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A Sparse PLS for Variable Selection when
Integrating Omics Data

Kim-Anh Lé Cao, Debra Rossouw, Christele Robert-Granié, and Philippe Besse

Abstract

Recent biotechnology advances allow for multiple types of omics data, such as
transcriptomic, proteomic or metabolomic data sets to be integrated. The problem of feature
selection has been addressed several times in the context of classification, but needs to be handled
in a specific manner when integrating data. In this study, we focus on the integration of two-block
data that are measured on the same samples. Our goal is to combine integration and simultaneous
variable selection of the two data sets in a one-step procedure using a Partial Least Squares
regression (PLS) variant to facilitate the biologists' interpretation. A novel computational
methodology called *“sparse PLS" is introduced for a predictive analysis to deal with these newly
arisen problems. The sparsity of our approach is achieved with a Lasso penalization of the PLS
loading vectors when computing the Singular Value Decomposition.

Sparse PLS is shown to be effective and biologically meaningful. Comparisons with classical
PLS are performed on a simulated data set and on real data sets. On one data set, a thorough
biological interpretation of the obtained results is provided. We show that sparse PLS provides a
valuable variable selection tool for highly dimensional data sets.

KEYWORDS: joint analysis, two-block data set, multivariate regression, dimension reduction
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Erratum
The PLS X variables and PLS Y variables in Figure 1 (Page 12) should appear as follows:
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The PLS X variables in Figure 6 (Page 25) should appear as follows:
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Introduction

Motivation. Recent technological advances enable the monitoring of an un-
limited quantity of data outputs from various sources. These data are gener-
ated by different analytical platforms, hence the possibility exists for integra-
tion among the different types of data, such as transcriptomic, proteomic or
metabolomic data. This integrative biological approach enables an improved
understanding of some underlying biological mechanisms and interactions be-
tween functional levels to be obtained. This is conditional upon the successful
incorporation of several omics data-types that are characterized by many vari-
ables but not necessarily many samples or observations. In this high dimen-
sional setting, it is absolutely crucial to select genes, proteins or metabolites
in order to overcome computational limits (from a mathematical and statis-
tical point of view) and to facilitate biological interpretation. Therefore, our
quest for sparsity is motivated by the biologists’ needs for the separation of
the useful information related to the study from irrelevant information caused
by experiment inaccuracies. The resulting variable selection might also enable
a feasible/targeted biological validation at a reduced experimental cost. In
this paper, we especially focus on the integrative context, which is the main
goal of omics data. For example, a biological study might aim to explain the
g metabolites by the p transcripts that are measured on the same n samples.
In this typical case, n << p+q.

In this study, we propose a sparse version of the Partial Least Squares re-
gression (PLS, Wold 1966), that aims to combine variable selection and mod-
elling in a one-step procedure for such a problem. Our sparse PLS is based on
Lasso penalization (Tibshirani, 1996) and is obtained by penalizing a sparse
Singular Value Decomposition (SVD), as proposed by Shen and Huang 2008,
by using a PLS variant with SVD (Lorber et al., 1987). This approach deals
with integration or joint analysis problems, which cannot be solved with usual
feature selection approaches proposed in classification or discrimination stud-
ies, where there is only one data set to analyze. Hence, multiple testing to
identify differentially expressed genes does not apply here, as well as other
classification methods that have been applied to transcriptomic data sets. In
the latter case, many authors (among them: Guyon et al. 2002; Lé Cao et al.
2007) have applied feature selection methods to microarray data. These meth-
ods have proved to select biologically meaningful genes lists. However, in the
present context, the feature selection aim should be combined with modelling
two-block data sets. Very few approaches have been proposed to deal with
these newly arisen problems, especially for predicting one group of variables
from the other group. Several approaches that seek linear combinations of both



Satistical Applicationsin Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 35

groups of variables can answer this biological problem. However, they are of-
ten limited by collinearity or by ill posed problems that require regularization
techniques, such as l; (Lasso) or Iy (Ridge) penalizations.

Background and related work. Partial Least Squares regression (PLS,
Wold 1966) is a well known regression technique that was initially applied in
chemometrics. When faced with collinear matrices the stability of PLS gives
it a clear advantage over CCA, multiple linear regression, ridge regression
or other regression techniques. Furthermore, since Wold’s original approach,
many variants have arisen (SIMPLS, de Jong 1993, PLS1 and 2, PLS-A, PLS-
SVD, see Wegelin 2000 for a survey) that provide the user with a solution for
almost any problem. We will describe and discuss some of these variants in
this study. PLS is an algorithmic approach that has often been criticized for its
lack of theoretical justifications. However, this computational and exploratory
approach is extremely popular thanks to its efficiency, and much work still
needs to be done to demonstrate all the statistical properties of the PLS (see
for example Kramer 2007; Chun and Keles 2007 who recently addressed some
theoretical developments of the PLS).

PLS has recently been successfully applied to biological data, such as
gene expression (Datta, 2001), integration of gene expression and clinical data
(with bridge PLS, Gidskehaug et al. 2007), integration of gene expression and
ChIP connectivity data (Boulesteix and Strimmer, 2005) and more recently for
reconstructing interaction networks from microarray data (Pihur et al., 2008).
We can also mention the study of Culhane et al. (2003) who applied Co-Inertia
Analysis (CIA, Dolédec and Chessel 1994) from which PLS is a particular case,
in a cross platform comparison of microarray data.

