
Artificial Intelligence Techniques

Towards Adaptive Digital Games

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

Marco Tamassia

Bachelor of Computer Science
University of Verona, Italy

Master of Computer Science
University of Verona, Italy

School of Science
College of Science, Engineering and Health

RMIT University

September 2017

I would like to dedicate this thesis to my loving partner Misuzu

Declaration

I certify that except where due acknowledgement has been made, the work is that of
the author alone; the work has not been submitted previously, in whole or in part, to
qualify for any other academic award; the content of the thesis is the result of work
which has been carried out since the official commencement date of the approved
research program; any editorial work, paid or unpaid, carried out by a third party is
acknowledged; and, ethics procedures and guidelines have been followed.

Marco Tamassia
September 2017

Acknowledgements

I would like to thank my supervisors, Fabio Zambetta, Xiaodong Li and Floyd
Mueller, who always provided invaluable guidance and feedback during my doc-
toral training. Although not officially a supervisor, I would like to thank William
Raffe for helping as if he were one.

I would also like to thank all the members of the Evolutionary Computation and
Machine Learning (ECML) group at RMIT University for all the feedback and useful
discussions, and for exposing me to a wide variety of research topics. In particular, I
would like to thank Simon, who has been a great collaborator, friend and housemate.

I would like to thank Ruck Thawonmas and all the members of the Intelligent
Computer Entertainment (ICE) lab. at Ritsumeikan University for welcoming, sup-
porting and helping me and my research.

Finally, I would like to thank my family and friends for always supporting me.
To my partner Misuzu, who showed unconditioned love and warmed every day
with her smile. To my parents Adriana and Gianni for always wanting the best for
me and my brothers. To Ali, Jessie and all the fellow Ph.D. students for all the coffee
time; to my flatmates for the fun they added to my day-to-day life far from home;
and to Lannari for making me feel there even being on the other side of the planet.

Abstract

Digital games rely on suspension of disbelief and challenge to immerse players in the
game experience. Artificial Intelligence (AI) has a significant role in this task, both to
provide adequate challenges to the player and to generate believable behaviours. An
emerging area of application for digital games is augmented reality. Theme parks
are expressing interest to augment the user experience via digital games. Bringing
together cyber- and physical- aspects in theme parks will provide new avenues of
entertainment to customers.

This thesis contributes to the field of AI in games, in particular by proposing
techniques aimed at improving players’ experience. The technical contributions are
in the field of learning from demonstration, abstraction in learning and dynamic
difficulty adjustment. In particular, we propose a novel approach to learn options for
the Options framework from demonstrations; a novel approach to handle progres-
sively refined state abstractions for the Reinforcement Learning framework; a novel
approach to dynamic difficulty adjustment based on state-action values, which in
our experiments we compute via Monte Carlo Tree Search. All proposed techniques
are tested in video games.

The final contribution is an analysis of real-world data, collected in a theme
park queuing area where we deployed an augmented reality mobile game; the data
we collected suggests that digital games in such environments can benefit from
AI techniques, which can improve time perception in players. Time perception, in
fact, is altered when players enter the state of “flow”, which can only happen if
suspension of disbelief is maintained and if the level of challenge is adequate. The
conclusion suggests this is a promising direction for investigation in future work.

Contents

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Research Goals . 3
1.1.1 Research questions . 4
1.1.2 Contributions . 5
1.1.3 Publications . 6

1.2 Thesis structure . 7

2 Background and Related Work 9

2.1 Reinforcement Learning . 10
2.1.1 Markov Decision Processes . 11
2.1.2 Value Functions . 12
2.1.3 Optimal-Value Functions . 13
2.1.4 Model-free Learning and Control 14
2.1.5 Exploration-Exploitation . 15

2.2 Abstraction . 15
2.2.1 Temporal abstraction . 16
2.2.2 State abstraction . 18

2.3 Monte Carlo Tree Search . 19
2.3.1 Combinatorial games . 20
2.3.2 Tree search techniques . 21
2.3.3 The algorithm . 22
2.3.4 UCT . 25
2.3.5 Dynamic Difficulty Adjustment 26

2.4 Summary . 27

xii Contents

3 Learning Options from Demonstrations 29

3.1 Options construction . 29
3.2 Identifying Useful Sub-goals . 30
3.3 Reduce the Number of Sub-goals . 32

3.3.1 Graph-based Clustering . 32
3.3.2 Features-abstraction Aggregation 33

3.4 Experiments . 34
3.4.1 Grid-world experimental setup 34
3.4.2 Grid-world experiments results 37
3.4.3 Pac-Man experimental setup 43

3.5 Pac-Man experiments results . 49
3.6 Summary . 53

4 Dynamic Choice of State Abstraction 57

4.1 Dynamic Abstraction Choice . 58
4.2 Experiments . 63
4.3 Results . 66
4.4 Summary . 71

5 Monte Carlo Tree Search for Dynamic Difficulty Adjustment 77

5.1 Challenge Sensitive Action Selection 78
5.2 Targeting outcomes . 79

5.2.1 Reactive Outcome Sensitive Action Selection 80
5.2.2 Proactive Outcome Sensitive Action Selection 81
5.2.3 True ROSAS and True POSAS 82
5.2.4 Steeper variations . 84
5.2.5 Adaptive variations . 85

