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Abstract

Modern wide-field, optical time-domain surveys must solve a basic optimization problem: maximize the number of
transient discoveries or minimize the follow-up needed for the new discoveries. Here, we describe the Color Me
Intrigued experiment, the first from the intermediate Palomar Transient Factory (iPTF) to search for transients
simultaneously in the gprr and Rprg bands. During the course of this experiment, we discovered iPTF 16fnm, a
new member of the O02cx-like subclass of Type Ia supernovae (SNe). iPTF 16fnm peaked at
M, . = —15.09 & 0.17 mag, making it the second-least-luminous known SN Ia. iPTF 16fnm exhibits all the
hallmarks of the 02cx-like class: (i) low luminosity at peak, (ii) low ejecta velocities, and (iii) a non-nebular
spectrum several months after peak. Spectroscopically, iPTF 16fnm exhibits a striking resemblance to two other
low-luminosity 02cx-like SNe: SN 2007qd and SN 2010ae. iPTF 16fnm and SN 2005hk decline at nearly the same
rate, despite a 3 mag difference in brightness at peak. When considering the full subclass of 02cx-like SNe, we do
not find evidence for a tight correlation between peak luminosity and decline rate in either the g’ or ¥ band. We
measure the relative rate of 02cx-like SNe to normal SNe Ia and find ry,, /n, = 33723 %. We further examine the
g’ — r evolution of 02cx-like SNe and find that their unique color evolution can be used to separate them from
91bg-like and normal SNe Ia. This selection function will be especially important in the spectroscopically
incomplete Zwicky Transient Facility/Large Synoptic Survey Telescope (LSST) era. Finally, we close by
recommending that LSST periodically evaluate, and possibly update, its observing cadence to maximize transient
science.
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1. Introduction
1.1. The Transient Follow-up Problem

The proliferation of large-area optical detectors has led to a
recent renaissance of time-domain astronomy and, in particular,
the search for exotic transients. Over approximately the past
decade, new surveys have dramatically increased the number of
transients discovered on a nightly basis. These efforts will
culminate with the Large Synoptic Survey Telescope (LSST) in
the early 2020s, which will discover 2000 new supernovae
(SNe) per night (Ivezi¢ et al. 2008). Discovery is a small first
step in improving our understanding of SNe. Detailed follow-
up observations, either photometry spanning the ultraviolet,
optical, and infrared (UVOIR) or spectra, are needed to reveal
the nature of these explosions (see Filippenko 1997, for a
review of SN spectra). Existing follow-up facilities are already
taxed by the current rate of transient discovery, meaning that

the LSST-enabled two orders of magnitude increase in
discovery rate poses a serious “follow-up problem.” Namely,
there will be substantially more known SNe than available
resources to study each in detail.

Transient surveys are forced to balance the trade-off between
transient discoveries and the need for follow-up resources. For
a fixed exposure time, observing as wide an area as possible in
a single filter will maximize the number of discoveries. Implicit
in this strategy is the need for outside follow-up resources. If,
on the other hand, follow-up resources are scarce or
prohibitively expensive, a survey may choose to repeatedly
observe the same fields in different passbands to obtain color
information. This would, however, reduce the total number of
transient discoveries. Both strategies are employed by modern
surveys. Broadly speaking, shallow surveys tend to observe in
a single filter (e.g., the All-Sky Automated Survey for
Supernova (ASAS-SN; Shappee et al. 2014); the Palomar
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Transient Factory (PTF; Law et al. 2009)), while deeper
surveys sacrifice area for color (e.g., the Supernova Legacy
Survey (SNLS; Astier et al. 2006); the Panoramic Survey
Telescope and Rapid Response System 1 (PS1) Medium Deep
Survey (MDS; Chambers et al. 2016), the Dark Energy Survey
Supernova search (DES SN survey; Kessler et al. 2015)). The
looming LSST “follow-up problem” has led to an increasing
number of studies that consider only the photometric evolution
of transients (e.g., Jones et al. 2017).

The intermediate Palomar Transient Factory (iPTF; Kulkarni
2013), which succeeded PTF,16 is a time-domain survey
consisting of a series of experiments. Like its predecessor, iPTF
searched for transients using a single filter while obtaining two
observations per field per night to reject asteroids from the
transient-candidate stream. Here, we describe the Color Me
Intrigued experiment from the final semester of iPTF. This
experiment was the first from PTF/iPTF to search for transients
with multiple filters, though this color information was
achieved with no loss of survey area as the experiment still
obtained two observations per field per night.

During the course of the Color Me Intrigued experiment,
iPTF discovered a rare SN 2002cx-like object (hereafter 02cx-
like SN), iPTF 16fnm, which we discuss in detail below.

1.2. Peculiar 02cx-like SNe

The discovery of an accelerating universe (Riess et al. 1998;
Perlmutter et al. 1999) has led to numerous and extensive
observational and theoretical studies into the nature of SNe Ia
over the past two decades. Despite these efforts, a precise
understanding of the nature and exact explosion mechanism for
SN Ia progenitor systems is still unknown. While there is
strong observational evidence that at least some SNe Ia come
from white dwarf (WD) systems (e.g., Bloom et al. 2012a) and
a general consensus that carbon/oxygen WDs give rise to SNe
Ia, there is ambiguity in the mechanisms and scenarios that lead
to explosion (e.g., Hillebrandt et al. 2013). A multitude of
observational campaigns designed to capture large samples of
SNe Ia for cosmological studies have also revealed several
peculiar hydrogen-poor SNe (see Kasliwal 2012, and refer-
ences therein). While these peculiar SNe retain many
similarities to normal SNe Ia, their distinct properties allow
for the possibility of more extreme or unusual WD progenitor
scenarios.

To date, the most common subclass of peculiar SNe Ia are
those similar to SN 2002cx (Li et al. 2003), of which there are
now ~25 known examples (e.g., Foley et al. 2013). The 02cx-
like'” class is characterized by low ejecta velocities (~half
normal SNe Ia) and low luminosities, ranging from M ~ —19
to —14 mag at peak. The distribution of host-galaxy morphol-
ogies for 02cx-like SNe is strongly skewed toward late-type
hosts (e.g., Foley et al. 2013; White et al. 2015, and references
therein), which may indicate massive star progenitors for this
class (e.g., Valenti et al. 2009; Moriya et al. 2010). However,
the maximum-light spectrum of SN 2008ha shows clear
evidence for carbon/oxygen burning, providing a strong link

1 The initial PTF survey was conducted from 2009 July through 2012
December. The iPTF survey was conducted from 2013 February through 2016
October. Finally, the iPTF extension was conducted from 2016 November
through 2017 February.

17 This subclass is sometimes alternatively referred to as SNe Iax (Foley
et al. 2013).
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between 02cx-like SNe and WD progenitors (Foley
et al. 2010).

While the sample of 02cx-like SNe is relatively small, they
constitute a significant fraction of the total number of SNe Ia,
~5%-30% (Li et al. 2011; Foley et al. 2013; White
et al. 2015). Multiple efforts have been made to identify
simple correlations between basic observational properties for
the class (e.g., McClelland et al. 2010; Foley et al. 2013), in
part to aid the identification of a likely progenitor scenario.
Significant outliers exist (e.g., Narayan et al. 2011), however,
and the emerging consensus is that 02cx-like SNe cannot be
understood as a single-parameter family (Magee et al. 2017).

Pure deflagration models are often invoked to explain the
heterogeneity of the 02cx-like class (e.g., Phillips et al. 2007),
as they can naturally explain the wide range in peak luminosity.
As a result, extensive theoretical consideration has been given
to these models recently (e.g., Kromer et al. 2013; Fink
et al. 2014), with the express purpose of understanding 02cx-
like SNe. Recently, Magee et al. (2016) compared early
spectroscopic observations of SN 2015H, an 02cx-like SN, to a
deflagration model from Fink et al. (2014) and found good
agreement. The model light curve evolves faster than the
observations, though this may be reconciled with higher ejecta
mass models (Magee et al. 2016). An interesting consequence
of the pure deflagration models is that they do not completely
unbind the WD, leaving a ~1 M, bound remnant (Kromer
et al. 2013).

