Quantum dynamics of electronic excitations in biological chromophores: Models for the influence of the protein and solvent environment

A thesis submitted for the degree of Doctor of Philosophy to the University of Queensland
February 2007

Joel Gilmore
School of Physical Sciences
Statement of Originiality

Except where otherwise acknowledged and referenced in the customary manner, the material presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or part for a degree in any university.

Joel Gilmore
Author

Prof. Ross H. McKenzie
Principal Advisor
First and foremost: thanks, kudos and a signed blank cheque should go to my supervisor, Ross McKenzie, whose knowledge, guidance and copious quantities of patience were essential for the completion of my PhD. His extensive advice helped make this thesis and my papers infinitely more coherent, and I hope I really have learned how to write better figure captions. Most importantly, his humour helped to relieve much of the stress that goes with being a PhD student. Cheers also to my associate supervisor Paul Meredith for your patient explanations of basic biology and chemistry as well as ongoing encouragement.

I also had the opportunity for some delocalised study. Prof. Andrew Briggs was kind enough to host me at the Quantum Information Processing Interdisciplinary Research Collaboration at Oxford University for two months, and gave generously of his time to discuss my project and give helpful advice. Everyone there made me feel very welcome, particularly Brendon Lovett. Visits with Bob Austin at Princeton, Jose Onuchic at University of California, San Diego and Klaus Schulten at University of Illinois at Urbana-Champaign were also very helpful, both for my thesis and knowledge of biophysics in general. These trips were supported by the Australian Research Council and the University of Queensland Graduate School Research Travel Awards.

Many people have made valuable contributions without which the evolution of this project would have collapsed - thank you to Ben Powell for explaining Density Functional Theory methods and the parameters obtainable from simulations, Paul Burn for his knowledge and discussion of experimental techniques, Gerard Milburn for explanations of decoherence and entanglement, Jeff Reimers for discussions about photosynthesis and electron-phonon
c coupling, Maximillian Schlosshauer for helpful clarifications on decoherence, Seth Olsen for
detailed discussions about fluorescent proteins and conical intersections and many others
including (but not limited to!) Irene Burghardt, Paul Curmi, Paul Davies, Todd Martinez,
Jenny Riesz and Greg Sholes.

I would also like to thank everyone involved with the UQ Physics Demo Troupe, which was
a wonderful part of my PhD experience. Special thanks to Else Shephard of the Australian
Academy of Technological Sciences and Engineering, the Australian Institute of Physics and
the Department of Physics at the University of Queensland who very generously supported
our trips to excite the state in regional Queensland, and to Susan Grantham for her extensive
help planning the trips. These were unforgettable and unique experiences.

Ross McKenzie and Halina Rubinsztein-Dunlop also provided very helpful career advice,
and their tireless efforts helped me find a super-position for post-PhD.

For all future PhD students, PhDComics.org is mandatory reading – knowing that my
experiences were not unique was a great relief, if somewhat terrifying, and taught me not to
FRET too much about things. And, of course, Google and Wikipedia – where would I be
without you?

Thanks to all the friends who’ve provided support and encouragement and ideas for pro-
crastination. The Error Bar crowd, everyone at swing dancing and the QMT musical coffee
crowd whose distractions saved me from being hermit-ian during writeup! Although many
should get mentions, I’ll restrict myself to thanking Jen for her friendship and support over
the years, all of the Riesz family for their constant support, enthusiasm and car maintenance,
Hayley and Kellie for way too many late night conversations and Jasmine for fun evenings
and great food. And, of course, Brett for constantly fascinating discussions on every topic
imaginable. And he only beat me by two weeks.

Finally, thanks to my family - MM & PP for your ongoing encouragement in everything
(and newspaper clippings!), Aunt Jen for her constant support and great company, and Mum
for always encouraging a love of learning in all its forms and supporting me in everything
I do (except perhaps firetwirling...). And to both Mum and Aunt Jen, whose rather long
candidatures produced brilliant PhDs, but really really inspired me to finish on time.

