The Measurement of Task Complexity and Cognitive Ability: Relational Complexity in Adult Reasoning

Damian Patrick Birney
B.App.Sc (hons)

School of Psychology
University of Queensland
St. Lucia, Queensland
AUSTRALIA

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

7 March, 2002
STATEMENT OF ORIGINALITY

The work contained in this thesis has not been previously submitted for a degree at this or any other higher education institution. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made.

Damian Patrick Birney

Signed: _______________________________ Date: ________________________

7 March, 2002
ACKNOWLEDGEMENTS

There are a number of people that need special acknowledgement. First I would like to thank my supervisor Graeme Halford for the guidance and generous support that he has provided over the years. Graeme, I would particularly like to thank you for allowing me the freedom to pursue my research and develop my ideas in such a strong intellectual environment. Thank you also to Gerry Fogarty for getting me started and having faith in me during the early years. You have been instrumental in teaching me an appreciation for psychological measurement and encouraging me to explore good science. I would especially like to thank Julie McCredden who has listened patiently to my ramblings during the last 12 months. Julie, I would of course like to thank you for helping me to enjoy the subtleties of cognition, but more importantly, I would like to thank you for being such a good friend. I would also like to acknowledge the support from all the people in “the lab” and especially Glenda Andrews and Geoff Goodwin. Thank you also to Glen Smith and Julie Duck for reading my early work and to Philippe Lacherez for the many hours of discussions over coffee.

Most importantly I would like to thank my family to whom I dedicate this thesis. Debbie, thank you so much for allowing me to fulfil my dreams. This simply would not have been possible without your love and support. Thank you Corrine for providing me with an endless stream of drawings. Thank you Caleb for encouraging me to take frequent breaks for morning tea. Corrine and Caleb, you gave me the inspiration to keep going when I thought I could go no further. Finally, I would like to thank my parents, Denise and David. Thanks Mum for your hope and showing me what is possible. Thanks Dad for believing in me and showing me what is decent. Thanks to my sisters Ange, Rache, and Gen, and to my brother Anthony, for persevering with me.

