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Gas and Optical Sensing Technology for the
Field Assessment of Transformer Oil
Yusuf Amrulloh, Udantha Abeyratne, and Chandima Ekanayake

Abstract

Oil testing has found widespread use in assessing the quality of the insulation system of a
transformer. Techniques such as Dissolved Gas Analysis (DGA) have been proven to be reliable
in this task, but are expensive, laborious and time consuming. It is also not available for field use.
This paper proposes the combined use of gas and optical sensing technology for the testing of
transformer oil. It provides a low-cost, portable technology capable of fast and reliable field
screening of transformers. The method consists of an oil handling and unit as well as a gas and
optical sensor array. Gas sensing targets moisture, hydrocarbons and other volatile compounds
dissolved in transformer oil; optical measurements provide information on the absorption
properties of transformer oil, within a band of frequencies made possible by the recent advances in
Blue-LED technology. These measurements are then combined through a pattern recognition
system producing a collective decision on the state of the transformer. The performance of the
method was evaluated on a database of 26 transformer oil samples, using a leave-one-out
validation technique. Our results indicated that the method was capable of categorizing
transformer oil into three classes, ‘acceptable,’ ‘marginal’ and ‘bad’ with reasonable accuracy,
based on the acidity and furfuraldehyde levels estimated from gas-optical measurements. The
results need to be further validated using a larger database of transformer oil samples.

KEYWORDS: optical sensing, gas sensing, condition monitoring, aging
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1 Introduction 

Power transformer is an indispensible component in an electrical power system.  
From large step-up transformers in a power generating facility down to small 
distribution transformers near the consumers, there is a wide range of transformers 
found in an electricity grid. The geographical locations of these transformers may 
be spread across thousands of kilometers. In countries such as Australia, it is not 
uncommon to find expensive and performance-critical transformers in remote 
areas, making the monitoring and servicing of these a challenging task.  

In many countries in the world, a substantial percentage of power 
transformers currently in service are operating beyond their nominal design 
lifespan. Over the years this has allowed power companies to keep delivering 
energy with minimal new infrastructure investments. However, with many 
transformers entering the end of their useful life, power transformer failure has 
now become one of the main challenges to the reliable, uninterrupted operation of 
the electricity grid. There is a great need for a reliable and low-cost transformer 
condition-monitoring tool, which can be operated even in remote areas with 
minimal human intervention.  Continuous online monitoring and the ability to 
predict potential failure will be highly desirable features of any monitoring 
system. 

At present, there are several techniques available for the condition 
monitoring of transformers [1], [2] based on the estimation of the quality of its 
insulations. The insulation system of a power transformer consists of two main 
components: oil insulation and the paper based insulation. Both of these age and 
degrade over time due to reasons of physical (e.g.: thermal heating, partial 
discharge) and chemical (moisture-hydrolysis; Oxygen-oxidation) origin [2].  

Power transformer insulation uses paper/pressboard, which is formed of 
cellulose [3]. It is an organic compound with a molecule comprising of a long 
glucose ring. Transformer oil, which serves as an electrical insulator as well as a 
liquid coolant, is a hydrocarbon.  The decomposition of the insulation system 
produces characteristic chemicals (see Fig. 1) such as Furanic compounds (e.g.: 2-
Furfural, 5-hydroxymethyl-furfural), moisture, hydrocarbons (e.g.: CH4, C2H4, 
C2H6) as well as other gases such as CO and CO2. These chemical products 
dissolve in transformer oil and also lead to a change in its acidity level [3]. Thus, 
the investigation of the actual chemical composition of oil and resulting physical, 
chemical and electrical properties (acidity, spectral adsorption, turbidity, 
conductivity etc.) paves an elegant way to monitor the state of the insulation 
system of a power transformer [4].  

There are several techniques for the analysis of transformer oil. One of the 
simplest methods is the visual inspection (ASTM D-1524) of transformer oil for 
properties such as color and turbidity. While being simple, it is subjective and 
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needs human interpretation. Attempts to automate and capture optical features 
have resulted in methods such as the Infra-red (IR) analyzer [5] and rapid 
spectrophotometry [6]. These techniques rely on only the optical properties of 
transformer oil, and the outcomes have not been considered sensitive or specific 
enough for the reliable condition monitoring of transformers. 

