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Abstract. Harmful algal blooms (HABs) are a worldwide problem that have been
increasing in frequency and extent over the past several decades. HABs severely damage
aquatic ecosystems by destroying benthic habitat, reducing invertebrate and fish populations,
and affecting larger species such as dugong that rely on seagrasses for food. Few statistical
models for predicting HAB occurrences have been developed, and in common with most
predictive models in ecology, those that have been developed do not fully account for
uncertainties in parameters and model structure. This makes management decisions based on
these predictions more risky than might be supposed. We used a probit time series model and
Bayesian model averaging (BMA) to predict occurrences of blooms of Lyngbya majuscula, a
toxic cyanophyte, in Deception Bay, Queensland, Australia. We found a suite of useful
predictors for HAB occurrence, with temperature figuring prominently in models with the
majority of posterior support, and a model consisting of the single covariate, average monthly
minimum temperature, showed by far the greatest posterior support. A comparison of
alternative model averaging strategies was made with one strategy using the full posterior
distribution and a simpler approach that utilized the majority of the posterior distribution for
predictions but with vastly fewer models. Both BMA approaches showed excellent predictive
performance with little difference in their predictive capacity. Applications of BMA are still
rare in ecology, particularly in management settings. This study demonstrates the power of
BMA as an important management tool that is capable of high predictive performance while
fully accounting for both parameter and model uncertainty.

Key words: Bayesian model averaging; Deception Bay, Queensland, Australia; harmful algal bloom
(HAB); Lyngbya majuscula; Occam’s window; predictive model; receiver operator characteristic (ROC)
curve; reversible jump Markov chain Monte Carlo (RJMCMC).

INTRODUCTION

Harmful algal blooms (HABs) are a worldwide

problem. These blooms cause substantial damage to

affected ecosystems, increasing turbidity and smothering

aquatic plants, thereby damaging important invertebrate

and fish habitat (Paerl and Huisman 2008). Some species

are toxic, leading to significant human health concerns

(Osborne et al. 2001). There has been a considerable

escalation in both extent and duration of HABs, partic-

ularly in many estuaries and coastal waters over the past

several decades (Anderson et al. 2002).

One species of concern is Lyngbya majuscula, a

nuisance cyanophyte with a worldwide distribution.

Problems with Lyngbya blooms including substantial

adverse ecological, economic, and human health impacts

have been noted in areas as diverse as Florida, Hawaii,

Japan, and Australia (Arthur et al. 2006). In Australia,

Lyngbya blooms can have severe ecological impacts by

smothering and destroying seagrass beds (Dennison et

al. 1999) that act as valuable breeding habitat for fish

and food resources for dugong (Dugong dugon). Impacts

on fish populations cause substantial and ongoing ef-

fects on commercial and recreational fishing in the area.

Lyngbya is toxic to humans, containing chemicals that

cause asthma, dermatitis, and eye irritation (Osborne et

al. 2001).

As with most HABs, managing Lyngbya blooms has

proved to be problematic. It has been recognized that

there are a variety of causative factors for HABs which

may be species and even location dependent (Anderson

et al. 2002). While this suggests that generic solutions for

the management of HABs may be difficult to achieve,

predicting the occurrence of blooms in specific areas

would be of obvious benefit to enable the development

and implementation of appropriate mitigation strate-

gies. Consequently, several studies have used statistical

models to make species and site specific HAB predic-

tions for a variety of species (e.g., Lee et al. 2003, Chau

2005, Muttil and Chau 2006, Lui et al. 2007).

Despite the considerable advantages that predictive

algal bloom models may confer for ecological manage-

ment, it is important to recognize the need to acknowl-

edge uncertainty in any modeling approaches. Models

have a structure, including the parameters that are used

in the model and estimates of the parameters that are
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particular to that structure. If model predictions are

incorrect, for instance because parameter estimates are

wrong, this may prove costly in ecological management

programs. There is an increasing consensus that

uncertainty regarding parameter estimates of ecological

models must be taken into account (Ellison 1996).