Alternatively, Stritzinger et al. (2015) compared detailed
observations of SN 20127, one of the most luminous members
of the 02cx-like class, to pulsating delayed-detonation (PDD)
models of exploding WDs. In particular, Stritzinger et al.
observe potbellied [FeII] profiles in the near-infrared at late
times, which are an indication of high-density burning. Based
on this observation and the direct comparison of model light
curves and spectra, it is argued that SN2012Z was a PDD
explosion of a Chandrasekhar-mass WD and not a pure
deflagration (Stritzinger et al. 2015).

While examining a large sample of low-velocity Type I SNe,
it is argued in White et al. (2015) that 02cx-like SNe are the
result of double-degenerate mergers. This may explain their
observed heterogeneity, as the masses of merging WDs can vary
significantly. White et al. prefer pure deflagration models as an
explanation for 2002es-like SNe, a low-velocity subclass of SNe
Ia that is distinct from the 02cx-like class (Ganeshalingam
et al. 2012; Cao et al. 2016a). Moving forward, it is clear that
additional 02cx-like SNe need to be found to distinguish
between pure deflagrations, PDD explosions, double-degenerate
mergers, and other possible mechanisms.

Here, we present the discovery of a new member of the
02cx-like class, iPTF 16fnm. iPTF 16fnm was discovered in the
course of the iPTF Color Me Intrigued experiment, and it was
first identified as a possible low-velocity SN with spectra
from the Spectral Energy Distribution Machine'® (SEDm; N.
Blagorodnova et al. 2017, in preparation). Our spectroscopic
follow-up campaign clearly identifies iPTF 16fnm as an 02cx-like
SN, which we show is one of the faintest known members of the
class. While Color Me Intrigued was designed to identify unusual
transients based on their colors follow-up of iPTF 16fnm was first
triggered as a transient in the local universe. Nevertheless, we

'® Documentation for SEDm is available at http://www.astro.caltech.edu/
sedm/.
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show that ¢ — r color curves are sufficient to discover 02cx-like
SNe, like iPTF 16fnm.

2. Color Me Intrigued: The iPTF Two-filter Experiment

The iPTF survey has been organized as a series of time-
domain experiments conducted with the Palomar 48-inch
telescope (P48). Proposals for individual experiments are written
by iPTF members and selected by an internal time allocation
committee. The decision to focus on a single experiment at a
time was made to minimize cadence interruptions and ensure
that a specific science goal could be accomplished. Individual
experiments were limited to two broadband filters, gprr and
Rptr, and 30 s exposure times, but otherwise free to select the
targets and cadence of observations.

2.1. Two Filter or Not Two Filter?

Recognizing that the next-generation Zwicky Transient
Facility (ZTF; Bellm 2016; Kulkarni 2016) would increase
the discovery rate relative to PTF/iPTF by more than an order
of magnitude, a ZTF pilot experiment was proposed to reduce
the “follow-up problem” for the final semester of iPTF. In brief,
the proposed experiment, titled Color Me Intrigued, would
be the first by PTF/iPTF to survey simultaneously in the gprg
and Rprr filters. Even with fast spectroscopic resources (e.g.,
SEDm), ZTF transient discoveries will outpace follow-up
capabilities. Adopting a two-filter strategy allows us to
maximize the information content for each newly discovered
transient, without compromising the overall survey area.

To reject asteroids as false positives in the search for
transients, PTF/iPTF observes fields twice within the same
night. Observation pairs separated by ~0.5hr can reject
moving objects by requiring at least two co-spatial detections.
Prior to Color Me Intrigued, these observations were obtained
in a single filter. Color Me Intrigued retained the basic two
observations per field per night strategy, but instead observed
once in gprr and once in Rprg. A main objective for Color Me
Intrigued was to produce color curves, particularly at the epoch
of discovery, for all newly found transients. These curves will,
in turn, be used to build preliminary classification models for
ZTF (e.g., Poznanski et al. 2002), which will enable a more
efficient allocation of follow-up resources. Indeed, we later
show that 02cx-like SNe can be reliably selected based on their
color evolution (see Section 6).

This two-filter strategy was adopted as a ZTF pilot to address
one major and one minor concern. The minor concern is that
using two filters would somehow prevent the rejection of
asteroids as nontransients. Given that asteroids are primarily
rejected via their motion, however, the choice of filters should
not hinder transient discovery. In practice, we found that the
same-night, two-detection requirement rejected asteroids from
the transient-candidate stream.

One of the primary science drivers for iPTF is the study of
extremely young SNe. These discoveries critically rely on the
successful maintenance of a 1-day search cadence, as upper
limits ~24 hr prior to the initial detection of a transient are an
excellent indicator of youth (e.g., Gal-Yam et al. 2014; Cao
et al. 2015, 2016a; Miller et al. 2017). The primary concern for
the Color Me Intrigued strategy is that, despite a 1-day cadence,
young transients may be missed owing to (i) extreme colors,
(ii) differences in the depth of the gprr and Rpry observations,
or (iii) a combination of the two. For example, many young
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Figure 1. Revisit time, f.is, for all fields monitored during the Color Me
Intrigued experiment. The designed, ideal cadence is shown in gray, while the
true revisit times are shown in red. There is a small tail of observations with
tevisit > 10 days that is not shown for clarity.

transients are hot with blue gpr — Rprp colors. If a hot
transient produces a faint gprr detection, then there may be no
corresponding Rprr detection, resulting in a nondetection. The
same transient would have been discovered earlier with two
gprr-band observations. Indeed, during Color Me Intrigued a
handful of SNe were discovered only 1-6 days after their initial
P48 detection, because those initial detections occurred in only
a single filter. Additionally, iPTF gprr-band observations reach
a flux limit that is a factor of ~2 fainter than Rprg band (Law
et al. 2009). There is at least one relatively red SN
(gprr — Rprr ~ 0.4 mag) discovered after its initial detection
owing to these differences in depth. Thus, one clear trade-off
for adopting a two-filter strategy is that some transients are
discovered at a later phase than they would be discovered by a
single-filter search. A full systematic study of the biases
introduced by the Color Me Intrigued strategy is beyond the
scope of this paper and will be addressed in a future study
(A. A. Miller et al. 2017, in preparation).

2.2. Observation Plan

The Color Me Intrigued experiment included 270 fields
covering a total area of ~1960deg®. The experiment was
conducted for 3 months, from 2017 August 20 to November
10, using the ~21 darkest nights during each lunation.'® As a
ZTF/LSST precursor, the experiment adopted a rolling
cadence strategy. The 270 fields were split into three groups
of 90. During each lunation, one group would be observed with
a l-day cadence, while the other two would be observed with a
3-day cadence. Therefore, 150 fields (90 with a 1-day cadence,
and 60 with a 3-day cadence) would be observed each night,
yielding 300 total observations. Over the course of the
experiment each field was slated to be observed 42 times,
though weather losses ultimately reduced this number.

