Engineering Computations
Convergence behavior of 3D finite elements for Neo-Hookean material
Erwin Stein, Gautam Sagar,

Article information:
To cite this document:
Permanent link to this document: https://doi.org/10.1108/02644400810857065

Downloaded on: 02 February 2018, At: 00:40 (PT)
References: this document contains references to 10 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 2025 times since 2008*

Users who downloaded this article also downloaded:

Access to this document was granted through an Emerald subscription provided by emerald-srm:271967 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.
Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
Convergence behavior of 3D finite elements for Neo-Hookean material

Erwin Stein and Gautam Sagar

Institute of Mechanics and Computational Mechanics, Leibniz University of Hannover, Hannover, Germany

Abstract

Purpose – The purpose of this paper is to examine quadratic convergence of finite element analysis for hyperelastic material at finite strains via Abaqus-UMAT as well as classification of the rates of convergence for iterative solutions in regular cases.

Design/methodology/approach – Different formulations for stiffness – Hessian form of the free energy functionals – are systematically given for getting the rate-independent analytical tangent and the numerical tangent as well as rate-dependent tangents using the objective Jaumann rate of Kirchoff stress tensor as used in Abaqus. The convergence rates for available element types in Abaqus are computed and compared for simple but significant nonlinear elastic problems, such as using the 8-node linear brick (B-bar) element – also with hybrid pressure formulation and with incompatible modes – further the 20-node quadratic brick element with corresponding modifications as well as the 6-node linear triangular prism element and 4-node linear tetrahedral element with modifications.

Findings – By using the Jaumann rate of Kirchoff stress tensor for both, rate dependent and rate independent problems, quadratic or nearly quadratic convergence is achieved for most of the used elements using Abaqus-UMAT interface. But in case of using rate independent analytical tangent for rate independent problems, even convergence at all is not assured for all elements and the considered problems.

Originality/value – First time the convergence properties of 3D finite elements available in Abaqus are systematically treated for elastic material at finite strain via Abaqus-UMAT.

Keywords Finite element analysis, Alloys, Kinematics

Paper type Research paper

Introduction

Abaqus standard provides the user interface UMAT for the implementation of user defined material equations. The user can take advantage of the complete finite element program from Abaqus and has to focus on the material model. To implement finite strain kinematics for hyperelastic materials in a finite element program one likes to have an efficient tangent which provides quadratic convergence in regular cases of solids and structural mechanics (elliptical problems). Mainly two types of tangents are available, the analytical material tangent (stiffness matrix) in each point of a chosen continuous configuration and the consistent (numerical) tangent, defined in each Gaussian integration point of the finite element discretization, which has to be provided by the user.

The authors would like to thank Professor Jörg Schröder, Universität Duisburg-Essen, for discussion. Support for this work is provided by the German Science Foundation (DFG) under project No. Ste 238/51-1, which is gratefully acknowledged.
This paper was written in parallel to the development of finite strain theory and analysis of martensitic phase transformation (PT) in metal alloys (Stein and Sagar, 2007), using the UMAT-interface with C++ where severe problems arose. The treatment of small deformation PT is given in Stein and Zwickert (2007).

For Abaqus UMAT interface it is necessary to use Jaumann rate of Kirchhoff stress tensor as a tangent in current configuration, for both rate dependent and rate independent problems in case of nonlinear deformation processes.

The first two sections advocate results from finite strain continuum mechanics which are widely known. Therefore, the presentation is as short as possible to derive the essential features in the section for tangent moduli.

Analytical tangent

Kinematics

The kinematics of solid bodies are characterized by two different motions: rigid body displacement and rotation as well as deformation. The deformations of a body can be described by mapping operators and geometrical quantities. In Figure 1 on the left, an undeformed solid body B_0 – which defines the initial stress free reference configuration – is shown; it is used as reference configuration. The deformed configuration B_t is called as actual or current configuration. The quantities related to reference configuration are written in capital letters and quantities related to current configuration are written in small letters.

In a material setting the displacement vector of point X of body B_0 is denoted as $u_t = x_t(X, t, t_0) - X(t_0)$.