Together with parameter uncertainty, however, there

is often also uncertainty regarding the selection of the

models to best explain observed responses (Chatfield

1995, Draper 1995). Typically there are at least several,

and often a large number of models from which to

select. In ecological studies it is still routine to assume

that a single best model choice exists, and to proceed as

though this choice were known to be correct in making

predictions (Draper 1995, Wintle et al. 2003). If the

predictions from alternative plausible models are differ-

ent, there are hazards in relying on a single model. This

may lead to overconfident predictions, making manage-

ment decisions based on these predictions more risky

than might be supposed (Hoeting et al. 1999). Given

that the scale of HAB impacts as well as management

programs may be large scale, this creates a substantial

onus on modelers and managers to ensure that all

sources of uncertainty are adequately accounted for.

The Bayesian paradigm has been recognized as a

useful framework for the effective management of

ecological problems (Ellison 1996, Wade 2000, Dorazio

and Johnson 2003), in part due to acknowledgement of

parameter uncertainty in the posterior distribution.

Bayesian analysis also allows practitioners to sift

through a multitude of possible predictive factors and

relationships to determine which models are the most

plausible given the observed data (Ellison 2004). In a

Bayesian setting, methods for discriminating among

these possible solutions to find a ‘‘best’’ model have

included Bayes factors (Kass and Raftery 1995), the

Bayesian Information Criterion (Schwarz 1978) and the

Deviance Information Criterion (Spiegelhalter et al.

2002).

Rather than ignoring model uncertainty in the search

for a ‘‘best’’ model, a more satisfactory solution is to use

Bayesian model averaging (BMA) techniques, where an

average model is constructed by the combination of

individual models weighted by their degree of plausibil-

ity (Raftery et al. 1997, Hoeting et al. 1999, Wintle et al.

2003). By averaging over many different competing

models BMA incorporates model uncertainty into

conclusions about parameters and prediction. While

BMA can be achieved via a number of techniques,

reversible jumpMarkov chain Monte Carlo (RJMCMC;

Green 1995) is an efficient algorithm that allows for the

simultaneous estimation of parameter values and model

structure, together with estimates of plausibility that can

be applied to individual models (Link and Barker 2006).

This obviates the need for a separate model selection

step. Although BMA is now a standard statistical

technique, it is still rarely used in ecological studies

(Ellison 2004, King et al. 2006), with use in management

virtually unknown (although see Thomson et al. [2007]

for the use of BMA to predict bird species distributions).

There are a spectrum methods that have been

employed for BMA depending on the intent of the

modeling (ranging from explanation to prediction), and

the size of the available data set. For example, Stow et

al. (2004) used Bayes factors to weight and average over

a small number of previously published mechanistic

models in order to predict declines in fish tissue PCB

concentrations, and to gain insight into the mechanism

by which this might be occurring (see also Qian et al.

[2004] for another example). Alternatively, ‘‘data min-

ing’’ approaches (e.g., Smith and Kohn 1996) can be

used for predictive modeling when large amounts of

data are available and explanations of ecological process

are of less interest. Often, however, modelers and

managers are faced with an intermediate situation in

which data are limited, and some knowledge of the

ecological processes involved is available, but the

extensive prior knowledge needed to construct plausible

mechanistic models is lacking. We propose here a

method by which the careful selection of ecologically

relevant variables and the use of BMA leads to the

capacity for robust predictions while giving some insight

into mechanisms of the ecological process under

consideration.

In the current study, we demonstrate the utility of

BMA in predicting occurrences of HABs while fully

accounting for both parameter and model uncertainty.

As a specific example, we focus on Lyngbya majuscula

blooms in Deception Bay, a small embayment near

Brisbane, Australia. We consider both the predictive

capacity of the approach and the ecological significance

of the models identified. We also compare the predictive

capacities of alternative model averaging strategies,

using both the full posterior distribution and a simpler

strategy in which many fewer models are used to predict

bloom occurrences.

METHODS

Lyngbya bloom data.—Lyngbya occurrence data were

accessed from the Queensland Environmental Protec-

tion Agency website (EPA 2007) for the period January

2000 to May 2007. These monthly observations were

supplemented with data from a Lyngbya bloom in 2000

(Watkinson et al. 2005), providing a total of 77

observations.

Covariate data and selection.—Algal blooms are

complex phenomena, and there has been considerable

research into the causes of Lyngbya blooms in Decep-

tion Bay. These studies range from an investigation of

the effects of iron on Lyngbya blooms using a process

model (Arquitt and Johnstone 2003) to various obser-

vational (Albert et al. 2005, Watkinson et al. 2005,

Arthur et al. 2006) and experimental (Watkinson et al.

