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Abstract. Economic impacts of invasive species worldwide are substantial. Management
strategies have been incorporated in population models to assess the effectiveness of
management for reducing density, with the implicit assumption that economic impact of the
invasive species will also decline. The optimal management effort, however, is that which
minimizes the sum of both the management and impact costs. The relationship between
population density and economic impact (what we call the ‘‘density–impact curve’’) is rarely
examined in a management context and could take several nonlinear forms. Here we
determine the effects of population dynamics and density–impact curves of different shapes on
optimal management effort and discover cases where management is either highly effective or
a waste of resources. When an inaccurate density–impact curve is used, the increase in total
costs due to over- or underinvestment in management can be large. We calculate the increase
in total costs incurred if the density–impact curve is incorrect and find that the greater the
maximum impact caused by an invasive species, the more important it is not only to reduce its
density, but also to know the shape of the density–impact relationship accurately. Lack of
information regarding the relationship between density and economic impact causes the most
acute problems for invaders that cause high impact at low density, where management
typically will be too little, too late. For species that are only problematic at high density,
ignorance of the density–impact curve can lead to overinvestment in management with little
reduction in impact.

Key words: cost of impact; density dependence; invasive species; modeling economic impact of pests and
their control; stochastic dynamic programming; value of information; weed management.

INTRODUCTION

Invasive species have substantial negative environ-

mental and economic impacts worldwide (U.S. Congress

1993, Manchester and Bullock 2000, Sinden et al. 2004).

While studies of population dynamics are necessary to

determine ecologically appropriate strategies for reduc-

ing invader population density (e.g., Buckley et al. 2001,

2007, Taylor and Hastings 2004, Shea et al. 2006), there

are only a few studies in which optimal management

strategies are derived with explicit consideration of the

relationship between ecological or economic impact of

invaders and their population density (Finnoff et al.

2005, Whittle et al. 2007). This makes it unclear how one

management strategy compares with another in relation

to the total costs of both management and impact

(Regan et al. 2006).

Commonly, insufficient information exists to describe

the relationship between density of an invasive popula-

tion and economic impacts (Parker et al. 1999). Where

this has been explored, both linear and nonlinear

relationships between density and cost of impact have

been found (Medd et al. 1985, Bobbink and Willems

1987, Standish et al. 2001, Alvarez and Cushman 2002,

Hester et al. 2006). It is likely that the optimal

management effort for an invasive species that minimiz-

es costs due to management and impact will depend on

the shape of the relationship between density and

economic impact, what we call here the ‘‘density–impact

curve.’’ Management strategies that incorporate this

curve thereby consider the cost–benefit ratio for

reductions in density, however, this has not been well

examined. For example Whittle et al. (2007) assume that

the impact of an invader is proportional to the invaded

area, i.e., that impact of an invader has constant per

capita costs. Finnoff et al. (2005) apply a particular

nonlinear density–impact curve for management of

zebra mussels (Dreissena polymorpha) but do not

examine the dependence of management strategies on

the shape of the density–impact curve.

If the per capita economic impact of an invader is a

function of its population density, the reduction in

impact of removing one individual will depend on the

population density at that time. In Fig. 1 we propose

three basic nonlinear shapes that the density–impact
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curve might take (curves I, II, and IV) and contrast them

with curve III, which shows economic impact as directly

proportional to population density (linear). In curve I

(low-threshold curve), the impact remains high until the

population density becomes very small. In contrast, in

curve IV (high-threshold curve) the impact remains low

and then increases dramatically only when the popula-

tion density becomes very large. Curve II is an S-shaped

curve with the impact rapidly increasing at an interme-

diate population density.