As previously noted, maintaining a 1-day cadence is critical
for the discovery of young SNe. In Figure 1 we summarize the
ideal cadence for Color Me Intrigued (i.e., no loss of observing
time) against the actual revisit time, f.yisi, for all fields
monitored. The ideal cadence shows two prominent peaks at
tevisit = 1 and 3 days, with small peaks near ~1 week due to
Ha observations around full moon. The same peaks dominate
the actual revisit times; however, only ~60 and ~50% of the
planned 1-day and 3-day observations, respectively, occurred
as scheduled. In other words, Color Me Intrigued was designed

19 The ~7 nights around full moon were allocated to the iPTF Census of the
Local Universe Ha survey (Cook et al. 2017).
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Figure 2. R-band discovery image of iPTF 16fnm showing the new, reference,
and subtraction image from left to right. Images are shown on a linear scale,
with the saturation levels selected to highlight faint structure in the host galaxy,
UGC 00755. North is up and east to the left, and the images are centered on the
SN position as indicated by the crosshairs, which are 10” long.

to survey 90 x 7.26 deg? = 653.4 deg? night' with a 1-day
cadence. Weather losses resulted in an effective 1-day cadence
survey area of 405.8 deg? night™!. Similarly, 60 x 7.26 deg?> =
435.6 deg? night™!' were to be observed with a 3-day cadence.
Ultimately, the effective area of the 3-day search
was 215.0 deg? night™".

In closing, we note that scheduling constraints® prevented
us from observing the first set of 1-day cadence fields during
the third lunation of the experiment, 2017 October 19-
November 10. These fields were replaced by 90 new fields,
which were observed with a 3-day cadence. This change did
not significantly affect the science output from Color Me
Intrigued.

3. Observations of iPTF 16fnm
3.1. Discovery

iPTF 16fnm, located at Qa32000 = 01h12m38€32’ (5]2000 =
+38°30m08”8, was first detected by iPTF at Rprp = 20.23 +
0.17 mag®' on 2016 August 2647 (UT dates are used
throughout this paper). Following automated processing (Cao
et al. 2016b; Masci et al. 2017) and the use of machine-learning
software that separates real transients from image subtraction
artifacts, known as realbogus (Bloom et al. 2012b; Brink
et al. 2013; Masci et al. 2017), the candidate was manually
saved and internally designated iPTF 16fnm. The discovery
image of iPTF 16fnm is shown in Figure 2.

The iPTF 16fnm host galaxy, UGC 00755, has a redshift znost =
0.02153 (Wegner et al. 1993). Adopting Hy = 73 km s~! Mpc ™!
and correcting for Virgo infall, this redshift corresponds to a distance
d=905 =+ 63Mpc and distance modulus g = 34.78 +
0.15 mag (Mould et al. 2000). Thus, at the time of discovery
iPTF 16fnm had an absolute magnitude Mg,,. ~ —14.5 mag. The
light curve peaked ~3 days later at M ~ — 15 mag in both the gprr
and Rpre filters, suggesting that iPTF 16fnm may be a ‘“‘gap”
transient (see Kasliwal 2011, 2012, and references therein).

The first spectrum of iPTF 16fnm was obtained on 2016
September 03.25 with the SEDm integral field unit
spectrograph (Ben-Ami et al. 2012; N. Blagorodnova et al.
2017, in preparation) on the Palomar 60-inch telescope (P60).

20 Up to 20% of the available P48 observing time is reserved for the Caltech
Optical Observatory every semester.

21 Photometry for iPTF 16fnm is reported in the gprg and Rprg filters
throughout, which are similar to the SDSS g’ and #’ filters, respectively (see
Ofek et al. 2012, for details on PTF calibration). The correction from the gprr
and Rpry filters to SDSS g’ and /' requires knowledge of the intrinsic source
color (see Equations (1) and (2) in Ofek et al. 2012). 02cx-like SNe do not
follow a standard spectral evolution, so the color terms for iPTF 16fnm are
unknown.

Miller et al.
Table 1
iPTF 16fnm P48 Photometry
HID -2,457,600 Mag.* Omag
8PTF
27.008 20.04 0.26
30.002 19.80 0.10
32.990 19.88 0.11
35.998 20.20 0.13
38.992 20.34 0.17
41.964 20.89 0.29
42.951 20.99 0.27
56.972 >20.10
62.963 >20.50
65.962 >20.71
65.963 >20.60
68.951 >20.42
Rprr

14.863 >20.30
14.905 >20.67
14.948 >20.74
15.833 >20.17
15.863 >20.26
15.892 >20.51
26.971 20.23 0.17
29.964 19.81 0.13
32.954 19.95 0.13
35.964 19.91 0.10
38.960 20.04 0.10
41.009 20.08 0.12
41.022 20.16 0.13
42.002 20.11 0.14
42.986 20.19 0.14
43.998 19.96 0.10
44.019 20.27 0.14
57.008 20.74 0.28
63.001 >20.63
66.001 >20.59
66.002 >20.33
68.991 >20.39

Note.
# Observed magnitude, not corrected for Galactic extinction. 5o upper limits
are reported for epochs where iPTF 16fnm is not detected.

This spectrum showed low-velocity Sill absorption, which, in
conjunction with the relatively faint absolute magnitude,
suggested that iPTF 16fanm may be a subluminous 02cx-like
SN, similar to SN 2008ha (Foley et al. 2009). Subsequent
spectra obtained with larger-aperture telescopes confirmed this
initial classification.

3.2. Photometry

Photometric observations of iPTF 16fnm were conducted in
the gprr and Rprg bands using the PTF camera (Law et al.
2009) on the P48. The brightness of iPTF 16fnm was measured
following image subtraction via point-spread function (PSF)
photometry with the PTFIDE software package (Masci et al.
2017). These measurements are summarized in Table 1 and
shown in Figure 3. We only consider the SNe detected in
epochs where the signal-to-noise ratio (S/N) is >3, while we
otherwise conservatively report So upper limits.



THE ASTROPHYSICAL JOURNAL, 848:59 (13pp), 2017 October 10

L L
@ 16fam, gprp
. 16fnm, Rprr [

+ — 05hk, ¢
— 05hk,

19.75
20.00 1

2025 é

;,
0V

mag (observed)
A

21.00

21.25 A

21.50 %

15 20 25 30 35 40 45 50 55 60 65 70
HJD — 2457600 (day)

Figure 3. P48 light curves showing the evolution of iPTF 16fnm. Teal and
crimson circles show detections in the gprr and Rprg bands, respectively. 5o
upper limits are shown with downward-pointing arrows. The open downward-
pointing arrow shows the 50 upper limit from combining the 6 epochs taken
~11-12 days prior to discovery. The solid teal and red-orange lines show
polynomial fits to the g’ and /' filter observations, respectively, of SN 2005hk
(Phillips et al. 2007). The curves have been shifted to align the time and
brightness of maximum in g band for both SNe and stretched to match the
redshift of iPTF 16fnm. The general agreement between the two suggests that
the rise time for iPTF 16fnm is similar to that for SN 2005hk, ~15 days.

We determine the time of and brightness at maximum for
iPTF 16fnm via second-order polynomial fits to the epochs when
iPTF 16fnm was detected. From these fits we find that iPTF
16fnm peaked on HID 2,457,629.8 £ 2.0 and 2,457,632.8 + 4.8
at 19.87 £ 0.07 mag and 19.88 £ 0.05 mag in the gprr and
Rprr bands, respectively. These measurements represent the
observed maxima of iPTF 16fnm and have not been corrected for
Milky Way or host-galaxy extinction. 02cx-like SNe do not
follow a standard color evolution, meaning that host-galaxy
extinction cannot be inferred from photometry alone. We do not
detect narrow Nal D at the redshift of UGC 00755 in any of our
spectra, and therefore we assume that host-galaxy extinction is
negligible. This assumption is supported by the observed blue
color of iPTF 16fnm at peak.

Adopting the distance modulus to UGC 00755 and
correcting for foreground Galactic extinction (A, = 0.178 mag,
A, = 0.123 mag; Schlafly & Finkbeiner 2011), we find that
iPTF 16fnm peaked at M,, = —15.09 £ 0.17 mag and
Mg, = —15.02 £ 0.16 mag, under the assumption of no
local host extinction.