In the context of feature selection from both data sets, one closely related
work that has proved to give biologically meaningful results is the O2PLS
model (Trygg and Wold, 2003). Variable selection was added to this model
by Bylesjo et al. (2007) for combining and selecting transcript and metabolite
data in Arabidopsis Thaliana in a regression framework. O2PLS decomposes
each data set into three structures (predictive, unique and residual). The most
dominant correlation and covariance in both sample directions and variable
directions are extracted and can be interpreted. Variable selection is then
performed on the correlation loadings with a permutation strategy in a two-
step procedure.

More recently, Waaijenborg et al. (2008) and Chun and Keles (2007) both
adapted Elastic Net regularization (Zou and Hastie, 2005) in the PLS, either in
a canonical framework or in a regression framework. They directly penalized
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the optimization problem. Both approaches seem promising, as Chun and
Keles (2007) demonstrated that the PLS consistency property does not hold
when n << p+¢. However, it would be useful to show the biological relevance
of their results. Nevertheless, their studies show the need for developing such
integrative methods for biological problems.

Our contribution and results. We propose a sparse PLS approach that
combines both integration and simultaneous variable selection on the two data
sets in a one-step strategy. We show that our approach is applicable on high-
throughput data sets and provides more relevant results compared to PLS.

Outline of the paper. A brief introduction to PLS will be given before
describing the sparse PLS method. We describe how to add sparsity into
PLS with a Lasso penalization combined with SVD computation (Shen and
Huang, 2008). We then assess the validity of the approach on one simulated
data set and on three real data sets. We compare and discuss the results
with reference to a classical PLS approach. We also provide a full biological
interpretation of the results obtained on a typical integrative study of wine
yeast which combines relative transcript levels and metabolite concentrations.
We show that sparse PLS highlights the most essential transcripts that are
relevant to specific metabolites.

1 Methods

1.1 PLS

The PLS regression looks for a decomposition of centered (possibly standard-
ized) data matrices X (nxp) and Y (n x ¢) in terms of components scores, also
called latent variables, (£1,&;...&y) and (wy,ws ... wg), that are n-dimensional
vectors, and associated loadings, (u1,us...uy) and (vy,vs...vy), that are p
and ¢- dimensional vectors respectively, to solve the following optimization
problem (Burnham et al., 1996):

cov(Xp_qup, Yup) (1)

ma
[lunll=1,llvn =1

where Xj_; is the residual (deflated) X matrix for each PLS dimension h =

1...H. Note that problem (1) is equivalent to solve: max cov(&,wp).

Many PLS variants exist depending on the way the matrix Y is deflated.
There exists either a symmetric way (“PLS-mode A”) or an asymmetric way
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(“PLS2”) (Tenenhaus, 1998; Wegelin, 2000)) to deflate Y and the models con-
sequently differ. In this study we will focus on a regression framework, that
is, an asymmetric deflation of Y.

In the case of a regression mode, the models of X- and Y-spaces are re-
spectively (Hoskuldsson, 1988):

X =Z2CT + ¢, Y =ZD" 4+ 65 = XB + ¢, (2)

where = (n x H) is the matrix of PLS components &, and B (p x H) is the
matrix of regression coefficients. The column vectors of C and D are defined
as ¢, = X 1&,/(&,6) and dy, = Y,E 1€,/(&,€). The matrices €1 (n x p) and
g9 (n X q) are the residual matrices and h =1... H.

Other PLS alternatives exist depending on whether X and Y are sepa-
rately or directly deflated. The latter case uses the cross product M = X7V
and the SVD decomposition of M. We will discuss these approaches in sec-
tions 1.2 and 1.4. Note that in any case, all PLS variants are equivalent when
computing the first dimension of the PLS.

1.2 SVD decomposition and PLS-SVD

We recall the SVD decomposition and the principle of the PLS-SVD approach
for a better understanding of our sparse PLS approach.

1.2.1 Singular value decomposition

Any real r-rank M (p x ¢) matrix can be decomposed into three matrices
U, A,V as follows:
M =UAVT,

where U(p xr) and V(g xr) are orthonormal and A(r X r) is a diagonal matrix
whose diagonal elements ¢, (k = 1...7) are called the singular values. The
singular values are equal to the square root eigenvalues of the matrices MT M
and MM?. One interesting property that will be useful in our sparse PLS
approach is the fact that the column vectors of U and V, noted (uy,...,u,)
and (v1,...,v,) (resp. called left and right singular vectors) exactly correspond
to the PLS loadings of X and Y if M = XTY.

1.2.2 PLS-SVD

In PLS-SVD, the SVD decomposition of M = X'V is performed only once.
For each dimension h, M is directly deflated by its rank-one approxima-
tion (Mp, = Mp_1 — dpupvy). This computationally attractive approach may

4
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however lead to non mutually orthogonal latent variables, in contrast with
the properties of PLS2 (£.&, = 0,7 < s) or PLS-mode A (£, = 0 and
wiw, = 0,1 < 5).