As an example of the low-threshold curve (I), trade

restrictions can be applied to grain crops if a certain

threshold level of weed-seed contaminant is detected

(Davis et al. 1999). Above this threshold the density of

the contaminant is irrelevant for trade purposes and a

significant reduction in impact of the weed can only be

achieved if the density of seed contaminants can be

reduced below the threshold for trade restriction. In this

case a management effort initiated at high population

density would have a negligible effect on the economic

impact, but the same effort close to the threshold could

substantially reduce the economic impact. Seed contam-

ination by wild radish Raphanus raphanistrum (Panetta

et al. 1988) is an example of a species that has a density–

impact curve with a low threshold (see Fig. 1) as even a

low density of the weed results in maximal economic

costs. In contrast, the weed species Paterson’s curse

(Echium plantagineum) is an example of an invasive

species with a high-threshold density–impact curve

(curve IV, see Fig. 1) (Seaman et al. 1989). Paterson’s

curse is toxic to livestock, which avoid the weed at low

density, hence the impact is small until the population

density becomes large. Diverse linear and nonlinear

high- and low-threshold density–impact relationships

have been reported for several species (e.g., Nava-

Camberos et al. 2001, Parsons et al. 2005, Brown et al.

2007). Moreover, the form of the density–impact curve

could even vary within a species between different

habitats, among different stakeholders, or with different

measures of impact (Robinson et al. 2005).

Economic costs of impact could include the loss of

crop or livestock production due to competition or

toxicity (Piggin and Sheppard 1995), loss of markets due

to breaches in trade restrictions caused by product

contamination (Panetta et al. 1988), loss of valued

ecosystem services due to altered ecosystem function and

species loss (D’Antonio and Vitousek 1992, Mack and

D’Antonio 1998), depreciation in land value due to

obligatory control measures or land-use restriction, and

loss of tourism revenue due to iconic native species loss,

restricted access, or loss of aesthetic values (Serbesoff-

King 2003). These are distinct from the costs of

management to reduce population density (and hence

impact) of the invader.

Parker et al. (1999) suggest that insights into

prioritization and management of invasives might be

gained through looking at the feasibility of management

together with impact (see also Thomas and Reid 2007).

Here we develop a theoretical framework to formalize

and extend the concept of managing for reduced impact

by examining how the optimal management effort for an

invasive species varies under both ecological and

economic parameter sets. We determine how the

effectiveness of management depends on the relationship

between the cost of impact and population density of the

invader (density–impact relationship). The optimal

management strategy depends on the management

objective (Yokomizo et al. 2003b, Nicholson and

Possingham 2006). Managers have limited budgets and

need to prioritize allocation of resources. Overinvest-

ment wastes money on management that is unnecessary

or ineffective at reducing impact and underinvestment

wastes money by incurring a cost of impact that

outweighs the saving on management costs. Our

management objective is to minimize the total costs of

the invasive species, including both management and

impact costs.

Environmental fluctuations can lead to larger or

smaller population sizes than those predicted using a

deterministic model, which in turn could lead to under-

or overinvestment in management efforts. We determine

the effect of environmental fluctuation on optimal

management effort using a stochastic mortality function,

an approach similar to that used to calculate optimal

conservation effort levels for an endangered population

in fluctuating environments (Yokomizo et al. 2003a,

2004, 2007).

We use a simple stochastic density-dependent popu-

lation model for a univoltine insect or annual plant

population without a seed bank and with nonoverlap-

ping generations (we refer to the invasive species using

the generic term ‘‘pest’’ to include insects or plants). We

assume that the population is eradicated if it drops

FIG. 1. Four potential relationships between the cost of
impact and population density with population density on the
x-axis and cost of impact on the y-axis: I, low-threshold curve;
II, S-shaped curve; III, linear curve; IV, high-threshold curve.
For all curves the maximum cost of impact is M ¼ 10;
parameter values for individual curves are: I, u¼0, b¼ 0.1, II, u
¼ 0.5, b¼ 0.1; III, u¼ 1, b¼ 1; and IV, u¼ 1, b¼ 0.1. The same
line formats are used to refer to these curves throughout all
figures.
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below a specified eradication threshold. We explore how

ecological parameters (magnitude of environmental

fluctuations in mortality, population density, strength

of density dependence, and eradication threshold) and

economic or management parameters (maximum eco-

nomic impact, time-horizon of management activities,

and discount rate) determine the optimal management

strategy for the four different density–impact curves in

Fig. 1. The discount rate is used to discount future costs

in relation to current costs. We use a common currency

for impact costs and management costs in order to

derive optimal management investment for different

density–impact relationships. We determine the cost

incurred from misspecification of the density–impact

curve to guide prioritization of research on the cost of

impact, and, finally, we determine the performance of a

fixed annual budget for different density–impact curves.