Damian Patrick Birney
March, 2002
TABLE OF CONTENTS

1 The Measurement of Task Complexity and Capacity ...1

1.1 Measurement Issues ...1

1.2 Assessment Issues ...3

1.3 Assessing Capacity and Complexity ...5

1.4 Overview of the Thesis ...7

2 Cognitive Complexity and Relational Complexity Theory9

2.1 Resource Theory ...9

2.1.1 Resources: A Cautionary Note ..11

2.2 Relational Complexity Theory ..12

2.2.1 Specification of Relational Complexity ..12

2.2.2 Chunking and Segmentation ...14

2.2.3 Relational Complexity Theorems ..15

2.2.4 Representation of Relations: A Comment on Notation16

2.2.5 Evidence for Relational Complexity ...16

2.2.6 Unresolved Issues ..22

2.3 Cognitive Complexity: A Psychometric Approach ...26

2.3.1 Gf-Gc Theory ..27

2.3.2 Psychometric Complexity ...28

2.3.3 Fluid Intelligence and Complexity: The Evidence ...30

2.3.4 Some Final Methodological Issues ...34

2.4 The Experimental Approach ..36

2.4.1 Predictions ..36

2.5 Summary of the Key Predictions ...40

3 Relational Complexity Analysis of the Knight-Knave Task42

3.1 Processing in the Knight-Knave Task ..42

3.1.1 Deduction Rules ...43

3.1.2 Mental Models ...44

3.2 Relational Complexity Analysis ..46

3.2.1 Knowledge Required ...47

3.3 Method ..53

3.3.1 Problems ...53

3.3.2 Practice ..54

3.3.3 Test Problems ..55

3.3.4 Participants ..56

3.4 Procedure ...57

3.5 Results & Discussion ...57

3.5.1 Practice ..57

3.5.2 Test Problems ..58
<table>
<thead>
<tr>
<th>3.5.3 Speed-Accuracy Trade-Off</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.4 Alternative Accounts</td>
<td>62</td>
</tr>
<tr>
<td>3.6 General Discussion</td>
<td>64</td>
</tr>
<tr>
<td>3.6.1 Task Presentation Format</td>
<td>65</td>
</tr>
<tr>
<td>3.6.2 Processing Capacity and a Speed-Accuracy Trade-Off</td>
<td>65</td>
</tr>
<tr>
<td>3.6.3 Serial Processing: An Alternative Account</td>
<td>66</td>
</tr>
<tr>
<td>3.7 Conclusion</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Development of the Latin Square</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Definition of a Latin Square</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1 Enumeration of Latin Squares</td>
<td>71</td>
</tr>
<tr>
<td>4.2 Cognitive Load and the Latin Square</td>
<td>72</td>
</tr>
<tr>
<td>4.2.1 The Defining Principle of the Latin Square</td>
<td>72</td>
</tr>
<tr>
<td>4.2.2 Binary Processing in LS-4 Problems</td>
<td>74</td>
</tr>
<tr>
<td>4.2.3 Ternary Processing in LS-4 Problems</td>
<td>76</td>
</tr>
<tr>
<td>4.2.4 Quaternary Processing in LS-4 Problems</td>
<td>77</td>
</tr>
<tr>
<td>4.2.5 An Empirical Test of the Analysis</td>
<td>81</td>
</tr>
<tr>
<td>4.3 Experiment 4.1: University Students</td>
<td>81</td>
</tr>
<tr>
<td>4.3.1 Participants</td>
<td>81</td>
</tr>
<tr>
<td>4.3.2 Item Generation</td>
<td>81</td>
</tr>
<tr>
<td>4.3.3 Procedure</td>
<td>82</td>
</tr>
<tr>
<td>4.4 Results and Discussion</td>
<td>83</td>
</tr>
<tr>
<td>4.4.1 Item Analyses: A Rasch Approach</td>
<td>84</td>
</tr>
<tr>
<td>4.4.2 Item Difficulty and Relational Complexity</td>
<td>89</td>
</tr>
<tr>
<td>4.5 Decomposing Item Difficulty: Relational Complexity and Processing Steps</td>
<td>92</td>
</tr>
<tr>
<td>4.5.1 Additional Regression Analyses</td>
<td>95</td>
</tr>
<tr>
<td>4.5.2 Summary</td>
<td>97</td>
</tr>
<tr>
<td>4.6 Item Response Time and Relational Complexity</td>
<td>97</td>
</tr>
<tr>
<td>4.6.1 Mean Item Response Time</td>
<td>98</td>
</tr>
<tr>
<td>4.6.2 Standard Deviation in Item Response Time</td>
<td>100</td>
</tr>
<tr>
<td>4.7 Derivation of Relational Complexity Subscale Scores</td>
<td>101</td>
</tr>
<tr>
<td>4.7.1 Graphical Representation of Relational Complexity</td>
<td>102</td>
</tr>
<tr>
<td>4.7.2 Summary</td>
<td>103</td>
</tr>
<tr>
<td>4.8 Experiment 4.2: School Students</td>
<td>104</td>
</tr>
<tr>
<td>4.8.1 Participants</td>
<td>104</td>
</tr>
<tr>
<td>4.8.2 General Procedure</td>
<td>104</td>
</tr>
<tr>
<td>4.9 Results & Discussion</td>
<td>105</td>
</tr>
<tr>
<td>4.9.1 Rasch Analysis</td>
<td>105</td>
</tr>
<tr>
<td>4.9.2 Item Based Regression Analyses</td>
<td>107</td>
</tr>
<tr>
<td>4.9.3 Comparison of School and University Samples</td>
<td>110</td>
</tr>
<tr>
<td>4.9.4 Summary</td>
<td>113</td>
</tr>
<tr>
<td>4.10 General Discussion</td>
<td>113</td>
</tr>
<tr>
<td>4.10.1 Alternative Accounts</td>
<td>114</td>
</tr>
<tr>
<td>4.11 Conclusion</td>
<td>116</td>
</tr>
</tbody>
</table>
4.12 Modifications to the LST item database ..117

5 Processing Capacity and Dual-Task Performance ..118

5.1 Dual-Task Deficit ..118
5.2 The Implications of Individual Difference in the Dual-Task Paradigm ...119
5.3 Cognitive Psychology and Individual Differences121