Deformation in material description

The non-symmetric material deformation gradient, $F(X, t, t_0) := \text{grad} \varphi(X, t, t_0)$, $J := \text{det} F \neq 0$ defines a tangential (linear) mapping. It maps the infinitesimal material vector dX into an infinitesimal vector, $dx = F dX$. The material deformation gradient can also be written symbolically as $F = dx/dX = 1 + \nabla u(X, t, t_0)$, with $H(X) := \nabla u(X)$ the material displacement gradient. F can be split into a stretch tensor U and a true orthogonal rotation tensor R as $F = RU$ with $R^T = R^{-1}$; $\text{det} R$ and $U = U^T$.

Figure 1. Initial configuration B_0 and actual configuration B_t of a solid body connected by a bijective non-linear mapping φ and the tangent mapping F. Convergence behavior of 3D finite elements
Deformation in spatial description

The spatial velocity gradient \(I \) follows from \(dX = \dot{x} \cdot dx \) and reads:

\[
I = \dot{F} \cdot F^{-1}
\]

with \(I := \text{grad}(x) = \text{grad}(\dot{x}) = d + w, \)

where \(d = \text{grad}_{\text{sym}} \text{v}(x) \) and \(w = \text{grad}_{\text{skew}} \text{v}(x). \)

Stiffness derived from an energy function

The second Piola-Kirchhoff (PK) stress tensor is derived from the free energy function \(\psi \) in the case of hyperelastic material as, see, e.g. Wriggers (2001):

\[
S = 2 \frac{\partial \psi(C)}{\partial C},
\]

with \(C = F^T F \) the right Cauchy-Green deformation tensor, \(C = C^T, \det C > 0 \) and \(\sqrt{C} = U. \)

The strain energy function can be specialized and is represented here by an isotropic tensor function:

\[
\psi(C) = \psi(I_C, II_C, III_C),
\]

where \(I_C, II_C \) and \(III_C \) are 1st, 2nd, and 3rd invariants of \(C. \) The second PK stress follows from equation (4) can be transformed directly into the current (spatial) configuration by the standard push forward operation yielding the Kirchhoff stress tensor \(\tau = F \cdot S \cdot F^T \) with \(\tau = J \cdot \sigma \) where \(\sigma \) is the Cauchy stress tensor.

Kirchhoff stress tensor in terms of spatial quantities for isotropic materials (Miehe, 1996) reads:

\[
\tau = 2b \cdot \frac{\partial \psi(b)}{\partial b}.
\]

The incremental elasticity tensor \(C(E) \) in the reference configuration is defined for a hyperelastic material via the Green strain tensor \(dS = C(E) : dE \) with \(E := 1/2(F^T \cdot F - 1) \) and is the Hessian of the free energy function \(C(E) = \frac{\partial^2 \psi(C)}{\partial E \partial E}. \) This can be transformed directly into \(c(b) \) in spatial coordinate by the standard push forward operation. The tangential spatial elasticity tensor for the Kirchhoff stress (Miehe, 1996) then reads:

\[
c^T(b) = 4b \cdot \frac{\partial^2 \psi(b)}{\partial b \partial b} \cdot b.
\]

Numerical tangent

In the Abaqus 6.4 documentation (Abaqus, n.d.) the variation of the symmetric spatial rate of deformation tensor is defined as:

\[
\delta D = \delta d = \varepsilon \delta t, \quad \text{where} \ \delta t \ \text{is the linearized time increment,}
\]

with the symmetric spatial rate of deformation tensor:

\[
\delta d = \text{sym} \delta l = \text{sym} \delta (\dot{F} \cdot F^{-1})
\]

\[
= \text{sym} (\text{grad} \dot{x}) \cdot \delta t
\]

and the linear strain rate measure used in Abaqus \(\varepsilon := \text{sym} (\text{grad} \dot{x}). \)
The Jaumann rate of the left Cauchy-Green tensor, \(\mathbf{b} = \mathbf{F} \mathbf{F}^T \), follows as:

\[
\mathbf{\bar{b}} = \mathbf{d} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{d}.
\]

