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Abstract

Deriving maps of phytoplankton taxa based on remote sensing data using bio-optical properties of
phytoplankton alone is challenging. A more holistic approach was developed using artificial neural
networks, incorporating ecological and geographical knowledge together with ocean color, bio-optical
characteristics, and remotely sensed physical parameters. Results show that the combined remote sensing
approach could discriminate four major phytoplankton functional types (diatoms, dinoflagellates, coccolitho-
phores, and silicoflagellates) with an accuracy of more than 70%. Models indicate that the most important
information for phytoplankton functional type discrimination is spatio-temporal information and sea surface
temperature. This approach can supply data for large-scale maps of predicted phytoplankton functional types,
and an example is shown.

As the foundation of the aquatic food chain, phyto-
plankton are an integral part of the ecosystem, affecting
trophic dynamics, nutrient cycling, habitat condition, and
fisheries resources (Irigoien et al. 2002). Phytoplankton are
responsible for .45% of the total primary production of
plants on Earth (Falkowski et al. 2004) and uptake of the
greenhouse gas carbon dioxide (CO2), and they contribute
to the biological pump.

Although the role of marine phytoplankton is signifi-
cant, knowledge of spatio-temporal distribution and
abundance of functional types is limited, especially in the
open oceans. Research has been restricted in both time and
space because information is often obtained from relatively
expensive ship-based in situ measurements. Deriving maps
of phytoplankton functional types (PFTs) from remotely
sensed data is a new and potentially important technolog-
ical application which offers high spatio-temporal cover-
age. Anderson (2005) reported that ecology is poorly
understood due to a lack of in situ data as well as
functional-type information related to the chemical and
physical regime, which in turn has hindered the develop-
ment of a convincing PFT prediction model. Empirical
relationships between in situ pigment measurements and
remotely sensed ocean color data were determined by
Alvain et al. (2005) who generated global maps of
haptophytes, prochlorococcus, synechococcus-like cyano-
bacteria, and diatoms. Development of several bio-optical
methods for the identification of different PFTs have been
used to map coccolithophore bloom distributions (Brown
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and Podestá, 1997), trichodesmium (Subramaniam et al.
2002), and diatoms (Sathyendranath et al. 2004). Although
some innovative studies have provided promising results
for discriminating PFTs from space, they have acknowl-
edged weaknesses. One of these weaknesses is the limited
availability of data needed to develop the robust relation-
ships necessary for building accurate models. In situ data
are not only restricted by the method of collection, but also
a significant proportion of the data (,85%) are not
matched with concurrent satellite data due primarily to
cloud coverage (Sathyendranath et al. 2004; Raitsos et al.
2005). In addition, research has tended to separate PFTs
using bio-optical properties alone (spectral absorption and
backscattering). More robust interpretations should be
possible when additional information about the physical,
chemical, and biological environments that different PFTs
prefer is included.

This research discriminates between four common and
important PFTs. Diatoms account for ,20% of global
carbon fixation, ,25% of global primary production, and
a large amount of the carbon exported to the deep ocean
via sinking particles (Armbrust et al. 2004). Diatoms are
also a key food source for copepods and other zooplank-
ton, which are subsequently consumed by larger predators
such as fish and marine mammals (Irigoien et al. 2002),
thereby transferring energy to higher levels of the marine
food web. The second type, photosynthetic dinoflagellates,
is an important aquatic primary producer. However, they
are less nutritious than diatoms and can result in food webs
culminating in non-fodder gelatinous organisms instead of
fish and are thus sometimes considered trophic dead ends
(Verity and Smetacek, 1996). Certain dinoflagellate species
cause red tides and may impact fisheries, aquaculture, and
marine mammal and human health by introducing toxins
into the food chain (Nixon 1995). The third type is
coccolithophores, which are capable of forming spatially
extensive blooms (Raitsos et al. 2006). Calcifiers such as
coccolithophores contribute to some of the densest ballasts
observed in sinking particles (Klaas and Archer 2002).
They are major producers of dimethyl-sulphide (DMS),
calcium carbonate, and organic carbon, all of which affect
climate (Holligan et al. 1993). Growing at extensive scales,
their role in and contribution to the oceanic and
atmospheric environment (Tyrrell and Merico, 2004), as
well as to the local heat budget and biogeochemical cycle is
important at a global scale (Holligan et al. 1993). Finally,
silicoflagellates represent a minor fraction of the total
microplankton assemblage in the pelagic environment; they
are a major component in coastal and estuarine waters
(Jochem and Babenerd 1989). Silicoflagellates are also
good indicators of water masses and have been used in
reconstructions of the paleoenvironment (Onodera and
Takahashi 2005). Nejstgaard et al. (2001) reported that
certain bloom-forming silicoflagellate species may nega-
tively affect copepod reproduction in the sea.