2005, Ahern et al. 2006a, b, 2007) studies. As with many

complex problems, the knowledge and data gained from
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these studies had not previously been consolidated,

making statistical analysis difficult.

One difficulty with predictive modeling can be the

inclusion of candidate models that have high predictive

value but little biological meaning, and are thus difficult

to interpret. In order to select appropriate covariates for

this study we made use of the results from a previous

Bayesian net (BN) modeling study. In this study, the BN

model structure was created using the expert opinion of

a scientific reference group, and data, process models

and expert opinion were synthesized to populate the

model (Hamilton et al. 2007). This modeling highlighted

the importance of environmental factors in driving the

first stages of Lyngbya blooms (Hamilton et al. 2005).

Both light and temperature were environmental vari-

ables were found to be influential on Lyngbya blooms in

the BN analysis.

While water temperature was used as a variable in the

BN analysis, water temperature data were not available

at the temporal frequency and for the extent of the

Lyngbya bloom data in the current study. Air temper-

ature forms a good proxy for water temperature since

there is typically only approximately a one degree

difference between air and water temperatures. In their

intensive study of a single Lyngbya bloom in Deception

Bay, Watkinson et al. (2005) measured average daily

temperature. Given that the observed data set in the

current study was longer than the Watkinson et al.

(2005) study, but with coarser temporal resolution, we

rather considered average monthly minimum (min-

Temp) and average monthly maximum temperatures

(maxTemp).

We accounted for the BN variable Light using two

covariates in the current model. To account for incipient

radiation we took total daily solar exposure and

calculated a monthly average (solex). We also included

a covariate to account for the amount of sky that was

not covered by cloud (clearSky). Using daily cloud cover

measured in octets at 09:00, 12:00, and 15:00 hours, we

calculated the amount of sky not covered by cloud at

each time period, summed these across each day, and

calculated a monthly average.

In the BN analysis, the amount of nutrients available

in the water column was also found to be influential on

the Lyngbya bloom node. Thus although the concentra-

tion of available nutrients would ideally be the next

candidate according to the BN analysis, there are no

appropriate data for dissolved nutrients in Deception

Bay that cover the observational period modeled.

Rainfall substantially influenced available nutrients in

the BN analysis, however (Hamilton et al. 2007). There

was also a strong belief in the scientific expert reference

group that rainfall promotes the flow of nutrients into

Deception Bay and thus is closely linked to bloom

initiation. To test the hypothesis that rain influences

Lyngbya occurrences, total monthly rainfall (rain) was

also included as a candidate variable.

In addition to analyzing the series of Lyngbya bloom

data with covariate data in the same temporal frame, we

consider the possibility of a time lag in the influence of

environmental covariates on Lyngbya bloom occur-

rence. There was a firm belief within the expert group

that environmental factors in the period preceding a

Lyngbya bloom strongly influence the probability of that

bloom occurring. To examine this hypothesis we include

as covariates one-month time lags on clearSky, rain,

solex, minTemp, and maxTemp. While we are unaware

of any ecological evidence to suggest a one month time

lag is reasonable, we have used this as a pragmatic

consideration due to the temporal scale of available

data. Note that, while there were 77 data points for each

environmental variable, introducing one-month lag

terms in the model reduces the number of bloom

observations available for modeling from 77 to 76. We

also consider the possibility that covariates do not act in

isolation to influence Lyngbya occurrences, but that

interactions between covariates may have a major effect.

We therefore also include a range of interaction terms.

The saturated model included 17 terms, as 10 main

effects and seven interactions (minTemp 3 lag1Rain,

maxTemp 3 lag1Rain, lag1ClearSky 3 minTemp,

lag1ClearSky 3 maxTemp, Solex 3 ClearSky, lag1Solex

3 minTemp, lag1Solex 3 maxTemp).

All covariate data were sourced from the Bureau of

Meteorology. Monthly rainfall data were obtained for

the area covered by one degree of latitude and one

degree of longitude (1528300 E to 1538300 E and 268300 S

to 278300 S). The area contained within these points

covers the majority of the catchments that supply

Deception Bay. Temperature, solar exposure and

cloudiness data were obtained for Brisbane or Brisbane

airport meteorological stations. These stations had

records of sufficient length and are in close proximity

to Deception Bay. Although most records were com-

plete, 11 solar exposure observations were not available.

Note that, although the previous Bayesian net

modeling provided invaluable insights into the appro-

priate ecological variables to select, the same data sets

were not used in the current study.