MODEL DEVELOPMENT

We consider a situation where a population of an

invasive species has already established and been

detected. For simplicity, we assume a pest population

without overlapping generations. The population model

is illustrated in Fig. 2. In the first phase of the annual

cycle, time t, the density of the population, nt, decreases

due to mortality which changes each year with

environmental variance (e.g., precipitation or tempera-

ture). Management can be implemented simultaneously

with natural mortality to reduce the density of the

population. We assume that economic costs (impact)

caused by the invader increase monotonically with

invader density up to a threshold population density

level at which costs of impact reach a maximum level

(Fig. 1). In order to reduce these economic impacts we

can invest in management efforts to reduce pest density.

After management has occurred there is a density-

dependent reproductive stage. The pest population

density is at its minimum at the beginning of the

reproductive stage. We assume that the population is

eradicated when the density drops below a threshold

value h; this assumption enables us to assess the

dependence of our results on how difficult a species is

to eradicate.

Population dynamics

Let exp(�aþ nt) be the stochastic survivorship at time

t, in which �a is the mean decrease in the logarithmic

population density and nt is a stochastic variable

following a normal distribution with mean zero and

variance r2
n, independent between years. The parameter

r2
n is a measure of the magnitude of environmental

fluctuation. In the model, the level of optimal manage-

ment effort is chosen based on density of the pest at the

start of the time period, before the magnitude of

environmental fluctuations on mortality becomes known

(see criterion for optimality, below). The population size

after this period is

n�t ¼
nt expð�a� fet þ ntÞ if � a� fet þ nt � 0

nt if � a� fet þ nt . 0

(
ð1Þ

where et is the level of management effort and f is the

effectiveness of the management effort. As this stage

includes mortality only, n�t never becomes larger than nt.

At the end of the year, there is a reproductive stage.

The population density in the following year is affected

by density dependence and approaches or fluctuates

around a carrying capacity, Y. We use the density-

dependent Hassell model for the dynamics of the species

(Hassell 1975):

ntþ1 ¼
kn�t

ð1þ bn�t Þ
k

n�t . h

0 otherwise

8><
>: ð2Þ

where b and k are species-dependent variables that

determine the shape of the recruitment function, n�t is

the population size after management has been con-

ducted, and k is the per capita population growth rate in

the absence of density dependence. The larger b, the

smaller the population density in the following year.

When population density in the reproductive stage is

lower than the eradication threshold h, population

density in the following year becomes 0. When k , 1,

ntþ1 monotonically increases with n�t (Fig. 3). When k .

1 and n�t is not small, ntþ1 decreases with n�t (Fig. 3).

When k . 1 and n�t is small, ntþ1 becomes very large

because density dependence is overcompensating.

Hence, when k . 1, population density in the next year

can become large even if we invest in management effort

(e.g., Buckley et al. 2001). Let the carrying capacity, Y,

be the density at which the population density does not

change during the reproductive stage, that is n�t ¼ ntþ1
(Fig. 3). At the carrying capacity, Eq. 2 simplifies to k¼
(1 þ bY)k. To examine how the optimal management

strategy depends upon k, we used a fixed value of Y and

various values of k in k ¼ (1þ bY )k (Fig. 3).

FIG. 2. Schematic depiction of the model showing the
sequential timing of stochastic mortality, management, impact
costs, and density-dependent reproduction. All of these
processes take place within one time step; nt is density of the
population at year t, and n�t is population size after
management has been conducted.
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Criterion for optimality

While in some cases we might expect management

effort to lead to reduced economic impacts and for

management effort to lead to increased probability of
eradication, where these benefits occur they are not

achieved without cost. Management effort is accompa-

nied by a cost which we assume is the product of the

management effort, e, and the unit cost of management,

c. We found the optimal management effort that
minimized the sum of the cost of impact and the cost

of management over multiple years. We defined this sum

as total cost U where

U ¼ ðcost of impactÞ þ ðeconomic cost of managementÞ:

When we choose the management effort in the current
year, we need to consider not only the cost of impact

caused and the cost of management efforts in this

current year but also those in the future. We set a

minimized total cost over multiple years U* as follows:

U� ¼ min
0�e1;e2 ;...;eT�Emax

XT

s¼1

cs�1 E½Isðn�s Þ� þ cEðesÞ
� �

ð3Þ

where c is the discount factor (0 � c , 1; the discount

factor reflects the weight placed on future relative to
present costs), Is is cost of impact in year s and is a

function of management effort in that year, es, and T is

the time horizon of the whole management problem.