Everyone - thanks. Now, please, go and read my thesis.
List of Publications

Papers forming part of this thesis

Papers related to this thesis but not forming part of it

Abstract

This thesis presents minimal quantum mechanical models for the interaction between electronic excitations in a chromophore with its surrounding environment, including protein, bound water and bulk solvent. The interaction of the chromophore’s electric dipole moment with the fluctuating electric dipole moments of the solvent and protein molecules is shown to be described by an independent boson model. An explicit microscopic derivation is given for the spectral density through a fluctuation-dissipation relationship. Continuum dielectric models are used to describe the protein and solvent. Several models are proposed for the structure of the protein and bound water around the chromophore, and spectral densities are obtained analytically for each case. These spectral densities depend only on measurable quantities, in particular the relaxation times of the environment, which are generally obtainable from experiment or simulation.

In most cases, the relaxation times of the solvent, bound water and protein are widely separated and it is shown that individual contributions to the total spectral density can then be identified for each of these features. Current methods for obtaining the spectral density from molecular dynamics simulations and experiments such as the dynamic Stokes shift and three pulse photon echo spectroscopy are examined, and a survey of recent results is undertaken. Minimal models are used to provide a natural explanation and model for the different time scales observed in the extracted spectral densities, and suggest physical processes corresponding to experimental peaks.

In many situations, it is found that only one aspect of the environment is important for the quantum dynamics. The relative contribution of each component is determined by the
time scale on which one is considering the quantum dynamics of the chromophore. Results are then compared to those obtained for specific chromophores in specific proteins. The effect of the protein on ultrafast solvation is also considered.

The models are then extended to two optically active molecules coupled by resonance energy transfer. When only a single excitation is present, the transfer dynamics of the excitation is shown to be described by the spin-boson model, with a spectral density given by the sum of the spectral densities of the individual chromophores. The dynamics of such systems are investigated and quantitative criteria are given for the presence of quantum coherent oscillations of excitations between the chromophores. Experimental tests to confirm these results, and to investigate the quantum-classical crossover between coherent and incoherent transfer, are proposed through the use of Fluorescent Resonant Energy Transfer (FRET) spectroscopy. The results are then applied to systems of coupled chlorophyll molecules in the photosynthetic reaction centre.

Finally, spin-boson models suitable for describing the conical intersections associated with conformational change of a chromophore are proposed, and possible applications to modelling the transfer of vibrational energy within proteins and predicting spectra circular dichroism spectra for proteins are discussed.
1.5 Quantum mechanics .. 22
 1.5.1 Two level systems ... 22
 1.5.2 Decoherence .. 24
 1.5.3 Models for quantum baths and decoherence 27
 1.5.4 The spin-boson model 28
 1.5.5 The spectral density ... 30
1.6 Analytical solution for the time evolution of the density matrix 32

2 Independent boson models for a chromophore and its environment 35
 2.1 The Onsager model .. 36
 2.1.1 The reaction field 37
 2.1.2 Energy stored in the solvent 38
 2.1.3 Absorption spectrum 42
 2.2 Experimental evidence for the Onsager model 44
 2.3 Deriving an independent boson Hamiltonian for the Onsager model .. 45
 2.3.1 Quantisation of the reaction field 46
 2.3.2 Spectral density in terms of environment fluctuations 48
 2.4 Spectral density for a free chromophore in a polar solvent 50
 2.5 Absorption spectrum ... 51

3 Modelling the protein environment 55
 3.1 Introduction .. 55
 3.1.1 Overview of chapter 58
 3.2 The spectral density for the different continuum models of the environment 61
 3.2.1 Different models ... 61
 3.2.2 Solution for the reaction field 63
 3.2.3 Spectral densities of different Models 65
 3.2.4 Frequency dependence of dielectric constants 67
 3.3 Evaluation of the Ohmic coupling constant α for different models 68
 3.3.1 Model 1 - No protein 69
 3.3.2 Model 2 - No solvent 69
3.3.3 Model 3 - Static protein with no vacuum cavity 69
3.3.4 Model 4 - Dynamic protein and dynamic solvent 70
3.3.5 Model 5 - Bound water ... 74
3.4 Spectral densities determined from ultra-fast optical spectroscopy 76
3.4.1 Eosin in Lysozyme ... 79
3.5 Spectral densities determined from molecular dynamics simulations 81
3.5.1 Tryptophan in monellin and water ... 81
3.5.2 Frequency dependent dielectric properties of an HIV1 zinc finger pep-
tide in water ... 82
3.5.3 Frequency dependent dielectric properties of ubiquitin in water 82
3.5.4 Electron transfer in the \(Rps. \ Viridis \) reaction centre 83