The linear increment of \(\mathbf{b} \) is:

\[
\mathbf{d} \mathbf{b} = \mathbf{b} \cdot \mathbf{d}t = (\mathbf{d} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{d}) \cdot \mathbf{d}t = (\mathbf{d} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{d} \mathbf{\epsilon}),
\]

or in index notation, see also (Besdo et al., 2005):

\[
\delta \mathbf{b}^{ab} = \delta \mathbf{e}^{ac} \mathbf{b}^{cb} + \mathbf{b}^{ac} \delta \mathbf{e}^{cb} \quad \text{with } a, b = 1, 2, 3.
\]

Separate representation of virtual left Cauchy-Green deformation and superposition for the virtual strain rate component \(\delta \mathbf{e}^{11} = \delta \mathbf{e} \) yields:

\[
\delta \mathbf{b}^{(\delta \mathbf{e}^{11})} = \delta \mathbf{e} \begin{bmatrix} b^{11} & b^{12} & b^{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} b^{11} & b^{12} & b^{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \delta \mathbf{e} = \delta \mathbf{eb}_{11}^{(\delta \mathbf{e})}
\]

and \(b^{12} = b^{21} \) for shear deformation.

In total, six separate representations for \(\delta \mathbf{e}^{11} = \delta \mathbf{e} \), \(\delta \mathbf{e}^{22} \), \(\delta \mathbf{e}^{33} \), \(\delta \mathbf{e}^{12} = \delta \mathbf{e}^{21} \), \(\delta \mathbf{e}^{23} = \delta \mathbf{e}^{32} \), \(\delta \mathbf{e}^{13} = \delta \mathbf{e}^{31} \), \([\delta \mathbf{e}] = 1 \), have to be regarded, together:

\[
\mathbf{d} \mathbf{b} = \delta \mathbf{e} \sum_{i=1}^{6} \mathbf{b}_{i1}^{(\delta \mathbf{e})}.
\]

Defining positive and negative changes of \(\mathbf{b} \) and \(\mathbf{e} \) through their variations:

\[
\mathbf{b}^+ := \mathbf{b} + \delta \mathbf{b}; \quad \mathbf{b}^- = \mathbf{b} - \delta \mathbf{b} \quad \text{and}
\]

\[
\mathbf{e}^+ := f(\mathbf{b}^+, \mathbf{J}^+); \quad \mathbf{e}^- := f(\mathbf{b}^-, \mathbf{J}^-),
\]

the variation of \(\mathbf{b} \) can be expressed as:

\[
\delta \mathbf{b} = -\mathbf{b} + \mathbf{b}^+ = \mathbf{b} - \mathbf{b}^-
\]

\[
2\delta \mathbf{b} = -\mathbf{b} + \mathbf{b}^+ + \mathbf{b} - \mathbf{b}^- = \mathbf{b}^+ - \mathbf{b}^-
\]

Convergence behavior of 3D finite elements.
\[\delta b = \frac{b^+ - b^-}{2} \text{; (mid point rule).} \]
(23)

Equation (18) in inserted into equation (23) yields the variation:

\[\delta b = \delta \epsilon \sum_{i=1}^{6} \frac{b_i^+ - b_i^-}{2}. \]
(24)

Similar to equation (24) the incremental Cauchy stress follows as:

\[\delta \sigma = \delta \epsilon \sum_{i^\hat{=}=1}^{6} \frac{\sigma_i^+ - \sigma_i^-}{2}. \]
(25)

The stiffness related to Cauchy stress then reads:

\[c = \begin{bmatrix}
\frac{\delta \sigma_1^\hat{=}}{\delta \epsilon} \\
\vdots \\
\frac{\delta \sigma_6^\hat{=}}{\delta \epsilon}
\end{bmatrix}. \]
(26)

Jaumann rate formulation for tangent moduli

The objective Lie derivative, see, e.g. Simo and Hughes (1998) and de Bore and Schröder (2007), of the Kirchhoff stress tensor is got as the push forward operation of the time derivative of \(S \):

\[\mathcal{L}_V \tau := F \left\{ \frac{\partial}{\partial t} \left[F^{-1} \cdot \tau \cdot F^{-T} \right] \right\} \cdot F^T = F \cdot \left\{ \frac{\partial}{\partial t} \left[S \right] \right\} \cdot F^T, \]
(27)

with the 2-PK stress tensor \(S := F^{-1} P \); \(P \) the 1-PK stress and the time derivative of \(F^{-1} \):

\[\frac{\partial}{\partial t} (F^{-1}) = -F^{-1} \cdot \frac{\partial F}{\partial t} \cdot F^{-1}. \]
(28)