Figure 1. Physical and electrical stresses cause the insulation system to degrade and produces gas 
and other chemicals, which then dissolve in transformer oil, changing its properties. Oil testing 
provides an elegant way to monitor the condition of a transformer.  

Dissolved Gas Analysis (DGA) is considered the golden standard in the 
condition monitoring of a transformer insulation system. It is a sophisticated 
technique, which depends on the extraction of dissolved gases from transformer 
oil followed by gas chromatography. The four key gases that usually used to 
determine the transformer fault are hydrogen, carbon monoxide, ethylene, and 
acetylene [7] (see Figure 1). DGA is capable of highly sensitive and specific 
measurements, but requires access to expensive laboratory equipment. Thus, it is 
not available as a fast, low-cost solution for field use.  It is also not suited as a part 
of a continuous real-time condition monitoring and response system. 

The level of acidity as measured from transformer oil (see Table 1) can be 
used as an indicator of the state of the transformer insulation system. The acidity 
of oil is (per ASTM D-974) the amount of potassium hydroxide (KOH) in 
milligrams needed to neutralize 1g of oil. This method has to be carried in a 
laboratory; it is expensive, time consuming, and not suitable for field use. 

The conductivity is another important parameter [8] of the quality of 
transformer oil. The ageing by-products of both oil and paper mainly affect the 
conductivity. As conductivity is highly temperature dependent it is always 
important to compare the conductivities at the same temperature. Oil conductivity 
can be estimated by measuring current passing through oil placed between two 
metal electrodes due to a known voltage profile.  
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Table 1: Acidity Level and Transformer state [9] 
Acidity 

(mg KOH/g oil) 
State 

0 – 0.1 Good 
0.05 – 0.1 Proposition A oils 

0.11 – 0.15 Marginal oils 
0.16 – 0.40 Bad oils 
0.41 – 0.65 Very bad oils 
0.66 – 1.50 Extremely bad oils 

Table 2: Furfuraldehyde Level and Transformer State [3, 10] 
Furfuraldehyde level 

(part per billion) 
State 

0 – 20 Good, basically new oils 
21 – 100 Acceptable, normal aging 

101 – 250 Questionable, probably accelerated aging 
251 – 1000 Unacceptable, significant accelerated aging 

>1001 Danger zone 

In this paper, we propose a low-cost, portable device centered on 
electronic gas sensing (“electronic-nose”) and optical measurements (“electronic 
eyes”) for the condition monitoring of transformers. We also explore the 
conductivity as one potential parameter of oil quality. Gas sensing components 
target moisture, hydrocarbons and other volatile compounds dissolved in 
transformer oil; optical measurements provide information on the absorption 
properties of transformer oil, within a band of frequencies made possible by the 
recent advances in Blue-LED technology. Optical and gas sensing measurements 
are then combined through a pattern recognition system producing a collective 
decision.  

Electronic noses have been explored in assessing the quality of 
transformer oil before (eg. [19], [20]). Most of these preliminary investigations 
relied upon extracting the gases from transformer oil before processing. 
Furthermore, the performance of the methods was not systematically reported.  

To the best of our knowledge, the approach we describe in this paper is the 
first in the world using optical sensing of transformer oil at blue wavelengths and 
combines it with gas sensing through the Electronic Nose. The method does not 
require gas extraction. We also report the performance of the technique using a 
database of 26 oil samples and the method of leave-one-out validation. Our 
method has the potential to quickly evaluate the quality of transformer oil in 
actual field use, at a fraction of the cost of existing devices. It may also open 
opportunities for continuous monitoring of transformers and predicting failures.  

In this paper we describe the technology developed and evaluate its 
performance on a database of transformer oil samples. 
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2 Method 

The method proposed in this paper depends on the idea of combining electronic 
gas-sensing and optical measurements. In Section 2.1 and Section 2.2 we describe 
the individual gas-sensing and optical sub-systems; in Section 2.3 combined gas-
optical sensor array implementation and the data acquisition protocols are 
illustrated.  