To discriminate between the PFTs, a Probabilistic
Neural Network (PNN) utilized ecological (phytoplankton)
and geographical knowledge along with ocean color bio-
optical characteristics and remotely sensed physical pa-
rameters. Physical and optical variables include chlorophyll

a (Chl a), solar radiation, sea surface temperature (SST),
wind stress and normalized water-leaving radiances (nLw);
they were supplemented by spatio-temporal information
including longitude, latitude, and season. Phytoplankton
information derived from the Continuous Plankton Re-
corder (CPR), which is an upper-layer plankton monitoring
program in the North Atlantic Ocean and North Sea
operating since 1931 (Reid et al. 2003), was used to train
the PNN.

Methods and data analysis

Methodological approach—All datasets were processed
for the northern North Atlantic (46uN–66uN, 52uW–4uW)
between September 1997 and December 2003 (Fig. 1).
Within this region concurrent match-ups between SeaWiFS
and in situ CPR samples (phytoplankton biomass) were
compared (see Raitsos et al. 2005 for methodological
details). A data matrix was then produced with concurrent
satellite remote sensing and CPR measurements for the
same spatial and temporal coverage (,300 weekly com-
posite images of the North Atlantic). In this way, no
interpolation or averaging of datasets for the area of study
was necessary, therefore allowing the inclusion of local
variations and extreme events in high spatio-temporal
resolution comparisons in the analysis. Thus, after screen-
ing the satellite dataset for CPR match-ups, 3,732 (of the
available 14,001) samples could be used for comparison
(Fig. 1).

Phytoplankton functional types—Measurements of phy-
toplankton abundance (cell counts) were derived from the
CPR survey, the largest and longest running plankton
survey in the world. Samples were collected by a high-speed
plankton recorder (,15–20 km h21) that is towed behind
‘ships of opportunity’ in the surface layer of the ocean (,6–
10 m deep); one sample represents ,18 km of tow
(Richardson et al. 2006). Plankton were filtered onto
a constantly moving band of silk. CPR analysis involves
the taxonomic identification of species and cell counts for
each sample. In this study, the total number of species per
sample for each of the four functional types (diatoms,
dinoflagellates, coccolithophores, and silicoflagellates) was
used. Each type is comprised of many species (see list in
Richardson et al. 2006 for details). The dominant
phytoplankton type for each sample was estimated using
the Z factor standardized method

Zi~
ni{�xxi

si

Where ni is the cell count for phytoplankton type i in
a sample, x̄i is the overall mean of all cell counts for each
type i, and si is the standard deviation of all samples for
type i. The largest Zi for each sample was used as the
dominant species. This standardized method was used to
derive the dominant type because the number of cells
between each of the four types was substantially different.
For instance, diatoms form more concentrated blooms
than silicoflagellates (mean cell counts 140,000 and 34,000
respectively). Whenever CPR samples indicated that there
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were no phytoplankton cells, this category was named ‘‘no-
dominance.’’ Although phytoplankton $10 mm were
caught (qualitatively), most of the biomass of pico- and
ultraplankton were not included in the patterns (Richard-
son et al. 2006). Thus, this research focused on the larger
autotrophic component and samples classified as having
no-dominance may in fact have been dominated by cells
,10 mm in size that could not be considered in this study.