4 The Spin-boson model ... 85
4.1 Adiabatic and non-adiabatic limits .. 86
4.2 Dynamics of an isolated two level system 87
4.3 Fermi’s Golden Rule and the spin-boson model 87
4.4 Adiabatic renormalisation ... 91
4.5 Bloch equations ... 94
4.6 Non-interacting blip approximation ... 99
4.7 Quantum Monte Carlo .. 100
4.8 Numerical Renormalization Group ... 101
4.9 Exact results from boundary conformal field theory 102

5 Spin boson models for Resonance Energy Transfer 107
5.1 The Coulomb and exchange mechanisms 108
5.1.1 Dipole-dipole approximation ... 111
5.1.2 Förster’s equations ... 112
5.2 Spin-boson models for RET ... 117
5.2.1 Hamiltonian for two coupled chromophores 117
5.2.2 Mapping to the spin-boson model for the single excitation subspace .. 120
5.2.3 Spectral density for two coupled chromophores 122
5.3 FRET dynamics ... 123
 5.3.1 Criteria for coherent vs incoherent transfer 123
 5.3.2 Application to photosynthesis 124
5.4 Experimental tests .. 125

6 Conclusion .. 131
 6.1 Summary of key results ... 131
 6.2 Future directions .. 133
 6.2.1 Predicting circular dichroism and optical rotary dispersion spectra .. 134
 6.2.2 Coherent transfer of vibrational energy within proteins 134
 6.2.3 Conformational changes through conical intersections 135

A Derivations .. 139
 A.1 Absorption and conductivity .. 139
 A.2 Absorption spectrum derivation for the independent boson model 142
 A.2.1 Diagonalisation of the independent-boson Hamiltonian 144
 A.2.2 Evaluating the conductivity of the independent boson model 146
 A.2.3 Absorption spectrum in terms of the spectral density 149
 A.2.4 Sum rules .. 150
 A.2.5 Fermi’s golden rule .. 151
 A.3 Fluctuation-dissipation theorem 153
 A.3.1 Response to external fields .. 153
 A.3.2 Quantum fluctuation-dissipation theorem 155
 A.4 Reorganisation energy .. 157
 A.5 Reaction field susceptibility for the classical Onsager model 159

List of Symbols ... 163

References .. 165
List of Figures

1.1 Schematic representation of the time scales of various processes in biomolecules, proteins and solutions. ET stands for electron transfer, PS RC for photosynthetic reaction centre. See Table 1.1 for specific numbers. 9

1.2 Chemical structure of β-carotene, an orange chromophore involved with photosynthesis. The series of alternating double and single C–C bonds produces delocalised orbitals and a transition in the orange range of the visible spectrum. 11

1.3 Schematic diagram of the electronic transitions of a chromophore in the presence of a solvent. The solvent is originally in an equilibrium configuration with the ground state dipole moment of the chromophore. After excitation, the chromophore dipole moment is typically different, and the solvent must reorientate itself to a new configuration. This reorientation produces a red shift of the excitation spectrum relative to the absorption spectrum, known as the Stokes shift. Reproduced from Fig. 1 of ref. [40]. 13
1.4 Solvent response function for tryptophan in aqueous solutions [44]. Inset shows the normalised fluorescence spectrum as a function of time. As the solvent around the chromophore reorientates itself to the new dipole moment of the chromophore, the total energy of the excited state + environment decreases (with respect to the ground state), and the emission is redshifted towards an equilibrium spectrum. It is this long time equilibrated spectrum that is typically measured by fluorescence studies. Reproduced from Fig. 2 of ref. [44].

1.5 Structure of the photosynthetic unit (PSU) of a purple bacteria. Photons are absorbed by the LH-II rings of chlorophyll molecules, transferred to the LH-I ring surrounding the reaction centre and finally transferred to the reaction centre where a charge separation is produced and used to drive the chemical reactions required to store the energy for later use. Reproduced from Figure 2 of ref. [10].