We cannot place strong observational constraints on the rise
time of iPTF 16fnm: prior to its initial detection, iPTF had not
observed this field for ~12 days (see Figure 3). If we combine
the forced-PSF flux measurements from the 6 epochs taken
between HIJD 2,457,614 and 2,457,616, we derive a more
constraining  inverse-variance-weighted upper limit of
Rprr > 21.46 mag on HID 2,457,615.3. This deeper nondetec-
tion suggests that the rest-frame rise time of iPTF 16fnm is
<17.2 days in the R band. Further constraints on the rise time
are available by comparing iPTF 16fam and SN 2005hk, the
02cx-like SN with the best observational constraints on the
time of explosion (Phillips et al. 2007). Figure 3 shows
polynomial fits to the g’- and r-band light curves of
SN 2005hk, shifted to match the time and brightness of
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iPTF 16fnm in the gprg band and stretched to match the
redshift of iPTF 16fnm. Formally, no further stretch factor is
required to provide an excellent match between SN 2005hk and
iPTF 16fnm, as seen in Figure 3. Assuming that SN 2005hk
and iPTF 16fnm have similar compositions, opacities, and
temperatures, which is reasonable based on the spectral
similarities of the two SNe, the rise time of iPTF 16fnm is
~15days (Phillips et al. 2007), consistent with our Rprg
observational constraints above.

Furthermore, a gap in our observations between ~13 and
27 days after g-band maximum makes it difficult to properly
measure the decline rate of iPTF 16fnm. If we adopt the same
quadratic fit used to determine the time of g-band maximum to
estimate the SN brightness beyond + 13 days after maximum, then
iPTF 16fnm declined by 1.75 £+ 0.46 mag in the gpyr band after
15 days in its rest frame. Using the same similarity arguments
about SN 2005hk from above, then we would expect the two SNe
to feature similar declines, meaning for iPTF 16fnm Amy5(B) ~
1.6 mag, as was found for SN 2005hk (Phillips et al. 2007).

3.3. Spectroscopy

Optical spectra of iPTF 16fnm were obtained on 2016
September 03.3 and 2016 September 07.3 with the SEDm on
the Palomar 60-inch telescope (P60). Additional spectra were
obtained on 2016 September 03.4 with the Double Beam
Spectrograph (DBSP; Oke et al. 1995) on the Palomar 200-inch
telescope (P200), on 2016 September 06.1 and September 10.1
with the Andalucia Faint Object Spectrograph and Camera
(ALFOSC) on the Nordic Optical Telescope (NOT), and on
2016 September 30.5 and November 28.4 with the low-
resolution imaging spectrometer (LRIS; Oke & Gunn 1982) on
the Keck I 10m telescope. All spectra were extracted and
calibrated using standard procedures The sequence of
iPTF 16fnm spectra is shown in Figure 4. A log of our
spectroscopic observations is presented in Table 2.2

iPTF 16fnm shows the hallmark features of 02cx-like SNe:
low-velocity lines of intermediate-mass and Fe-group elements.
In our earliest spectroscopic observations, taken within a week
of gprp-band maximum, Sill A6335 shows an expansion
velocity of only ~2000kms~'. Other relatively unblended
lines, such as Ca H&K, Fell \4555, and O1 \7774, show
expansion speeds of ~3200km s’

The late-time spectra of iPTF 16fnm resemble the evolution
of other 02cx-like SNe. For example, like SN 2008ha (see
Foley et al. 2009), absorption from Fe Il A4555 is prominent
(pseudo- equlvalent width [pEW] =100 A) more than a month
after maximum. Additionally, a strong P Cygni profile at
~5800 A, possibly associated with NaID, which would
correspond to v ~ 3000 km s~!, persists through our +89-
day spectrum. Similarly, SN 2008ha shows similar absorption
at v~ 2000 km s~! through +62days, while SN 2002cx
shows the same P Cygni feature (v ~ 1500 kms™') at
+277 days. Finally, we note that our final spectrum of
iPTF 16fnm shows weak [Call] AA7291, 7323 emission
(EW ~ —20A), which is similar to what is observed in
SN 2002cx at very late times (Jha et al. 2006). The optical
spectra of SN 2008ha, on the other hand, are completely
dominated by [Call] (EW = —500 A) at a similar epoch,
465 days (Valenti et al. 2009).

22 Our iPTF 16fam spectra will be publicly released via WISeREP (Yaron &
Gal-Yam 2012) following paper acceptance.
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Figure 4. Spectral evolution of iPTF 16fnm. The spectra are labeled with their rest-frame phase relative to the observed gprr-band maximum. The non-SEDm spectra
are shown in orange, while the solid blue lines show the same spectra convolved with a Gaussian filter with FWHM = 2500 km s~'. SEDm spectra (45 and +9) are
shown as solid blue lines, and the low-S/N portion (A < 4500 A) is not shown for clarity. Characteristic features of 02cx-like SNe discussed in the text are labeled

with vertical dashed lines.

Table 2
Log of Spectroscopic Observations
s UT Date Instrument” Range Exp.© Air
(days) (A) (s) Mass
49 2016 Sep 03.25  SEDm 3806-9187 2700 1.51
5.0 2016 Sep 03.36  DBSP 3101-10236 1200 1.07
7.7 2016 Sep 06.13  ALFOSC 3427-9714 4800 1.02
8.8 2016 Sep 07.25  SEDm 3807-9187 2700 1.46
11.5 2016 Sep 10.06  ALFOSC 3556-9712 4800 1.10

31.5 2016 Sep 30.53  LRIS
89.1 2016 Nov 28.37  LRIS

3071-10297 975 1.14
3057-10276 3370 1.14

Notes.

@ Age in rest-frame days relative to the observed gprg maximum on 2016-08-
29.298.

" SEDm: Spectral Energy Distribution Machine on the Palomar 60-inch telescope.
DBSP: Double Beam Spectrograph on the 200-inch Palomar Hale Telescope.
ALFOSC: Andalucia Faint Object Spectrograph and Camera on the 2.6 m Nordic
Optical Telescope. LRIS: low-resolution imaging spectrograph on the 10 m Keck I
telescope.

¢ Exposure time.

We measure the expansion velocities for different species in
iPTF 16fnm by tracking the wavelength of the minimum for
each feature, as shown in Figure 5. The measurements are made

—+— SN2005hk CallH&K
7 —O— NaiD —=-}— Fell M555 [
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Figure 5. Velocity evolution of the absorption minimum of Ca H&K (circles), Fe I
A4555 (squares), Na1 D (pentagons), and O 1A7774 (triangles) for iPTF 16fnm
traced by the minimum of absorption. Also shown is the velocity evolution of
SN 2005hk (plus signs, as traced by Fe 1 A4555) and SN 2008ha (crosses, as traced
by O1A7774). The spectra for SN 2005hk and SN 2008ha are taken from Phillips
et al. (2007) and Foley et al. (2009), respectively. iPTF 16fam is clearly
intermediate between SN 2005hk and SN 2008ha. For iPTF 16fnm the Nal D
doublet may be contaminated by other features affecting our velocity measurements.
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Figure 6. Photometric evolution of the faintest members of the 02cx-like class
in the g’ and / filters. From brightest to faintest they are SN 2007qd,
SN 2010ae, iPTF 16fnm, and SN 2008ha. These SNe all feature fast declines in

the g’ band, Amys(g) 2 1.2 mag. SN 2007qd and iPTF 16fam, on the other
hand, exhibit relatively slow declines in the 7 filter.

following a convolution of the spectra with a Gaussian kernel
with FWHM = 2000 km s~ '. Blending and the relatively low
S/N of the spectra make it challenging to track the evolution of
individual lines more than 10 days after gprp-band maximum. The
Fe I M555 feature shows a modest decrease of only ~700 kms ™"
from +5 to +31days. At +5 days after maximum the Nal D
feature exhibits significantly faster speeds of ~5200kms ',
decreasing to ~2800km s~ at +89 days. The higher velocities
for this line indicate that our measurement may be contaminated by
other features. Taken together, these lines demonstrate that
iPTF 16fnm has a velocity structure that is intermediate between
SN 2005hk, with typical velocities of ~7000 km s~ (Phillips et al.
2007), and SN 2008ha, with typical velocities of ~2000km s~
(Foley et al. 2009; Valenti et al. 2009).