The Lie derivative by using equation (2) reads:

\[\mathcal{L}_V \tau = \tau - I \cdot \tau - \tau \cdot I^T. \]
(29)

The Abaqus user interface UMAT requires a tangent (stiffness) which is associated with the Jaumann rate of the Cauchy stress. The Jaumann rate of the Kirchhoff stress \(\tau \) is the corotated objective time derivative with respect to the spatial configuration with instantaneous velocity \(v(x) \), given by the skew symmetric (spin) tensor \(w \) (i.e. the vorticity).
By using equations (29) and (30), we get a relation between the Jaumann stress rate and the Lie derivative of the Kirchoff stress in spatial coordinates:

\[
\mathbf{\dot{\tau}} := \mathcal{L}\mathbf{\tau} + \mathbf{d} \cdot \mathbf{\tau} + \mathbf{\tau} \cdot \mathbf{d}^T.
\]

(31)

With the spatial tangent matrix \(\mathbf{c} \), the Lie derivative of the Kirchoff stress can be written as:

\[
\mathcal{L}\mathbf{\tau} = \mathbf{c} : \mathbf{d} \quad \text{or} \quad (\mathcal{L}\mathbf{\tau})^{ab} = \mathbf{c}^{abcd} : \mathbf{d}^{cd}.
\]

(32)

(\(\mathbf{\delta}^{ac} \mathbf{\tau}^{bd} + \mathbf{\tau}^{ac} \mathbf{\delta}^{bd} \)) is lacking minor symmetry and by making it symmetric reads:

\[
(\mathbf{\tilde{c}})^{abcd} = \mathbf{c}^{abcd} + \frac{1}{2}(\mathbf{\delta}^{ac} \mathbf{\tau}^{bd} + \mathbf{\tau}^{ac} \mathbf{\delta}^{bd} + \mathbf{\delta}^{ad} \mathbf{\tau}^{bc} + \mathbf{\tau}^{ad} \mathbf{\delta}^{bc}).
\]

(35)

For the user subroutine UMAT the Cauchy stress is required which is derived from \(\mathbf{\tau} \) as \(\mathbf{\sigma} = \mathbf{\tau} / J \) and the tangent, \(\mathbf{\tilde{c}} \), related to Jaumann rate of Kirchoff stress tensor (for Abaqus) reads:

\[
\mathbf{\tilde{c}}^{abcd} := \mathbf{\tilde{c}}^{abcd} / J = \mathbf{c}^{abcd} + (1/2(\mathbf{\delta}^{ac} \mathbf{\tau}^{bd} + \mathbf{\tau}^{ac} \mathbf{\delta}^{bd} + \mathbf{\delta}^{ad} \mathbf{\tau}^{bc} + \mathbf{\tau}^{ad} \mathbf{\delta}^{bc})) / J
\]

(36)

where \(\mathbf{c}^{abcd} \) is the spatial tangent which is equivalent to \(\mathbf{c}^{\gamma}(\mathbf{b}) \), equation (7).

To implement a nonlinear material model (related to finite strain kinematics) in Abaqus via user subroutine UMAT the required tangent (stiffness) is expressed by equation (36).

Implementation of a Neo-Hookean material model in Abaqus 6.4 via UMAT

The algorithms for the nonlinear material law are converted into the C++ programming language and coupled by Abaqus via UMAT. Figure 2 shows the flow chart for interaction of subroutine. At the beginning of each (process) time step UMAT is called for every integration point of the finite elements in Abaqus. DFGRD1 (deformation gradient at the end of increment) delivered from Abaqus gives the information for deformation gradient and is used for material subroutine. The new stress (STRESS), equation (6), and the material tangent (DDSDDE) following from equation (36) are calculated. At the end of UMAT the new values are allocated to the variables STRESS and DDSDDE.