5.3 Experimental setup . 88
5.3.1 Implementation details . 90

5.4 Results and Discussion . 91
5.4.1 Discussion . 94

5.5 Summary . 102

6 Opportunities for AI Techniques in Theme Parks 103

6.1 Attention and Flow . 104
6.2 Game design . 105
6.3 Experimental setup . 107

Contents xiii

6.3.1 Study Site and Demographics of Participants 107
6.3.2 Experimental Design . 108
6.3.3 Data Collection and Analysis 109

6.4 Results and Discussion . 110
6.4.1 Statistical Significance and Effect Size 110
6.4.2 Correlations . 110
6.4.3 Linear Regression . 113
6.4.4 Survey analysis . 113

6.5 Limitations and Future Work . 115
6.6 Summary . 116

7 Conclusions 119

7.1 Future Works . 121

Bibliography 125

List of Figures

2.1 A representation of the Reinforcement Learning paradigm (image
from [92]). 11

2.2 A representation of an asymmetric tree. 23
2.3 A representation of the Monte Carlo Tree Search algorithm (image

from [14]). 24

3.1 The grid-world used in the experiments. The yellow squares represent
the destinations used in the different experiments: the one in the
upper corner is labeled as [0], the one in the hallway is labeled [45] and
the other one is labeled [47]. These labels will be used to present the
results of the experiments. The black squares represent unreachable
states in the wall setting and low rewards states in the ponds setting. 35

3.2 Results of experiments in the “pond” settings with destination as
the top-left corner (state [0]). A denotes the set of primitive actions
(cardinal directions),H denotes handcrafted options (the hallways),
and L denotes the set of learned options. 38

3.3 Results of experiments in the “wall” settings with destination as
the top-left corner (state [0]). A denotes the set of primitive actions
(cardinal directions),H denotes handcrafted options (the hallways),
and L denotes the set of learned options. 39

3.4 Results of experiments in the “pond” settings with destination as
the top hallway (state [45]). A denotes the set of primitive actions
(cardinal directions),H denotes handcrafted options (the hallways),
and L denotes the set of learned options. 40

3.5 Results of experiments in the “wall” settings with destination as
the top hallway (state [45]). A denotes the set of primitive actions
(cardinal directions),H denotes handcrafted options (the hallways),
and L denotes the set of learned options. 41

xvi List of Figures

3.6 This figure shows the results obtained in the “pond” setting with
destination [47]. For details, see Figure 3.2. 42

3.7 This figure shows the results obtained in the “wall” setting with
destination [47]. For details, see Figure 3.2. 43

3.8 Annealing schedule for exploration parameter ε. 44
3.9 The video game used in the experiments, Pac-Man. Pac-Man, the

yellow entity, is about to eat a capsule; the smaller white dots are pills
and the coloured entities with eyes are ghosts. 46

3.10 Agents performance . 51
3.11 Histograms of the average reward per episode. 52
3.12 Exploration rate of the agent. The X axis shows the number of the

episode, the Y axis shows the number of distinct states visited since
the beginning of the experiment. Results are averaged over 200 runs
of Q-learning. 54

3.13 Exploration rate of the agent. The X axis shows the number of the
episode, the Y axis shows the number of distinct states visited since
the beginning of the experiment. Results are averaged over 200 runs
of Q-learning. 55

4.1 A visual qualitative representation of the possible situations in which
confidence intervals overlap. Here, a∗ is the action with the highest
mean and a is another action. When confidence intervals overlap, the
confidence level cannot be guaranteed. On top of each subfigure, the
decision made by Algorithm 4 at lines 11–12 is indicated. 61

4.2 A screenshot of the video game used in the experiments, Pac-Man. . 64
4.3 Scores of the games (y axis) per successive episode (x axis) using

Multi-Abstraction Q-learning with εCI-Greedy, varying significance
parameter. 66

4.4 Decisions made with each abstraction (y axis) for each successive
episode (x axis), using σ = 0.2 in Multi-Abstraction Q-learning with
εCI-Greedy. 67

4.5 Decisions made with each abstraction (y axis) for each successive
episode (x axis), using σ = 0.5 in Multi-Abstraction Q-learning with
εCI-Greedy. 68

4.6 Victories to total games ratio (y axis) per successive episode (x axis)
using Multi-Abstraction Q-learning with εCI-Greedy, varying signifi-
cance parameter. 69

List of Figures xvii

4.7 Eaten ghosts (y axis) per successive episode (x axis) using Multi-
Abstraction Q-learning with εCI-Greedy, varying significance parameter. 70

4.8 Score (y axis) per succesive episode (x axis) using Multi-Abstraction
Q-learning with εCI-Greedy versus standard Q-learning with different
sets of features. 71