4. Comparison to Other Subluminous 02cx-like SNe

We compare the photometric evolution of iPTF 16fam to
other subluminous 02cx-like SNe in Figure 6. The comparison
SNe are SN2007qd (McClelland et al. 2010), SN 2010ae
(Stritzinger et al. 2014), and SN 2008ha (Stritzinger et al.
2014), all low-luminosity 02cx-like SNe with g’- and r/-band
photometric coverage.”® Each light curve in Figure 6 has been
corrected for foreground Galactic extinction using the Schlafly
& Finkbeiner (2011) updates to the Schlegel et al. (1998)
reddening maps. SN2010ae has been further corrected
for a host-galaxy reddening of E(B — V)pey = 0.50 mag
(Stritzinger et al. 2014; Foley et al. 2013). The light curves
have been shifted to align the time of g’-band maximum, where
we have assumed that the first detection of SN 2007qd
corresponds to g’-band maximum (see McClelland et al.
2010, for further details). We adopt distance moduli of 36.23,

23 We remind the reader that iPTF 16fam was observed in the gprr and Rprg
filters, which are similar to SDSS g’ and #’ (see Ofek et al. 2012, for the filter
transformations).
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30.44, and 31.64 mag for SN2007qd, SN2010ae, and
SN 2008ha, respectively, which are corrected for Virgo infall
(Mould et al. 2000) and assume Hy = 73 km s~! Mpc~!. No K-
or S-corrections have been applied.

Figure 6 shows that iPTF 16fnm is generally similar to
SN 2010ae and SN 2007qd. In particular, all three SNe are of
comparable brightness at peak (—15 mag < M < —15.5 mag)
and exhibit a fast decline (Amys(g) ~ 1.3 mag). SN 2008ha, on
the other hand, is >1 mag fainter than the other SNe.
Interestingly, both iPTF 16fnm and SN 2007qd exhibit a slow
decline in the Rprg/r’ band, evolving from g’ — ' ~ 0.1 mag
near peak to g’ — ' ~ 0.9 mag at t ~ 15 days.

We compare the same four SNe, as well as SN 2005hk, at
similar epochs, t ~ 44 to +10 days, in Figure 7. The spectra
are ordered top to bottom from the most luminous to least
luminous, though note that changes in host-galaxy reddening
could rearrange the middle three spectra. From Figure 7 it is
clear that SN 2005hk has the highest velocity features
(~6000 km s~ at +10days as traced by Fell \4555), while
SN 2007qd, SN 2010ae, and iPTF 16fam all have similar
velocities (~3000kms~' at +10 days), and SN 2008ha has
the lowest velocity signatures (~2500kms~' at +10 days).**
The overall similarity of SN 2007qd, SN 2010ae, and
iPTF 16fnm is striking. These three SNe are clearly closely
related with similar velocities and ejecta composition, which is
dominated by intermediate-mass elements. While the 02cx
class as a whole exhibits great diversity, SN 2007qd,
SN 2010ae, and iPTF 16fnm feature nearly identical spectra
and photometric evolution, suggesting that they had similar
progenitors or explosion mechanisms.

5. Results

While 02cx-like SNe exhibit a large range in luminosity
(SN 2008ha and SN 2009kr are separated by ~2 orders of
magnitude), their general similarity to normal SNe Ia has led
many to search for correlated observational properties to unify
the class. While the precise details of the explosion mechanism
are debated, the observational consensus points to WD
progenitors for 02cx-like SNe (see, e.g., Foley et al. 2013;
Stritzinger et al. 2015; Magee et al. 2017). Thus, it may be the
case that 02cx-like SNe are a single-parameter family, much
like SNe Ia, whose evolution is largely controlled by the
amount of °Ni synthesized during explosion (Mazzali
et al. 2007).

Using the first four known 02cx-like SNe, SN 2002cx,
SN 2005hk, SN 2007qd, and SN 2008ha, a potential correlation
between absolute magnitude and ejecta velocity, whereby more
luminous events also have faster ejecta, was identified in
McClelland et al. (2010). The subsequent discovery of
SN 2009ku (Narayan et al. 2011), which had extremely low
velocities, like SN 2008ha, while also being the most luminous
member of the class, posed a significant challenge to this
correlation. While an increased sample of 02cx-like SNe shows
a general correlation between ejecta velocity and luminosity
(see Figure 20 in Foley et al. 2013), SN 2009ku remains a
significant outlier.

24 While these five SNe show an apparent correlation between absolute
magnitude and velocity, SN 2009ku, the only 02cx-like SN with velocities as
low as SN 2008ha is also the most luminous 02cx-like SN (Narayan
et al. 2011).
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Figure 7. Spectral comparisons of iPTF 16fnm to other subluminous 02cx-like SNe. The spectra are labeled with their rest-frame phase relative to B- or g’-band
maximum. SN 2007qd and iPTF 16fnm are also shown following convolution with an FWHM = 2500 km s~! Gaussian kernel. From top to bottom, the spectra are
SN 2005hk (Phillips et al. 2007), SN 2007qd (McClelland et al. 2010), SN 2010ae (Stritzinger et al. 2014), iPTF 16fnm, and SN 2008ha (Foley et al. 2009).
SN 2005hk is a prototypical 02cx-like SN, while SN 2007qd and SN 2010ae, like iPTF 16fnm, were fainter at the time of maximum brightness with lower expansion

velocities. SN 2008ha is the faintest member of the 02cx-like class.

5.1. The Luminosity—Decline Relation for 02cx-like SNe

Many studies have examined whether 02cx-like SNe follow
their own Phillips relation, similar to SNe Ia, whereby more
luminous SNe Ia also have broader light-curve shapes (Phillips
1993). Using a sample of 13 02cx-like SNe, evidence for an
anticorrelation between My and Amys(V) is presented in Foley
et al. (2013). The V-band M—Amys relation presented in Foley
et al. (2013) exhibited significant scatter, well in excess of that
found for normal SNe Ia. Furthermore, the sample in Foley
et al. (2013) excludes SN 2007qd, which declined at a similar
rate to that of SN 2005hk, despite being ~2.5 mag fainter at
peak.”

iPTF 16fnm provides additional evidence for the lack of a
simple M—-Amys relation for 02cx-like SNe. In particular,
Figure 3 shows that iPTF 16fam declined at a nearly identical
rate to SN 2005hk, which peaked at M,s = —18.08 & 0.25 mag
(Stritzinger et al. 2015), 3 mag brighter than iPTF 16fnm,
Mg, . = —15.08 & 0.17 mag. To further illustrate this point,
we update Figure 10 from White et al. (2015) to include
iPTF 16fnm, as shown in Figure 8. For 02cx-like SNe with
available g’ observations, we additionally include estimates of My
and Amys(g’) using the same procedure adopted in White et al.
(2015). Even if SN2007qd is excluded from the sample,
iPTF 16fnm stands out as a strong outlier for any M-Amys
relation in the r’/Rprr band. Examining those sources with g’
observations, Figure 8 shows weak evidence for an M—Amys
relation, though the scatter is extremely large. As already noted,
SN 2005hk and iPTF 16fnm exhibit similar decline rates but differ

% SN 2007qd was first detected after g’-band maximum, which is why it was
excluded from the sample in Foley et al. (2013). However, the 50-day range for
the time of maximum for SN 2007qd in Table 5 of Foley et al. (2013) ignores
the deep upper limits reported in McClelland et al. (2010) between ~10 and 20
days prior to SN 2007qd’s first detection. As argued in McClelland et al.
(2010), the initial detection of SN 2007qd is very likely near the epoch of
g’-band maximum.
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Figure 8. Absolute magnitude vs. Am;s, in both the ' (shown in crimson) and
g’ bands (teal), for 02cx-like SNe, adapted from White et al. (2015). The
dashed gray lines connect SNe for which both » and g’ observations are
available. Note that, following White et al. (2015), we have not corrected M for
host-galaxy extinction, which is why SN 2010ae is fainter than SN 2008ha in
this figure. In the ¥’ band most 02cx-like SNe lie along a high-scatter sequence,
though SN 2007qd and iPTF 16fnm are clear outliers. Similarly, g’-band
observations of 02cx-like SNe also show weak evidence for a simple M—Am;s
relation.

by ~3 mag at peak. Furthermore, SN 2005hk and SN 2009ku
both peak at M, ~ —18 mag, yet their Ams(g’) differ by
~1 mag.