Before the declaration of the C++ subroutine the expression “extern ‘C’“ has to appear. For using a “character string” which is passed from FORTRAN to the C++ routine one has to implement a function that converts a FORTRAN CHARACTER string into a C++ string which are not compatible. In order to reach compatibility functions callable for FORTRAN must be declared as:
For the version 6.4 and the compilers Visual C++ 6.0 and Visual Fortran 6 the UMAT has to be compiled with:

```
"cl/c/nologo/W0/MD/TP/DNBDEBUG/DWIN32/DTP_IP/D_CONSOLE/DNTI/DFLT_LIC/DOL_DOC/D_LIB_/DHKS_NT/DFAR = /D_WINDOWS/O1/Iperc cent!".
```

First material model

The total strain energy ψ of two parameter model, see, e.g. Wriggers (2001), results as:

$$\psi(I_c, J) = g(J) + \frac{1}{2} \mu(I_c - 3),$$ \hspace{1cm} (37)

with $g(J) = c(J^2 - 1) - d\ln J - \mu\ln J$, \hspace{1cm} (38)

$$I_c = \text{trace}(C), \quad c = \Lambda/4, \quad d = \Lambda/2$$ \hspace{1cm} (39)

$C := F^T \cdot F$, the right Cauchy–Green tensor, \hspace{1cm} (40)

with $c>0, d>0$. Λ and μ are Lamé parameters where μ is the shear modulus.

The Cauchy stress is obtained as:

$$\sigma = 2J^{-1}F \frac{\delta \psi}{\delta C} F^T = \frac{\Lambda}{2} (J^2 - 1) I + \frac{\mu}{J} (b - I).$$ \hspace{1cm} (41)

The tangent in the current configuration results in, see, e.g. Wriggers (2001):

$$c^{abcd} = \Lambda J^2 \delta^{ab} \delta^{cd} + [2\mu - \Lambda(J^2 - 1)] \mathbf{I}^{abcd},$$ \hspace{1cm} (42)
with the components of the fourth order unity tensor:

$$g^{abcd} = \frac{1}{2} (\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc}).$$ (43)

c_{abcd} in equation (42) is equal to c^{abcd} in equation (36). By using equations (36), (42) and (43) we get the tangent for Abaqus UMAT interface (Figure 3).

Examples
The analytical tangent, equation (42) with the modification \((J^{-1}c^{abcd})\), numerical tangent, equation (26) and objective Jaumann rate of Kirchhoff stress for rate dependent deformation, equation (36), are implemented in Abaqus via UMAT interface. The computed results from different tangents (stiffnesses) are computed for different:

- mesh sizes;
- element types;
- displacement controls; and
- maximum number of displacement increments.

The finite element computations were performed for 13 cases with comparative studies. The goal of this is the classification of the rates of convergence for iterative solutions in regular cases, especially the intended quadratic convergence of appropriate iterative solvers for nonlinear algebraic equations. The default value of convergence tolerance is taken from Abaqus. This tolerance parameter for residual force of investigated problems is 5.000E-03.

A cube with edges of unit length \(l\) is chosen for the following examples, Figure 2. The left face, ABCD of the cube is constrained in \(X\) direction (as direction 1), the bottom face, ADHE of the cube is constrained in \(Y\) direction (as direction 2) and the back face, ABFE is constrained in \(Z\) direction (as direction 3). Displacements are applied at the corner \(G\) \((X = Y = Z = l)\). The material parameters are obtained from the chosen Young’s modulus, \(E = 7\) MPa, and Poisson’s ratio, \(\nu = 0.4999\), for the computations.

It is found that the numerical tangent, equation (26), and the analytical tangent obtained from \(J^{-1}c^{abcd}\), equation (7), are not at all efficient. Either the convergence

![Figure 3. Unit cube in reference configuration with boundary conditions and applied loads](image)
rates are not quadratic or the related equation systems even do not converge. The stiffness is obtained by Jaumann rate of Kirchhoff stress tensor, equation (36), for UMAT interface and results are presented (Table I).

Element C3D8

An 8-node linear brick (hexahedral) B-bar element is used.