1.3 Lasso penalization

Shen and Huang (2008) proposed a sparse PCA approach using the SVD
decomposition of X = UAVT by penalizing the PCA loading vector v for
each PCA dimension h = 1... H. The optimization problem to solve is

min || X — u'||5 + Py(v), (3)

where || X —w'[|7 = Y30, D70 (2 — wiv;)? and Py(v) = 30 pa(lvy]) is a
penalty function.
Solving (3) is performed in an iterative way, as described below:

e Decompose X = UAVT, Xy =X
e For hin 1..H:

1. Set voiq = Opvy, Uoia = U}, Where v} and v} are unit vectors

2. Until convergence of e, and vy,eq:
(a) Unew = gA(XhT—luold)
(b) Unew = XTUnew/Hij;—WnewH
(C) Uold = Unew; Vold = VUnew

3. Unew = Unew/anewH

4. Xh - Xh—l - 6hunewvl

new

where gx(y) = sign(y)(|y| — A)+ is the soft-thresholding function. Other func-
tions were proposed by the authors, such as the hard thresholding function
(Donoho and Johnstone, 1994), which was not considered in this study (see sec-
tion 4). In our particular PLS case, we are interested in penalizing both loading
vectors uy, and v, to perform variable selection in both data sets, h=1... H.
Indeed, one interesting property of PLS is the direct interpretability of the
loading vectors as a measure of the relative importance of the variables in the
model (Wold et al., 2004). Our optimization problem becomes:

min M — urf| [} + Py, (u) + Py, (v), (4)
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which is iteratively solved in the above algorithm by replacing X by M and
the steps 2.a. and 2.b. by:

Unew = g\ (M}zjflu()ld)

Unew = Gy (thlvold)v

where gy, (y) = sign(y)(lyl — A1)+ and g, (y) = sign(y)(|y| — A2)+ are the
soft-thresholding functions. The sparse PLS algorithm is described in detail

in next the section.

1.4 Sparse PLS

It is easy to understand that during the deflation step of the PLS-SVD,
M, # X!Y,. This is why we propose to separately compute X} and Y},
then to decompose M, = X Ty} at each step, and finally to extract the first
pair of singular vectors. As Hoskuldsson (1988) explains, taking one pair of
loadings (up, vy) at a time will lead to a biggest reduction of the total variation
in the X and Y-spaces. In our approach, the SVD decomposition will provide
a useful tool for selecting variables from each data set.

We now detail the sparse PLS algorithm (sPLS) based on the iterative
PLS algorithm (see Tenenhaus 1998) and SVD computation of M), for each
dimension.

1. Xo=X Yo=Y
2. For hin 1..H:
(a) Set Mh,1 = X]ZW_1Yh71

(b) Decompose M n—1 and extract the first pair of singular vectors u,q = up
and vyq = vy
(c¢) Until convergence of e, and vpeq:

1. Unpew = g)\2<Mh71'Uold)7 NOrm Unew
11. Unew = 9x (M}ziluold)u NOIrMm Upew
111 Uold = Unewy Vold = Unew
<d> fh = thlunew/u;wwunew
Wp = Yhflvnew/vgewvnew
(e) cn = X,_16n/En
dp =Y,E & /Ewn
en =YL jwp /whwh
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(f) Xy = Xp_1 — &ney,
(g) Y, =Y,y — &4,

Note that in the case where there is no sparsity constraint (A\; = Ay = 0)
this approach is reduced to a classical PLS.

1.5 Missing data

When dealing with biological data, it is very common to be confronted with
missing data. In order not to lose too much information, an interesting ap-
proach for substituting each missing data with a value could be provided by
the Non LInear Estimation by Iterative Partial Least Squares (NIPALS, Wold
1966). This method has been at the origin of PLS and allows performing PCA
with missing data on each data set. Details of the algorithm can be found
in Tenenhaus (1998). Several studies show that the convergence of NIPALS
and its good estimation are limited by the number of missing values (20-30%
of the whole data set), see for example Dray et al. (2003). NIPALS is now
implemented in the ade4 package (Thioulouse et al., 1997).

1.6 Tuning criteria and evaluation
1.6.1 Lasso penalization

There are two ways of tuning the two penalization parameters A and A} for
each PLS dimension, i.e choosing the degree of sparsity of each loading vector.
The first and rather straightforward way is to use k-fold cross validation or
leave-one-out cross validation and compute the prediction error (“RMSEP”
see section 1.6.3) in order to choose the optimal sparse loading vectors.
When the number of samples is small, the estimated prediction error
might be biased and the optimal degree of sparsity can not be computed. In
this particular case, it is advisable to arbitrarily choose the number of non
zero components in each loading vector uy, v, or in both, for each dimension
h. This tuning option is adequate for our application on biological data sets,
as many omics data are still unknown (e.g associated functions, annotations).
Variable selections that are limited in size may thus not allow for correct
assessment of the results by biologists. In this paper, we therefore focused
on the latter approach when analyzing biological data sets. This approach
was also proposed by Zou and Hastie (2005) in their R package elasticnet
for their sparse PCA and by Shen and Huang (2008). The first approach is
advised when n is large enough (e.g n > 100). However, we used this approach
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in the simulation study in section 2.1.2.
In our framework, different sparsity degrees can be chosen for both loading
vectors and for each dimension.

1.6.2 Choice of the PLS dimension

Marginal contribution of the latent variable &,. In the case of a re-
gression context, Tenenhaus (1998) proposed to compute a criteria called Q%
that measures the marginal contribution of &, to the predictive power of the
PLS model by performing cross validation computations. As the number of
samples n is usually small in this case, we prefer to use leave-one-out cross
validation. Q% is computed for all Y variables and is defined as

Y0, PRESS),
> i1 BSSkn-1y’

where PRESS) = > (yF — g;gH))? is the PRediction Error Sum of Squares
and RSSF = S"" (yF — 9F.)? is the Residual Sum of Squares for the variable
k and the PLS dimension h.