The time horizon determines the period over which the

costs are considered and could take a range of values
from short (e.g., T , 3 years) to long (e.g., T . 10

years). We assume that there is a maximum management

effort, Emax, that can be applied in any year. We

obtained the optimal state-dependent management

effort for each year using stochastic dynamic program-
ming (SDP). We assumed that the cost of impact is a

function of n�t which is the population density after

management is conducted. We define the cost of impact

function Itðn�t Þ with respect to n�t according to Eq. 4

because this function gives general curves of the type in

Fig. 1:

Itðn�t Þ¼
MC½1= 1þ exp½�ðn�t =Y � uÞ=b�

� �
�B� n�t � Y

M n�t . Y

(

ð4Þ

where B ¼ 1/(1 þ exp[u/b]) and C ¼ (1 þ exp[�(1 �
u)/b])/(1� B(1þ exp[�(1� u)/b])) in order to set the cost

of impact to 0 at n�t ¼ 0 and to M at n�t ¼Y, where M is
the maximum cost of impact. We assumed that there is

no difference between functional forms of the cost of

impact when n�t � Y. Fig. 1 shows four different

density–impact curves, the shape of which depends on l
and b. We use these curves to examine dependence of the

optimal management effort on the impact function.
Exploring how these four relationships affect manage-

ment strategies is the central aim of this paper.

EFFECT OF THE DENSITY–IMPACT CURVE

ON OPTIMAL MANAGEMENT EFFORT

Fig. 4 shows the dependence of the optimal manage-
ment effort in the first year, e�1 , on density–impact

curves under varying economic and population dynamic

parameters described in detail below.

Fig. 4a: population density in the first year, n1

Generally, the optimal management effort increases

with population density (Fig. 4a). However for the low-

threshold curve (I), the optimal management effort is at

its maximum level when the population density is low

(see Fig. 4a). At low density, optimal management effort

in the low-threshold curve is relatively high due to
impacts incurred even when the population density is

low, whereas optimal management effort in the other

curves becomes 0 due to low-impact costs at low density.

For the low-threshold curve ongoing impact and

management costs are avoided if the population is

eradicated, therefore high management effort is optimal

FIG. 3. Density-dependent reproduction for different values of the strength of density dependence, k, with a constant carrying
capacity Y. We use the Hassell model for density dependence (Eq. 2).
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when eradication or maintenance at a low density is

feasible. For the other curves, only when the population

density is very close to 0, and therefore requiring small

total effort for eradication, is the optimal management

effort at its maximum level (Fig. 4a: inset). The

difference in management efforts between the S-shaped

(II) and linear curves (III) is largest at intermediate

levels of population density. For the high-threshold

curve (IV), the optimal management effort is the lowest

out of all the curves because impact is low at most

population densities.

Fig. 4b: magnitude of environmental fluctuation, r2
n

Since the mean of exp(�a þ n) increases with

magnitude of environmental fluctuation r2
n, we intro-

duce a new parameter a0¼ a� n, which follows a normal

distribution, to fix the mean of the logarithmic normal

distribution, exp(�aþn). Note that mean survivorship is

not exactly the same for all r2
n because we assume that

survivorship exp(�a þ n � fe) cannot be larger than 1.

From Fig. 4b it can be seen that for small environmental

fluctuations, r2
n, the optimal management effort increas-

es with the magnitude of environmental fluctuation for

all density–impact curves other than the low-threshold

curve (I), due to high population densities in occasional

high survival years. For intermediate values of r2
n the

optimal management effort for the low-threshold curve

(I) reaches the maximum level because occasional low-

survival years combined with large management effort

enhances the possibility of eradication. For large r2
n,

FIG. 4. Dependence of the optimal management effort in the first year, e�1 , on several economic and demographic parameters.
Individual panels (a–f ) are described in detail in the text (see Effect of the density–impact curve on optimal management effort).
Density–impact curves (I–IV) follow Fig. 1. Parameter values are: n1 (population density in the first year)¼ 900; M (maximum cost
of impact)¼ 10; Y (carrying capacity)¼ 1000; f (efficiency of management effort)¼ 0.8; c (unit cost of management)¼ 2; magnitude
of environmental fluctuation, r2