Satellite data—SeaWiFS (Sea-viewing Wide Field-of-
view Sensor): Reprocessed data (version 5.1) produced by
the Ocean Biology Processing Group was acquired from
the NASA Oceancolor website (http://oceancolor.gsfc.
nasa.gov/). Data were level three, 8-d composite products
(9 km2 3 9 km2 resolution) of near-surface Chl a (mg
m23), normalized water leaving radiance (nLw) at 555 nm
(mW cm22 mm21 sr21) and Photosynthetically Active
Radiation (PAR) (E m22 d21). Chl a concentration was
estimated using the Ocean Chlorophyll 4–version 4 (OC4-
v4) algorithm (O’Reilly et al. 1998), which performs well in
the open waters that dominate the study area (Fig. 1).
Phytoplankton optical properties (light absorption and
backscattering) have been found to vary among different
phytoplankton types, thus the nLw product was used as
a proxy for backscattering in the discrimination procedure
(Alvain et al. 2005). The PAR product is the incoming solar
radiation or insolation that can be simply defined as the
light intensity received at the surface of the Earth (http://
oceancolor.gsfc.nasa.gov/DOCS/). Light intensity is clearly
fundamental to photosynthesis (Nanninga and Tyrrell
1996).

Advanced Very High Resolution Radiometer (AVHRR):
The nighttime AVHRR Pathfinder 5 weekly means of sea

surface temperature (SST) at 4 km2 3 4 km2 resolution were
obtained from the NASA PO.DAAC website (http://
poet.jpl.nasa.gov/). Nighttime SST products were used so
that the solar radiation bias (the diurnal fluctuation in SST)
that can occur from surface heating during daytime could be
avoided (Raitsos et al. 2006). Generally, temperature has
major direct (e.g., metabolic) and indirect (e.g., through
stratification) effects on phytoplankton (Edwards and
Richardson, 2004).

European Remote Sensing Satellites (ERS–2) and
NASA-QuikSCAT (QS): Weekly composites of mean wind
stress data (0.5u 3 0.5u spatial resolution) were obtained
from CERSAT, IFREMER (http://www.ifremer.fr/cersat/
en/index.htm). Data were available from ERS–2 and QS,
and preliminary intersensor comparisons between the
derived wind speeds have indicated that the sensors are com-
patible (http://www.ifremer.fr/cersat/en/research/validation/
qscat_vs_topex_ ers.htm). Because wind stress is responsible
for vertical mixing of the water column, it may have an
indirect effect on phytoplankton through nutrient availabil-
ity. Wind stress is a function of wind speed, the non-
dimensional drag coefficient, and the boundary layer air
density (Pickard and Pond 1978). The spatial variation of
wind stress over the ocean causes surface divergence of
horizontal flow that in turn gives rise to vertical mass flux
through Ekman pumping (Pond and Pickard 1983).

Potential data biases—Weekly mean satellite data (for
Chl a, the 8-d standard NASA product) was used to
establish CPR match-ups. When daily satellite data were
used, ,85% of CPR data were unusable, but with weekly
mean composites the loss was reduced to 73%. Results
from a daily comparison indicated that they were not

Fig. 1. CPR and satellite match-ups between 1997 and 2003 in the North Atlantic Ocean.
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statistically different from the weekly comparison (data not
shown). However, the weekly relationship was more robust
(based on more samples), and the 95% confidence limits
were reduced considerably, indicating an improvement of
the relationship. In summary, the weekly products capture
the dynamic information that is present in daily images.

Consistency and comparability of the methodology used
in the CPR survey has been studied in some depth and can
be found elsewhere (Batten et al. 2003; Richardson et al.
2006). Although the CPR provides unique spatial and
temporal coverage of North Atlantic waters, samples are
not equally distributed in space or time. In addition, data
are screened for match-up comparisons, which may lead to
a potential bias if a particular month or week is consistently
cloudy each year. Therefore, the data and hence the derived
relationships might not be representative of the entire study
area at all times. However, this issue was relatively minor in
the study because the samples were distributed relatively
uniformly seasonally, interannually, and spatially.