In Section 2.4-Section 2.5 we describe the pattern recognition algorithms 
used in this work and details about the training, and performance evaluation 
procedures.  

2.1 The Gas-sensing Electronic Nose (E-Nose) Sub-system 

The essential component of an E-nose is a chemical sensor; electrical properties of 
the sensor depend on the concentration levels and the type of chemicals it is in 
contact with. An array of such sensors can be used to generate a ‘signature’ of a 
particular chemical and its concentration level. Signal processing and pattern 
recognition algorithms are used to detect such signatures.  As the first step, an E-
nose has to be trained using a training data set to recognize the desired signatures. 
Then, the performance of the E-nose with previously unseen data has to be 
evaluated with a test set. In order to train/test the E-nose properly, the data set has 
to be large and varied enough to contain samples spanning the whole spectrum of 
possibilities.  

We designed an Electronic nose as an inexpensive and non-invasive 
method offering a flexible mechanism for assessing transformer oil than possible 
with existing technology. It comprises of an electronic sensor array with partial 
sensitivity, followed by a pattern classification system, which is able to generate 
signatures characteristic to a set of volatile chemicals in the gaseous phase (e.g.: 
Furanic compounds). The array also contained sensor elements that had sensitivity 
to gases resulting from different types of transformer insulation failures (e.g.: 
CH4). Table 3 shows the gas sensors [11-13] used in this paper. We used three 
different elements in our sensor array. All the electronics were designed and 
implemented in-house, at a cost of <$1000.00.  

Table 3: Gas Sensor and Its Target Odour  
Sensor type Gas 
TGS2600 CO2, C4H10, C2H6O, H2
TGS2602 H2, NH3, C2H6O, H2S, C7H8
TGS2620 CH4, CO, C4H10, H2, C2H6O 
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2.2 The Optical Sub-system 

It is well known that the optical quality of the transformer oil changes over time 
as the insulation system degrades. This is the basis for the visual inspection 
standard described in ASTM D-1524. In this paper we propose the idea of 
combining the optical measurements with gas-sensing, so that a given oil sample 
can be simultaneously assessed for a larger range of chemicals resulting from 
insulation failure. This is expected to lead to better classification accuracy in 
actual use.  

2.3 The Combined Gas-optical Measurement Technique 

Fig. 2 illustrates the combined gas-optical system we developed. The complete 
unit, except the laptop computer, measured 9cmX11cmX15cm. The design 
consisted of: (a) a sensor array (gas and optical sensors), (b) sensor conditioning 
electronics, (c) signal acquisition circuitry, (d) a central microprocessor 
(MSP430F2274), (e) USB interface module (eZ430RF2500) for data transfer to 
the computer, and (f) an oil handling system.  

Figure 2.  Block diagram of the constructed system. It comprises of three major parts: gas and 
light handling, data acquisition, and pattern recognition algorithm. 

The design is comprised of two separable main structures (see Fig. 2). The 
first is a removable oil container, which snaps tightly to a lid physically connected 
to the upper box containing the electronic circuitry. The second is the darkened 
lower box with a circular well that accepted the oil container/sensor assembly as 
illustrated in Fig.2. A light reflector is installed at the bottom of the lower box, to 
get the maximum energy back to the optical system. 
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The oil container is a key element in this simplified design. It is filled 
partly with the particular transformer oil sample (about 10ml) to be tested.  Gases 
and volatile compounds dissolved in transformer oil (liquid-phase) establish 
equilibrium with their gas-phase equivalents in the chamber above the transformer 
oil as described by the Henry’s Law in Chemistry.  

Gas sensors (together with the conditioning circuitry) produce a voltage 
output in response to chemical compounds found within the gas chamber. These 
voltage signals are then converted to a digital signal and transferred to the 
computer for analysis.  