We define the estimated matrix of regression coefficients B of B, using
the same notation as in equation (2): B = U*DT where U* = U(CTU)™" (see
De Jong and Ter Braak 1994; Tenenhaus 1998) and where the column vectors
of U are the loading vectors (uq,...,up), h = 1...H. For any sample i, we
can predict §F, = thBZ(_i).

This criteria is the one adopted in the SIMCA-P software (developed by
S. Wold and Umetri 1996). The rule to decide if &, contributes significantly
to the prediction is if

Q=1

Q> > (1 —0.95%) = 0.0975.

However, the choice of the PLS dimension still remains an open ques-
tion that has been mentioned by several authors (see Mevik and Wehrens
2007; Boulesteix 2004). In our particular biological context, we can show that
graphical representations of the samples facilitate this choice as the plots of
(&n,&na1) and (wp,wpy1) do not have a biological meaning if A is too large.
In fact, our results (see below) show that all relevant information in terms
of identification of the measured biological effects can be extracted from 3
dimensions.
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1.6.3 Evaluation

RMSEP For a regression context, Mevik and Wehrens (2007), Boulesteix
(2004) in the R pls and plsgenomics packages proposed to compute the Root
Mean Squared Error Prediction criterion (RMSEP) with cross validation in
order to choose the H parameter. As we already suggested the use of the Q7
criterion for this issue, we suggest that the RMSEP criterion is used instead
as a way of evaluating the predictive power of each Y variable between the
original non penalized PLS and the sPLS in the next section.

Note that the Q% criteria is closely related to the RMSEP (= v/ PRESS};)
and gives a more general insight of the PLS, whereas the RMSEP needs to be
computed for each variable k in Y.

2 Validation studies

The evaluation of any statistical approach is usually performed with simulated
data sets. In the context of biological data, however, simulation is a difficult
exercise as one has to take into account technical effects that are not easily
identifiable even on real data sets. We first propose to simulate as realistically
as possible two-block data sets in a regression framework, to answer the follow-
ing questions: does the sparse PLS select relevant variables? Does the variable
selection simultaneously performed on both data sets improve the predictive
ability of the model, compared to the PLS which includes all variables in the
model? Once these questions are answered, the next step is to show that our
approach is applicable on biological data sets with various complexities, and
that our approach may give potentially relevant results from a statistical point
of view compared to PLS. Finally, in the next section, we provide a detailed
biological interpretation for one of the data sets, and show that the sparse PLS
provides better answers to key biological questions compared to the PLS.

2.1 Simulation study
2.1.1 Simulation design

As proposed by Chun and Keles (2007), this simulation is designed to compare
the prediction performance of the PLS and the sPLS in the case where the
relevant variables are not governed by a latent variable model. In this setting,
we also added two cross conditions to add complexity to this setting. We set
p = 5000 genes, g = 50 response variables and n = 40 samples, all with base
error model being Gaussian with unit variance. We defined the mean vectors
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i1 and po as follows and divided the samples into consecutive blocks of 10,
denoted by the sets (a, b, ¢, d), where

[ =2 ificaub
M1 =9 19 otherwise.

o —15 ificaUc
M2 =9 115 otherwise.

For the first 20 genes, we generated 20 columns of X from a multivariate normal
with an AR(1) covariance matrix with auto correlation p = 0.9. These genes
will get a strong Y response, but should not be of interest in the model. The
next 40 genes have the mean structure p; or ps:

Tij = i +ey, J=21...40, ¢+=1...n
Tij = Mo + €5, Jj=41...60, i=1...n.

The next genes have the mean structure U,,, and are generated by X; = U,,+¢;,
m=1...4, with

U= —15+151,<04, 1<i<n, 61<j<80,
Upy= +1.5—-151,,<07, 1<i<mn, 81<7<100,
Us; = =2+ 2My,,<03, 1<i<n, 101 <7 <120,
Uy = +2 =21y, <03, 1<i<n, 121 <75 <140,

where u;; ~ U(0, 1) and ¢; are i.i.d random vectors from N (0, 1,,). In all cases,
ei; ~ N(0,1), which is also how the remaining 4860 genes are defined.
The response variables Y;; follow Y, = X1 + e, k =1...10, with

10 if 1< j < 20,
By =< 8 if21<j <40,
4 if21<j<p,

and Y, = X[ + e, k= 11...20 with

10 if 1< j < 20,
By =14 4 if 21 < j <40,
8 if21<j<p,

and Yy, ~ e, for k = 21...50 with e, ~ N (0,1,,).

In this simulation setting, the tested methods should highlight the genes
Xj, j = 11...40 and the response variables Y, k = 1...30, which are related
either to a p; or a us effect.

10
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Table 1: Average RMSEP (standard error) for each PLS dimension for 50
simulated data sets, with leave-one-out cross validation. For the sPLS, 30
response variables were selected on each dimension.

sPLS sPLS sPLS sPLS

PL3 20 genes 40 genes 60 genes 100 genes

dim 1 | 0.926 (0.009) | 0.839 (0.046) | 0.731 (0.038) | 0.677 (0.030) | 0.671 (0.019)
dim 2 | 0.922 (0.009) | 0.558 (0.021) | 0.564 (0.020) | 0.585 (0.027) | 0.611 (0.027)
dim 3 | 0.921 (0.008) | 0.557 (0.002) | 0.566 (0.022) | 0.582 (0.0243) | 0.579 (0.071)

2.1.2 Prediction performance

X and Y were simulated 50 times and we performed leave-one-out cross val-
idation on each data set. For sparse PLS, we arbitrarily chose to select 30
response variables for each dimension h, h = 1...3 and let the number of
selected genes vary. For PLS, no penalization was applied, so that all Y vari-
ables were modelled with respect to the whole X data set for each simulation
run.