1.6 Cartoon representation of the structure of Light Harvesting Complex II (LH-II) from a purple bacteria photosynthetic unit. The bacteriochlorophll (BChl) molecules are represented as squares. The two groups are denoted by B850 and B800 according to their absorption maxima. The carotenoid molecules are extending vertically down are shown in a licorice representation. Reproduced from Figure 4 of [10].

1.7 Schematic diagram of a double well potential. Provided the thermal energy $k_B T$ is small compared to the energy level separation of each well, only the ground states will be appreciably occupied in thermal equilibrium. The difference between their energies gives the bias ϵ of the resulting two level system.

1.8 Schematic picture of an isolated two level system (TLS). Two energy levels are separated by energy ϵ and have coupling (tunneling matrix element) Δ.
2.1 The absorption spectrum of CS$_2$ in the vapor phase (right) and in cyclohexane (left), corresponding to the S$_3$ ← S$_0$ electronic transition [105]. In the vapor phase, we observe individual peaks corresponding to the vibrational modes, while in solution these peaks are broadened to the point of being indistinguishable because of the interaction with the solvent. Furthermore, the maxima of the distribution is significantly red shifted. Extracted from Fig. 1 of ref. [105].

2.2 The Onsager model for solvation of an isolated chromophore. The chromophore sits in a spherical cavity surrounded by a polar solvent. The permanent dipole moment of the chromophore polarises the solvent, producing an electric field (the reaction field) which acts back on the dipole to stabilise the system.

2.3 Energy surfaces for a chromophore inside a polar solvent according to the Onsager model. For the chromophore in its ground state, the equilibrium configuration of the solvent produces a reaction field R_g. The energy of the system increases quadratically away from this value, which produces the lower parabola shown here. In the excited state, the chromophore typically has a different electric dipole moment and so produces a different reaction field, R_e, and the excited state energy surface is therefore shifted from the ground state parabola both horizontally (due to changed equilibrium reaction field) and vertically (due the chromophores excited state energy).

2.4 Position of the position of fluorescence peak of laser dye DCM2 for different solvents. The horizontal axis is the function of the solvent dielectric constant ϵ which occurs naturally in the Onsager model. Solvent dielectric ranged from $\epsilon = 2.28$ for benzene to $\epsilon = 36.64$ for acetonitrile. Extracted from Fig. 4 of ref. [106]; for all solvents used and their dielectrics see the original figure.
2.5 Difference between absorption and emission peaks of ACRYLODAN molecule in ethyl acetate for temperatures from 193 K-393 K. Horizontal axis is the function of the solvent dielectric ϵ which occurs in the Onsager model (see eq. (2.15c)). The solvent has different dielectric properties at different temperatures, producing the change in peak positions. The linear fit can be used to determine the difference between the ground and excited state dipole moments of ACRYLODAN. Extracted from fig. 7 of ref. [107].

3.1 The chromophore, protein and bound water in photoactive yellow protein (PYP). The isolated spheres represent the bound water, the chromophore is shown by its van de Waals surface, and the protein by a cartoon representation. Observe that the chromophore is almost completely contained within the protein, shielded from direct contact with the surrounding bulk water. Generated from the Protein Database 3PYP.pdb[124].

3.2 Schematic plot of the spectral density for a typical chromophore on a log-log scale. We see three distinct peaks, which can be attributed to the relaxation of the protein, bound water and bulk solvent, respectively, with corresponding relaxation times τ_p, τ_b and τ_e.

3.3 The five models considered for a chromophore-protein-solvent system. The chromophore is modelled as a point dipole. In Model 1, the chromophore is modelled sits at the centre of a cavity of radius a roughly of the Van de Waals size of the chromophore, surrounded by a uniform polar solvent with complex dielectric constant $\epsilon_e(\omega)$. In Model 2, the chromophore is surrounded by an infinite protein, modelled as a uniform, continuous dielectric medium, with complex dielectric constant $\epsilon_p(\omega)$. In Model 3, the chromophore sits in a protein of radius b surrounded by the solvent. In Model 4, the chromophore sits in a cavity inside the dynamic protein, surrounded by solvent. In Model 5, the static protein is surrounded by a thin shell of bound water of radius c, surrounded by the bulk solvent.
3.4 Model 4 for the interaction between a chromophore and its environment. The chromophore is treated as a point dipole sitting in a cavity of radius a in the centre of a spherical, uniform protein which is treated as a homogeneous dielectric medium of radius b. The protein-pigment complex is surrounded by a solvent, typically water, which is again treated as a homogeneous dielectric medium though actual molecules are shown for clarity of explanation. The chromophore’s dipole moment polarises its environment, which in turn produces an electric field, the “reaction field”, which interacts with the chromophore. Fluctuations in the environment will translate to fluctuations in the chromophore’s energy.