The study area included both Case I (open ocean) and
Case II (coastal) waters. In optically-complex Case II
waters, Chl a cannot readily be distinguished from
particulate matter and/or yellow substances (colored
dissolved organic matter) and so global chlorophyll
algorithms (such as OC4-v4) are less reliable (IOCCG
2000). Because the majority of the study area was
comprised of Case I water, this bias influenced only a small
proportion of the data points (Fig. 1).

Data analysis using probabilistic neural networks—In this
study PNNs, a type of Artificial Neural Network (ANN),
were used to discriminate between four PFTs based on
environmental, optical, and spatio-temporal variables. The
PNN is in essence a combination of neural networks and
Bayesian statistics (Specht 1988; Specht 1990). Bayes
theory takes into account the relative likelihood of events
and uses a priori information to improve prediction. The
network paradigm uses Parzen estimators and spheres of
influence that were developed to construct probability
density functions required by Bayes theory.

The most common choice of kernel is the basic Gaussian
kernel, which involves only the Gaussian function and one
sphere of influence parameter s. A schematic representa-
tion of a typical PNN structure is given in Fig. 2. As

Bayesian approximators, the basic Gaussian kernel PNN
built to map xk as function of x1; x2;,… , xk21 will have k 2
1 neurons in the input layer, one neuron in the first hidden
layer (pattern layer) for each case in the training set, k 2 1
neurons in the second hidden layer (summation layer), and
one neuron in the output layer (decision layer).

The current PNN was implemented on a random subset
of available data (training set) and then applied to the
remaining data (validation or testing set). The training set
consisted of a random 80% of the available data (2,986
cases) with the remaining random 20% (746 cases) used as
the testing set. This holdout partitioning technique (Kohavi
1995) was repeated five times to test the validity of the
model. The testing set was used for calibration, which
prevented overtraining the networks, making them gener-
alise well on new data. Calibration adjusted the weight of
each neuron by computing the distance metric between
a given classification and the network results for all outputs
over all patterns. The genetic adaptive algorithm (Specht
1991) was applied during this process to test a range of
smoothing factors. Individual smoothing factors were used
as a sensitivity analysis tool, as the larger the factor for
a given input, the more important that input was to the
model, at least, as far as the test set was concerned.

The following performance criteria were evaluated: (1)
sensitivity, the percentage of true presences correctly
identified; (2) specificity, the percentage of true absences
correctly identified; and (3) accuracy, the total fraction of
the sample correctly identified. When applied to training
sets, the accuracy provides a measure of the recognition
performance, whereas when applied to testing sets it gives
a measure of prediction performance.

An important property of ANNs is that they are
adaptive, i.e., they can learn from new data. This ability
does not depend upon the prior knowledge of rules. ANNs
have the ability to extract essential process information
from data. As new training data become available, the
network can be updated to represent the process more
accurately. Moreover, with only a few exceptions, neural
networks are essentially nonlinear, and they are capable of
learning complex interactions among the input variables in
a system even when those interactions are difficult to find
and describe. Consequently, neural networks can provide
solutions for problems that do not have an algorithmic
solution or for which an algorithmic solution is too
complex to be found. A further important advantage of
neural networks is that they are capable of generalization,
i.e., they can correctly process information that only
broadly resembles the original training data. They are also
fault tolerant by being capable of properly handling noisy
or incomplete data. Additionally, ANNs work well with
various types of data because there are no conditions put
on the predicted variables, i.e., they can be true/false,
continuous values, and so forth.

Using a PNN in addition to its nonlinear and
multimodal properties has several advantages. First,
a PNN network structure is dictated by the dimensionality
of the samples as opposed to some other ANNs such as
multilayered perceptrons whose network structure is de-
termined either by a trial-and-error or a rule-of-thumb

Fig. 2. A schematic representation of a probabilistic neural
network structure.
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approach. Second, the training process requires only one
pass of the training set in order to compute the optimal
smoothing factor. Last, it works well on small training sets,
and when the sample size increases, it provides a very close
approximation to the real density function. Nevertheless,
its major drawback is the need to store all training cases in
the pattern layer for future classifications.

