthographic view of (a) in the 𝜆3-displacement plane. Blue:
Stable; Red: Unstable, one negative eigenvalue; Green: Unstable: two or more negative eigenvalues. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

elastic arches used in the nonlinear domain using linear assumptions,
as the design driver, i.e. minimising the compressive thrust, is indeed
opposite to that for most linear arches.

3.3. Changing total arch volume, 𝜆3

With an optimum mass distribution of 𝜆2 = 0.154525 defined, the
average cross-sectional area, parameter 𝜆3, is now varied. As the width
and density of the arch remain fixed, varying 𝜆3 investigates the effect
of increasing mass.

As the baseline model has been optimised, in terms of the distribu-
tion of volume, the original load-displacement equilibrium solution can
no longer be used as a reference for further evaluation. It is therefore
necessary to find the solution to the fundamental equilibrium path with
parameter 𝜆2 = 0.154525. This newly-created load-displacement path
is then used as a starting point to expand the equilibrium surface into
the 𝜆3-direction as shown in Fig. 6.

The maximum mass is defined for 𝜆3 = 1 and the minimum mass
corresponding to the previously optimised solution corresponds to
𝜆3 = 0. Two important conclusions can be drawn from Fig. 6. First,
the qualitative behaviour of the structure changes when volume is
increased, i.e. snap-through becomes more nonlinear and thus physi-
cally more sudden. Second, the snap-through displacement increases
inversely with volume, i.e. the snap-distance is greater for lighter
arches.

Fig. 6 is a good example of a visual aid that is useful to the design
engineer. The most important aspect of any structure is usually the load
carrying capacity. Each equilibrium curve drawn in Fig. 6 represents a
fixed load, and it is therefore possible to follow a given load to find a
specified displacement before or even after snap-through has occurred.
This technique allows engineers to design more efficient structures by
fully exploiting nonlinear kinematics.

4. Conclusion

The aim of this investigation was to explore the mechanics of shal-
low arched beams using a computational framework known as gener-
alised path-following, our objective being to illustrate the juxtaposition
between the design of a linear and a nonlinear arch structure.

This investigation produces equilibrium surfaces of the structural
behaviour which facilitate an intuitive understanding of the structural
stability response with respect to any number of parameters, here the
external load, distribution of mass, total mass and arch height. The
design of this simple arch proves to be very sensitive to the inves-

tigated parameters. Nonlinear buckling behaviour of arched beams
strongly depends on the arch rise height, the beam slenderness ratio,
beam volume, and most interestingly the spanwise distribution of cross-
sectional area. A quadratic distribution of a marginally thicker cross-
section at the mid-span provides the greatest rigidity to a centrally
applied bending load, i.e. the greatest load carrying capacity to dis-
placement ratio. Although the analysis was restricted to only geomet-
rical nonlinearities, the strain was assessed throughout the loading
history and showed no sign of plasticity onset. Indeed, the mechan-
ics of slender shallow arches are typically governed by snap-through
instabilities and material nonlinearities are more important for higher
arches.

Furthermore, we illustrate that the mechanics of shallow nonlinear
circular arches are topologically opposed to that of the linear equiv-
alent. It shows that there are essentially two approaches to designing
arches. In many linear structures, such as masonry arches, the opti-
mum design drives a re-distribution of mass to the supported bound-
ary conditions, and thus a linear analysis tool is sufficient. For the
nonlinear structure investigated here, the opposite is true as a redis-
tribution of mass towards the mid-span reduces the destabilising com-
pressive membrane force within the structure, which in turn increases
the load-carrying capacity before the first instability is observed.
This physical mechanism is analogous to variable angle tow plates,
where compressive stresses are redistributed from the unsupported cen-
tre of the plate to supported edges. Finally, by redistributing mass
the load-carrying capacity of the arch at the first instability load is
increased by 14% over the baseline design of constant cross-sectional
area.
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