5.2 Resource Theory ..123

5.3 Dual-Task Assumptions ..125
5.3.1 Practice Effects ...126
5.3.2 Priority of Primary Task ...126
5.3.3 Task Interference ..127
5.3.4 Summary ...129

5.4 Easy-to-Hard Paradigm ...129
5.4.1 Assumptions ..131
5.4.2 Applications of the Easy-to-Hard Paradigm ..133

5.5 Overview ..134
5.5.1 Secondary Tasks ..135

5.6 Method ..137
5.6.1 Participants ..137
5.6.2 Primary Task ...138
5.6.3 Finger Tapping Task – Single Condition ..138
5.6.4 Finger Tapping Task – Dual Condition ...139
5.6.5 Probe RT – Single Condition ..139
5.6.6 Probe RT – Dual Condition ...140
5.6.7 General Procedure ...140

5.7 Finger Tapping: Results & Discussion ..140
5.7.1 Secondary Task Performance: Variation in Tapping (SD-score)142
5.7.2 Secondary Task Performance: Median Elapsed Time Between Taps146
5.7.3 Primary Task Performance ..147
5.7.4 Influence of Practice Effects on LST Response Times150
5.7.5 Summary of traditional analyses ...152
5.7.6 Easy-to-Hard Predictions: Individual Differences152
5.7.7 Alternative Easy and Hard Conditions ..156

5.8 Probe RT ..156
5.8.1 Secondary Task Performance: Median Response Time157
5.8.2 Influence of Relational Complexity on Median Response Time158
5.8.3 Primary Task Performance ...159
5.8.4 Practice ...163
5.8.5 Summary of Traditional Dual-Task Analyses ..163
5.8.6 Easy-to-Hard Predictions: Individual Differences163
5.8.7 Alternative Easy and Hard Conditions ..166
5.8.8 Alternative Measures ..167

5.9 General Discussion ..167
5.9.1 Secondary Task Insensitivity ..171
5.9.2 Interference and Secondary Task Performance173
5.9.3 Interference and Primary Task Performance ..175
5.9.4 Is relational Processing Resource Dependent? ..176
5.10 Conclusion ..178

6 Relational Complexity and Broad Cognitive Abilities ..180

6.1 Design of the Study & Overview ..181

6.2 Method ..182
5.7.1 Participants ..182
5.7.2 Materials ..182
5.7.3 General Procedure ...194

6.3 Overview of Analyses for Chapter 6 ..195

6.4 Markers of Fluid Intelligence ...196
5.4.1 Raven’s Progressive Matrices ...196
5.4.2 Triplet Numbers Test ...197
5.4.3 Swaps Test ...201

6.5 Markers of Crystallized Intelligence ..206
5.5.1 Vocabulary (Synonyms) ..206
5.5.2 Similarities ...208
5.5.3 Arithmetic Reasoning ..210

6.6 Markers of Short-term Apprehension and Retrieval (SAR)211
5.6.1 Digit Span Forward ...211
5.6.2 Digit Span Backward ...215
5.6.3 Paired Associate Recall ...217

6.7 Relational Complexity Tests ..219
5.7.1 Sentence Comprehension Task ..219
5.7.2 Knight-Knave Task ...226
5.7.3 Latin Square Task ...241
5.7.4 Summary ..255

6.8 Summary of the measurement properties of the tasks255
5.8.1 Psychometric Tasks ...255
5.8.2 Relational Complexity Tasks ..256
5.8.3 Chapter 7 ...257

7 Relational Complexity and Psychometric Complexity258

7.1 Class Equivalence of Relational Complexity ..258
5.1.1 Summary of Class Equivalence of Relational Complexity262

7.2 The Complexity-Gf Relationship ..263
5.2.1 Model of the Predictions ...263
5.2.2 Treatment of Missing Data ..267
5.2.3 Generating Broad Cognitive Abilities Factors ..268
5.2.4 Analyses Objectives ..272

7.3 Sentence Comprehension Task ..272
5.3.1 Accuracy ..272
5.3.2 Decision Time ...276
5.3.3 Summary ...279

7.4 Knight-Knave Task ...280
5.4.1 Accuracy ..281
APPENDIX D

D.1 Descriptive Statistics for Composite Progressive Matrices Test
D.2 Descriptive Statistics for the Arithmetic Reasoning Test
D.3 Descriptive Statistics for the Swaps Test
D.4 Descriptive Statistics for the Vocabulary Test
D.5 Descriptive Statistics for the Similarities Test
D.6 Responses to Knight-Knave Test Items