4.9 Score (y axis) per succesive episode (x axis) using Multi-Abstraction
Q-learning with ε-Greedy versus εCI-Greedy. 72

4.10 Histograms of the average reward per episode. 72

5.1 Action selection strategy used by ROSAS. 80
5.2 Action selection strategy used by POSAS. 81
5.3 Score metric used by True ROSAS. 82
5.4 Score metric used by True POSAS. 83
5.5 Score metric used by Steeper True ROSAS. 85
5.6 Score metric used by Steeper True POSAS. 86
5.7 Score metric used by Adaptive True ROSAS visualised in 2D (a) and

3D (b). 86
5.8 Score metric used by Adaptive True POSAS visualised in 2D (a) and

3D (b). 87
5.9 Agents and characters used in the experiment: in (a) the agents we

are testing, in (b) the participants of the 2016 competition in order
of final rank when playing the ZEN character, in (c) the characters
available in the game. 89

5.10 Agents and characters used in the experiment: in (a) the agents we
are testing, in (b) the participants of the 2016 competition in order
of final rank when playing the ZEN character, in (c) the characters
available in the game. 89

5.11 Boxplot of the final HP difference distribution for each tested agent. . 95
5.11 The evolution of HP of the two players and their difference during

fights. The data is aggregated across fights. 97
5.12 The histogram of the rank of selected actions for different Adaptive

AIs. Since more actions can have the same value, the rank is computed
as an interval: in the histogram, for every action we computed the
minimum and maximum rank a and b and increased all the points
between a and b by 1

b−a
. The data is aggregated across fights. 98

5.13 The histogram of the score of selected actions for different Adaptive
AIs. The data is aggregated across fights. 99

xviii List of Figures

5.14 Boxplot of the final HP difference for each tested agent against specific
opponents. The data is aggregated across fights. 100

5.15 Boxplot of the results of our surveys. The blue rectangles include the
inner quartiles, the green line indicates the median and the dashed
purple line indicates the mean. 101

6.1 Distribution of waited time in our sample 108
6.2 Box-plot of perception error for players and non-players 111
6.3 Correlation between some variables and perception error. 112
6.4 The figure shows the distribution of answers for selected questions of

the survey administered to participants. 115

List of Tables

3.1 Mean and standard error of the average reward per episode across
the 200 runs of the experiments . 50

3.2 Most often extracted goals. #C is the number of capsules, #WG is the
number of weak ghost, ΔG is the distance of the closest non-weak
ghosts and #Det. is the number of detections. 50

4.1 Mean and standard error of the average reward per episode across
the 50 runs of the experiments in Figure 4.8. Columns report values,
respectively, for Multi-Abstraction Q-learning and for Q-Learning
with features Fd,Gh,ScGh,Cp, Fd,Gh,ScGh and Fd,Gh. 75

5.1 The victories percentage of the fights in the first experiment, against
bots. 91

5.2 The victories percentage of the fights in the second experiment, against
humans. 92

5.3 Final HP differences of the first experiment. Initial HP is 500. 92
5.4 Final HP differences of the second experiment. Initial HP is 500. . . . 92

6.1 Statistical metrics of perception error for players and non-players.
The two groups both count 100 participants, but these round numbers
were not planned and are a coincidence. 111

6.2 Results of statistical significance tests and effect size test. 111
6.3 Correlations found significant, along with their r coefficient and the

p-value. 112
6.4 Results of the linear regressions conducted. A and B are, respectively,

coefficients for non-playing time and playing time; C is the intercept.
R2 is a statistical measure 0 ≤ R2 ≤ 1 indicating how closely the data
matches the formula A * non-playing time + B * playing time + C =
perceived time. 114

xx List of Tables

6.5 Statistics of the survey responses that we collected. Responses, in a
Likert scale, are assigned values 1 to 5 which represent, respectively,
strong disagreement or strong agreement. 114

Chapter 1

Introduction

“Smart” items, such as smart appliances, smart phones etc often lack intelligence
in most of the meanings of the word. Usually, the intelligence exhibited by these
items comes from human expertise that was transferred into the software. This,
however, is unfeasible in complex domains, such as games, robotics and agent
control, where unforeseen situations may arise. In these cases, human expertise
needs to be complemented with or replaced by some form of artificial intelligence
able to extrapolate sensible choices given the circumstances.

Among the many real problems that Artificial Intelligence (AI) systems could
solve, agent control fits many of the challenges presented in video games applica-
tions. Engagement and suspension of disbelief can greatly benefit by having agents
that show non-trivial behaviours. Unfortunately, current state-of-the-art AI systems
struggle to produce such behaviours due to the long time required to compute an
answer that is optimal. This limitation is particularly important in the context of
video games, which have tight computational time constraints [17]. This limited
budget is partly due to other parts of a game requiring computation time, and partly
to the fact that players expect a real-time response. Additionally, video games cannot
afford to alienate the player with errors produced by an AI that did not have enough
time to “get to know” the player. Nevertheless, high quality video game titles (a.k.a.
AAA video games1) are now more than ever focusing on AI techniques.