n ¼ 1; species-dependent variable a¼ 0.1; c (discount factor)¼ 0.95; h (pest-eradication threshold
density)¼0.5; species-dependent variable b¼0.3; k (strength of density dependence)¼0.8; Emax (maximummanagement effort)¼5;
T (time horizon for whole the management problem)¼ 5.
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however, there are decreases in optimal management

efforts for all density–impact curves. Large environmen-

tal fluctuations either reduce mortality to such an extent

that additional management mortality is completely

compensated for, or fluctuations increase mortality far

beyond that caused by management-induced mortality,

making management redundant and a waste of resourc-

es.

Fig. 4c: strength of density dependence, k

Strong compensating density dependence (large k)

reduces the optimal management effort for all curves

(Fig. 4c). When k is large there is rapid density-

dependent recovery of the population and the popula-

tion density at year t þ 1 rebounds quickly even with a

large management effort to decease population density

n�t . Dependence on k is highest for the low-threshold

curve. When k is small, density-dependent recovery is

slow which enables eradication of the pest with large

management effort.

Fig. 4d: maximum cost of impact, M

The optimal management effort increases with the

maximum value of impact M as expected (Fig. 4d).

When M is large, the cost of the impact is more

significant than the cost of management. Therefore high

management effort is optimal, especially for the low-

threshold curve (I). When M is small, however, the

optimal management effort for the low-threshold curve

is 0, as management effort is no longer economically

viable due to the high cost of reducing only a small

impact. It is optimal to invest in management for the S-

shaped (II) and linear (III) curves at lower values of M

because relatively small management efforts are cost

effective at reducing impact, which is not the case for the

low-threshold curve.

Fig. 4e: efficiency of management effort, f

When the efficiency of management effort, f, is very

small, the optimal management effort, e�1 , is 0,

becoming positive at a different value of f for each

curve (Fig. 4e). Less efficient management is more cost

effective for the S-shaped (II), linear (III), and high-

threshold (IV) curves than for the low-threshold curve

(I). This occurs because inefficient management means

impact remains high for the low-threshold curve. As

high efficiency can reduce overall management effort,

e�1 initially decreases with f. However, e�1 becomes

maximal suddenly at a different higher value of f for

each curve as high efficiency makes it possible to

eradicate a population with large management effort.

For the low-threshold curve e�1 is maximal even if the

value of f is not very large. When efficiency of

management increases further, the optimal management

effort decreases with f because eradication probability

becomes sufficiently large without further management

investment.

Fig. 4f: eradication threshold, h

When the threshold of eradication h is large, the

optimal management effort becomes maximal as it

becomes easier to eradicate the pest population (Fig.

4f). Optimal effort for the low-threshold curve (I)

becomes maximal at a lower level of h as compared to

the S-shaped (II) and linear (III) curves but the size of

the eradication threshold matters little for the high-

threshold curve.

Additional considerations: management time horizon, T,

and discount factor, c

Optimal management effort initially increases with the

time horizon of management T; however, the optimal

management effort quickly reaches a maximal value for

all curves, (happening slightly later for the low-threshold

curve) except the linear curve. The optimal management

effort increases gradually with the discount factor c as

future costs are weighted more highly. More detail and

figures are in Appendix A.