APPENDIX E

E.1 Triplet Numbers Test – Level 4 Example Items
LIST OF FIGURES

Figure 1.1. Representation of the assessment of components of the relational complexity theory. ..4

Figure 2.1. Representation of relations based on Halford et al. (1998a).14

Figure 2.2. The complexity-Gf effect: The hypothetical relationship between performance and Gf as function of cognitive complexity ..30

Figure 2.3. Multitrait-multimethod correlation matrix design to assess class equivalence of relational complexity ..40

Figure 3.1. Solution of knight-knave problems using the exhaustive strategy reported by Rips (1989). ..44

Figure 3.2. Examples of practice phase items from A) the introduction, B) Section 1, and C) Section 2, of Knight-Knave task ...55

Figure 4.1. The 12 possible orderings defining a 3×3 Latin square (Square A is the standard square) ..70

Figure 4.2. Composition of the 3×3 Græco-Latin square. ..71

Figure 4.3. A complete (A) and incomplete (B) “standard” 4×4 Latin square73

Figure 4.4. Completed and example binary LST problem ...75

Figure 4.5. Completed and example ternary LST problem ...76

Figure 4.6. Completed and example quaternary LST problem (1)77

Figure 4.7. Completed and example quaternary LST problem (2)79

Figure 4.8. Practice items used in the Latin Square Task ...83

Figure 4.9. Person-outfit and -infit values sorted by estimated person ability in the 18-item Latin Square Task ..88

Figure 4.10. Comparison of item difficulty estimates based on traditional and Rasch calibration ..90

Figure 4.11. Rasch based subtest characteristic curves for binary, ternary and quaternary items (inset = item locations and standard errors) ...103

Figure 4.12. Distribution of person infit and outfit values for the school sample response to the Latin Square Task ...107

Figure 4.13. Item difficulty (proportion correct) for university and school samples. 111

Figure 4.14. Item response time for university and school sample (as a function of the calibrated item difficulty for the school sample) ...112

Figure 4.15. Example ternary LST item ...115

Figure 5.1. Performance resource functions (PRF) for three tasks123

Figure 5.2. Performance Operating Characteristic curve (Norman & Bobrow, 1975) 125

Figure 5.3. Task categorisation as a function of stage-defined and code defined resource demands as proposed by Wickens (1991) ...128
Figure 5.4. Representation of Partial Correlation of interest in the Easy-to-Hard paradigm ... 130

Figure 5.5. Phases in the finger-tapping task (dual-task condition) 141

Figure 5.6. Variation in tapping rate at each trial phase by task condition and complexity ... 144

Figure 5.7. Mean median elapsed time between finger taps as a function of phase and task condition .. 147

Figure 5.8. Mean proportion correct on the LST as a function of complexity and task condition ... 148

Figure 5.9. Mean overall and correct response time as a function of relational complexity and task condition ... 150

Figure 5.10. Correct and overall response time as a function of single and dual task condition and presentation order (early and later items) 151

Figure 5.11. Median Response time as a function of Phase and task Condition 158

Figure 5.12. Mean proportion correct on LST as a function of relational complexity and task condition by relational complexity .. 160

Figure 5.13. Mean overall and correct response time on the LST as a function of relational complexity and task condition ... 161

Figure 5.14. Mean response time to the LST as a function item presentation order and task condition ... 163

Figure 6.1. Display layout for Swaps task .. 186

Figure 6.2. Infit and outfit statistics as a function calibrated ability in composite progressive matrices tests .. 197

Figure 6.3. Person infit and outfit statistics for ability calibrated on all Swaps test items .. 202

Figure 6.4. Person infit and outfit statistics for ability calibrated on level3 and level 4 items of the Swaps test.. 203

Figure 6.5. Distribution of fit statistics as a function of calibrated ability for the 35 item Vocabulary test .. 207

Figure 6.6. Distribution of fit statistics as a function of calibrated ability for the 33 item Vocabulary test (items 10 and 15 removed) 208