While a larger sample with better photometric coverage is
still required, we conclude that the 02cx-like class of SNe
cannot be well described by a single M—-Amys relation. As
future time-domain surveys significantly increase the sample of
known 02cx-like SNe, it may be the case that further
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subdivision of the 02cx-like class yields a subset that can be
described by a simple M —Ams relation.

5.2. The Relative Rate of 02cx-like SNe to SNe la

The controlled nature of the Color Me Intrigued experiment
enables a unique estimate of the relative rate of 02cx-like SNe
compared to SNe Ia. Assuming that 02cx-like SNe peak at
M =~ —15 mag, iPTF, which has a detection limit of
Rprr < 20.5 mag (Law et al. 2009), can detect these sources
to a distance modulus & = 35.5 mag, corresponding to redshift
z < 0.03. We spectroscopically classified all transients discov-
ered during Color Me Intrigued with a known host galaxy with
z < 0.03. Below this redshift limit, there were three SNe Ia and
one 02cx-like SN, iPTF 16fnm, discovered during the course of
the Color Me Intrigued experiment. Under the assumption of
observational completeness, we therefore find that the relative
rate of 02cx-like SNe to SNe Ia, rpyex/1a, is 1/3 ~ 33%.

Prior to estimating the uncertainty on rpcx /1., We caution that
our assumption of observational completeness for 02cx-like
SNe during the Color Me Intrigued experiment is likely overly
optimistic. First, the luminosity function (LF) of 02cx-like SNe
is poorly constrained. If the LF is heavily weighted toward
extremely faint 08ha-like SNe, iPTF would have missed any of
these beyond z =~ 0.02. Second, despite the high-cadence
observations during Color Me Intrigued, the ~week-long gaps
in monitoring around full moon could have resulted in
additional 02cx-like SNe that were missed. Third, our
machine-learning candidate identification software, realbo-
gus, is limited by the flux contrast between the host galaxy and
the SN. iPTF is complete to transients that are >10x brighter
than the underlying host surface brightness, but when the
contrast drops to 0.7x (0.2x) the host galaxy surface bright-
ness, the completeness drops to ~50% (~2%), resulting in
missed transients (Frohmaier et al. 2017). These concerns
should not affect SNe Ia, which are more luminous and long-
lived, meaning that our z < 0.03 sample is potentially biased
against 02cx-like SNe. Thus, the rate estimates included here
are likely underestimates. Nevertheless, we proceed under the
assumption that iPTF detected all z < 0.03 02cx-like SNe
during the Color Me Intrigued experiment.

Following the analysis presented in White et al. (2015), we
can calculate confidence intervals for the relative rate of 02cx-
like SNe to SNe Ia. Given an outcome with probability p, the
chances of getting k successes in a sample of » trials is given by
the binomial distribution probability mass function:

Pr(k; n, p) = (Z)pk(l —pyk. (1)

Assuming a uniform prior [0,1], the probability of p being less
than some fiducial value p, given an observed fraction k/n is

fop“Pr(k; n, p)dp
LlPr(k; n, p)dp '

From here, it follows that the probability that the relative
rate ropex/1a 15 less than rg given Npx 02cx-like SNe and Ny,
SNe Ia is

Pr(p < py;n, k)= (2)

-
Prigt v (Fopex/ta < 7o) = PF(P < N +0r ; Nsn, Nozcx), 3
0

where NSN = N]a + N02cx'
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Considering SNe within the 02cx-like volume-limited
sample (i.e., z < 0.03), we have N, = 3 and Nyex = 1. We
find Pr{§(r < 190%) = 95% and Pr{§(r < 8%) = 5%, which
corresponds to a 90% confidence interval for the relative rate of
33713%%. In this case, small number statistics result in an
estimate of the relative rate that is not particularly constraining.
Nevertheless, it is consistent with previous estimates, including
~5% from Li et al. (2011), 5.6% from White et al. (2015), and
31% from Foley et al. (2013). While the methodologies differ,
there is general agreement within the (large) uncertainties.
Additionally, Li et al. note that their rate is likely under-
estimated if the LF of 02cx-like SNe extends significantly
fainter than SN 2005hk. Given that there are now many known
02cx-like SNe fainter than SN 2005hk (e.g., SN 2008ha,
SN 2007qd, SN 2010ae, iPTF 16fnm), it stands to reason that
the true rate is likely higher than the estimate in Li et al. After
limiting the survey volume to very nearby SNe, Foley et al.
(2013) and White et al. (2015) apply correction factors of 2 and
1, respectively, to their relative rate measurements. The factor
of 2 adopted in Foley et al. is highly uncertain, given the
poorly constrained LF of 02cx-like SNe and the many
heterogeneous surveys used to define their sample of 02cx-
like SNe. Meanwhile, the assumption that PTF was spectro-
scopically complete for slow-speed SNe, which is adopted in
White et al., is likely overly optimistic. The true value of
is likely between 0.05 and 0.3, and future surveys with
large volumetric survey speeds (Bellm 2016), such as ZTF,
are needed to significantly reduce the uncertainty on this
measurement.

6. A Selection Function for 02cx-like SNe:
g’ — r’ Color Evolution

In Foley et al. (2013), the color evolution of 02cx-like SNe is
examined to see whether all 02cx-like SNe can be described by
a single color curve following a reddening correction, similar to
the Lira law for normal SNe Ia (Lira 1996; Phillips et al. 1999).
Foley et al. apply reddening corrections to a sample of six
02cx-like SNe and find a significant reduction in scatter for the
V — R and V — I color curves. The same corrections do not
reduce the B — V scatter, however. As a result, they cannot
conclude whether the observed scatter is the result of dust
reddening or intrinsic differences in the class.