The RMSEP for each response variable, each test set and each dimen-
sion was computed and averaged in Table 1. These results show that sPLS
improves the predictive ability of the model compared to the PLS. After di-
mension H = 2, neither sPLS nor PLS get a significant decrease in the average
RMSEP. This is in agreement with our simulation design, in which only two
latent effects, u; and g9, are included. The next section shows that these
effects are indeed highlighted by PLS and sPLS in the first 2 dimensions. Fur-
thermore, if one had to choose the optimal number of genes to select, the best
solution would be to select between 20 and 40 genes on the first 2 dimensions,
as the lowest average RMSEP is obtained for dimension 2. This is in agreement
with the simulation design.

2.1.3 Variable selection

In this part, we compare the loading vectors (u1, ug, u3) and (v, v, v3) in PLS
and sPLS (for example here when 50 genes and 30 response variables are se-
lected) in one simulation run (results were similar for the other runs). Figure
1 shows that both PLS and sPLS highlight the “good” genes, but with no
clear distinction between the group of genes with a py or a ps effect for PLS
in dimension 1 or 2. On the contrary, sPLS clearly selects the u; effect genes
on dimension 2 with heavy weights. This may be useful for the biologists who

11
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PLS X variables sPLS X variables
dim1 dim1
|
20 4 60 80 100 20 0 60 80 100
dim2 dim2
0 0
3 7 g G & 1w i) 0 iy G & 10
dim 3 dim3
5 7 7y G ) m ) P T & ) m
PLS Y variables sPLS Y variables
dim1 dim1
8 ) by D 7y 50 i) i) ) ) i i)
dim2 dim 2
‘H\‘\\MH\M ‘H\‘\\MH\M
0 10 20 30 40 50 0 10 20 3 40 50
dim3 dim3
3 i) Py £ i i i) i 7 gl iy G

Figure 1: Absolute variable weights in the loading vectors of the PLS (left)
or the sparse PLS (right, selection of 50 genes and 30 response variables) for
the first 100 X variables (top) and all the Y variables (bottom) for the first
three dimensions. The weights of all the X variables can be found in the
supplementary material. Red (green) color stands for the variables related to
the g (ue) effect.

12



Table 2: Description of the data sets.

LéCaoetal.: Sparse PLS

Liver Toxicity Arabidopsis | Wine Yeast
# samples n 64 18 43
X gene expressions | transcripts | transcripts
P 3116 22 810 3381
Missing values | 2 0 0
Y clinical variables | metabolites | metabolites
q 10 137 22
Missing values | 0 22 0

want to clearly separate the genes related to each effect on a different dimen-
sion. For both methods, the dimension 3 did not seem to be informative. The
same conclusion can be drawn for the Y variables.

If an artificial two-step selection procedure was performed in PLS, first
by ordering the absolute values of the loadings and then by selecting a chosen
number of variables to select 50 genes and 30 response variables for the first
three dimensions, the two selections in PLS and sPLS would roughly be the
same (identical for dimension 1, up to 5 different selected variables in dimen-
sion 2 and 3). This shows that sPLS simply seems to shrink the PLS loading
coefficients in this simple controlled setting. However, on real data sets (see
below), the difference between the two methods is genuine in terms of variable
selection.

2.2 Case studies
2.2.1 Data sets

Liver toxicity study In the liver toxicity study (Heinloth et al., 2004), 4
male rats of the inbred strain Fisher 344 were exposed to non-toxic (50 or
150 mg/kg), moderately toxic (1500 mg/kg) or severely toxic (2000 mg/kg)
doses of acetaminophen (paracetamol) in a controlled experiment. Necrop-
sies were performed at 6, 18, 24 and 48 hours after exposure and the mRNA
from the liver was extracted. Ten clinical chemistry measurements of vari-
ables containing markers for liver injury are available for each object and the
serum enzymes levels can be measured numerically. The expression data are
arranged in a matrix X of n = 64 objects and p = 3116 expression levels after
normalization and pre-processing (Bushel et al., 2007). There are 2 missing

13



Satistical Applicationsin Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 35

values in the gene expression matrix.

In the original descriptive study, the authors claim that the clinical vari-
ables might not help in detecting the paracetamol toxicity in the liver, but that
the gene expression information could be an alternative solution. However, in
a PLS framework, it is tempting to predict the clinical parameters (Y) by the
gene expression matrix (X), as performed in Gidskehaug et al. (2007).

Arabidopsis data The responses of 22810 transcript levels and 137 metabo-
lites and enzymes (including 67 unidentified metabolites) during the diurnal
cycle (6) and an extended dark treatment (6) in WT Arabidopsis, and dur-
ing the diurnal cycle (6) in starch less pgm mutants, is studied (Gibon et al.,
2006). The aim is to detect the changes in enzyme activities by integrating the
changes in transcript levels and detecting the correlation between the different
time points and the three genotypes.

According to this previous study, metabolites and enzymes are regulated
by gene expression rather than vice versa. We hence assigned the transcript
levels to the X matrix and the metabolites to the Y matrix. The Y data set
contained 22 missing values. This data set is characterized by a very small
number of samples (18).