3.5 The relative importance of the solvent and protein dynamics for chromophores in large proteins. Log-log plot of of the spectral density for Model 4 $J_{\text{full}}(\omega)$ (solid line) and the its two contributions, the protein ($J_p(\omega)$, dashed line) and solvent ($J_s(\omega)$, dot-dash line) contributions. The frequency scale of the crossover is as predicted by equation (3.34). Here, $b = 4a$, the solvent is water and the protein dielectric is $\epsilon_p^s = 6$, $\epsilon_p^i = 2.5$ and relaxation time $\tau_p = 10$ ns.

4.1 Coherent oscillations in $\langle \sigma_z(t) \rangle$ (dashed line) and $\langle \sigma_y(t) \rangle$ (solid line) predicted by Bloch-type equations for the spin-boson model for temperatures below the critical temperature $k_B T_0 = 2\Delta/\alpha$. Here $\Delta = 0.01$, $\beta = 5.0$ and $\alpha = 0.01$ in arbitrary units.

4.2 Incoherent relaxation dynamics of $\langle \sigma_z(t) \rangle$ (dashed line) and $\langle \sigma_y(t) \rangle$ (solid line) predicted by Bloch-type equations for the spin-boson model for temperatures above the critical temperature $k_B T_0 = 2\Delta/\alpha$. Here $\Delta = 0.01$, $\beta = 0.4$ and $\alpha = 0.01$ in arbitrary units.
4.3 Plot of $\text{Tr}(\rho^2)$ for the state of a two-level system described by a set of Bloch equations, which starts in an initially pure state $S_z = 1$ state corresponding to $\text{Tr}(\rho^2) = 1$, then decays monotonically to a completely mixed state $\text{Tr}(\rho^2) = 1/2$. For temperatures above a critical temperature T_0, the relaxation occurs smoothly (dashed line), while for temperatures below T_0 (solid line) periodic features can be observed corresponding to coherent oscillations in S_y and S_z. 98

4.4 The crossover temperature T^* from coherent to incoherent oscillations as a function of the strength of the coupling α to the environment for Ohmic dissipation. $\Delta_{\alpha\alpha}$ is the renormalized tunneling matrix element given by Δ_r in eq. 4.28. Reproduced from ref. [85]. 100

4.5 Transfer dynamics of the spin-boson model as predicted from Quantum Monte Carlo calculations, shown schematically as a function of the coupling Δ, cut-off frequency of the bath ω_c and temperature T. Diagram reproduced from Fig. 14 of ref. [173]. 102

4.6 Transfer dynamics of the spin-boson model as calculated by Quantum Monte Carlo methods, for different values of the coupling Δ, cut-off frequency of the bath ω_c and temperature T. Oscillatory adiabatic dynamics are denoted by diamonds, all other symbols are non-oscillatory (for details see fig. 13 of ref. [173]). The dimensionless coupling α is $\alpha = 25\Delta/\omega_c$ for $\Delta/\omega_c = 0.02, 0.04$ and $\alpha = 5\Delta/\omega_c$ otherwise. Notice that $\Delta/\omega_c = 10$, $\alpha = 50$ but coherent oscillations are still present even for $k_B T = 10\Delta$. Diagram reproduced from Fig. 13 of ref. [173]. 103

4.7 Predictions of the tunneling frequency (circles) and damping coefficient (×’s) in terms of the cut-off frequency ω_c for the spin-boson model with Ohmic dissipation from quantum Monte Carlo methods [176]. Note that the tunneling frequency is exactly zero where no error bars are shown (e.g., no tunneling between states occurs for $\Delta/\omega_c = 0.01$ and $\alpha > 0.45$). Figure reproduced from Fig. 7 of ref. [176] 104
4.8 Phase diagram for incoherent relaxation vs. damped coherent oscillations as a function of the bath coupling α and bias ϵ for the spin-boson model with Ohmic dissipation and $\Delta/\omega_c = 0.1$ at zero temperature as predicted by Monte Carlo methods [176]. Note that coherent oscillations will always be present above some critical value of the bias. Reproduced from Fig. 11 of ref. [176].