Here, we instead examine the color curves of 02cx-like SNe
as a possible selection function to separate them from normal
SNe Ia. While 02cx-like SNe do not follow an M—-Amys
relation, we find that the g’ — # color evolution is relatively
uniform for the class. In Figure 9, we show the g’ — #/ color
evolution for nine 02cx-like SNe: SN 2008ha (Stritzinger et al.
2014), SN 2010ae (Stritzinger et al. 2014), SN 2007qd
(McClelland et al. 2010), SN 2005hk (Phillips et al. 2007),
SN 2009ku (Narayan et al. 2011), PS1-12bwh (Magee et al.
2017), SN 2015H (Magee et al. 2016), SN 2012Z (Stritzinger
et al. 2015), and iPTF 16fnm (where we are using gprr and
Rprr from this study as a proxy for g’ and r/, respectively).
Figure 9 also shows the color evolution of 35 normal SNe Ia
and 9 underluminous, 91bg-like SNe Ia from Folatelli et al.
(2013). Normal SNe Ia are defined as those spectroscopically
classified as normal both by the SuperNova IDentification
package (SNID; Blondin & Tonry 2007) and via the method
developed in Wang et al. (2009). 91bg-like SNe are defined as
those classified as 91bg-like by SNID.
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Figure 9. Color evolution of normal (shown in light blue), 91bg-like (dark gray), and 02cx-like (orange) SNe Ia. For clarity, photometric uncertainties are not shown,
and the individual measurements are connected via solid lines. The color curves are normalized to T max, Where available (see text). The color curves are corrected for
Galactic extinction, and in some cases host-galaxy extinction as well (see text). The samples for each subclass are defined in the text. The 02cx-like SN 2009ku and
SN 2010ae feature gaps in their g’ — ' color curves from ~+5 to 430 days and from ~+11 to +45 days, respectively (Narayan et al. 2011; Stritzinger et al. 2014).
As such, we only display these color curves through +5 and +11 days, respectively. Left: g’ — ' color evolution of SNe Ia. The 02cx-like SNe form a remarkably
tight sequence with blue colors (g' — r’ < 0 mag) at peak and a rapid decline relative to normal SNe Ia. SN 2009ku, which has g’ — r’ ~ 0.6 mag at —10 days,
stands out as an outlier relative to the other 02cx-like SNe. The inset shows an interquartile range (IQR) box plot comparing the g’ — ’ color at Tp m,x, determined via
linear interpolation between the two epochs spanning Tp max, for the three subclasses. SN 2015H is excluded, as the g’ — ' color is not available prior to +6 days
(Magee et al. 2016). At peak, 02cx-like SNe are very blue (the red tail of the distribution is dominated by SN 2009ku), like normal SNe Ia, while 91bg-like SNe are
red. Right: color evolution relative to the color at Tp max, denoted here as (g’ — r’) — (g’ — r’)p.max- By normalizing relative to the color at Tp max, we track the color
evolution independent of line-of-sight extinction. The color at B maximum is determined via linear interpolation (see above). Both 91bg-like and 02cx-like SNe
rapidly evolve to the red along a relatively tight sequence, independent of the color at peak. The inset IQR box plot shows the change in (g’ — ') color between T max
and +10 days, A(g" — r')10. The box plot clearly confirms that normal SNe Ia remain blue longer than 91bg-like and 02cx-like SNe. SN 2009ku is excluded from the
box plot, as there is no (g’ — r’) measurement at +10 days (Narayan et al. 2011).

The light curves in Figure 9 have been normalized to the Figure 9). While the blue color of 02cx-like SNe near
time of B-band maximum. For three (two) 02cx-like SNe, maximum light has clearly been established (e.g., Foley et al.
SN 2007qd, PS1-12bwh, and iPTF 16fnm (SN 2009ku and 2013), the tight scatter, ~0.2 mag, in g’ — ' at all epochs in the
SN 2015H), the time of g’-band (+'-band) maximum is used as a first ~20 days after peak suggests a common evolution.
proxy because B-band observations are not available. Galactic Similar to the correlation between ejecta velocity and
reddening corrections have been applied to all light curves luminosity first noted by McClelland et al. (2010), SN 2009ku
in Figure 9 using the Schlafly & Finkbeiner (2011) updates to stands out as a clear outlier from the majority of the 02cx-like
the Schlegel et al. (1998) dust maps. The following host-galaxy class. To bring SN 2009ku in line with the rest of the 02cx-like
reddening corrections have also been applied: E(B — V) = sample would require a host-galaxy reddening of E(B — V) =

0.09 mag (Phillips et al. 2007), 0.50 mag (Stritzinger et al. 0.35 mag, which would, in turn, make SN 2009ku ~1.2 mag
2014), 0.20 mag (Magee et al. 2017), and 0.07 mag (Stritzinger brighter in the g’ band. In this scenario, SN 2009ku would be
et al. 2015) for SN 2005hk, SN 2010ae, PS1-12bwh, and as luminous as, or more luminous than, many normal SNe Ia.
SN 2012Z, respectively. The remaining five 02cx-like SNe do As the sample of 02cx-like SNe grows, the similarity of

not show evidence of Nal D absorption at the redshift of the SN 2009ku to the rest of the class should be closely monitored
host galaxy (Foley et al. 2009; McClelland et al. 2010; Narayan to determine whether SN 2009ku belongs to a new subclass of
et al. 2011; Magee et al. 2016), and we therefore make no low-velocity SNe Ia, separate from the other 02cx-like objects.
corrections for host-galaxy reddening. Host-galaxy reddening In addition to following a nearly uniform color curve, 02cx-
corrections are not applied to the normal and 91bg-like SNe Ia, like SNe exhibit unique g’ — ' evolution when compared to
as they are not available. As a result, there is likely some excess normal and 91bg-like SNe Ia. The right panel of Figure 9
scatter in the curves traced by both the normal and 91bg-like shows the change in g’ — # color relative to g’ — 1’ at T max-
SN Ia samples in Figure 9. This normalization enables a measurement of the color

The relatively tight locus for 02cx-like color evolution, evolution that is independent of line-of-sight extinction. It
shown in the left panel of Figure 9, reveals a previously shows that 02cx-like and 91bg-like SNe become significantly
unknown characteristic of the class. At peak, 02cx-like SNe are redder in the first ~10 days after maximum, while normal SNe
very blue similar to normal SNe Ia (see the left box plot in Ia exhibit nearly constant g’ — # color in the same time frame.
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Table 3
Color Selection Results for 02cx-like SNe

(g, — r/)B,mux» A(g/ - r/)l()

SN Type 0.0, 0.5 0.1, 0.4° 0.15, 0.4° 0.15, 0.3"
Normal Ia 0/35 2/35 2/35 4/35
91bg-like 0/9 2/9 3/9 3/9
02cx, obs.” 3/8 4/8 5/8 5/8
02cx, dered. 4/8 6/8 6/8 7/8

Notes. Sources bluer than the (g — r’)p max cut and with a decline greater than
the A(g’" — r')p cut are selected as candidate 02cx-like SNe. Our sample
includes nine 02cx-like SNe, but SN 2015H is excluded owing to a lack of
(&’ — r")B.max measurement. SN 2009ku, which has (g’ — ") max ~ 0.34 mag,
is the only 02cx-like SNe that is not selected by any of the above cuts.
 Respective cuts on (g — 7’)g.max and A(g’ — r')1o, in mag.

® Recovered 02cx-like SNe when host-galaxy reddening corrections are not
applied.

¢ Recovered 02cx-like SNe following host-galaxy reddening corrections, as
shown in Figure 9.

To measure this difference, we define the change in g’ — r/
color between maximum and +10 days, A(g" — r');p. The
right inset in Figure 9 shows that 91bg-like and 02cx-like SNe
have similar A(g’ — r’);p values, while normal SNe Ia have
smaller A(g’ — r);p values. This, taken in combination with
the g’ — ' color at peak, provides an empirical method for
selecting 02cx-like SNe. At the time of maximum 02cx-like
SNe are blue, like normal SNe Ia and unlike 91bg-like SNe, yet
they exhibit large A(g’ — r')o values, similar to 91bg-like SNe
and unlike normal SNe Ia.

The g’ — # color evolution of 02cx-like SNe has important
implications for future surveys, such as ZTF and LSST.
Spectroscopic completeness will be impossible for these
surveys, but it will be possible to identify 02cx-like SNe from
their g’ — ¥/ color evolution alone. Using our sample of 9 02cx-
like SNe, 9 9l1bg-like SNe, and 35 normal SNe Ia, we
summarize the number of each that would be selected
following hard cuts on (g’ — r/)pmax and A(g’ — r')jp in
Table 3. While we generally advocate against hard cuts for
target selection or classification (e.g., Miller et al. 2012), they
illustrate the separation of the 02cx-like class in this case.

Table 3 shows that 02cx-like SNe are readily separated based
on their g’ — ' evolution. For instance, adopting cuts of 0.0
and 0.5 (first column of Table 3) selects a pure sample of 02cx-
like SNe, though less than half of the sample is recovered.
Relaxing the cuts to 0.15 and 0.4 (third column) recovers more
than half of the 02cx-like candidates, while still severely
restricting the number of false positives.