Wine yeast data Saccharomyces cerevisiae is an important component of
the wine fermentation process and determines various attributes of the final
product. One such attribute that is important from an industrial wine-making
perspective is the production of volatile aroma compounds such as higher al-
cohols and their corresponding esters (Nykanen and Nykanen, 1977; Dickinson
et al., 2003). The pathways for the production of these compounds are not
clearly delineated and much remains unknown regarding the roles and kinetics
of specific enzymes. In addition, most of the key reactions in the various path-
ways are reversible and the enzymes involved are fairly promiscuous regarding
substrate specificity (Bely et al., 1990; Ribéreau-Gayon et al., 2000). In fact,
different yeast strains produce wines with highly divergent aroma profiles. The
underlying genetic and regulatory mechanisms responsible for these differences
are largely unknown due to the complex network structure of aroma-producing
reactions. As such an unbiased, holistic systems biology approach is a pow-
erful tool to mine and interpret gene expression data in the context of aroma
compound production.

In this study, five different industrial wine yeast strains (VIN13, EC1118,
BM45, 285, DV10) were used in fermentation with synthetic must, in du-
plicate or triplicate (biological repeats). Samples were taken for microarray
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analysis at three key time points during fermentation, namely Day2 (exponen-
tial growth phase), Dayb (early stationary phase) and Day14 (later stationary
phase). Exometabolites (aroma compounds) were also analyzed at the same
time by GC-FID.

Microarray analysis was carried out using the Affymetrix platform, and all
normalizations and processing was performed according to standard Affymetrix
procedures. To compensate for the bias towards cell-cycle related genes in the
transcriptomic data set, the data was pre-processed to remove genes that are
exclusively involved in cell cycle, cell fate, protein bio synthesis and ribosome
bio genesis, leaving a set of 3391 genes for a regression framework analysis,
with no missing data, and n = 43 samples.

2.2.2 Comparisons with PLS

Comparisons with PLS will be performed on the basis of the criteria that were
defined in section 1.6: Q3?, predictive power assessment of the model as well
as insight into the variable selection and stability in the variable selections.
As the main objective of this paper is to show the feasibility of the sparse
approach, the three data sets will be used as illustrative examples to compare
PLS and sPLS.

In this regression framework, some of the data sets are characterized by a
very small number of response variables (Liver Toxicity: ¢ = 10, Wine Yeast
g = 22). In these cases, we did not deem it relevant to perform selection on
the Y variables, and hence A\ = 0. In the Arabidopsis data set, the selection
was simultaneously performed on the X and Y data sets, as initially proposed
by our approach.

Each input matrix was centered to column mean zero, and scaled to unit
variance so as to avoid any dominance of one of the two data sets. Missing
values were imputed with the NIPALS algorithm.

Q?. We compare the Q7 value with the PLS model including all variables,
and the proposed sPLS model with different sparsity degrees on each dimen-
sion: selection of 50 or 150 X variables on Liver Toxicity and Wine Yeast,
selection of 50 or 150 X variables coupled with the selection of 50 or 80 Y
variables in Arabidopsis. The choice of the selection size was arbitrarily chosen
and leave-one-out cross validation was applied for all data sets. The marginal
contribution of &, for each PLS/sPLS component was computed for each di-
mension. Figure 2 shows that the values of Q% behave differently, depending
on the data set and on the PLS/sPLS approach.
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Figure 2: Marginal contribution (Q%) of the latent variable &, for each compo-
nent in PLS and sPLS and different sparsity degrees for Liver Toxicity Study
(a), Wine Yeast (b) and Arabidopsis (c). The horizontal black line indicates
the threshold value of Q3.
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Figure 3: Liver Toxicity study: RMSEP for each clinical variable with PLS
(plain line) and sPLS (dashed) for each dimension h, h = 1...3. Clinical
variables are ranked according to their loadings in dimension 2.

In Liver Toxicity and Wine Yeast (a) (b), PLS needs one less compo-
nent than sPLS: 1 (2) PLS dimensions for Liver Toxicity (Wine Yeast). As
already observed in section 2.1.3, sPLS would need one more dimension to
fully separate the different biological effects and select the X and Y variables
according to each of these effects.

In Liver Toxicity, Q3 increases and becomes superior to the threshold
value 0.0975. On the other hand, the Q7 values in any sPLS steadily decrease
with h.

In Arabidopsis (c) which is characterized by many X variables and where
a simultaneous variable selection is performed on the Y data set, the Q3 val-
ues differ depending on the number of variables that are selected on both data
sets. However, for both methods and all sparsity degrees, the choice of H = 3
seems sufficient.
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Table 3: Stability: ratio of the true positive variables selected in the original
data sets and the bootstrap data sets over the size of each selection (100).

Liver toxicity Arabidopsis Wine Yeast
PLS sPLS PLS sPLS PLS SsPLS
X % X Y
dim 1| 0.735 0.739 | 0.332 0.895 | 0.377 0.893 | 0.596 0.598
dim 2 | 0.457 0.603 | 0.221 0.834 | 0.365 0.838 | 0.622 0.559
dim 3 | 0.354 0.279 | 0.101 0.77 | 0.156 0.78 | 0.52  0.463

Predictive ability. Figure 3 compares the RMSEP for each clinical variable
in the Liver Toxicity study with PLS (no selection) and sPLS (here, selection
of 150 genes). As observed in section 2.1.2; these graphics show that except
for 2 clinical variables, sPLS clearly outperforms PLS. Removing some of the
noisy variables in the X data set improves the prediction of most of the Y
variables. In this figure, the clinical variables are ranked according to the
absolute value of their weights in v,. Hence the Y loadings have a meaning
in terms of variable importance measure, as the less well explained variables
creat.mg.dL and ALP.IU.L get the lowest ranks. A thorough biological inter-
pretation would be needed here to verify if these clinical variables are relevant
in the biological study.