Statistical model.—From a statistical modeling per-

spective, each covariate or combination of covariates

which is assessed is viewed as a separate hypothesis or

model. Using a Bayesian approach, the probability of

each model is evaluated in light of the data. While there

are over 130 000 possible combinations of the 17 terms

that were used in this analysis, one advantage of the

RJMCMC algorithm is to evaluate and rank a large

number of models according to their posterior proba-

bility.

The statistical model we employed is a Probit model

with AR(1) dependence. The Zi is the indicator of

presence of a Lyngbya bloom at time i:

Zi ¼
0 Yi , 0

1 Yi � 0:

�
ð1Þ
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In the model, a bloom occurs if the latent variable Yi

is zero or greater, otherwise an outbreak will not occur.

This latent variable can be thought of as measure of the

fitness of the environment for the spread of Lyngbya.

The latent variable has two components. The first

component (x) is a deterministic contribution from the

K measured explanatory variables (covariates) while the

second component (e) is residual stochastic variation:

Yi ¼ xibþ ei ð2Þ

where xi is a K-component vector for the ith observation

and b is a (K þ 1) vector of regression coefficients

including an intercept term.

Given the nature of Lyngbya blooms (i.e., the

possibility that blooms last for more than one reporting

period, and therefore observations are not independent),

possible time-series dependence is captured by modeling

the random component as a stationary autoregressive

AR(1) process:

ei ¼ qei�1 þ n ð3Þ

niid
i ; N ð0; 1� q2Þ: ð4Þ

The variance of the time series is constrained to be 1 for

all values of q so that the scale of b is not affected by q.
See Weir and Pettitt (2000) for a similar model in a

spatial context. The prior for q was chosen to be

uniform (�1, 1). The prior for b was chosen to be

multivariate normal with mean zero and covariance

matrix K¼ c3 I where I is the identity matrix. Selecting

a value of c that approaches zero indicates very strong

prior information that the coefficients should be close to

zero. Conversely, as c approaches ‘, the prior is very

uninformative. In our analysis, we selected c¼ 10, which

seemed appropriate given the scaling of the covariates

and the stochastic component e in Eq. 2 is restricted to

have a variance of 1. The choice of c affects the possible

size of regression coefficients, with larger values of c

allowing for a greater possibility of larger regression

coefficients. For example, selection values of c greater

than 10 would indicate a prior belief that the occurrence

of a HAB can be very accurately predicted based solely

on covariate information. We did not believe this to be

the case, particularly given that potentially important

covariates (nutrient concentrations) were missing from

the data set. The choice of c ¼ 10 means that, a priori,

each regression coefficient belongs to the interval (�6, 6)
with approximately 94% probability. A uniform prior

U(0, 1, . . . , 17) was placed on K, the number of

variables included in a model. Given that K variables

were included, each of the possible models were treated

as equally probable a priori.

Since the solar exposure series involves missing

observations, it was necessary to generate plausible

values for the missing observations. To this end an

ARIMA (0, 1, 0) model with Gaussian noise was

adopted for this series. The variance of the noise was

described a priori by a conjugate prior, an inverse

gamma (1, 1). Sampling the variance parameter and the

missing values from the posterior distribution is

straightforward using Gibbs sampling.

The RJMCMC algorithm was developed using the R

statistical package (R Development Core Team 2007),

and is available from the authors upon request. The

RJMCMC algorithm was run for 520 000 iterations with

the first 20 000 iterations discarded as burn-in. In each

iteration, the algorithm proposed a perturbation of the

existing model (such as the inclusion or exclusion of a

covariate) and accepted the model with some probabil-

ity. The number of acceptances of any model divided by

the total number of iterations forms the posterior

probability of that model, and denotes the degree of

belief that should be placed in the model given the

current data. These can be used to form model weights

for selected models (Link and Barker 2006).

It would be possible to extend this model to include

basis functions and thus allow for the possibility of non-

linear predictors. Prediction becomes very challenging

when there are many variables and few data, however.

In light of the limited HAB data available for this

system, we have restricted ourselves to a ecologically

relevant variables and a linear modeling space in order

to avoid degrading the predictive performance of the

model. Note, however, that if a standard probit re-

gression with stepwise variable selection was performed,

it would be expected to perform poorly due to an

inability to account for the temporal dependence in the

data.