AI techniques for these purposes need to analyse the consequences of their ac-
tions projected in the future. However, in most cases, this is not practical because
the further into the future the agent looks, and the more accurate the agent knowl-
edge, the more computations need to be completed; and this growth is exponential.
Modern video games collect a large number of statistics about players, which make

1video games with multi-million dollars budget

2 Introduction

for a huge player description space. With the processing time increasing rapidly
with the future outlook and the volume of data, the time required for computations
becomes impractical.

Another problem in systems that need to learn their environment, either from
scratch or from an initial rough description is the sparsity of data. In the initial stages
of the learning process, the agent has little experience, which prevents the system
from generalising well. This phenomenon is called the cold start problem, a term
first introduced in recommender system research, which also deals with tailoring
output to the single user [81].

To address the large state space and the sparsity problems, researchers have
turned their attention to the ways in which human and animal brains deal with such
complexity. One of the methods present in nature is that of selective attention [13],
which is based on the notion of saliency; that is, an item that is salient stands out
relatively to its neighbours. The idea behind this is that, in conditions of limited
computational power, one can ignore part of the available information and still
obtain acceptable performance.

This concept of focusing only on part of a problem has already been largely
investigated in the machine learning and in the data analysis fields. The practice
of feature selection [39], which consists in explicitly ignoring irrelevant part of the
information, is ubiquitous in such fields. This is done during the model creation and,
once a feature is ignored, it will never be used during the learning process. However,
often, the relevance of the same piece of information depends on the context. As a
consequence, feature selection has to choose between ignoring sometimes-relevant
information or preserving sometimes-irrelevant information.

A second method used by the human brain to tackle complex problems is that
of chaining [15]. By putting together a sequence of simple behaviours, one agent
can give rise to a more complex behaviour. After a new behaviour is learned, its
execution is activated sub-consciously by a different region of the brain to reduce
cognitive load.

This concept has already been formalised in the AI literature in the options
framework [93]. Options are indeed routines that can be executed by an agent;
such agent needs only to decide to commit to an option and, by doing so, it gives
up control to the option itself. This decreases the computational burden on the
agent, which only needs to learn how to chain options and can delegate lower level
complexity to the options themselves. Work has been done in the context of learning
options through the concept of novelty [76], which is inspired by the natural curiosity

1.1 Research Goals 3

observable in toddlers and kids. By means of this principle, researchers were able to
let a learning agent develop incrementally complex options [83].

These two concepts can be seen as two different forms of abstraction, the first
being an abstraction over the state of the environment (i.e. from complete infor-
mation to only relevant information) and the second being an abstraction over the
actions that the agent can perform (i.e. from low-level actions to high-level plans).
Such concepts can be implemented in actual AI systems that optimise an outcome.
In video games, this often is that of providing as strong an opponent as possible.
However, industry has an even superior need for agents that play at the level of
difficulty of their opponent, while maintaining suspension of disbelief; i.e., such
agents need to feel realistic.

The area of research that focuses on such problem is that of Dynamic Difficulty
Adjustment (DDA), often called also Game Balancing (GB) [46, 84]. Notice that,
while the terms suggest DDA being dynamic and GB not being so, the two terms
are used interchangeably in the literature. In fact, both terms are applicable to any
technique that adapts the difficulty of a game to that of the player, regardless on
whether this is done once at the start of a game or continuously throughout the
game. Despite the great potential in terms of industry applications, DDA has not
been investigated extensively; this thesis offers further study in the area.

1.1 Research Goals

This thesis focuses on Artificial Intelligence (AI) techniques applicable to games. In
particular, we focus first on learning systems based on the Reinforcement Learning
(RL) framework and explore novel techniques based on the concepts of selective
attention and chaining. These novel methods provide new and effective angles of
approach to the problems of learning behaviours in large and complex environments.

In the second part of the thesis, we focus on AI techniques aimed at supporting
player experience in video games. In particular, we propose novel techniques for
Dynamic Difficulty Adjustment (DDA) based on Monte Carlo Tree-Search (MCTS).
These novel techniques apply ideas known in the psychology (i.e., flow, a mental
state of deep focus and complete immersion) and video games AI (i.e., balanced
matches have a 50% victory/defeat outcome) communities to the emerging field of
DDA, suggesting a new approach that can effectively provide better experiences to
players.

4 Introduction

This research is part of an ARC Grant in collaboration with Village Roadshow.
The purpose of the grant is to augment theme park clients experience using digital
technologies. Since these can include games, we see this as a perfect fit for application
of the proposed techniques, and of DDA in particular. Having challenging but
balanced games will make it easier for theme park customers to become players and
it will keep them interested for longer, keeping their attention away from the fact
they may be waiting in line. In the context of the grant, a Augmented Reality (AR)
mobile game was developed to augment the environment of queues in a theme park.
The app consists of a simple, collaborative game that superimposes virtual elements
on the reality filmed by the mobile camera. We show a data-grounded analysis that
suggests that these techniques could have a positive impact on time perception if
applied to games in waiting areas.