If the clinical variables were ranked according to the next loading vec-
tor vz, then, although the graphics would be unchanged, creat.mg.dL and
ALP.IU.L would get a a higher rank (resp. rank 1 and 8). This result justify
the choice of H = 2 for Liver Toxicity with sPLS. Similar conclusions can be
drawn on the other data sets that include more Y variables.

Stability. On 10 bootstrap samples, we compare the 100 X variables and
100 Y variables (in the case of Arabidopsis) that were selected either with PLS
or sPLS with respect to the same number of variables that were selected on
the original (whole) data sets. Variable selection with PLS was performed in
two steps: first by computing the PLS loading vectors, then by ordering the
absolute values of the loading weights in decreasing order. This is similar to
the simple thresholding approach proposed by Cadima and Jolliffe (1995) for
PCA. The results are summarized in Table 3 and show that except for Wine
Yeast in dimension 2 and 3, the sparse PLS approach seems more stable than
PLS. It is not surprising to find an increased stability when the total number
of variables (p and ¢) is rather small.
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approach) and in sPLS when selecting 100 variables.

Liver toxicity | Arabidopsis | Wine Yeast
X X Y X

dim 1 | 97 56 90 91

dim 2 | 56 45 82 73

dim 3 | 19 72 80 74

Variable selection. Table 4 highlights the actual differences between a se-
lection performed either with PLS (in two steps) or with sPLS for the same
number of variables (100 for each data set, when applicable). As expected,
both selections should be similar in dimension 1, but differ greatly for the other
dimensions. In particular, the selections performed in the X Arabidopsis data
set differ from the very first dimension. This is due to the extremely large
number of X variables (p = 22810), where many of the transcripts get similar
weights in PLS.

2.2.3 Property of the loading vectors.

When applying sparse methods, the loading vectors may lose their prop-
erty of orthogonality and uncorrelation, as it was observed with sparse PCA
(Trendafilov and Jolliffe, 2006; Shen and Huang, 2008). This is not the case
with sPLS. In the original PLS, no constraint is set to have wws, =0, r < s.
Hence, latent variables (wyq,...,wy) from the Y data set are not orthogonal
in PLS or sPLS. To remedy to this in terms of graphical representation of the
samples, we propose to project (wi,...,wy) in an orthogonal basis. For the
latent variables £, however, we always observed that £.¢; = 0 and no projection
is needed for these latent variables.

3 Analysis of the wine yeast data set and bi-
ological interpretation

To begin with we will present some elements for discussion regarding the graph-
ical representation of the latent variables (samples), which facilitate the biolog-

ical interpretation. These preliminary remarks will explain some of the results
that were obtained when we compared the genes selected with PLS (two-step
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Table 5: Comparison of genes selected with PLS (two-step procedure) vs.
sPLS.

PLS \ sPLS
-genes related to general central carbon metabolism
. . . -GDH1: k lat f cellul d
-inclusion of many dubious/suspect ORF's Gl Y reg'ug or ob ce uir redox
dim 1 balance (direct influence on the main
aroma producing reactions)
-identifies “rate-limiting” enzymes in aroma metabolism
-improved coverage of transcriptional
dim 2 pathways
-identifies most important alcohol and aldehydes dehyrogenase genes
-IDH1: key enzyme controlling flux
distribution between aroma producing
dim 3 pathways and TCA cycle
-NDE1: provides energy intermediates for
dehydrogenase reactions

procedure) to the genes selected in the one-step procedure with sPLS. Finally
we show that the sPLS selection gives meaningful insight into the biological
study.

As required by the biologists who performed this experiment, 200 genes
were selected on each dimension.

3.1 Biological samples

Figure 4 highlights several facts that can actually be explained by the bio-
logical experiment. The first component separated samples into time-specific
clusters. This is to be expected as the particular stage of fermentation is the
major source of genetic variation and the main determinant of aroma com-
pound levels. The next most significant source of biological variation is the
identity of the yeast strain. This was corroborated by the second and third
components, where the samples clustered together in biological repeats of the
same strain. Strains that are known to be more similar in terms of their fer-
mentative performance also clustered closely within the time sub-groups(i.e
EC1118 and DV10, and BM45 and 285). The VIN13 strain (which is least
similar to any of the other strains in this study) showed an intermediate dis-
tribution between the latent variable axes.
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Figure 4: Wine Yeast data: graphical representation of the samples for the
latent vectors (&1,&2) (a) and (wq,ws3) (b). Colors red, green and black stand
for fermentation day 2, 5 and 14, VI = VIN13, EC = EC1118, BM = BM45,
28 = 285 and DV = DV10 .
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3.2 Selected variables

Comparisons with PLS Table 5 presents the similarities and main differ-
ences observed between the genes which were selected either with PLS (two-
step procedure) or sPLS. The striking result that we observed was the differ-
ences in the gene selections, especially in dimension 2 and 3. Overall, these
dimensions were found to be more enriched for genes with proved or hypoth-
esized roles in aroma compound production (based on pathway analysis and
functional categorisation) for the sPLS rather than PLS.