 The optical sensor used in this device works as a reflection-type sensing 
device. It consists of a blue colored LED as a transmitter and a phototransistor as 
the receiver. The transmitter emits light within the blue spectrum (λ= 465 nm, Δλ= 
35 nm), which passes through the gas headspace and the transformer oil. It is also 
reflected back by the reflector mounted below the oil container. The light returned 
to the receiver unit carries information on the optical absorption properties of 
transformer oil.  Received light is then converted into an electrical signal and 
passed to the computer.   

The operation of the electronic circuitry is carried out using an 
MSP430F2274 microcontroller. The overall measurement protocol involves the 
partial filling of the oil chamber, activation of the sensor array, waiting for the 
liquid-gas phase equilibriums of chemicals, and the activation of the analog-to-
digital conversion circuitry and USB transfer protocols. Converted data is then 
sent to the computer for further processing. In the work of this paper, we allowed 
a two-minute time delay between the filling of transformer oil and the starting of 
the data acquisition process to make sure an equilibrium state is reached. This is 
an important consideration in maintaining the repeatability of measurements.  

2.4 Estimating the Quality of Transformer Oil 

In this paper, we propose to explore gas-optical data in two different roles 
associated with the insulation monitoring of transformers. In the first approach, 
we investigate if it is possible to estimate the acidity and Furfuraldehyde levels of 
transformer oil based on (indirect) gas-sensing and optical measurements. We use 
a neural network technique for the purpose. In the second approach, our target is 
to develop an algorithm capable of a linguistic description of the quality of 
transformer oil. The fuzzy logic based descriptors we propose in this paper have 
been chosen to comply with the existing transformer oil assessment standards. 
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2.4.1 Neural Networks for the Estimation of Acidity and Furfuraldehyde Levels  

Artificial neural networks (ANN) became popular in the recent past for its ability 
to learn arbitrary functions [14-16] to a desired level of accuracy.  In this paper, 
we used an ANN to learn the mapping function between the input variables (gas-
optical measurements) and the output variables (acidity and Furfuraldehyde 
levels). ANNs have been found to be highly successful in a range of other 
applications of electronic noses [17].  

The particular ANN used for this work is a three-layer Perceptron network 
trained with the error back propagation algorithm (see Fig. 3). The back-
propagation algorithm is a supervised learning technique; it needs a set of 
example input-output pairs of data (“the training set”) in order to learn the 
association between them. Once the training is over, the trained network is 
assessed for its ability to produce correct outputs, when previously unseen data 
are shown at the input. The data set used for this purpose is called the “testing 
set”. These data sets are made non-overlapping.  
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Figure 3.  Back propagation neural network classifier block diagram. It consists of three layers 
with 2-4 neurons in input layer, 15 neurons in hidden layer, and 2 neurons in output layer. 

The ANN technique requires access to a representative group of data for 
the training, validation and testing purposes. Also, the number of datasets has to 
be sufficiently large in order to discover a complex input-output relationship that 
may be hidden within.  
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The number of oil samples available to us for this work was 26. Acidity 
and furfuraldehyde levels were evaluated for these samples using standard 
laboratory measurements at PowerLink Ltd, Brisbane, Australia. A CIGRE test 
cell and a variable frequency voltage source with a current measuring system have 
been used to assess the conductivity. All the conductivity measurements were 
performed at room temperature (25° C).   

The small size of the dataset posed a challenge in training and testing of 
the ANN.  In order to minimize this problem, we took the following two steps as 
suggested in the literature:  

(a) The ANN training/testing process used a leave-one-out cross-validation 
process. When training the ANN, 25 datasets were chosen from the available 
26 sets and used as the “training set”. The performance of the trained network 
was evaluated on the remaining dataset (“testing set”). This process was 
repeated 26 times until each and every dataset was used once as a “testing 
set”.  

(b)  To partly overcome the problem of the small dataset, and to make the trained 
ANN robust to noise, we manufactured new data points as suggested in [14] 
using the available data using linear interpolation and the addition of noise.   

Figure 4.  The block diagram of the designed fuzzy oil classifier. Two parameters (from optical 
and gas sensor) is utilized as the input of Mamdani fuzzy classifier to categorize it into a score 
which corresponding to an oil grade. 