Figure 6.7. Distribution of fit statistics as a function of calibrated ability for the paper and pencil Similarities test ... 209

Figure 6.8. Distribution of fit statistics as a function of calibrated ability for the paper and pencil Arithmetic Reasoning Test .. 210

Figure 6.9. Distribution of outfit statistics for the digit span – forward task (arrow indicates extreme values beyond the plotted range) ... 213

Figure 6.10. Distribution of person infit values as a function of estimated ability in the digit span – forward task ... 214

Figure 6.11. Distribution of person outfit statistics as a function of calibrated ability in the digit-span backwards test .. 216
Figure 6.12. Distribution of person infit statistics as a function of calibrated ability in the digit-span backwards test........................ ...217

Figure 6.13. Distribution of person fit statistics as a function of calibrated ability on the Paired-Associate Recall test (Arrows indicate points beyond the plotted range).219

Figure 6.14. Mean proportion correct (Accuracy) as a function of relational complexity, sentence type, and probe question-type ...223

Figure 6.15. Mean decision time as a function of relational complexity, sentence type, and probe question-type ..224

Figure 6.16. Distribution of person infit and outfit statistics as a function of estimated ability across the 14 items of the knight-knave task ...228

Figure 6.17. Distribution of person fit statistics as a function of estimated person ability ..244

Figure 6.18. Distribution of Latin Square items as a function of Rasch calibrated item difficulty (with standard errors indicated) ..245

Figure 6.19. Mean calibrated item difficulty as a function of relational complexity and number of processing steps (error bars = 1 SD) ..248

Figure 6.20. Mean item response time regardless of accuracy (RT) and for correct response only (CRT) as a function of relational complexity and number of processing steps (error bars = 1 SD) ..249

Figure 6.21. Mean proportion correct as a function of relational complexity and number of processing steps ...253

Figure 6.22. Composite response time (RT) and correct response time (CRT) as a function of relational complexity and number of processing steps ..254

Figure 7.1. Model A: Structural model of predictions made by the complexity-Gf relationship and relational complexity ...264

Figure 7.2. Model B: Revised model of predictions with a single latent factor for relational complexity ..266

Figure 7.3. Sentence comprehension accuracy as a function of relational complexity and Gf ..274

Figure 7.4. Sentence comprehension accuracy as a function of relational complexity and Gc ..275

Figure 7.5. Sentence comprehension accuracy as a function of relational complexity and SAR ..276

Figure 7.6. Decision time on the Sentence Comprehension Task as a function of relational complexity and Gf ...277

Figure 7.7. Decision time on the Sentence Comprehension Task as a function of relational complexity and Gc ...278

Figure 7.8. Decision time on the Sentence Comprehension Task as a function of relational complexity and SAR ...279

Figure 7.9. Accuracy on knight-knave composites as a function of relational complexity and Gf (4D^ = indeterminate quaternary composite) ...281
Figure 7.10. Accuracy on knight-knave composites as a function of relational complexity and Gc ... 282
Figure 7.11. Accuracy on knight-knave composites as a function of relational complexity and SAR .. 283
Figure 7.12. Response time on knight-knave composites as a function of relational complexity and Gf 284
Figure 7.13. Response time on knight-knave composites as a function of relational complexity and Gc 285
Figure 7.14. Response time on knight-knave composites as a function of relational complexity and SAR 286
Figure 7.15. Knight-knave item correlations between accuracy and broad cognitive abilities (Gf, Gc, SAR) as a function of Rasch calibrated item difficulty 287
Figure 7.16. Knight-knave item correlations between response time and broad cognitive abilities (Gf, Gc, SAR) as a function of Rasch calibrated item difficulty 289
Figure 7.17. Accuracy on Latin-square test composites as a function of relational complexity and Gf ... 292
Figure 7.18. Accuracy on Latin-square test composites as a function of relational complexity and Gc ... 293
Figure 7.19. Accuracy on Latin-square test composites as a function of relational complexity and SAR ... 294
Figure 7.20. Response time on Latin-square test composites as a function of relational complexity and Gf 295
Figure 7.21. Response time on Latin-square test composites as a function of relational complexity and Gc 296
Figure 7.22. Response time on Latin-square test composites as a function of relational complexity and Gc 297
Figure 7.23. Item correlation between accuracy and Gf as a function of calibrated item difficulty ... 299
Figure 7.24. Item correlation between response time and Gf as a function of calibrated item difficulty ... 300
Figure 7.25. Correlation between accuracy and response time as a function of calibrated item difficulty on the Latin Square task ... 301
Figure 7.26. Speed-accuracy trade-off on LST items as a function of calibrated item difficulty and Gf ... 301
Figure 7.27. Hypothetical components of the instantiation of a relation ... 304
Figure 7.28. Number of correct responses per minute in the triplet numbers test as a function of complexity level and Gf ... 310
Figure 7.29. Decision tree of binary comparisons in level 4 of the Triplet Numbers Test ... 313
ABSTRACT