No. of elements: $5 \times 5 \times 5$, displacements, $u_x = u_y = u_z = 0.5$, increment type: fixed, and maximum number of increments: 25 (Table II).

Results and discussion.

- **Number of iterations.** Two iterations are needed for each increment.
- **Convergence rate.** The convergence rate is quadratic.

Element C3D4

It is a 4-node linear tetrahedral element. No. of seeds (nodes): $5 \times 5 \times 5$ (five seeds in each direction), displacements, $u_x = u_y = u_z = 0.5$, increment type: fixed, and maximum number of increments: 25.

Results and discussion. Number of iterations and increments.

<table>
<thead>
<tr>
<th>Increment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of iterations</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increment No.</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of iterations</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Remark: Quadratic convergence is achieved.

<table>
<thead>
<tr>
<th>Tests</th>
<th>Abaqus finite elements</th>
<th>No. of elements</th>
<th>Applied loads $u_x = u_y = u_z$(mm)</th>
<th>Increment type</th>
<th>No. of disp. Increments</th>
<th>Convergence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C3D8</td>
<td>1</td>
<td>0.05</td>
<td>Fixed</td>
<td>1</td>
<td>Quadratic</td>
</tr>
<tr>
<td>2</td>
<td>C3D8</td>
<td>1</td>
<td>0.05</td>
<td>Fixed</td>
<td>25</td>
<td>Over linear</td>
</tr>
<tr>
<td>3</td>
<td>C3D8</td>
<td>125</td>
<td>0.5</td>
<td>Fixed</td>
<td>25</td>
<td>Quadratic</td>
</tr>
<tr>
<td>4</td>
<td>C3D8H</td>
<td>1</td>
<td>0.5</td>
<td>Fixed</td>
<td>2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>5</td>
<td>C3D8H</td>
<td>125</td>
<td>0.5</td>
<td>Fixed</td>
<td>25</td>
<td>Over linear</td>
</tr>
<tr>
<td>6</td>
<td>C3D8IH</td>
<td>1</td>
<td>0.05</td>
<td>Fixed</td>
<td>25</td>
<td>Quadratic</td>
</tr>
<tr>
<td>7</td>
<td>C3D20</td>
<td>1</td>
<td>0.05</td>
<td>Fixed</td>
<td>1</td>
<td>Quadratic</td>
</tr>
<tr>
<td>8</td>
<td>C3D20H</td>
<td>125</td>
<td>0.05</td>
<td>Fixed</td>
<td>10</td>
<td>Over linear</td>
</tr>
<tr>
<td>9</td>
<td>C3D20RH</td>
<td>1</td>
<td>0.05</td>
<td>Fixed</td>
<td>1</td>
<td>Linear</td>
</tr>
<tr>
<td>10</td>
<td>C3D6</td>
<td>125</td>
<td>0.5</td>
<td>Fixed</td>
<td>25</td>
<td>Over linear</td>
</tr>
<tr>
<td>11</td>
<td>C3D6H</td>
<td>125</td>
<td>0.05</td>
<td>Fixed</td>
<td>25</td>
<td>Over linear</td>
</tr>
<tr>
<td>12</td>
<td>C3D4</td>
<td>125</td>
<td>0.5</td>
<td>Fixed</td>
<td>25</td>
<td>Quadratic</td>
</tr>
<tr>
<td>13</td>
<td>C3D4H</td>
<td>125</td>
<td>0.05</td>
<td>Fixed</td>
<td>25</td>
<td>Over linear</td>
</tr>
</tbody>
</table>

Table I.

Convergence tests of finite elements in Abaqus
Second material model

Elastic energy from hyperelastic material model

Consistent with the assumption of elastic and thermal isotropy the stored split elastic energy ψ reads, see, e.g. Simo and Hughes (1998):

$$\psi(\hat{b}, J) = W(J) + \hat{W}(\hat{b}), \quad (44)$$

with the deviatoric part of elastic left Cauchy-Green tensor, $\hat{b} := J^{-2/3} F F^T = J^{-2/3} b$, where $W : \mathbb{R}_+ \rightarrow \mathbb{R}_+$. $W(0)$ is a convex function of $J := \det F$. $\hat{W}(J)$ and $\hat{W}(\hat{b})$ are the volumetric and deviatoric parts of ψ, respectively. The following explicit forms are considered:

$$W(J) := \frac{1}{2} \kappa \left[\frac{1}{2} (J^2 - 1) - \ln J \right], \quad \hat{W}(\hat{b}) := \frac{1}{2} \mu (\text{tr}[\hat{b}] - 3) \quad (45)$$

where μ and κ are the shear modulus and bulk modulus for linearized strains, respectively.