5.1 The Coulomb and exchange mechanisms. The top panel shows the Coulomb mechanism, where one donor electron returns to the ground state while one acceptor electron is excited. The lower panel shows an actual exchange mechanism, where the excited and ground state electrons swap molecules. While the Coulomb mechanism can function of large distances ($\sim 50\, \text{Å}$), the exchange mechanism requires significant overlap of the electron wavefunctions and is restricted to a few Angstroms. Figure based on Box 2 of ref. [3].

5.2 Definition of the angles used to calculate the orientation factor affecting the efficiency of transfer between the donor (D) and acceptor (A) chromophores (see eqns. (5.9) and (5.8)). φ is the angle between the donor emission transition dipole moment and the acceptor absorption transition dipole moment, and θ_d and θ_a are the angles between the donor-acceptor connecting line and the donor and acceptor transition moments respectively.

5.3 Schematic representation of the dependence of FRET transfer efficiency on the overlap integral between the absorption and emission profiles of the acceptor and donor molecules respectively. Reproduced from Fig. 1 of ref. [54].

5.4 Model for resonance energy transfer (RET) between two chromophores. The chromophores are treated as point dipoles with two energy levels, and sit inside their respective protein environments (and bound water, if applicable), surrounded by the bulk solvent. Δ is the RET coupling between the two chromophores.
5.5 Two two level molecules coupled by resonance energy transfer forming a new four level system. The new ground state and highest excited state corresponds to neither or both original systems excited, while the intermediate energy levels describe a single excitation shared between both subsystems. Extracted from fig. 3 of ref. [187].

5.6 Mapping of two coupled chromophores to a two level system in the single excitation subspace. \(\sigma_z = +1 \) now refers to the first molecule in its excited state, and the second in its ground state, and \(\sigma_z = -1 \) to the first molecule in its ground state and the second molecule excited. \(\epsilon \) is the difference in energies between the two excited states.

5.7 Experimental setup for the observation of coherent transfer of excitations between chromophores. The donor (\(\mu_D \)) and acceptor (\(\mu_A \)) transition dipole moments are aligned at 45 degrees and perpendicular respectively to an incident light beam with polarisation vector \(\hat{e} \). Thus, the acceptor chromophore will not be excited by the beam, but transfer will still take place with an efficiency governed mainly by their separation \(\vec{R} \).

5.8 Fluorescent anisotropy decay of molecule DTA in tetrahydrofuran solvent at room temperature, as observed by Yamazaki et al. [193], in the femtosecond regime. They extract an oscillation period of approximately 1 ps, and a damping time of approximately 1 ps. Extracted from Fig. 5 of ref. [193].

6.1 Conical intersection between two energy surfaces. The vertical axis is energy, and the horizontal axes are \(q_1 \) and \(q_2 \) representing the position co-ordinates of two classical harmonic oscillators. Scales are in arbitrary units.

A.1 Shift in absorption and emission due to interaction with a harmonic oscillator. The energy surfaces corresponding to the ground and excited states of the TLS are shifted by the interaction so that the minima of the parabolas are no longer vertically aligned. The dominant (vertical) transition is therefore increased or reduced by the reorganisation energy, \(\lambda \).
A.2 Absorption and emission spectra for Coumarin 153 in ethanol, demonstrating
the Stokes shift due to solvent reorganisation. The reorganisation energy λ
can be estimated from half the separation of the peaks of the absorption and
emission spectra. Adapted from Fig. 2 of ref. [194].
List of Tables

1.1 Timescales for various processes in biomolecules and solutions. The radiative lifetime of a chromophore is order of magnitudes longer than all other timescales, except perhaps protein dielectric relaxation. MD refers to results from molecular dynamics simulations. Of particular relevance to this work is the separation of timescales, $\tau_s \ll \tau_b \ll \tau_p$ (compare Fig. 1.1). ... 10