Results

Table 1 illustrates the discrimination results of the PNN
for the training, testing, and overall datasets. Training
outcomes (percentages) can be considered to be an
indication of the quality of the data used to develop
relationships for the final discrimination model. Sensitivity
analysis (true presences) in the training stage performed
well, because each phytoplankton functional type was
classified with a precision of .83%, and dinoflagellates had
the highest percentage (.89.7%). Regarding true absences

(specificity), the PNN model performance was .93%, with
coccolithophores and silicoflagellates having the highest
percentages. The classification accuracy had a recognition
performance of .92%, with coccolithophores and silico-
flagellates again showing the highest accuracy (Table 1).
Using the training relationships derived from 80% of the
dataset, the ability of the PNN model to discriminate types
within the remaining (random) 20% of the samples was
examined (testing). The sensitivity results showed that true
presences were correctly identified with a precision of
.68%; the highest mean discrimination performance
occcurred in the no-dominance (76.4%), diatom (74.6%)
and coccolithophore (72.8%) types; whereas, dinoflagellate
and silicoflagellate types performed slightly lower (72.0%
and 68.1%, respectively). From Table 1 also shows that the
specificity performed considerably better; every type was
.82%, with silicoflagellate and coccolithophore types
(95.1% and 92.6%, respectively) performing better, fol-
lowed by the dinoflagellate (85.3%), diatom (83.2%) and

Table 1. Percentage values of sensitivity, specificity and classification accuracy of the five types, applying the PNN five times. Each
time a random sample of 80% of cases was used as the training set and the remaining 20% as the testing set. Results are given analytically
for each sample in training and testing. Mean values of the five samples are given in bold.

Type Sample

Set

Training Testing

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

No-dominance 1 86.7 96.2 93 75.6 83.1 80.4
2 86.6 96.3 93 76 82.9 80.4
3 87 96.2 93.1 76.3 82.6 80.4
4 87.4 96 93.1 77.1 81.6 80
5 86.8 96.1 93 77.1 82.4 80.6
x̄ 86.9 96.2 93 76.4 82.5 80.4

SD 0.3 0.1 0.1 0.7 0.6 0.2
Diatom 1 83.8 96.3 93.3 74 83.1 81

2 83.9 96.2 93.3 75.1 83.7 81.6
3 84.1 96.5 93.5 75.1 83.3 81.4
4 84.1 96.5 93.6 73.5 82.8 80.6
5 83.2 96.1 93.1 75.1 83 81.1
x̄ 83.8 96.3 93.4 74.6 83.2 81.1

SD 0.4 0.2 0.2 0.8 0.3 0.4
Dinoflagellate 1 90.1 93.7 92.9 73.6 85.4 82.8

2 90 93.9 93.1 72.3 85 82.3
3 89.7 93.5 92.7 71.1 85.5 82.4
4 89.8 93.6 92.8 72.3 85.7 82.8
5 88.9 93.8 92.7 70.4 85 81.9
x̄ 89.7 93.7 92.8 72 85.3 82.5

SD 0.5 0.2 0.2 1.2 0.3 0.4
Coccolithophore 1 83.5 98.1 96.2 72.8 92.5 90.4

2 83.2 98.2 96.3 71.6 92.6 90.4
3 85.1 98 96.4 75.3 92.9 91
4 82.4 98 96.1 74.1 92.3 90.4
5 82.7 98.1 96.2 70.4 92.6 90.2
x̄ 83.4 98.1 96.2 72.8 92.6 90.5

SD 1 0.1 0.1 2 0.2 0.3
Silicoflagellate 1 85 98.1 96.9 70.2 95.1 92.9

2 84.3 98.1 96.8 67.2 94.9 92.4
3 86.1 98.2 97.1 74.6 95 93.2
4 83.9 98.1 96.8 62.7 95.3 92.4
5 84.7 98 96.8 65.7 95.1 92.5
x̄ 84.8 98.1 96.9 68.1 95.1 92.7

SD 0.8 0.1 0.1 4.6 0.2 0.4
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no-dominance (82.5%) types. Although silicoflagellates and
dinoflagellates had the lowest sensitivity performance in
testing, the opposite pattern was observed for specificity.