The game was played by a large variety of theme park visitors, including parents,
kids and teenagers. Because of the large variety of users, the pre-defined level of
challenge of the game cannot possibly fit everyone. In the final part of this thesis
we analyse the data collected in a field experiment and suggest that integrating AI
techniques such as those proposed to adjust the game difficulty could benefit time
perception of queuing players.

When a game provides the right level of challenge, the player mind can enter a
state of “flow” [18, 26], a state where the mind is sharp-focused on the task at hand
and loses track of time. This is ideal in the context of a queue that can potentially
last for hours, as it is normal in busy days in theme parks. Works in psychology
verified that individuals whose mind is busy perceive time pass faster [36, 16].

1.1.1 Research questions

This research project investigates new approaches to Artificial Intelligence tech-
niques, with a specific interest for video games. The project aims at answering the
following research questions:

• Can goal-oriented options be learned from expert demonstration by using the
concept of surprise? Will such options accelerate the learning process? Goal-
oriented options are the most common, and recent research investigated methods to
learn them from demonstration. However, the concept of surprise has not been studied
in this context. Resulting techniques will be inspired by the human brain and can
produce high-quality options. Options introduce bias in the exploration and learning
process, and good options can improve early performance through such bias. Options

1.1 Research Goals 5

can help improve the performance of learning systems, which, currently, struggle in
large and complex environments.

• Can an agent refine its abstraction on the knowledge of the environment
over time? State engineering needs to find a balance between short and long term
advantages. A fine-grained state space produces sparse knowledge in the short-term. A
coarse-grained state space hinders long-term performance. The ability to dynamically
change the level of detail achieves the best of both worlds. An effective method of setting
the degree of abstraction to be used depending on the knowledge currently held can
help an agent achieving better performance at any step in its learning process.

• Can an agent playing in a game target a 50% chance of victory while main-
taining believability? A 50% chance of victory means that the skills of the player
and the opponents are evenly matched. When skill levels are matched, players can
enter the “flow” state of mind, where they enjoy their time and lose track of it, while
maximising their performance. Various methods have been proposed for difficulty
adjustments, but only one [4] targets the outcome of 50% chance of victory, and its
approach presents several limitations. A more effective approach can improve user
experience and advance the quality of video games.

• Is there evidence to suggest that adjusting the difficulty of a game played
in a queuing environment can improve time perception? Games allow players
to enter a focused state where time perception is altered, the “flow” state. A faster
time perception would be particularly beneficial in waiting situations. However, to
allow for a flow state, a game must not be too easy or too difficult. Dynamic difficulty
adjustment tailors the game to the player to this end. Achieving this is of great value
to the theme parks industry where people spend most of their time waiting.

1.1.2 Contributions

This research focuses on novel Artificial Intelligence (AI) techniques based on con-
cepts from psychology. We first investigated how to use the concept of surprise to
learn goals that can be embedded in options. To improve options performance we
looked into state abstraction. We then focused on the problem of Dynamic Difficulty
Adjustment (DDA). Finally, we analyse real-world data and suggest that DDA used
in games could benefit time perception of players in theme parks queuing areas. The
contributions of this research work are:

6 Introduction

• An algorithmic solution to learn options from expert demonstrations based on
the notion of “surprise”. This algorithm detects unexpected expert decisions
and infers the expert motivating goal. Extracted goals are used to create goal-
oriented options that bias learning in a positive way, increasing performance
during the learning process. The use of the concept of surprise has not been
investigated before in the problem of learning options.

• An algorithmic solution to perform online state abstraction in Markov De-
cision Processes using standard Student’s t test. This is coupled with an
ad-hoc heuristic exploration strategy to further improve agent performance.
These techniques increase performance in the learning process by avoiding the
problem of data sparsity. This approach of progressively using finer-grained
abstractions by considering more features has not been investigated before in
RL.

• Algorithmic solutions to target a 50% chance of victory in games. These
algorithms use Monte Carlo Tree Search to choose the action most likely to
produce the desired outcome, while maintaining a believable behaviour. These
approaches build on well-established ideas in the research communities of
psychology and video games AI and improve on the state of the art.

• Analysis and discussion of real-world data that suggests that applying DDA
to games played in a theme park queuing area could benefit time perception
of players, making them feel like they had been waiting a shorter time span
than they actually had. A quantitative analysis of data collected in a theme
park queuing environment has not been performed before. This can inform
theme parks managers on how to improve the experience of their customers.

1.1.3 Publications

This research project has produced the following papers:

• Tamassia, M., Zambetta, F., Raffe, W., and Li, X. (2015). Learning options for an
MDP from demonstrations. In Chalup, S., Blair, A., and Randall, M., editors,
Artificial Life and Computational Intelligence, volume 8955 of Lecture Notes in
Computer Science, pages 226–242. Springer International Publishing

• Raffe, W. L., Tamassia, M., Zambetta, F., Li, X., Pell, S. J., and Mueller, F. F.
(2015b). Player-computer interaction features for designing digital play expe-

1.2 Thesis structure 7

riences across six degrees of water contact. In Proceedings of the 2015 Annual
Symposium on Computer-Human Interaction in Play, pages 295–305. ACM

