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Abstract— In this contribution we present a novel ant colony optimiza-
tion (ACO) based multi-user detector (MUD) designed for synchronous
multi-carrier direct sequence code division multiple access (MC DS-
CDMA) systems. The operation of the ACO-based MUD is based on
the behaviour of the ant colony in nature. The ACO-based MUD
aims for achieving the same bit-error-rate (BER) performance as the
optimum maximum likelihood (ML) MUD, without carrying out an
exhaustive search of the entire MC DS-CDMA search space constituted
by all possible combinations of the received multi-user vectors. We will
demonstrate that the system is capable of supporting almost as many
users as the number of chips in the spreading sequence, while searching
only a small fraction of the entire ML search space. It will also be
demonstrated that the number of floating point operations per second is
a factor of 108 lower for the proposed ACO-based MUD than that of the
ML MUD, when supporting K = 32 users in a MC DS-CDMA system
employing 31-chip Gold codes as the T-domain spreading sequence.

I. INTRODUCTION

Multi-carrier direct sequence code division multiple access (MC
DS-CDMA) is widely recognized as a high-flexibility multiple-access
scheme. It is also capable of providing a high degree of freedom
for system designers and for channel-adaptive reconfiguration, when
compared to both single-carrier DS-CDMA and frequency (F)-
domain spread multicarrier CDMA (MC-CDMA) operating without
T-domain spreading [1]–[3]. In [4]–[6] the authors have proposed and
investigated a MC DS-CDMA system, which employed orthogonal
Walsh Hadamad codes as its T-domain spreading sequence, combined
with multiple base-station (BS) antenna arrays employed for the sake
of achieving either receive diversity [4] in the uplink (UL) or transmit
diversity [5], [6] in the downlink (DL). A low-complexity single user
detector (SUD) based on a filter matched to the spreading code of the
desired user was used in the above contributions. This SUD scheme
is optimal in terms of its achievable bit error rate (BER) performance
versus the signal-to-noise ratio (SNR), as a benefit of the spreading
codes’s orthogonality in the T-domain. However, the orthogonality of
the spreading codes is often destroyed by the dispersive channel.

As a design alternative, in this paper, non-orthogonal codes are
employed, resulting in multi user interference (MUI), which requires
the employment of multi user detection (MUD) [3], [7]. The optimal
maximum likelihood (ML) MUD carries out an exhaustive search
for all the legitimate combinations of the transmit symbols of all
the users. Natrually, this technique has a complexity that increases
exponentially with the number of users, as well as with the number
of bits per symbol, which motivates the development of reduced-
complexity near-optimal MUDs. For instance, genetic algorithms
(GA) [3], [8]–[10], evolutionary programming [11], particle swarm
optimization [12], ant-colony optimization (ACO) [13]–[15], sphere
decoding [16], [17] and Markov-Chain Monte-Carlo (MCMC) [18]
aided detectors have found favour in low-complexity near-optimum
MUDs.
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Fig. 1: The kth user’s uplink transmitter schematic for the generalized
multicarrier DS-CDMA system.

In this paper, we present a novel low-complexity ACO based
MUD designed for the synchronous MC DS-CDMA uplink. The
ACO technique has been shown to outperform GAs in some Non-
deterministic Polynomial time (NP)-complete optimization problems,
such as the travelling salesman problem [14]. Moreover, according
to [19]–[22], the ACO based MUDs are capable of achieving a lower
BER and a lower complexity than the GA-based MUDs in wireless
communication systems. In this contribution we extend the ACO
based single-carrier DS-CDMA system’s MUD of [22] to a multi-
carrier DS-CDMA system scenario. The complexity of both the ACO
based MUD and that of some traditional detectors designed for MC
DS-CDMA are investigated.

The rest of this paper is organized as follows. The MC DS-CDMA
system model as well as the matched filter’s (MF) output will be
characterized in Section II. In Section III, the ACO algorithm will be
detailed. Both the achievable BER performance and the complexity
imposed will be quantified in Section IV. Finally, we will conclude
our discourse in Section V.