MISSPECIFICATION OF DENSITY–IMPACT CURVES

The optimal management effort depends on the shape

of the density–impact curve. If we apply an inaccurate

density–impact curve, the total realized cost will be

larger than those incurred under the correct optimal

management investment, defined as the cost of mis-

specification of the density–impact curve. We will either

overinvest in management that is ineffective at reducing

impact, or we will underinvest in management incurring

impact costs that could have been avoided with more

investment. We can express this cost Û as follows:

Ûðu�; b�; û; b̂Þ ¼ U½u�; b�; e�ðû; b̂Þ�

� U�½u�; b�; e�ðu�; b�Þ� ð5Þ

where u* and b* are the true values which determine the

shape of the density–impact curve, and û and b̂ are

inaccurate values applied. The total cost U is a function

of u, b, and e. The management effort e*(û, b̂) is the

optimal management effort under the situation where u

¼ û and b ¼ b̂. U*[u*, b*, e*(u*, b*)] indicates the total

costs incurred by applying the optimal management

effort obtained previously. When calculating the total

cost incurred for the use of an incorrect density–impact

curve, U[u*, b*, e*(û, b̂)], the optimal management effort

e*(u*, b*) is not applied; hence U[u*, b*, e*(û, b̂)] is
larger than U*[u*, b*, e*(u*, b*)]. In most cases we do

not have well-described density–impact curves; it is

therefore useful to know the implications of applying an

inaccurate density–impact curve. In general, when we do

not have information on the shape of density–impact

curve, we may assume the relationship is linear, i.e.,

there is a directly proportional relationship between

density and impact. Fig. 5 shows the cost incurred by

applying the linear curve when the true impact curve is

low-threshold (I), S-shaped (II), or high-threshold (IV).
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Fig. 5a: population density in the first year, n1

The cost caused by misspecification depends little on

population density in the first year, n1, with the

exception of the low-threshold curve (I) at low

population density, when the cost of misspecification is

high (Fig. 5a). Since the management effort e�1 based on

the linear curve (III) is smaller than e�1 based on the low-

threshold curve, we apply too little effort and lose

opportunities to eradicate the pest population at low

density where eradication is both economically viable

and highly beneficial. The cost of misspecification for the

S-shaped curve (II) is low due to similarity with the

linear curve. The spikes in cost of misspecification at

intermediate population densities for the S-shaped and

high-threshold curves (IV) are due, respectively, to

underinvestment and overinvestment in management.

The cost of misspecification for the high-threshold curve

is substantial due to recurrent overinvestment in

unnecessary management.

Fig. 5b: maximum cost of impact, M

Although the total cost U increases withM, the cost of

misspecification for the S-shaped curve (II) becomes

close to 0 at large M (Fig. 5b) as when M is large, the

optimal management efforts in the S-shaped and linear

curves (III) are very similar. The cost of misspecification

rises rapidly with M for the high- and low-threshold

curves due to overand underinvestment in management,

respectively.

Fig. 5c: strength of density dependence, k

For k , 1 the cost of misspecification for the low-

threshold curve (I) first increases and then decreases

strongly with k (Fig. 5c). The merit of investing in large

management efforts becomes small due to stronger

density-dependent recovery and optimal management

efforts for the low-threshold and linear (III) curves

converge. However the cost of misspecification for the

low-threshold curve increases sharply when k is larger

than 1. For k . 1 the optimal management efforts for

the low-threshold and linear curves are 0 and moderate,

respectively. Due to overcompensating density depen-

dence, for the low-threshold curve, investing an inaccu-

rate moderate level of management effort results in a

large population density in the following year, large

economic cost of the effort, and no decrease in impact.

Fig. 5d: eradication threshold, h

When h is small (i.e., the population is difficult to

eradicate), the cost of misspecification for the low- and

high-threshold curves is large (Fig. 5d). Since eradica-

tion is very beneficial for the low-threshold curve (I),

application of the linear curve (III) results in a lower-

than-necessary management effort, especially when

eradication is difficult. On the other hand, since

eradication is a waste of management effort for the

high-threshold curve (IV), misspecification results in

overinvestment in management and consequent waste of

resources.

FIG. 5. Dependence of the cost of misspecification on three population measures (population density, density dependence, and
eradication threshold) and one economic parameter (maximum cost of impact). Individual panels (a–d) are described in detail in the
text (see Misspecification of density–impact curves). The parameter values are the same as in Fig. 4.
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PERFORMANCE OF FIXED ANNUAL BUDGET FOR DIFFERENT

DENSITY–IMPACT CURVES

We have calculated the optimal management effort

needed to minimize the total costs incurred in managing

the impact of an invasive species over the specified time

period, T. However there are cases where we invest a fixed

annual budget R in a management effort every year over

that time period; for example budgets are commonly set by

governments or granting agencies for fixed yearly expen-

diture over 3–5 years. If the amountof the annual budget is

fixed, the cost of impact overmultiple years dependson the

amount of the annual budget.We calculated the reduction

of cost of impact by management effort under a fixed

annual budget,W(R), and assumed thatwe could not carry

over the annual budget from year to year:

WðRÞ ¼
XT

s¼1

cs�1½EðIs j es ¼ 0Þ � EðIs j es ¼ R=cÞ� ð6Þ

where R is an annual budget and R/c represents invested

management effort in each year. The reduction in cost of

impact is summed over all years up to the time horizon T,

taking into account the discount factor c. The reduction in
impact in any particular year of budget allocation is the

difference between the expected impact with no manage-

ment effort, E(Is j es¼ 0), and the expected impact when

the fixed annual budget is spent on management effort,

E(Is j es¼R/c).

Fig. 6 shows reduction of impact depending on the

management budget, W(R). As expected the reduction in

impact increases with the amount of budget for small

budgets and becomes asymptotic for large budgets. Each

curve becomes asymptotic at a different value of R. For

the low-threshold curve (I), we cannot reduce the impact

when the annual budget is not sufficiently large; hence

investing a small budget is not efficient. With the other

curves we can reduce the impact efficiently even if only a

small budget is available. This result shows that it is

important to understand the shape of density–impact

curves even when the annual budget is fixed.

DISCUSSION

The general theoretical model presented here demon-

strates the importance of knowing the shape of the

density–impact curve when devising effective manage-

ment strategies, especially for invaders with high

maximum impact and high impact at low density. We

have shown that the optimal management effort largely

depends on the density–impact curve, and misspecifica-

tion of the density–impact curve causes unnecessary

impact cost or wasted management effort. Thomas and

Reid (2007) point out that the density–impact relation-

ship also has consequences for the effectiveness of weed

control by biocontrol agents. Due to computational

limitations, we used a general population model to

explore the dependence of the optimal management

strategy on a suite of ecological and economic param-

eters. Density–impact curves should be incorporated

into other species-specific analytical or simulation

management models as appropriate. For mathematical

and computational convenience we used restrictive

assumptions of no seed bank and a univoltine or annual

organism; however the limitations of the particular

demographic model used here could easily be avoided in

alternative tactical modeling frameworks. The generality

of our results can be extended if we use the eradication-

threshold parameter as a proxy for the effects of

different life histories, e.g., a species with a seed bank

can be considered as difficult to eradicate.

Low-threshold species (curve I in Fig. 1) will generally

be among our worst invaders as their impact is apparent

even at low density. However, we identify several

scenarios when the cost of management outweighs the

benefits obtained in terms of reduction of impact and

when the optimal management strategy is to invest

nothing in management. For low-threshold species this

is when environmental fluctuations are large, density-

dependent recovery is rapid, and the cost of impact is

low to moderate relative to management costs. In

contrast, maximal management investment for low-

threshold species is optimal when the population

densities are low, density-dependent recovery is slow,

and the maximal cost of impact moderate to high. The

costs of not recognizing a low-threshold species and

managing it as if impact is directly proportional to

density are greatest at low population densities, high

maximal impact, and when eradication is difficult.

High-threshold species (IV) may not be noticeably

apparent as problematic until they achieve high densi-

ties, and our model suggests that large investments in

management are not necessary unless they are easy to

eradicate and/or the maximum cost of impact is large. In

fact much of the cost of using the wrong density–impact

relationship for these species is due to overinvestment in

unnecessary management. Such invasive species might

be better targeted for tactical management at high

density as the optimal management effort rarely reaches

the level of maximum management effort, Emax. These

FIG. 6. Efficiency of budget investment is shown as the
reduction in cost of impact as a function of investment of a
fixed annual budget in management effort for each of the
density–impact curves (I–IV) from Fig. 1. The parameter values
are the same as in Fig. 4.
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general findings should motivate research on the shape

of density–impact relationships and the search for

generalizations about how that shape differs among

species, invaded habitats, and types of impact.