Genes selected with sPLS. Figure 5 depicts the “known” or hypothesised
reactions and enzyme activities involved in the reaction network of higher al-
cohol and ester production. Indirect interactions (i.e missing intermediates)
are indicated by dashed lines and standard reactions are indicated by solid
lines. Aroma compounds (red) and other metabolic intermediates (black) are
positioned at the arrow apices. Unknown enzyme activities are represented
by a question mark (?). Gene names coding for the relevant enzymes are rep-
resented in black box format, except for those genes that were identified in
the first (blue), second (purple) and third (green) components of the sPLS.
This figure was constructed using GenMAPP (www.genmapp.org) and is based
on KEGG pathways (www.genome.ad.jp/), in-house modifications based on
available literature and MIPS (Mewes et al., 2000)/SGD (Weng et al., 2003)
functional classifications.

From the figure it is clear that the sPLS outputs provided good cover-
age of key reactions and major branches of the aroma production pathways
(for the areas of metabolism with known reactions and enzymes). The first
component identified mostly genes that are involved in reactions that produce
the key substrates for starting points of the pathways of amino acid degrada-
tion and higher alcohol production. Amino acid metabolism is also a growth
stage-specific factor (linked to fermentative stage), which is supported by the
observations discussed in section 3.1. Most of the crucial “rate limiting” en-
zymes (PDC2; ALD2, ALD3, LEU1) were identified by the second component.
In total, the highest number of relevant genes were identified by the third com-
ponent. Genes in this component were also interesting from the perspective
that they only have putative (but unconfirmed) roles to play in the various
pathways where they are indicated in the figure. Associations between genes
with putative functional designations (based on homology or active site con-
figuration) and aroma compounds in the lesser annotated branches of aroma
compound production provide opportunities for directed research and the for-
mulation of novel hypothesis in these areas.
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Further analysis to be done. An attractive way of representing variables
is to compute the correlation between the original data set (X and Y) and
the latent variables (&,...&y) and (wy,...wq), as it is done with PCA or
CCA. The selected variables are then projected on a correlation circle. This
enable the identification of known and unknown relationships between the X
variables, the Y variables, and more importantly between both types of omics
data. Of course these relationships will then need to be biologically assessed
with further experiments, and will constitute a next step of our proposed
analysis.

4 Conclusion

We have introduced a general computational methodology that modifies PLS,
a well known approach that has proved to be extremely efficient in many data
sets where n << p + ¢. In the sparse version, variable selection is included
with Lasso penalization in order to be more useful and applicable to biological
problems. Validation of the sparse PLS approach has been performed not only
on a simulated data set but also on real data sets and compared with PLS. The
simulation study showed that sPLS selected the relevant variables which were
governed by the known latent effects. Application to real data sets showed
that this built-in variable selection procedure improved the predictive ability
of the model, differed from PLS from dimension 2 onwards and seemed more
stable. Compared to PLS, sPLS seemed to separate each latent biological ef-
fect on a different dimension and accordingly selected the variables governed
by each effect. This result will help biologists to identify relevant variables
linked to each biological condition.

Our proposed algorithm is fast to compute. Like any sparse multivariate
method, sPLS requires the addition of penalization parameters. The tuning of
these two parameters can simply be performed either by estimating the predic-
tion error with cross validation when the number of samples permits it, or by
choosing the variable selection size when n is too small-a useful option for the
biologist. The gain of penalizing, and hence by selecting variables is validated
in a typical biological study aimed at integrating gene expression and metabo-
lites in wine yeast. We provide a thorough biological interpretation and show
that the sPLS results are extremely meaningful for the biologist, compared
to a PLS selection. This preliminary work undoubtedly brings more insights
into the biological study and will suggest further biological experiments to be
performed.

Our sparse PLS was mainly studied from an empirical point of view and
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Figure 6: Supplemental figure: absolute variable weights in the loading vectors
of PLS (left) or sparse PLS (right) for the 5000 X variables for the first three
dimensions. Red (green) color stands for the variables related to the py (u2)
effect.

showed very promising results. Further theoretical justifications are needed
for a deeper understanding of the performance of this approach. As integrat-
ing omics data is an issue that may soon be widely encountered in most high
throughput biological studies, we believe that our sparse PLS will provide an
extremely useful tool for the biologist in need of analyzing two-block data sets.
It indeed provides an easier interpretation of the resulting variable selections.

Remark 1. sPLS can be applied with other thresholding rules, such as the
hard thresholding function. When the latter rule was used (not shown) the
sparse PLS was similar to the PLS applied with a simple thresholding approach
(two-step procedure) and hence did not yield relevant results. Note also that
other penalty functions could be considered, such as Elastic Net (Zou and
Hastie, 2005) or the Bridge penalties (Frank and Friedman, 1993) to extend
this sparse PLS approach.

Remark 2. Another variant in our sparse PLS approach can be considered
in step (g) of the proposed algorithm in section 1.4 by deflating the Y matrix

in a symmetric manner: Y, = Yj,_; —wpe),. In this case, we are in a canonical
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framework and the aim is to model a reciprocal relationship between the two
sets of variables. The lack of statistical criteria in this setting (as we are not
in a predictive context) would require a thorough biological validation of the
approach, rather than a statistical validation, and will constitute the next step
of our research work.

Availability The code sources of sparse PLS (in R, the Comprehensive R
Archive Network, http://cran.r-project.org/) can be available upon request to
the corresponding author. An R package is currently being implemented.
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