II. SYSTEM DESCRIPTION

A. Transmitter Model

In this subsection, the generalized MC DS-CDMA system of
Fig. 1 [2], [23], [24] is reviewed. At the transmitter side, the binary
data stream having a bit duration of Tb is Serial-to-Parallel (S/P)
converted to U parallel sub-streams. The new bit duration of each
sub-stream, which we refer to as the symbol duration, becomes
Ts = UTb. After S/P conversion, each substream is spread using
an N -chip DS spreading sequence waveform ck(t). Then, the DS
spread signal of the uth sub-stream, where we have u = 1, 2, . . . , U ,
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simultaneously modulates a group of V parallel subcarrier frequen-
cies {fu1, fu2, . . . , fuV } using Binary Phase Shift Keying (BPSK).
Thus the transmitted signal on the uvth subcarrier of user k can be
expressed as

sk,uv(t) =

√
2P

V
bku(t)ck(t) cos(2πfuvt + φk,uv), (1)

where P/V represents the transmitted power of each subcarrier and
P is the transmitted power corresponding to each bit. Furthermore,
{bku(t)}, {fuv} and {φk,uv} represent the subcarrier data streams,
the subcarrier frequency set and the phase angles introduced in the
carrier modulation process. A total of UV number of subcarriers
are required in the MC DS-CDMA system considered and the UV
number of subcarrier signals are superimposed on each other in
order to form the complex-valued modulated signal. Therefore, the
transmitted signal of user k can be expressed as

sk(t) =

U∑
u=1

V∑
v=1

√
2P

V
bku(t)ck(t) cos(2πfuvt + φk,uv). (2)

B. Receiver Model

We assume that K synchronous MC DS-CDMA users are sup-
ported with the aid of a single receive antenna at the base-station
(BS). Furthermore, we assume that the modulated signal of each
subcarrier is orthogonal to each other. In this case, we can consider
the received signal subcarrier by subcarrier. Thus the (Nc × 1)-
dimensional received signal vector containing the signals of all the
K users associated with the uvth subcarrier can be expressed as

ruv = CHuvξbu + nuv, (3)

where ξ =
√

P/V and C represents the (Nc × K)-dimensional
spreading code matrix. Furthermore, Huv is a (K ×K)-dimensional
matrix, where the diagonal elements of Huv represent the Spatio-
Temporal Channel Impulse Responses (ST-CIR) of all the users
modulating the uvth subcarrier, which is formulated as Huv =
diag (huv,1, huv,2, · · · , huv,K), where huv,k is the complex-valued
fading gain of the uvth subcarrier ST-CIR connecting the kth user
and the BS. Finally, bu is the K-user transmit signal vector of the
uth bit, which can be expressed as bu = [b1u, b2u, · · · , bKu]T and
n

(nrl)
uv is the (Nc × 1)-dimensional additive white Gaussian noise

(AWGN) vector, where each element has a zero mean and a variance
of 2N0. For simplicity, we assume that the ST-CIR are perfect known
at the BS. It can be shown that the MRC based MF’s output vector
corresponding to the uvth subcarrier of all the K users can be
expressed as

yuv = (CHuv)Hruv

= HH
uvC

T CHuvξbu + HH
uvC

T nuv

= Ruvξbu + ñuv, (4)

where we have

Ruv = HH
uvC

T CHuv, (5)

and each element in ñuv has a mean of zero and a variance of 2N0.
As seen in Fig. 2, all the V ·K number of MF’s outputs {y1,u1, . . . ,

y1,uV , . . . , yK,u1, . . . , yK,uV } related to the uth substream will be
input to the uth ACO-based MUD that will generate the (K × 1)-
dimensional estimate vector b̂u for bu, which comprises the transmit
signals of all the K users mapped to the uth substream.
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Fig. 2: Uplink receiver block diagram of the generalized MC DS-
CDMA system considered for all the K users when employing the
maximum likelihood detector or the ACO-based MUD.