The theory of relational complexity (RC) developed by Halford and his associates (Halford et al., 1998a) proposes that, in addition to the number of unique entities that can be processed in parallel, it is the structure (complexity) of the relations between these entities that most appropriately captures the essence of processing capacity limitations. Halford et al. propose that the relational complexity metric forms an ordinal scale along which both task complexity and an individual’s processing capacity can be ranked. However, the underlying quantitative structure of the RC metric is largely unknown. It is argued that an assessment of the measurement properties of the RC metric is necessary to first demonstrate that the scale is able to rank order task complexity and cognitive capacity in adults. If in addition to ordinal ranking, it can be demonstrated that a continuous monotonic scale underlies the ranking of capacity (the natural extension of the complexity classification), then the potential to improve our understanding of adult cognition is further realised. Using a combination of cognitive psychology and individual differences methodologies, this thesis explores the psychometric properties of RC in three high level reasoning tasks. The Knight-Knave Task and the Sentence Comprehension Task come from the psychological literature. The third task, the Latin Square Task, was developed especially for this project to test the RC theory.

An extensive RC analysis of the Knight-Knave Task is conducted using the Method for Analysis of Relational Complexity (MARC). Processing in the Knight-Knave Task has been previously explored using deduction-rules and mental models. We have taken this work as the basis for applying MARC and attempted to model the substantial demands these problems make on limited working memory resources in terms of their relational structure. The RC of the Sentence Comprehension Task has been reported in the literature and we further review and extend the empirically evidence for this task. The primary criterion imposed for developing the Latin Square Task was to minimize confounds that might weaken the identification and interpretation of a RC effect. Factors such as storage load and prior experience were minimized by specifying that the task should be novel, have a small number of general rules that could be mastered quickly by people of differing ages and abilities, and have no rules that are complexity level specific.
The strength of MARC lies in using RC to explicitly link the cognitive demand of a task with the capacity of the individual. The cognitive psychology approach predicts performance decrements with increased task complexity and primarily deals with aggregated data across task condition (comparison of means). It is argued however that to minimise the subtle circularity created by validating a task’s complexity using the same information that is used to validate the individual’s processing capacity, an integration of the individual differences approach is necessary. The first major empirical study of the project evaluates the utility of the traditional dual-task approach to analyse the influence of the RC manipulation on the dual-task deficit. The Easy-to-Hard paradigm, a modification of the dual-task methodology, is used to explore the influence of individual differences in processing capacity as a function of RC. The second major empirical study explores the psychometric approach to cognitive complexity. The basic premise is that if RC is a manipulation of cognitive complexity in the traditional psychometric sense, then it should display similar psychometric properties. That is, increasing RC should result in an increasing monotonic relationship between task performance and Fluid Intelligence (Gf) – the complexity-Gf effect. Results from the comparison of means approach indicates that as expected, mean accuracy and response times differed reliably as a function of RC. An interaction between RC and Gf on task performance was also observed. The pattern of correlations was generally not consistent across RC tasks and is qualitatively different in important ways to the complexity-Gf effect. It is concluded that the Latin Square Task has sufficient measurement properties to allows us to discuss (i) how RC differs from complexity in tasks in which expected patterns of correlations are observed, (ii) what additional information needs to be considered to assist with the a priori identification of task characteristics that impose high cognitive demand, and (iii) the implications for understanding reasoning in dynamic and unconstrained environments outside the laboratory. We conclude that relational complexity theory provides a strong foundation from which to explore the influence of individual differences in performance further.