For the uncoupled elastic energy function equation (44), Kirchhoff stress tensor $\boldsymbol{\tau} = J \boldsymbol{\sigma}$, is obtained by (Simo and Hughes, 1998):

$$\tau = J p \cdot 1 + \mathbf{S}; \quad p = \frac{\delta W}{\delta J} \quad (46)$$

with $p = (k/2)(1/J)(J^2 - 1)$ and $\mathbf{S} = \text{dev}[\tau] = \mu \text{dev}[\hat{b}] = \mu (\hat{b} - (1/3) \text{tr}[\hat{b}] \cdot 1)$,

$$\tau = \left[\frac{1}{2} \kappa (J^2 - 1) \mathbf{I} + \mu \left(\hat{b} - \frac{1}{3} \text{tr}[\hat{b}] \mathbf{I} \right) \right]. \quad (47)$$

The Cauchy stress tensor reads:

$$\boldsymbol{\sigma}(b, J) = \frac{1}{J} \left[\frac{1}{2} \kappa (J^2 - 1) \mathbf{I} + \mu \left(\hat{b} - \frac{1}{3} \text{tr}[\hat{b}] \mathbf{I} \right) \right]. \quad (48)$$

Spatial elasticity tensor

Using Kirchhoff stress tensor equation (47), the spatial elastic tensor c (Simo, 1998) derived as:
\[c^\tau = f^2 \left(\frac{\partial^2 W}{\partial \mathbf{F} \partial \mathbf{F}} \right) 1 \otimes 1 + f \frac{\partial W}{\partial \mathbf{F}} (1 \otimes 1 - 2I) + \mathbf{c} \]
\(\text{(49)} \)

where \(\mathbf{c} = \frac{2}{3} \mu \left[\mathbb{I} - \frac{1}{3} \mathbf{F} \right] - \frac{2}{3} \mu [\text{dev} \mathbf{B}] \mathbf{F} \mathbf{F} + 1 \otimes \text{dev} \mathbf{B} \], \(\mu = \frac{1}{3} \text{tr} \mathbf{B} \), and \(\frac{\partial^2 W}{\partial \mathbf{F} \partial \mathbf{F}} = k \left(1 + \frac{1}{J^2} \right) \). \(\text{(50)} \)

Inserting \(\frac{\partial^2 W}{\partial \mathbf{F} \partial \mathbf{F}} \) and \(\frac{\partial W}{\partial \mathbf{F}} \) in equation (49) yields:

\[c^\tau = f^2 \frac{k}{2} \left(1 + \frac{1}{J^2} \right) 1 \otimes 1 + f \frac{k}{2} J (J^2 - 1) (1 \otimes 1 - 2I) + \mathbf{c} \]
\(\text{(52)} \)

\[= k f^2 1 \otimes 1 - k (J^2 - 1) \mathbb{I} + \mathbf{c}. \]
\(\text{(53)} \)

In index notation it reads as:

\[c^{abcd}_\tau = k J^2 \delta^{ab} \delta^{cd} - k (J^2 - 1) \eta^{abcd} + c^{abcd} \]
\(\text{with} \quad \eta^{abcd} = \frac{1}{2} (\delta^{ac} \delta^{bd} + \delta^{ad} \delta^{bc}), \) \(\text{(54)} \)

\[c^{abcd}_\tau = k J^2 \delta^{ab} \delta^{cd} - k (J^2 - 1) \eta^{abcd} + 2 \bar{\mu} \left[\eta^{abcd} - \frac{1}{3} \delta^{ab} \delta^{cd} \right] \]
\[- \frac{2}{3} \mu [\text{dev} \mathbf{B}^{-1 \! ab} \delta^{cd} + \delta^{ab} \text{dev} \mathbf{B}^{-1 \! cd} \mathbf{\mathbf{1}}] \]
\(\text{(55)} \)