III. ANT COLONY OPTIMIZATION BASED MULTIUSER DETECTOR

Remembering that the different subcarrier signals are orthogonal,
the U number of ACO-based MUDs may operate in parallel without
interfering with each other. In each of the U ACO-based MUDs,
there is a (2×K) matrix or so-called route-table, as shown below,

1
2

1 2
bK = +1b1 = +1

b1 = −1

b2 = +1

b2 = −1 bK = −1

· · · K

· · ·
· · ·

which represents the two possible choices for the bits b̂ku of each of
the K users.

The ACO algorithm [19]–[22] is based on the foraging behavior of
the ant colony in nature. Every ant leaves pheromone along the route
from the formic nest to a certain remote source of food. Therefore,
the shorter the route, the more the pheromone. As a beneficial effect
of the pheromone, the ants about to set out from the nest later
are more likely to choose the particular route marked by a higher
concentration of pheromone. As a result, most ants will choose the
shortest route from the nest to the source of food. We assume that
there is a total of N iterations, when searching for the best route in
each ACO-based MUD. More specifically, in each of the N iterations,
M ants work their way through the K columns of the matrix seen
in the route-table, in order to produce M number of binary K-
user vectors, serving as the M candidate vectors of b̂u. Borrowing
from the above mechanism, the flow chart of an ACO-based MUD
algorithm is depicted in Fig. 3. At this stage, it is worth relating the
ACO-based MUD philosophy to another random guided algorithm,
namely to the family of GA aided MUDs applied in the context of
both single- and multi-carrier CDMA in [3], [9]. More specifically,
in GA-parlance we may commence the search for a near-ML K-
user bit-vector from a so-called initial population of M K-bit vector
and generate N consecutive so-called generations of K-user bit-
vectors, each generation containing M candidate vectors. The K-bit
candidate vecotrs of the initial population are modified with the aid
of random guided bit-mutations by exchanging bits between the high-
probability K-bit vectors using operations referred to as cross-over
etc. Following this brief analogy, let us now return to the ACO-aided
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Fig. 3: Flow-chart of each of the U ACO-based MUDs.

MUD.

A. Calculation of the Intrinsic Affinity

Let us extend our ant-analogy a little further. In addition to fol-
lowing the high-probability routes marked by a high concentration of
pheromone, the ants prefer a flat and comfortable route to the source
of food. In MUD-parlance, a particular bit of the K-bit vector has a
high user-specific LLF value, if it represents a confident bit-decision.
In ACO jargon, a high user-specific-LLF-based user-bit corresponds
to a less arduous passage of the ants, hence the corresponding bit-
value is likely to be confirmed at a high pheromone-level by several
of the M ants. The flow chart of the instrinsic bit-affinity calculation
is shown in Fig. 4.

More quantitatively, let us first of all introduce the so-called
desirability function, which can be expressed as [25]:

dku,±1 = 1 + exp [−lku(±1)], (6)

where lku(±1) represents the LLF related to the kth user’s bit bku =
±1 in the uth substream. In our MC DS-CDMA system, the LLF
is given by the superposition of the LLFs associated with all the V
subcarriers {fu1, fu2, . . . , fuV } invoked for transmitting bku. This
is formulated as

lku(±1) =

V∑
v=1

lk,uv(±1) (7)

and the user-specific LLF of bku = ±1 associated with the uvth
subcarrier can be expressed as

lk,uv(±1) = ±2

√
P

V
�(yk,uv) − P

V
Ruv,kk, (8)

User−specific LLF User−specific LLF

Y

N

lku(+1) lku(−1)

dku,+1

ηku,+1

ωku,+1

dku,−1

ηku,−1

ωku,−1

k < K?

k + +

k = 0

ωku,±1, k = 1, · · · , K

Fig. 4: Detailed flow-chart of the ’Intrinsic Affinity Calculation’ block
in Fig. 3.

where Ruv,kk represents the kth diagonal element of Ruv . Given the
desirability function of (6), the sum of its two legitimate values is
nomalized according to [22]

ηku,±1 =

∑
i∈{+1,−1} dku,i

dku,±1
. (9)

Given the normalized desirability function of 9, the intrinsic bit-
infinity of the kth user in the uth substream may be expressed as

ωku,±1 = ηβ
ku,±1, (10)

where β is tunable weighting or de-weighting parameter.