The accuracy for the total fraction of the functional
types correctly identified indicated the final prediction
ability of the PNN model and had an accuracy of .80%.
Performance results occurred in the following order:
silicoflagellates (92.7%), coccolithophores (90.5%), dino-
flagellates (82.5%), diatoms (81.1%), and no-dominance
(80.4%).

The contribution of each predictor used for discrimina-
tion varied within and among PFTs. Thus, the analysis was
made up of two approaches: (1) distinguishing the types
from each other as separate functional types (Fig. 3: all
types plot), and (2) discriminating one type from the others
(i.e., diatoms from the remaining types; Fig. 3).

The relative impact (smoothing factor) of the eight
predictors is shown in Fig. 3, with the first plot (all types)
indicating the importance of each variable in distinguishing
the functional types. Spatio-temporal information such as

Fig. 3. The relative impact (smoothing factor) of the eight variables indicating the importance of each variable in distinguishing the
types from each other as separated functional types (All types) and discriminating one type from the others (i.e., diatoms from the
remaining types). Note that the different coloration or shading separates the physical, biological, optical, temporal, and spatial variables
(respectively). (A) All types, (B) Silicoflagellates, (C) Diatoms, (D) Coccolithphores, (E) Dinoflagellates, and (F) No-dominance.
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longitude, month, and latitude made an important contri-
bution to the discrimination of the PFTs (2.9, 2.3, and 1.9,
respectively). Regarding the effect of the physical regime,
SST was found to be the key factor (2.3), followed by light
intensity (1.4) and wind stress (1.3). Chl a and nLw_555 did
contribute to the overall discrimination, but they were of
lesser importance compared with other parameters (1.1 and
0.8, respectively).

In terms of diatoms, latitude along with PAR and SST
(3.0, 2.2, and 1.9, respectively) were the key factors for
discriminating this functional type from other types
(Fig. 3). In addition, wind stress and Chl a played an
important discriminatory role (1.4 and 1.4, respectively),
whereas longitude (0.6) had the lowest impact. Dinofla-
gellates were distinguished mostly based on spatiotemporal
information, i.e., latitude (3.0), month (3.0), and longitude
(2.5). In terms of physical variables, PAR (2.9) was the key
discriminator, followed by nLw_555 and wind stress. SST
and Chl a contributed less to the dinoflagellate discrimi-
nation (Fig. 3). Discrimination of coccolithophores ap-
peared to be regulated by the seasonal cycle (month, 2.9),
with PAR (1.9), wind stress (1.8) and nLw_555 (1.7)
playing key roles, while SST (0.2) appeared not to make
a significant contribution. Longitude (2.9) and nLw_555
(2.8) had the highest impact for discriminating silicofla-
gellates, followed by month, SST, and PAR. Although Chl
a and wind stress contributed to the final discrimination,
their impacts appeared to be less significant (Fig. 3).
Finally, for the no-dominance type almost all parameters
played key roles, but contributions of Chl a and nLw_555
(0.2 and 0.1 respectively) were smaller.

Discussion

The discrimination of PFTs from remotely sensed data is
usually based on bio-optical properties and does not
incorporate spatio-temporal or environmental knowledge
(Sathyendranath et al. 2004; Alvain et al. 2005). In this
study, current research was extended by incorporating
geographical, temporal, biological, physical, and bio-
optical information. Results demonstrated that neural
networks are able to discriminate and identify four major
functional types (diatoms, dinoflagellates, coccolitho-
phores, and silicoflagellates) with an accuracy of .70%.
This is the first step toward an ecological approach which
will ultimately be able to predict PFTs without the
geographical (longitude and latitude) information.