The density–impact curve also affects whether we

should attempt eradication as, once the population is

eradicated, we no longer need to invest in management

effort. Since the impact for the low-threshold curve (I) is

the largest among the four curves at all population

densities below the carrying capacity, eradication is most

justified for this curve. Indeed, the value of knowing the

correct curve is particularly great for low-threshold

populations at low density where eradication is likely to

be more easily achieved. An alternative interpretation is

that given impact is so disproportionate to density,

management efforts might be better directed at preven-

tion of arrival and establishment (e.g., through quaran-

tine measures) rather than population reduction. On the

other hand, there is little benefit in eradication for high-

threshold curve (IV) populations as large impact is only

apparent at high population density.

It may not be the best option to delay action until we

obtain information on the shape of the impact curve

(Simberloff 2003). This is especially true for low-

threshold populations where management investment

is very effective at low densities (i.e., early in an

invasion) when lack of data on the shape of the

density–impact curve is likely to be greatest. An

extension of the current study would be to determine

the optimal management effort under uncertainty of the

density–impact curve by, for example, assuming a

probability distribution for the parameters of the

density–impact relationship or information-gap decision

theory (Ben-Haim 2001). Information-gap decision

theory derives the most robust management option to

meet a minimum performance requirement under severe

uncertainty (Ben-Haim 2001, Regan et al. 2005). An

alternative approach would be to attempt to generalize

the characteristics of species or habitats that tend to give

rise to different density–impact relationships and apply

these generalizations to new problems.

Budgetary constraints often mean limited resources

have to be allocated to the management of multiple

invasive species over several years. Strategies for the

allocation of a budget to minimize the total cost of

management and impact of multiple populations would

be useful for practitioners. Unfortunately, due to the

large number of calculations involved, the SDP (sto-

chastic dynamic programming) approach used here is

not well suited to dealing with multiple populations over

several years. Furthermore, the results of a single-species

problem cannot simply be transferred to a multi-species

problem because the single species with the highest

optimal management effort is not necessarily a higher

priority for management. However, if the annual

budgets for each species are fixed, we can obtain optimal

allocation of the total budget using a calculation such as

that used in Fig. 6, taking into account reduced impact

divided by the amount of a fixed annual budget.
In natural ecosystems invasive species can decrease

species richness and change ecosystem function (e.g.,
Costello et al. 2000, Alvarez and Cushman 2002). In

order to use our analysis in these cases we need to learn
the economic value of species richness or ecosystem

functioning to obtain the optimal management effort of
the invasive species. It is not straightforward to obtain
these values although attempts have been made (Cos-

tanza et al. 1997, Edwards and Abivardi 1998). The loss
of species and ecosystem function due to invasion could

be irreversible and may not necessarily be simple
functions of density of invasive species in the current

time period. Furthermore, restoration effort may be
needed in order to reverse the impacts caused, inflating

management costs (Parker et al. 1999).
In our model the density of an invasive population

changes but the area occupied does not expand. Impact
could, however, increase with the area infested even if the

density remains the same. If impact scales with the area
infested, a spatial-spread model can be substituted for

our population-dynamic model and occupied area–
impact curves used. Insights obtained here are applicable

to models of dynamics of the infested area if we replace
density with the infested area when interpreting results.

For the low-threshold curve (I) it might be appropriate to
manage to reduce spread (e.g., by using containment or

quarantine procedures) if the population density is small,
but once the population expands to infest a large area,
management effort to reduce spread becomes ineffective.

We have also neglected spatial structure; effectiveness or
cost of management effort may be different for a

uniformly distributed invasive population compared
with an aggregated population at the same density.

As we have limited resources for invasive-species
management it is crucial to set appropriate management

goals (Buckley 2008) in order to avoid spending money
on density reductions that are quickly compensated for or

ineffective at reducing the detrimental impacts of invasive
species. While we focused on the form of the density–

impact curve we have also shown that quantifying the
magnitude (maximum cost) of impact, M, is also crucial,

as total costs and the cost of misspecification for low- and
high-threshold curves increase withM. Overall, this study

is an important first step towards clarifying the value of
knowing not just the population ecology of an invasive

species and the magnitude of impact but also the shape of
the relationship between invader density and economic
impact in making sound management decisions.
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APPENDIX

A figure illustrating parameter dependencies of a management time horizon T and discount factor c (Ecological Archives A019-
016-A1).
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