Comparison of alternative model averaging strate-

gies.—By accounting for model uncertainty BMA

minimizes prediction risk, and has also been shown to

improve model prediction accuracy on average (Hoeting

et al. 1999, Wintle et al. 2003, Link and Barker 2006). A

practical consideration in the use of a BMA strategy is

the potentially large number of competing models in the

posterior distribution (also known as the combined or

averaged model), since for n covariates evaluated by the

RJMCMC algorithm there will be 2n models in the

averaged model. Since in the averaged model individual

models are weighted by their degree of plausibility, it has

been proposed that models that predict the data ‘‘far less

well’’ than the best model could be excluded in a strategy

known as Occam’s window (Madigan and Raftery

1994). We evaluated two alternative strategies: averag-

ing over all sets of predictors in the posterior (‘‘full

BMA’’) and an Occam’s window approach, in which we

averaged over those models that constituted an arbitrary

threshold of 75% of the posterior support.

Posterior predictive checks.—We employed posterior

predictive and calibration checks to ascertain the utility

of each of these approaches as predictors of Lyngbya

occurrences under the current data set. Cross validation

is a method which allows for the estimation of

approximately unbiased prediction error/misclassifica-

tion rates. The procedure involves splitting the original
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data set into training and test sets. The model is then

fitted to the training set and predictions of the data in

the test set are formed using this model. The predictions

are compared to the test set and a summary of the

accuracy is made.

Here we followed a ‘‘leave one out’’ procedure, where

observations were sequentially excluded from the

original data set and predicted using the remaining

training set. Results of each of the cross-validation

procedures were summarized in a receiver operator

characteristic (ROC) curve. ROC curves assess the

predictive power of a model (Fielding and Bell 1997). In

brief, the ROC curve is formed by plotting the empirical

probability of incorrectly predicting occurrence (1 �
specificity) against the empirical probability of correctly

predicting observed occurrences (sensitivity) for all

possible threshold levels. ROC curves are typically

summarized using the AUC (area under the curve)

statistic. An AUC statistic of 0.5 would be expected by

random guessing (i.e., from a classifier with no discrim-

inating power) and an AUC of 1 indicates a perfect

classifier. Values of 0.7–0.9 indicate a useful range, with

values of above 0.9 indicating high accuracy (Swets

1988). For a more detailed explanation of ROC curves

and the AUC statistic in an ecological context see Manel

et al. (2001).

A calibration curve aims to assess the accuracy of

probability statements. A prediction method is said to be

well calibrated if those events which are predicted to

occur with probability p actually occur p 3 100% of the

time (see Dawid [1982] for a discussion of calibration in

a Bayesian setting). Nonetheless, a method can be well

calibrated but give poor predictive accuracy. If the long

run relative frequency of HAB occurrence was calculat-

ed the prediction would be well calibrated. However,

such predictions would not be very useful. The cali-

bration curve in this instance would be a single point on

the diagonal line. On the other hand, the ROC curve

summarizes the accuracy of the prediction. From each

point on the ROC curve we can calculate the misclas-

sification rates for a given choice of threshold. A model

with good predictive accuracy as indicated by a high

AUC can be poorly calibrated since the ROC curve will

not change under monotone transformations of the

prediction variable while the calibration curve will. In

the current study, the prediction of occurrence proba-

bilities from the cross validation procedure in the cali-

bration curve were compared to the actual Lyngbya

occurrence data using a loess smooth (Cleveland and

Devlin 1988).

Forecasting HABs.—To construct the predictive

model in the current study, we have assumed that the

future covariates were known. To assess the capacity for

this method to forecast Lyngbya blooms in Deception

Bay, we used all covariate data up to a chosen period,

and predicted the probability of a Lyngbya bloom for

the following month. We did this for six consecutive

months, commencing from time period 64. That is, we

used all covariate information up until time period 63 to

predict the probability of a bloom for time period 64, all

covariate information up until time period 64 to predict

the probability of a bloom for time period 65, and so on.

We compared these prediction probabilities against

known occurrence or absence of a bloom during this

time period.

RESULTS

890 models were evaluated using the RJMCMC

algorithm. We averaged over this full model set to

assess predictive accuracy in the full BMA strategy. Of

the 890 models, 882 occurred with a low posterior

probability and contributed to the lower 25% tail of the

total posterior mass. These models may contribute little

to the explanatory power of the analysis while adding

considerably to its complexity, and were excluded under

the Occam’s window strategy. Eight models formed the

top 75% of the posterior probability mass (Table 1). All

models in this set included an intercept term a.
Model 1, comprising the single term average monthly

minimum temperature, presented by far the best single

model, accounting for almost half the posterior support

of all models, and approximately seven times the

posterior support of the next best model (Table 1).