1.2 Parameters of the spin-boson model, and their units. 29

3.1 Comparison of the matrix element Δ which couples two quantum states for various processes in proteins with the solvation rates due to the interaction of the quantum system with different parts of its environment. The quantum dynamics of the process will be determined largely by the part of the environment which undergoes solvation relaxation at a rate comparable to Δ. LHI and LHII refer to light harvesting complexes I and II in photosynthetic purple bacteria. ... 57
3.2 Solvation relaxation times for various chromophores in a range of environments. The values of relaxation times and their relative weights are determined by fitting the time dependence of the dynamic Stokes shift (3.45) or three-pulse photon echo peak shift (3PEPS) to the functional form (3.48). Some papers fit the data to (3.45) with $A_g = 0$. Note there is some variation in estimates of the reorganisation energy depending on whether one estimates it from the maxima in the absorption and emission spectra or from the first frequency moment of the spectra [48]. It should be noted that the time resolution is different in the various experiments. Some did not have access to femtosecond time scales and so we have left the relevant columns blank. SC is Subtilisin Carlsberg. HSA is Human serum albumin. In HSA the Acrylodan chromophore is at the surface of the protein, whereas the Phycocyanobilin chromophore is much less exposed to the solvent. HSA is in its native folded form in the buffer but denatures in concentrations of Gdn.HCl (guanidine hydrogen chloride) greater than about 5M. DCM is 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl) 4H-pyran, bR is bacteriorhodopsin, MPTS is 8-methoxypyrene-1,3,6-trisulfonate and bis-ANS is 1,1-bis(4-anilino)naphthalene-5,5′ disulfonic acid.

4.1 Behaviour of $P(t) = \langle \sigma(z)(t) \rangle$ for the spin-boson model, which gives the state of the two level system as a function of time t, for $\epsilon = 0$ and $\Delta \ll \hbar \omega_c$, where Δ is the tunneling strength and ω_c is the high frequency cut-off of the spectral density $J(\omega)$. “loc” refers to localisation, “coh” to damped coherent oscillations and “inc” to incoherent behaviour i.e., exponential decay. T is the temperature of the system and α is the dimensionless coupling constant of the chromophores to the environment as defined in Equation (1.16). τ refers to the relaxation rate in the expression $P(t) = \exp(-t/\tau)$. The analytic form of $P(t)$ is given where known, and is generally valid only for timescales longer than $1/\omega_c$. $\Delta_r = \Delta(\Delta/\hbar \omega_c)^{\alpha/(1-\alpha)}$.

5.1 Typical energy scales E and the corresponding time scales $\tau = h/E$ relevant to Förster Resonance Energy Transfer in several systems. Δ is the Förster coupling between the two chromophores, ϵ is the difference in energy of their first excited states. ω_c is the high frequency cut-off of the spectral density $J(\omega)$ in the relevant spin-boson model. Typically, $1/\omega_c = \frac{2\epsilon_\infty + \epsilon_p}{2\epsilon_s + \epsilon_p} \tau_D$, where τ_D is the Debye relaxation time of the solvent and ϵ_s and ϵ_∞ are the solvent’s static and high frequency dielectric constants respectively. LH-I and LH-II are the photosynthetic light harvesting complexes, and “BChl” is the bacteria chlorophyll molecule. We observe that the fluorescence lifetime τ_{rad} is much longer than the other time scales, suggesting that all other processes of interest occur before radiative decay. We note also that both Δ and ϵ span two orders of magnitude, so we might expect very different behaviour for BChl’s in LH-II than for typical FRET spectroscopy, such as between green and red fluorescent proteins.
List of Abbreviations

BChl Bacteriochlorophyll
FRET Fluorescent Resonance Energy Transfer
GFP Green fluorescent protein
HOMO Highest Occupied Molecular Orbital
LH-I Light harvesting complex I
LH-II Light harvesting complex II
LUMO Lowest Unoccupied Molecular Orbital
PSU Photosynthetic unit
PYP Photoactive yellow protein
RC Reaction centre
RET Resonance Energy Transfer
TLS Two level system