Because geographical information was considered during
the training of the ANN and appeared to be a very
important variable, the forecasted phytoplankton maps
should be focused only on the northeast Atlantic Ocean.
However, once additional CPR dataset become available,
an attempt to exclude the geographical information could
be made. Although this would decrease the accuracy of the
model, the results could become more globally applicable.
In addition, nutrients are key regulators of phytoplankton
abundance (Redfield et al. 1963), and the mixed layer depth
is responsible for the stratification and supply of nutrients.
They were not used because remote sensing cannot offer
these variables, and in situ data at a fine spatial and

temporal scale, like those used in this study, do not exist.
However, wind stress that is a measure of vertical mixing
was included.

An important property of successful presence/absence
ecological models, when applied to independent datasets, is
their ability to predict presence accurately. Hence, sensi-
tivity is considered to be of primary importance compared
to specificity (and overall accuracy) because the latter can
suffer from the prevalence effect of the types, (i.e.,
frequency of occurrence; Maravelias et al. 2003). In this
study, true absence outnumbered true presence. Therefore,
prevalence effect was reflected in every section of the
analysis (training and testing) because the PNN model
predicted true absence better than true presence. However,
in the testing section, the ability of the model to successfully
discriminate and identify the true cases was ,70%.

Several studies have dealt with the identification of key
processes controlling the growth of PFTs (e.g., Platt et al.
2005), but this study investigated the importance of
parameters regarding species discrimination. Although
identification of key processes and species discrimination
are similar, they are not the same. For example, a parameter
such as SST might be vital for a particular type such as
coccolithophores (Cokacar et al. 2004; Raitsos et al. 2006).
However, this study found that light intensity, wind stress,
and seasonal information were more important than SST
when separating coccolithophores from other types.
Although all predictors played a role, the variables
responsible for the highest percentages of discrimination
accuracy were the spatio-temporal variables as well as the
physical ones such as SST, PAR (light intensity) and wind
stress (vertical mixing). The fact that bio-optical informa-
tion was of lesser importance does not mean that the model
would have performed adequately without this informa-
tion. Platt et al. (2005) argued that growth as well as
community and size structure of phytoplankton assem-
blages are controlled by physical factors. Physical param-
eters sometimes reflect the habitat of the epipelagic zone
because they have significant direct and indirect impacts on
phytoplankton. Therefore, one factor alone was not
sufficient to identify/separate the PFTs. Alvain et al.
(2005) reported that Chl a alone will never be able to
discriminate PFTs; however, using this factor in combina-
tion with other variables may make possible the ultimate
goal of deriving maps of these types using remote sensing
data. Based on the study results, future research aimed at
the discrimination/identification of functional types from
remotely sensed data should include fundamental informa-
tion on the physical environment.

The proposed approach has considerable potential for
mapping spatial and temporal (seasonal cycle) trends in
PFTs using remote sensing data alone, which is particularly
important for areas with minimal in situ data. The next step
is to use the relationships (between the phytoplankton types
and variables) obtained from the data analysis in training the
current statistical model (PNN) to forecast the spatio-
temporal distribution of PFTs. Fig. 4 illustrates an example
of diatom presence in the study area derived using this
method. Because a weekly image (second week of May 1999)
was used, the number of match-ups was not sufficient for it
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to be directly compared with the CPR data. However,
monthly composites of the PFTs can be produced and
validated by comparison with the CPR maps and the output
of papers such as Alvain et al. (2005). Predicted distributions
of PFTs in global biogeochemical models have been less than
convincing (Anderson 2005), probably because there is no
information for validation at a global scale. Therefore,
comparisons with these models are also important.

Satellites are not a substitute for ship-based sampling not
only because in situ verification is always needed to
improve/confirm the results, but also because satellites
only receive information about the physical/biological
regime within the top of the water column. However, Uitz
et al. (2006) inferred phytoplankton biomass, its vertical
distribution, and the community composition (microplank-
ton, nanoplankton and picoplankton) from near-surface,
satellite-derived Chl a concentrations, and coupled physi-
cal–biological models are moving toward the assimilation
of biological data. Therefore, the future lies in the
combined utilization of in situ data, remote sensing, and
modelling.
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