B. Probability Calculation and Route Selection

Having completed the intrinsic affinity calculation step of Fig. 3,
let us now consider the probability-calculation and route-selection
operations of Fig. 3. When considering the two choices of +1
or −1 for user k, M̄

(n)
ku number of ants will choose +1 and all

the other (M − M̄
(n)
ku ) ants will opt for −1. The specific number

of ants M̄
(n)
ku = Γ[MP

(n)
ku,+1] is based on the probability P

(n)
ku,+1

calculated by combining the intrinsic affinity of +1 or −1 and its
associated pheromone intensity, while Γ[MP

(n)
ku,+1] represents the

rounded-down integer version of (MP
(n)
ku,+1). More explicitly, the

probability of opting for +1 as the esitmated version of bku during
the nth iteration can be expressed as [22]

P
(n)
ku,+1 =

µ
(n)
ku,+1ωku,+1∑

i∈{+1,−1} µ
(n)
ku,iωku,i

, (11)

where µ
(n)
ku,±1 = [p

(n)
ku,±1]

α represents the effect of the pheromone
intensity, while ωku,±1 is the intrinsic affinity introduced in the last
subsection. Furthermore, α is a tunable weighting coefficient and
p
(n)
ku,±1 is the specific element in the kth column and in the 1st or

2nd row of the (2 × K)-dimensional matrix p
(n)
u representing the

pheromone intensity corresponding to the bit-elements in the route-
table.
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Fig. 5: Detailed flow-chart of the ’Pheromone Update’ block in Fig. 3.

C. Pheromone Update

Let us now continue by considering the pheromone update block
of Fig. 3. As observed in the foraging behavior of the ants in
nature, every ant in the ACO-aided MUD will leave a certain amount
of pheromone along the route it follows. The more ants pursue a
particular route, the more pheromone will be assigned to the route.
Analogously to the ants in nature which use the distance as their
route-quality criterion, the quality of the route in our algorithm is
quantified in terms of its LLF.

Based on our above discussions, the amount of pheromone as-
signed to each bit constituting a specific route is set to the LLF of
the route. The corresponding flow chart of the pheromone update
procedure is outlined in Fig. 5. More explicitly, the amount of
pheromone assigned to a particular route pursued by the mth ant
during the nth iteration is formulated as

∆p(n)
u,m = Lu[a(n)

u,m] · A(n)
u,m, (12)

where a
(n)
u,m represents the specific K-user vector produced by the

mth ant during the nth iteration and Lu[a
(n)
u,m] represents the LLF

related to the K-user vector bu = a
(n)
u,m in the uth substream, while

A
(n)
u,m is the (2×K)-dimensional matrix representation of a

(n)
u,m. For

instance, if we have a 4-user vector produced by the mth ant given
by a

(n)
u,m = [+1,−1, +1, +1]T , we arrive at

A(n)
u,m =

[
1 0 1 1
0 1 0 0

]
. (13)

Furthermore, an extra amount of pheromone quantified by σ·Lu[ã
(n)
u ]

is assigned to a route leading to the most likely K-user vector
ã

(n)
u found so far, where σ represents the weighting factor of the

pheromone assigned to a meritorious K-user vector. However, there is
also a so-called evaporation rate [19]–[22] ρ, allowing the previously
assigned pheromone to evaporate, hence creating chances for the
ants to find new routes during the next cycle that may be more
meritorious than the best route found so far. Finally, the pheromone
matrix generated for the (n + 1)st iteration can be obtained by [22]

p(n+1)
u = ρp(n)

u +
M∑

m=1

∆p(n)
u,m + σLu[ã(n)

u ] · Ã(n)
u , (14)

where Lu[ã
(n)
u ] represents the LLF related to the K-user vector bu =

ã
(n)
u in the uth substream.
In our MC DS-CDMA system, the calculation of the LLF value

formulated in (12) and (14) and related to the K-user vector bu

being a specific vector ḃi ∈ BK , where BK contains all the 2K

possible combinations for the K-user transmit vector, is given by
the superposition of the LLFs associated with all the V subcarriers