• Raffe, W. L., Tamassia, M., Zambetta, F., Li, X., and Mueller, F. F. (2015a).
Enhancing theme park experiences through adaptive cyber-physical play. In
Computational Intelligence and Games (CIG), 2015 IEEE Conference on, pages
503–510. IEEE

• Tamassia, M., Zambetta, F., Raffe, W., Mueller, F. F., and Li, X. (2016b). Learning
options from demonstrations: A pac-man case study. IEEE Transactions on
Computational Intelligence and Artificial Intelligence in Games

• Tamassia, M., Zambetta, F., Raffe, W., Mueller, F. F., and Li, X. (2016a). Dynamic
choice of state abstraction in q-learning. In Proceedings of the Twenty-second
European Conference on Artificial Intelligence. IOS Press

• Demediuk, S., Tamassia, M., Raffe, W. L., Zambetta, F., Li, X., and Mueller,
F. F. (2017b). Monte carlo tree search based algorithms for dynamic difficulty
adjustment. In Computational Intelligence and Games (CIG), 2017 IEEE Conference
on. IEEE

• Suguru, I., Ishihara, M., Tamassia, M., Tomohiro, H., Thawonmas, R., and
Zambetta, F. (2017). Procedural play generation according to play arcs using
monte-carlo tree search. In Game-ON’2017: 18th International Conference on
Intelligent Games and Simulation

• Demediuk, S., Tamassia, M., Raffe, W. L., Zambetta, F., Li, X., and Mueller,
F. F. (2017a). Measuring player skill using dynamic difficulty adjustment. In
Proceedings of the Australasian Computer Science Week Multiconference. ACM

• Zambetta, F., Raffe, W. L., Tamassia, M., Mueller, F. F., Li, X., Dang, D., Quinten,
N., Patibanda, R., and Satterley, J. (2017). Reducing perceived waiting time
in theme park queues via an augmented reality game. ACM Transactions on
Computer-Human Interaction (TOCHI) [Under review]

1.2 Thesis structure

This thesis is structured as follows. In chapter 2 we introduce background informa-
tion covering the concepts of Reinforcement Learning, Markov Decision Process,

8 Introduction

options framework and abstraction. In chapter 3 we present a novel algorithm to
learn options from expert demonstrations based on the notion of surprise. Experi-
ments to test the algorithm in a grid-world and in the video game Pac-Man are also
reported and discussed. In chapter 4 we introduce a novel algorithm to perform
dynamic state-abstraction in Markov Decision Processes using standard Student’s
t test; a novel ad-hoc exploration strategy is also introduced to further improve
the algorithm performance. Experiments to test the algorithm in the video game
Pac-Man are also reported and discussed. In chapter 5 we present novel techniques
based on Monte Carlo Tree Search to achieve Dynamic Difficulty Adjustment while
maintaining believability. Experiments to test the algorithm in a 2D fighting video
game are also reported and discussed. In chapter 6 we analyse data collected during
a field study in a theme park queuing area and show how the data suggest the
suitability of AI techniques in such environments. Finally, in chapter 7 we draw the
conclusions of this work and we look at the potential for future work.

Chapter 2

Background and Related Work

The overarching topic of this thesis is Artificial Intelligence applied to video games.
In particular, the focus is on Decision Theory techniques: Reinforcement Learning
(RL) techniques are used in the first part, and techniques based on Monte Carlo Tree
Search (MCTS) are used in the second part.

Decision theory combines probability theory with utility theory to provide a
formal and complete framework for decisions made under uncertainty [79]. RL
and MCTS provide two different answers to decision problems. The former takes
the learning approach, where a system builds a model of the environment and of
the value of actions that can be performed therein. The latter, assumes a perfect
simulator of the environment is provided and produces an answer on-line by using
the simulator to perform statistical sampling.

Both these techniques have upsides and downsides. RL needs time to train
and, for non-trivial problems, requires an ad-hoc representation of the states of the
world that compromises between accuracy and learning time, but then is very fast
at execution time. MCTS assumes that a simulator of the environment is given and
needs enough time on-line to perform its statistical sampling, but does not need to
compromise on the accuracy of the state representation.

This chapter gives a background in Reinforcement Learning and in Monte Carlo
Tree Search, necessary to understand the contents of this thesis. The chapter also
covers related work to that presented in this thesis. In particular, Section 2.1 gives an
introduction to Reinforcement Learning and the techniques used in this thesis, cover-
ing Markov Decision Processes (MDPs) (2.1.1), value functions (2.1.2), optimal value
functions (2.1.3), model-free learning and control (2.1.4) and exploration-exploitation
(2.1.5). Section 2.2 surveys works related to abstraction in Reinforcement Learning,
including temporal abstraction (2.2.1) and state abstraction (2.2.2). Section 2.3 gives

10 Background and Related Work

an introduction to Monte Carlo Tree Search (MCTS), including combinatorial games
(2.3.1, tree-search techniques (2.3.2), Monte Carlo methods for tree-search (2.3.3) and
UCT (2.3.4).