By inserting \(\bar{\mu} \), equation (51), the elastic stiffness yields:

\[c^{abcd}_\tau = k J^2 \delta^{ab} \delta^{cd} - k (J^2 - 1) \eta^{abcd} + 2 \bar{\mu} \left[\eta^{abcd} - \frac{1}{3} \delta^{ab} \delta^{cd} \right] \]
\[- \frac{2}{3} \mu \left[\mathbf{B}^{ab} \delta^{cd} + \delta^{ab} \mathbf{B}^{cd} - \frac{2}{3} \text{tr} \mathbf{B} \delta^{cd} \right]. \]
\(\text{(56)} \)

The elastic stiffness associated with Cauchy stress tensor in index notation reads,

\[c^{abcd} = c^{abcd}_\tau / J. \]
\(\text{(57)} \)

By using equations (36), (47) and (57) we get the tangent for Abaqus UMAT interface.

Implementation of material model is tested by computation of uniaxial tensile test specimen made up of CuAlNi (Xiangyang et al., 2000). The material data, Poisson’s ratio = 0.35 and Young’s modulus = 17,200 MPa for the linearized strain is obtained from (Xiangyang et al., 2000). For computation only the effective part (gauge length 25 mm) of tension specimen is analyzed. The shape of the specimen (flat rectangular cross-section) for numerical validation with the 3D finite element mesh using B-bar linear hexahedral elements (C3D8) and boundary conditions are shown in Figure 4. This model is 25 mm long, 4 mm wide and 1 mm thick. For computation of the uniaxial tension test right face EFGH is fixed in Y direction (as direction 2), points B, D, F and G are fixed in X direction (as direction 1) and points A, C, H and E are fixed in Z direction (as direction 3). A multi-point constrain (MPC) equation is made between face ABCD.
and point RP-1 in such a way that surface ABCD will follow the point RP-1. The displacement loads are applied at RP-1 in Y direction (as direction 2). For easy computation of engineering stress-strain date the MPC are made to get the overall reaction force at point RP-1. The spatial FE-discretization was carried out with 176 linear 8-node B-bar hexahedral elements of the type C3D8 in Abaqus.

For this test also quadratic convergence is achieved. Figure 5 shows stress-strain functions obtained from the the implemented material model.

Conclusions
The convergence problem of first and second order B-bar finite elements for finite elasticity – here with Neo-Hookean material – are investigated using Abaqus-UMAT. This interface requires Jaumann rate of Kirchoff stress tensor for both, rate dependent and rate independent problems. The requested – consistent – tangent is presented in

![Convergence behavior of 3D finite elements](image)

Figure 4. Geometry and 3D finite element discretization of a PT-tension specimen in reference configuration with boundary condition and displacement-controlled load

Figure 5. The curves (1) at linearized strain and (2) at finite strain with Neo-Hookean material hold for engineering stress, F/A_0 - engineering strain, $\Delta l/l_0$ relations, and curve (3) represents Cauchy stress, F/A - logarithmic strain, $\ln(l/l_0)$ relation
ready-to-use form which is beyond the representation in the Abaqus manuals (Abaqus, n.d.). Furthermore, the Jaumann rate of left Cauchy-Green deformation tensor is used for getting numerical tangent.

In comparing the convergence behaviour for Jaumann rate of Kirchoff stress with analytical and numerical tangent for 14 basic examples using hexahedral, tetrahedral and triangular prism yields the result that only the tangent with Jaumann rate of Kirchoff stress guarantee the quadratic or nearly quadratic convergence.

References

Corresponding author
Erwin Stein can be contacted at: stein@ibnm.uni-hannover.de
This article has been cited by:

1. J. P. S. Ferreira, M. P. L. Parente, M. Jabareen, R. M. Natal Jorge. 2017. A general framework for the numerical implementation of anisotropic hyperelastic material models including non-local damage. *Biomechanics and Modeling in Mechanobiology* **16**:4, 1119-1140. [Crossref]