Using the relative rate of 02cx-like SNe to normal SNe Ia,
33% (see Section 5.2), and the relative rate of 91bg-like SNe to
normal SNe Ia, 19% (Li et al. 2011), we can estimate how
many SNe would be selected by these cuts in a volume-limited
sample. In a fixed volume with 100 normal SNe Ia we expect to
find 19 91bg-like SNe and 33 02cx-like SNe. If we apply cuts
of 0.15 and 0.4 on (g’ — r")pmax and A(g’ — '), respec-
tively, we would select 100 x 2/35 =~ 6 normal SNe Ia,
19 x 3/9 =~ 6 91bg-like SNe, and 33 x 5/8 ~ 21 02cx-like
SNe. This corresponds to a completeness of ~0.63 and a
precision of ~0.63. We caution that this example relies on
uncertain rates (Section 5.2) and the assumption that our
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sample of SNe is representative of what would be found in a
volume-limited survey. Starting next year, ZTF will signifi-
cantly reduce the uncertainties on both these assumptions.
Nevertheless, this selection function for 02cx-like SNe will
enable the efficient use of resources in the near future when
transients are plentiful and follow-up scarce.

7. Summary and Conclusions

Maximizing information content while maintaining a large
discovery rate is a challenge for modern wide-field time-
domain surveys. This challenge will only be exacerbated in the
coming years as extremely large field-of-view (ZTF) and large-
aperture (LSST) surveys come online. The looming orders-of-
magnitude increase in discovered transients will overwhelm
existing follow-up facilities and generate a “follow-up
problem.” Ultimately this means that survey telescopes will
provide the sole observations of a majority of transients
discovered in the coming decade. This near-future reality
necessitates the immediate development of photometric-only
methods for studying SNe and other transients.

To address the “follow-up problem” in the context of ZTF,
we recently completed the Color Me Intrigued experiment
during the final semester of iPTF. Color Me Intrigued searched
for transients simultaneously in the gprg and Rprg filters,
marking the first time this was done in PTF/iPTF. Color Me
Intrigued was designed to reduce the “follow-up problem” for
ZTF in two ways: (i) provide templates for the gprp — Rprr
colors for transients at the epoch of discovery, which will help
inform ZTF follow-up prioritization, and (ii) ensure that color
information is available at all epochs. As all PTF/iPTF surveys
require two observations per field per night to reject asteroids,
Color Me Intrigued provided a significant addition of
information without a loss in survey area.

During the course of Color Me Intrigued, we discovered
iPTF 16fnm, a new member of the 02cx-like subclass of SNe
Ia. iPTF 16fnm peaked at M, = —15.09 =+ 0.17 mag and
declined by ~1.2 mag in 13 days. The spectra of iPTF 16fam
were emblematic of the 02cx-like class, including the following
properties: (i) very low velocity ejecta (v;; ~ 3000 km s7h, (ii)
strong absorption from intermediate-mass and Fe-group
elements, and (iii) a not fully nebular appearance several
months after peak luminosity. Based on its photometric and
spectroscopic evolution, iPTF 16fnm is an unambiguous
member of the 02cx-like class.

We additionally compared iPTF 16fam to other 02cx-like
SNe and find that it is among the least luminous members of
the class. iPTF 16fnm is the second-faintest known SN Ia, after
SN 2008ha, which peaked at My = —14.01 & 0.14 mag
(Stritzinger et al. 2014).%® The post-peak spectra of iPTF 16fnm
exhibit a striking resemblance to those of SN 2007qd and SN
2010ae, with similar velocities and chemical compositions.
These two SNe also peaked at M =~ — 15 mag, and they exhibit
a similar light-curve evolution to iPTF 16fnm. The nearly
identical evolution of these three SNe suggests a common
origin.

Many studies have looked for correlated properties (luminosity,
ejecta velocity, decline rate, etc.) to see whether 02cx-like SNe
can be described as a single-parameter family, similar to normal

26 Small changes in the reddening corrections or distance moduli to
SN 2007qd or SN 2010ae could shuffle the order of the second, third, and
fourth least luminous SNe Ia.
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SNe Ia. We update the previous work of White et al. (2015) and
find that, at best, there is a weak correlation with large scatter
between M and Amys in both the ¢’ and ¥ bands. We also
examine the g’ — 7 color evolution of 02cx-like SNe and
compare it to normal and 91bg-like SNe Ia. We find that 02cx-like
SNe exhibit unique color evolution: blue colors at peak with large
A(g’ — r")o values. While we do not have a physical explanation
for this behavior, this empirical result can be used as a selection
function for identifying 02cx-like SNe. We show that simple cuts
on (g — rMamax and A(g" — r')o select 02cx-like SNe with
high completeness and precision. While limited by small number
statistics, we nevertheless measure the relative rate of 02cx-like
SNe to normal SNe Ia and find ryy, /v, = 33723°%. This
measurement is consistent with other estimates in the literature
(Li et al. 2011; Foley et al. 2013; White et al. 2015).

In advance of ZTF, the Color Me Intrigued experiment has
demonstrated that nightly observations in different filters can
efficiently discover transients. In fact, the general success of
this experiment has led to the decision to conduct the 37 ZTF
public survey27 with near-simultaneous gztr and rzg observa-
tions. The experiment also shows the power of closely coupling
efficient follow-up resources to survey telescopes. In particular,
the SEDm correctly identified iPTF 16fnm as a low-velocity
SN, despite its low spectral resolution (R ~ 100). Indeed, the
SEDm model provides one potential path toward reducing the
“follow-up problem” for LSST: low-resolution spectrographs
on 4 m class telescopes would enable efficient follow-up for
LSST transients with ' < 22 mag.

We close with a recommendation for future time-domain
surveys. The search for astrophysical transients provides a fast-
moving target where new phenomena are regularly uncovered.
These new discoveries often require new observational
strategies to efficiently increase the sample size of these
rarities. Due to its unique aperture and survey capabilities, early
observations from LSST will likely reveal new phenomena.*® If
the LSST observational strategy is fixed without flexibility
from the start of the survey, then the transient discoveries in
year 2 will look like those from year 1, while year 3 will look
like year 2, and so on. This scenario is detrimental for the
exploration of explosive systems. By emphasizing a change in
cadence at periodic intervals, iPTF was able to specifically
target rare sources identified by PTF (e.g., the extensive use of
a 1-day cadence to find more young SNe similar to PTF 11kly/
SN 2011fe; Nugent et al. 2011; Bloom et al. 2012a; Cao et al.
2016b), while also enabling new methods of exploration, such
as Color Me Intrigued. Thus, we advocate for the adoption of
some measure of flexibility in the observational strategy of
LSST. Even if minor, this flexibility may prove crucial to better
understanding the nature of its early discoveries of unusual
sources.

This study has benefited from the suggestions of an
anonymous referee. We thank K. Shen for a useful discussion
on the color evolution of SNe Ia. R. Amanullah pointed us to
several useful papers on the color evolution of SNe Ia, for

2T 7TF is a public—private partnership with 40% of the telescope time
dedicated to a public survey. The public survey will monitor the full sky
observable with P48 with a 3-day cadence.

2 To highlight a PTF example, commissioning observations led to the
discovery of three superluminous SNe (Quimby et al. 2011). The Quimby et al.
result established a new class of stellar explosion, while also explaining the
nature of SCP 06F6 (Barbary et al. 2009), the most mysterious optical transient
known at that time.
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which we are grateful. We wish to recognize J. Nordin, who
helped us examine SEDm spectra. Finally, we thank J. D. Neill
and A. Y. Q. Ho for providing detailed notes on the manu-
script prior to submission.
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