2.1 Reinforcement Learning

Machine Learning (ML) [67] is a discipline in the area of Artificial Intelligence that
deals with systems that learn from data. This is opposed to, for example, expert
systems where details on how to complete a task are implemented in a system by
engineers. In Machine Learning, general algorithms exist that can solve different
tasks by being fed with different data.

The historically most famous paradigms in ML are Supervised Learning and
Unsupervised Learning. In Supervised Learning (SL), a learning system is presented
with labelled data and must learn to associate data with labels. A good SL system is
also able to generalise its knowledge and predict labels for previously unseen inputs.
In Unsupervised Learning (UL), data is presented to the learning system which
then extracts patterns or other useful information from the data. The most common
application of UL is clustering, where the algorithm divides data into groups.

Reinforcement Learning [92] (RL) is another paradigm in ML which gained
media attention in recent years when, associated with Deep Neural Networks,
solved problems of unprecedented complexity. The most famous such achievements
are in the domains of Atari 2600 and Go. In the former, the system learned to play
games based on the pixels of the screen [68]; in the latter, the system AlphaGo
was able to defeat the European Go champion [82]. More recently, RL was used to
learn locomotive behaviours in rich simulated environments [42] and it even beat a
professional DotA 2 (a popular Multiplayer Online Battle Arena video game) player
in a 1-vs-1 match [70].

From a certain point of view, RL sits in between Supervised and Unsupervised:
data is not labelled, but also the system is not left completely in the dark about the
data. RL is usually an interactive process, where the system receives (unlabelled)
data in input and produces an answer; the system is then fed back with an evaluation
on how good the answer was and uses this information to update its internal
knowledge to produce better answers in the future.

Reinforcement Learning settings are better understood as Agent-Environment
systems, as shown in Figure 2.1. An agent observes the state of the environment and
influences it by performing actions; when an action is performed, the environment

2.1 Reinforcement Learning 11

Figure 2.1 A representation of the Reinforcement Learning paradigm (image from
[92]).

changes its state and sends a reward to the agent that signals how good the out-
come is. Environment state transitions are, in general, stochastic; that is, the action
performed by the agent does not uniquely determine the new state but, rather, it
determines the random distribution from which the new state is sampled. The same
holds for rewards, in the most general definition.

2.1.1 Markov Decision Processes

The definition of RL encompasses all algorithms that learn through an evaluation
signal. However, the vast majority of works in RL assume that the environment has
the Markov property. The Markov property says that all the relevant information
for state transitions and rewards are contained in the state of the environment. This
allows the environment to be modelled as a Markov Decision Process (MDP).

An MDP is defined as a tuple (S,A, T, R, γ), where S is the set of all possible states
of the environment; A is the set of actions the agent can perform; T : S ×A → PD(S)
associates state and action to a next state probability distribution; R : S×A×S → PD(R)

associates state, action and next state to a reward distribution; γ < 1 is a discount factor
used to decrease the value of future rewards [73]. Notice that this is the most general
definition for the reward, but other definitions are often used where the reward
is deterministic or does not depend on the next state. In the following, we also
interchangeably use slightly a different definition for T : T : S ×A× S → [0, 1].

An agent-environment interaction develops in sequential time steps. At every
time step t, the agent senses the state of the environment st, decides an action at to
perform, receives a reward rt and senses the new state of the environment st+1. The

12 Background and Related Work

purpose of the agent is to maximize the expected discounted reward collected over
time, often called the return:

R = r0 + γr1 + γ2r2 + . . . =
∞∑
k=0

γkrk.

In order to do so, it must learn a policy π∗ : S × A → P(A) that associates states
to a probability distribution over actions. At time step t, then, after sensing the
state st, the agent will draw action at from the distribution π∗(st). In cases where
the environment is stationary, the optimal policy can be deterministic: π∗ : S →
A; in general, to account for adversarial behaviour, the optimal policy may need
to be stochastic [58]. In this thesis we focus on stationary environments; in this
introductory chapter, however, we will use the most general definition.

2.1.2 Value Functions

It is fundamental to notice that the optimal policy does not maximise the immediate
reward but, rather, the long-term return. In other words, the optimal policy strate-
gises so as to strike the best compromise between immediate reward and the degree
of how promising the next state is expected to be. The difficulty in this is that the
second objective is hard to define: it needs to consider rewards collected from the
current time step on-wards and it must take in account that state transitions, as well
as rewards, are stochastic. Value functions are elegant formalisms that capture this
concept.

The state value function V π(s) associates state s with the expected future return
if following policy π from s. As Bellman discovered, the state value function can be
defined recursively [9]:

V π(s) = Eπ

{ ∞∑
k=0

γkrk | s0 = s, π

}
(2.1)

=
∑
a

π(s, a)
∑
s′

T (s, a, s′)
[
E{R(s, a, s′)}+ γV π(s′)

]
, (2.2)

where s′ is the state of the environment after in the following time step. In fact,
repeatedly applying Equation 2.2 from right to left, the state value function can be

2.1 Reinforcement Learning 13

computed in a finite number of iterations:

V π(s)k+1 =
∑
a

π(s, a)
∑
s′

T (s, a, s′)
[
E{R(s, a, s′)}+ γV π(s′)k

]
. (2.3)

This recursive equation captures the notion that the value of a state(-action) depends
on the expected value of the next state which, in turn depends on the expected
value of its next state and so on. Equation 2.2 is an instance of a Bellman equation.
A Bellman equation writes the value of a decision problem at a certain point in
time in terms of the payoff from some initial choices and the value of the remaining
decision problem that results from those initial choices. Bellman equations are at the
foundation of dynamic programming, an optimisation approach that transforms a
complex problem into a sequence of simpler problems [12].