2.4.2 Fuzzy Classifiers (FC) for the Assessment of Transformer Oil Quality 

A fuzzy classifier was developed to categorize oil samples according to the 
quality of insulation. As illustrated in Figure 4, it employed two inputs: optical 
and gas sensors (TGS2602). The fuzzy system we developed followed the 
Mamdani approach [14], which consists of three main procedures: fuzzification, 
inference, and de-fuzzification. Mamdani configuration is chosen for its simplicity 
and the ability to produce good results in practice.   
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In the fuzzification stage, input voltages measured are converted to a fuzzy 
set with memberships in the range of 0-1 (see Fig. 5). This fuzzy set is then used 
as the input for the inference engine, by using if-then rules as shown in Table 5. 
Max-min operator was used to determine which rules were used in a given input. 
The defuzzifier finally converts the output from the inference engine to a score 
corresponding to the state of the transformer oil. For this purpose, we used the 
Center of Area (COA) deffuzification technique [18] as given by (1),   

∑

∑

=

=

⋅

⋅⋅
= n

i
ii

n

i
iii

A

AW
W

1

1

α

α
        (1) 

where n is the number of rules, Ai is the area of membership function for rule i, Wi

is the distance of fuzzy set output to the reference of rule I, and αi is the fire 
strength of rule i. 

Figure 5.  The membership of input variable for the optical sensor, where the x-axis is the optical 
sensor voltage as function of furfuraldehyde level changes and y-axis is the membership degree for 
each voltage level. 

μF

Figure 6.  The membership of input variable for the gas sensor, where the x-axis is the gas sensor 
voltage as function of acidity level changes and y-axis is the membership degree for each voltage 
level. 
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μF

Figure 7.  The membership of output variable. The x-axis is the oil grade score as a function of the 
true oil condition caused by the acidity and furfuraldehyde level and y-axis is the membership 
degree of each score. 

The memberships of input and output fuzzy sets are shown in Fig. 5, Fig. 
6, and Fig. 7. All of these utilize a triangular membership function. Both inputs 
have 5 memberships, very small (VS), small (SM), medium (MD), big (BG), and 
very big (VB). These labels convert the voltage outputs of sensors to membership 
degree (μF) of each membership function. The universe of discourse U of the 
input is the sensor voltages in response to acidity and furfuraldehyde level, U = 
[Vmin, Vmax], where Vmin/Vmax is the minimum and maximum voltage of 
sensors. The center of a fuzzy set is defined as the value of the input variable 
corresponding to the maximum value of μF within U. For example, as can be seen 
in Figure 5, the membership degree of “SM” in the optical fuzzy located in 0.268 
with μF equal to 1. 

Similar to the input, the output also has 5 different memberships: good, 
aging, deteriorate (DET), poor, and bad. The universe of discourse of the output is 
the score of oil samples, which is measured on a scale from 0-10. A low score 
characterizes low quality oil whereas a score close to 10 represents high quality 
oil. 

The memberships between categories of all fuzzy set are overlapping. As 
can be seen in Figure 5 – Figure 7, the overlap can be found between two 
memberships or three memberships. That overlap is designed to give a smooth 
transition between memberships as in human perception based on the existing 
transformer database. For example, in optical fuzzy set, output voltage 0.3 has two 
memberships which are 0.25 in medium (MD) and 0.76 in small (SM). It means 
that that value tends to categorize as rather small. However, both of values will be 
used in the calculation.  

The function between input and output of fuzzy oil classifier is governed 
by Mamdani inference technique. To construct rules for inference system, output 
voltages from the sensors are mapped using knowledge of transformer acidity and 
furfuraldehyde in Table 1 and Table 2. The created rule for the inference system is 
given Table 4. 
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Table 4: Fuzzy classifier rules 
Optical 

VS SM MD BG VB 
VS POOR DET DET AGING GOOD 
SM DET DET DET AGING AGING 
MD POOR DET DET DET DET 
BG BAD POOR DET POOR POOR 

GAS 

VB BAD BAD BAD BAD POOR 

3 Results and Discussion 

3.1 Sensor responses 

Three different gas sensors and a blue-LED were utilized to detect the 
furfuraldehyde and acidity in 26 samples of the transformer oil.  