{fu1, fu2, . . . , fuV } invoked for transmitting bu. This is formulated
as

Lu(ḃi) =
V∑

v=1

Luv(ḃi), ḃi ∈ BK , (15)

and the LLF of bu = ḃi associated with the uvth subcarrier can be
expressed as

Luv(ḃi) = 2

√
P

V
�(ḃT

i yuv) − P

V
ḃT

i Ruvḃi, (16)

i = 1, 2, . . . , 2K .

D. Termination Condition

The optimization procedure of the uth ACO-based MUD designed
for finding the near-ML K-bit vector b̂u will terminate at the neth
iteration, if either all the ants produce the same K-user vector
estimate during the neth cycle, or all the N number of affordable
ACO iterations have been carried out, i.e. we have ne = N . Then
the MUD’s output b̂u is given by

b̂u = ã(ne)
u . (17)

Let us now consider both the achievable BER performance and
the complexity imposed, when carefully selecting the algorithm’s
parameters in the next section.

IV. SIMULATION RESULT

In this section both the attainable BER performance and the com-
plexity of the uplink MC DS-CDMA system using the ACO-based
MUD is investigated, when assuming that each subcarrier signal
experiences flat Rayleigh fading. In our simulations we assumed that
the number of subcarriers varies from V = 1 to V = 128 and that the
T-domain spreading sequences were the Nc = 31-chip Gold codes.
The BER performance and the complexity of the proposed ACO-
based MUD employed in the MC DS-CDMA UL is also compared
to that of the MRC-based correlation detector and to that of the ML
MUD detailed in Section II.

Throughout our simulations, the initial pheromone level of
p
(1)
ku,±1 = 0.01 was used for all the uth, u = 1 . . . U , bit of the kth,

k = 1 . . . K user in conjunction with ρ = 0.5, M = 10, N = 10,
α = 1, β = 6 and σ = 8.

Fig. 6 shows the BER performance versus signal-to-noise ratio
(SNR) performance of the MRC-based correlation detector, the ML
MUD and the ACO-based MUD, which was introduced in Sec-
tions II and III. Again, the number of subcarriers was varied for
V = 1, . . . , 128. Both the uplink MC DS-CDMA system employing
the MRC-based correlation detector and the ACO-based MUD are
capable of supporting K = 32 users, which is on the order of
O(232). By contrast, the MC DS-CDMA system employing the ML
MUD has an excessive complexity for K = 32 users. Fig. 7 shows
the complexity versus the number of users at SNR = 10dB for the
MRC-based correlation detector, for the ML MUD and the ACO-
based MUD along with a different number of subcarriers varing from
V = 1, . . . , 128.

As can be seen in Fig. 6, the ACO-based MUD is capable of
approaching the BER performance of the ML MUD regardless of
the number of subcarriers. On the other hand, as shown in Fig. 7,
regardless of the number of subcarriers, the complexity of the ACO-
based MUD is similarly low to that of the MRC-MF and is only
a fraction of that of the ML MUD, especially when the number of
users is high. For example, when the number of users is K = 32,
the complexity of the ACO-based MUD is deemed to be a factor of
108 lower than that of the MLD.
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V. CONCLUSION

We have investigated an ACO-based MUD designed for the
uplink of an MC DS-CDMA system. Our simulation results show
that regardless of the number of subcarriers, the ACO-based MUD
approaches the BER performance of that of the ML MUD in the
proposed MC DS-CDMA system supporting K = 32 users with
the aid of length-31 Gold codes used as the T-domain spreading
sequences. Our simulation results also show that the proposed ACO-
based MUD employed in the MC DS-CDMA system considered
is capable of supporting the same number of users at the number
of chips in the Gold code in the vicinity of the ML MUD’s BER
performance at a complexity, which is similar to that of the MF
detector.
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