The posterior probability of occurrence of Lyngbya as a

TABLE 1. Models accounting for approximately 75% of the posterior support from 500 000
MCMC iterations (a intercept) to predict occurrence of Lyngbya majuscula algal blooms in
Deception Bay, Queensland, Australia.

Model
number Model description

Posterior
support (%)

1 minTemp þ a 48
2 maxTemp þ a 7
3 a 6
4 minTemp 3 lag1Rain þ a 5
5 lag1Rain þ minTemp 3 lag1Rain þ a 4
6 lag1Solex 3 minTemp þ a 2
7 minTemp 3 lag1Rain þ maxTemp 3 lag1Rain þ a 2
8 lag1minTemp þ a 1

Notes: Solex is the monthly average of daily measurements of total daily solar exposure. Air
temperature forms a good proxy for water temperature since there is typically only
approximately a 18C difference between air and water temperatures.
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function of this model is plotted in Fig. 1. The second-

best model had only 7% posterior support (Table 1) and

again consisted of a single temperature variable (average

monthly maximum temperature). In fact, temperature

was a component in seven of the eight models in this

subset.

Posterior predictive checks.—ROC curves for the two

modeling strategies are shown in Fig. 2. Both BMA

strategies showed excellent classification capacity, with

essentially no difference between full BMA (AUC ¼
0.92) and the Occam’s window strategy (AUC ¼ 0.91).

Model calibration for the two strategies are shown in

Fig. 3. For a well-calibrated prediction method, the

smoothed curve should be the line connecting the points

(0, 0) and (1, 1). From these plots, it is apparent that

each of these strategies are well calibrated and so the

predicted probabilities of occurrence have a meaningful

interpretation.

Forecasting HABs.—The results of forecasting Lyng-

bya blooms one month into the future, and comparison

with known blooms at this time period, are presented in

Table 2. Generally, it can be seen that a high predicted

probability of a bloom coincided with an actual bloom

having occurred, and a low predicted probability of a

bloom coincided with no bloom occurring.

DISCUSSION

In this study, we demonstrate BMA as a highly useful

approach to predicting HABs in coastal waters while

accounting for uncertainties in model structure (Table 1)

and parameter estimates (Fig. 1). Additionally, we

demonstrate that unlike automated model selection

techniques that may select parameters with no real

relationship to the dependent variable (Derksen and

Keselman 1992), careful selection of covariates allows

the models identified by BMA to be meaningfully

interpreted in an ecological context.

While accounting for model uncertainty with BMA

has been demonstrated to provide more accurate

predictions than using model selection (Raftery and

Zheng 2003, Thomson et al. 2007), and will thus be a

superior approach in a typical management situation

where the costs of incorrect predictions may be high, the

complexities introduced by considering a large number

of models in the posterior may be considerable. We

demonstrate that in this study there was essentially no

difference in predictive accuracy between the two BMA

strategies. The 882 models comprising the lower 25% of
FIG. 1. Predicted occurrence of algal blooms of Lyngbya

majuscula, a toxic cyanophyte, in relation to air temperature in
Deception Bay, Queensland, Australia. Shown is the probit
curve for the model with the highest posterior support (model
1) with 2.5% and 97.5% credible intervals (dashed lines). This
was constructed by sorting all cases of the highest posterior
probability model and selecting the median probit curve, with
95% credible intervals represented by 2.5 and 97.5 quantile
curves. Air temperature forms a good proxy for water
temperature since the difference is typically ;18C.