In Figure 8, we illustrate the variation of the sensor outputs with acidity 
and the furfuraldehyde level. The output voltages of all gas sensors increased with 
increasing acidity and furfuraldehyde levels. 

The optical sensor showed the opposite characteristic. The correlation 
coefficients computed between the output of the light sensor and acidity/ 
furfuraldehyde/conductivity are computed to be -0.68/-0.47/-0.52 respectively. 
These numbers indicate that the optical signal indeed carries information on the 
condition of the transformer oil. 

Similarly, we computed the correlation coefficients between different gas 
sensor (TGS2600, TGS2602, and TGS2620) outputs and the properties of 
transformer oil (conductivity, acidity, furfuraldehyde). Conductivity was 
correlated with TGS2600/TGS2602/TGS2620 outputs at the values 0.41/0.46/0.40 
respectively. Similar figures for acidity and furfuraldehyde are given by 
0.83/0.86/0.87 and 0.57/0.54/0.58 respectively. Of particular interest is the very 
high correlation between gas sensor outputs and the acidity; light sensors too had 
the highest correlation with the acidity. These numbers indicate that gas-optical 
sensing carry information on the condition of transformer oil. Conductivity has 
the smallest correlation with gas-optical measurements; more investigations are 
needed to determine if conductivity and gas-optical measurements provide largely 
complementary information, which can be exploited in a combined device.  
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Figure 8.   Sensor array response to the change of acidity and furfuraldehyde 

Correlation values, however, are based on individual sensor pairs and 
depend on a linear curve fitting; they are of limited used in real-world 
interpretations. Our target is to find characteristic signatures of transformer oil, 
using multiple sensor outcomes, and without limiting ourselves to linear 
relationships. In Section 3.2, we describe the ANN technique we developed for 
the purpose.  

3.2 Neural Network Classifier 

The ANN training was done in two different ways: (i) Net-A: an ANN was trained 
to estimate furfuraldehyde and acidity levels using gas (TGS2602) sensing and 
optical data; (ii) Net-B: a second ANN was trained using gas, optical as well as 
conductivity data. Conductivity adds another dimension to the assessment of 
transformer oil, and can be easily incorporated within the neural network model. 
Conductivity has the advantage that it can be measured on-line, automatically and 
continuously, if needed.   

In the training of the ANNs, the following two stopping criteria were used: 
(i) training is stopped when the validation error starts to increases (validation-
stop); (ii) training is stopped when the error/gradient reaches a pre-set value 
(error-stop). Back propagation training was carried out using the Levenberg-
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Marquardt training algorithm.  Table 5 summarizes the ANN parameters used in 
this paper.  

Table 5: ANN training parameters.  
Parameter Value 

Learning rate 0.001 
Number of epoch  300 
Error target 1.10-5 
Training method Levernberg-Marquardt 
Number of layers 3 
Number of neuron per layer Input layer : 4 , Hidden layer : 15 

Output layer : 2 

The size of a neural network has a relationship to its generalization ability. 
We explored the size of the network and the number of gas-sensors needed for the 
best outcome, and through a trial-and-error process decided to use the number of 
neurons indicated in Table 5. As seen from results in Section 3.1, different gas 
sensors carried similar information, and thus we decided to use TGS2602 alone 
for the rest of the paper.   

The results of the ANN estimations of the acidity/furfuraldehyde are 
shown in Fig. 9 and Fig.10. Note that both figures indicate the results from the 26 
cross-validation trials (leave-one-out); i.e., each point in the graph represent the 
ANN estimated acidity of the dataset previously unseen by the ANN (the response 
to the “test set”). The actual acidity/furfuraldehyde and the ANN estimated acidity 
is both displayed for comparison.  

While the number of datasets used in this study is not sufficient to form 
strong conclusions, it is quite clear that the ANN technique can estimate the 
acidity levels of an oil sample, given the gas/optical sensing measurements. When 
the conductivity information is included (i.e. Net-B), the accuracy in the acidity 
estimation is increased by about 3%, whereas the furfuraldehyde estimation is 
relatively unaffected.  