FIG. 2. Receiver operating characteristic (ROC) curve for
Lyngbya occurrence predictions using (A) the full posterior
distribution (full Bayesian model averaging, BMA) and (B) the
Occam’s window strategy. The dashed line represents an ROC
curve that could be expected using random guessing.
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the posterior clearly added little predictive power, and in
this study utilizing these models would present a

considerable increase in complexity with no appreciable
gain.
An accurate predictive modeling strategy such as

BMA can form a sound basis for the management of
complex environmental problems in the face of multiple
sources of uncertainty. If the objective of a manager is to

simultaneously minimize the risk of incorrect predic-
tions, maximize predictive accuracy and minimize the
complexity of results, in this study it would appear to be

most advantageous to proceed with an Occam’s window
strategy. However, when the posterior probability of
one model far exceeds that of any other managers may

prefer to trade off the accuracy of BMA against the
simplicity of model selection. It has been argued that a
model selection approach may be justified given

sufficient plausibility for a single model (Burnham and

Anderson 2002); however, this will be unknown until

model uncertainties have been estimated. We suggest

that such choices will depend on the particular problem

at hand, depending among other things on the

plausibility of the single model, any advantages gained

by using a simpler predictive approach and an assess-

ment of the risk and consequences of incorrect

predictions. In employing such an approach managers

should aim for a good trade-off between accurate

prediction, model parsimony and pragmatism. In the

current study, the strength of posterior support for

average minimum monthly temperature could be used to

provide a rough ‘‘rule of thumb’’ indicator for assessing

the probability of Lyngbya blooms. Using model 1

together with predictions of minimum temperature

would provide a simple predictive tool. The Occam’s

window approach we employed in the current study was

to run the RJMCMC algorithm, identify the full

posterior model, and then predict Lyngbya bloom

occurrences based on the top 75% of the posterior mass.

While there was little loss of predictive power in the

current study, the advantage to this approach in the

current study was that it vastly improved the interpret-

ability of the averaged models. It should be noted,

however, that the predictive power of individual models

will decrease as the posterior support for that model

decreases.

As we have demonstrated, it is possible to forecast

Lyngbya blooms in Deception Bay and attain reason-

able prediction probabilities that coincided well with

actual bloom observations (Table 2). For the practical

application of this method to forecasting Lyngbya

blooms in Deception Bay, a number of aspects would

need to be considered however, including the amount of

posterior support used to make predictions (which will

affect the covariate data required) and the accuracy of

available covariate forecasts. For example, if managers

chose to use the full Bayesian model averaging

approach, the same set of covariates as used in the

current study would need to be predicted for future

periods. If the simpler Bayesian model averaging

approach which averaged over those models providing

75% of the posterior support were to be applied, then the

Clear Sky variable would not need to be used. Taking

FIG. 3. Calibration check for the predictive models using a
loess smooth for Lyngbya occurrence predictions: (A) the full
posterior distribution (full BMA) and (B) the Occam’s window
strategy. The dashed lines represent a perfectly calibrated
model.

TABLE 2. Comparison of predicted probabilities of a harmful
algal bloom (HAB) and actual occurrence of a Lyngbya
bloom in Deception Bay, Queensland, Australia (1, bloom
occurred; 0, bloom did not occur) for six consecutive time
periods.

Time
period

Predicted probability
of bloom occurrence

Actual bloom
occurrence

1 0.19 0
2 0.12 0
3 0.07 0
4 0.65 1
5 0.84 1
6 0.9 1
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this further, considering only 60% of the posterior only

need maximum and minimum monthly temperatures

would be required. Note, though, that when considering

an Occam’s window approach, it would be necessary to

recognize that HAB predictions may not be as accurate

as those made using the full posterior model, depending

on how much of the posterior mass is retained for

prediction.

The approach we have outlined here could also be

employed for the prediction of HABs in other regions.

One practical consideration may be that ecological

differences in HAB dynamics might exist in other areas,

and so careful consideration would need to be given to

the candidate variables that were selected.

Although prediction of Lyngbya blooms was the

principle focus of this study, interpretation of the

ecological factors driving blooms will also be important

for ecological management. One potential problem with

BMA, or indeed any predictive strategy, is the inclusion

of candidate models that may have high predictive value

but make little sense ecologically. The selection of

candidate variables is a particularly challenging aspect

of modeling with little guidance available. In the current

study, we have carefully selected covariates that allow

for meaningful ecological interpretation of results.

The results for the Occam’s window strategy show

that there are a suite of useful predictive factors for

Lyngbya blooms in Deception Bay, including average

minimum and maximum monthly temperature, rain in

the month previous to a Lyngbya bloom, solar

irradiance and a number of interactions among these

variables. The most striking result, however, is the

influence of temperature on Lyngbya blooms, with

temperature covariates in seven of the eight most

plausible models. The strong influence of average

minimum monthly temperature on Lyngbya occurrences

is particularly notable, with the strong posterior support

for this model approximately seven times the weighting

of the next most influential model (average maximum

monthly temperature).