In order to explore the utility of the methods in classifying transformer oil 
into different operational categories, we used the following procedure. Standard 
transformer oil scoring scales shown in Table 1 and Table 2 were simplified1 by 
combining the acidity levels of ‘good’ and ‘Proposition A’ in to a single band of 
‘acceptable’ oil. Acidity levels >0.16 were merged to a single category ‘bad oil’, 
and the ‘marginal’ category was kept unchanged. The new 3-category 

                                                          
1 One reason for merging these categories was that the number of oil samples available for this 
study was limited to 26, and this did not warrant keeping finer sub-categories indicated in Table 1 
and Table 2. Furthermore, we believe that the intended application domain of the proposed 
technology would be reasonably well served (as described in the last three paragraphs of Section 
3.2) even with the merged categorization we propose here. 
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classification is then used to obtain the contingency table (Table 6) for our ANN 
based estimations. A similar process is used to simplify the categorization based 
on furfuraldehyde levels (Table 7).  

Table 6 and Table 7 succinctly summarize the performance of our method. 
The overall accuracy of acidity-based 3-category classification is (13+2+4)/26 = 
73%; the corresponding figure for furfuraldehyde is 69.2%. A closer inspection of 
Table 6 reveals that the out of the 5 oil samples in the ‘bad’ category (actual 
acidity-based) 4 are correctly classified as such; similarly, out of the 10 oil 
samples in the ‘bad’ category (actual furfuraldehyde –based) 8 are correctly 
classified by the proposed method. If the ‘bad’ and ‘marginal’ classes are 
combined based on operational considerations, the classification sensitivity 
improves to 100% (acidity-based) and 83% (furfuraldehyde –based).    

The method proposed in this paper is not considered a substitute for 
laboratory DGA procedures. We believe its main application will be as a low-cost, 
fast oil screening-tool appropriate for field use. It should also be available as a 
continuous transformer monitoring-device. In these contexts, the ability to 
maintain a high sensitivity of detection of ‘marginal’ to ‘very bad’ transformer oil 
grades will be extremely useful in an overall management scheme. The results we 
obtained indicate that the technology we propose has the potential to meet this 
requirement.  

The acidity-based categorization has a remarkable property as seen from 
Table 6. The proposed method yields a specificity of detection of 100% in the 
‘acceptable’ category (at a sensitivity of 76%). That is, all the oil samples that the 
proposed method categorized as ‘acceptable’ truly belong in the ‘acceptable’ 
category. This has the potential to make the method useful in ruling-out any 
(unnecessary) intervention in a large group of transformers. 

Table 6: ANN Acidity Estimation (Net-A). Entries indicate the number of samples. 
Acidity estimated by the proposed method 

0 – 0.1  
(acceptable) 

0.11 – 0.15 
(marginal) 

>0.16 
(bad) 

TOTAL 

0 – 0.1 
(acceptable) 

13 1 3 17 

0.11 – 0.15  
(marginal) 

0 2 2 4 

>0.16 
(bad)  

0 1 4 5 

Actual 
Acidity  

TOTAL 13 4 9 26 
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(A) 

(B) 

Figure 9.  Net-A: Neural network classifier output which uses leaves one out cross validation 
technique. Both of outputs (A) with error stop mechanism (B) with validation stop mechanism 
shows the similarity in its results, but the later has less accuracy. 
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(A)  

(B) 

Figure 10.  ANN output. (A) using net-A, and (B) by using Net-B. Conductivity input improves 
the prediction in the acidity but not furfuraldehyde. 
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Table 7: ANN Furfuraldehyde Estimation (Net-A). Entries indicate the number of samples. 
Furfuraldehyde estimated by the proposed method 

0 – 100  
(acceptable) 

101 – 250  
(marginal) 

>251 
(bad) 

TOTAL 

0 – 100 
(acceptable) 

7 0 1 8 

101 – 250 
(marginal) 

2 3 3 8 

>251 
(bad) 

1 1 8 10 

Actual 
Furfuraldehyde 

TOTAL 10 4 12 26 

Note that it is possible to combine (using several techniques), different 
acidity, furfuraldehyde and conductivity based categorizations (e.g. Tables 6 and 
Table 7) of oil into a single classification system. The ANN method itself can be 
used to map multiple measurements such as gas/optical/conductivity directly to 
descriptive oil categories.  

3.3 Fuzzy Classifier 

Fuzzy algorithm is used to classify the transformer in to its grades. As explained 
before, Fuzzy algorithm only used two inputs, one gas sensor and one optical sensor 
based on facts that the gas sensors have similar responses. The input-output mapping 
of the fuzzy classifier is shown in Fig. 11. The x and y axis represents the input 
from gas and optical sensor while the z axis is the output score which categorizes 
the transformer oil into a state. There are 5 categories representing a score from 0 
to 10, which are “bad”, “poor”, “deteriorating”, “aging”, and “good”. The 
membership range and center of each category is shown in Table 8. 

Table 8: Output membership range and the center 
Category Range Center 

Bad 0 – 2.42 1 
Poor 1.24 – 3.3 2 

Deteriorate 2 – 6 3.5 
Aging 4 – 8 5 
Good 7 – 10 8 

Since the memberships of classification in the de-fuzzification are 
overlapping, a number of classification result might has two memberships. For 
example, the fuzzy oil classifier yields output with value 2.5, which is located 
between ‘poor’ and ‘deteriorating’ membership. The degree of ‘poor’ membership is 
higher than that for ‘deteriorating’; thus we can say that the oil tends to be ‘poor’. 
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Figure 11:  The inference rules which illustrate interaction between gas and optical input to the 
score output and give score that equivalent to the oil the real oil condition. 
    

The output of the fuzzy classifier is shown in Fig. 12. Twenty six samples 
are used for the testing in four different measurements. The consistency of the 
output in the testing is represented by the number of output, which is pointing to a 
similar value between measurements. It has 98.17% precision as characterized by 
the small value of variance and deviation (0.062 and 0.059 respectively).  

The accuracy of classification is calculated by a comparison between the 
fuzzy classifier output and the actual oil category. To get the same language 
perception, the real category is derived from Table 1 and Table 2 which is 
connected with the operator “and”. It means that if both the acidity and 
furfuraldehyde values are available, then the lowest grading of those values 
represents the overall oil grading.  

Although the accuracy (65.3%) is not too high, fuzzy classifier provides a 
clear description the oil condition by giving a single score, which represents the 
overall oil condition. For example, transformer oil with a score below four needs 
further investigation while a score higher than 5 represent normal aging of the oil. 
However, this classification is heavily affected by the transformer oil database 
used for developing all fuzzy set and decision rules.  A larger database should 
improve the classification accuracy in future work.  
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Figure 12:  Fuzzy classifier outputs, which classify transformer oil samples into different grades. 
High level of acidity and furfuraldehyde from the sensor reading will be classified into a bad grade 
and vice versa. 

4 Conclusion  

In this paper, we address the issue of condition monitoring of a transformer based 
on the assessment of its oil. We propose a novel approach where the electronic 
gas sensing (electronic-nose) is combined with optical sensing (at blue 
wavelengths) to derive characteristic signatures of oil. We developed two signal-
processing approaches to estimate important parameters such the acidity and 
furfuraldehyde levels of transformer oil, and to classify the condition of the 
transformer into a group of states. We also explored conductivity as one of the 
potential parameters to augment gas-optical measurements in further improving 
the accuracy of our method.  

The gas-optical methods proposed by us show potential as a non-invasive 
technique for assessing transformer oil quality, without the need for expensive gas 
extraction techniques. The method is suitable for implementation on low-cost 
($<1000.00/unit) portable units suitable for field use. It is also expected to be 
amenable for continuous automated measurements in actual use.  

The electronic circuitry and the gas handling system can be further 
improved via miniaturization and automation. The sensor array can also be 
improved and optimized for better performance. While the results illustrated here 
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point to the potential usefulness of the proposed technology in real-life, further 
development of the technique is needed (with a larger dataset) before a strong 
conclusion is reached.   
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