The recognition that temperature plays a strong role

in Lyngbya bloom occurrences confirms the work of

Watkinson et al. (2005), who found that average water

temperatures in excess of 248C were important for the

initiation of a Lyngbya bloom in Deception Bay. Other

studies have either noted the importance of water

temperature in promoting algal blooms (Watkinson et

al. 2005, Edwards et al. 2006, Lekve et al. 2006), or

utilized water temperature to model algal blooms (Chen

and Mynett 2004, Oh et al. 2007). Interestingly,

however, we found no other studies to date that have

focused on minimum temperatures as an important

predictor of coastal algal blooms. This is an important

recognition, since it will enable more discriminating

predictions of Lyngbya blooms in Deception Bay based

on meteorological forecasts, and may better inform

other studies.

The usefulness of predictive models can be judged by

their accuracy (Swets 1988). Errors in prediction can be

attributed to ‘‘algorithmic’’ errors, largely imposed by

limitations in the classification method, and ‘‘biotic’’

errors, when not all aspects of an organism’s biology

have been adequately modeled (Fielding and Bell 1997).

While the predictive accuracy of the BMA strategies

employed here is demonstrated by high AUC statistics,

one surprising aspect of this result is the accuracy of

predictions in the absence of dissolved nutrient data. A

number of studies have highlighted the importance of

nutrification in promoting algal blooms, including

recent laboratory and field studies specifically examining

the effects of nutrients on the growth and blooms of

Lyngbya majuscula (Elmetri and Bell 2004, Ahern et al.

2006a, b, 2007). Several of these studies suggest the

longer term importance of reduction in nutrient loads to

Deception Bay. Consequently the capacity for the model

to predict blooms well without the inclusion of long term

dissolved nutrient data is worthy of closer scrutiny.

One explanation for this apparent conflict may be that

a proxy variable adequately accounted for dissolved

nutrients in the model. While rain is believed to influence

dissolved nutrients in Deception Bay, and thus was

included in the modeling, it had relatively poor

predictive ability. Total monthly rainfall in the month

of a Lyngbya bloom had very little posterior support

and was not present in the models comprising the top

75% of the posterior. Rain in the month previous to a

Lyngbya bloom occurred with a low weighting either as

an independent term (model 5) or as part of an

interaction term (models 4, 5, and 7). Together, these

models account for only approximately 11% of the total

plausibility of all models in this model set. This may be

due to nutrient levels within the bay being above some

critical threshold during the time period modeled

therefore allowing blooms to be triggered by solely

environmental factors.

Alternatively, it may be that temporal variations in

dissolved nutrient concentrations do in fact play a

significant role in bloom formation, but have not been

accounted for in the covariates evaluated by the

RJMCMC algorithm. This may account for the

occurrence with some plausibility of model 3 in the

posterior distribution, consisting solely of an intercept

term (Table 1). Much of the predictive power here is due

to the correlation in the error structure of the model.

This allows the intercept-only model to be quite

competitive and its simplified model structure leads to

significant posterior support. A likely explanation for

this is that one or more important covariates possessing

significant temporal correlation (such as dissolved

nutrient concentrations) have not been measured.

Hence, in this model the error term attempts to take

advantage of the correlation in order to act as a

surrogate for the true predictor. Finally, the modeling

may be limited both by the relatively short length of the

time series and by the extent of the covariates.
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Observations under more diverse environmental condi-

tions may assist in understanding the important factors

of Lyngbya blooms.

The severe ecological damage and possible human

health consequences due to HABs demonstrate a

pressing need to implement the best possible modeling

and management strategies for this problem. Unfortu-

nately, this is a common problem in many areas of

ecological management. Although the advantages

Bayesian modeling are being increasingly recognized in

ecology (Ellison 2004), BMA has not seen widespread

use in the management of ecological problems. The

unwillingness to fully recognize structural uncertainties

in applied ecology may be because software for

implementing algorithms such as RJMCMC has only

recently become available, or may relate to a reluctance

to move beyond a ‘‘best model’’ paradigm. The use of

automated model selection procedures in software such

as stepAIC or the DIC function in WINBUGS might

also inadvertently accentuate this pattern (Ellison 2004).

As we have shown here, BMA provides a powerful and

effective framework for the identification of ecologically

interpretable models, and accurate prediction of com-

plex ecological problems.
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