2.1.3 Optimal-Value Functions

If a policy πk is sub-optimal, its state value function V πk may have a wrong estimate
for some states. However, V πk can be used to define a better policy πk+1 as follows:

πk+1(s) = argmax
a

∑
s′

T (s, a, s′)
[
E{R(s, a, s′)}+ γV πk(s′)

]
. (2.4)

This process can be iteratively repeated and is guaranteed to converge to the optimal
value function [73]:

V ∗(s) = max
a

E

{ ∞∑
k=0

γkrk | s0 = s, π∗
}

(2.5)

= max
a

∑
s′

T (s, a, s′)
[
E{R(s, a, s′)}+ γV ∗(s′)

]
. (2.6)

The resulting algorithm is called policy iteration and is an instance of a dynamic
programming technique.

Notice that policy iteration needs to compute the value function at every iteration,
by repeatedly applying Equation 2.3. An alternative method for improving over
a sub-optimal value function that avoids this is value iteration. Value iteration
iteratively applies Equation 2.6 from left to right, repeatedly:

V (s)k+1 = max
a

∑
s′

T (s, a, s′)
[
E{R(s, a, s′)}+ γV (s′)k

]
. (2.7)

14 Background and Related Work

Value iteration is also guaranteed to converge to the optimal value function [73].
Under the assumption that the environment can be modelled as a Markov Deci-

sion Process, optimal value functions provide information that allows to trivially
compute the optimal policy:

π∗(s) = argmax
a

∑
s′

T (s, a, s′)
[
E{R(s, a, s′)}+ γV ∗(s′)

]
.

2.1.4 Model-free Learning and Control

Dynamic programming approaches need the model of the environment to be given
in input. This can be seen by the presence of both T and R in Equations 2.4 and 2.7. In
order to learn without a model, a RL agent needs to make use of its experience in the
environment in order to approximate an optimal value function. Experience in the
environment can be formalised as a sequence of tuples in the form of (st, at, rt, st+1).
Q-learning achieves this by updating an estimate of the state-action value function
at every step using the following update rule [107]:

Q(st, at)
α← rt+1 + γmax

a∈A
Q(st+1, a)−Q(st, at), (2.8)

where x
α← y is short for x ← x + αy and 0 < α ≤ 1 is a learning factor. Under

the condition that every state is visited infinitely often, Q-learning converges to
the optimal state-action value function [29]. An important property of Q-learning
is that it learns off-line, meaning that it can learn the value function associated to
the optimal policy no matter what the policy being used while interacting with the
environment is [92].

The state-action value function allows to compute the optimal policy without the
need of the model of the environment:

π∗(s) = argmax
a

Q∗(s, a).

A state-action value function, however, does not need to be perfect to be used for
action selection. In fact, it is common to use the Q-learning estimate at every time
step to choose the next action [38].

2.2 Abstraction 15

2.1.5 Exploration-Exploitation

When the state-action value function is used to choose the next action, the choice
is called a greedy choice. An agent performing exclusively greedy choices is not
guaranteed to choose every action infinitely often, in the limit. Recall that this is a
necessary condition for guaranteeing Q-learning convergence. This is confirmed in
empirical tests: a greedy agent will often not converge to the optimal value function
[92].

Strategies aimed at avoiding this are called exploration strategies, because they
push the agent to explore (seemingly) sub-optimal regions of the state space. How-
ever, in practical cases, exploration must not come too much at the cost of exploita-
tion, that is, actual collection of rewards. Good exploration strategies strike a good
compromise in the so-called exploration-exploitation dilemma.

The most popular exploration strategy is the ε-greedy strategy. This simple
strategy chooses a random action with probability ε, and the greedy one with
probability 1− ε [92]. Formally:

π(s) =

⎧⎨
⎩random(S) with prob. ε

argmaxa Q
∗(s, a) with prob. 1− ε.

In real cases, however, it is desired that the agent converges to the optimal policy.
ε-greedy prevents this from happening because some of the actions are randomly
(therefore potentially sub-optimally) chosen. To guarantee convergence to the opti-
mal policy, the parameter ε is annealed (i.e., reduced) over time, so as to smoothly
transition from an exploration policy to a greedy policy. This strategy is sometimes
called annealing ε-greedy; an example of this strategy is εn-greedy [6]. Another com-
mon exploration strategy is Softmax [92], but we do not present it here as it is not
relevant to understand the work in this thesis.

2.2 Abstraction

Abstraction is often used in Markov Decision Processes when dealing with real
world problems. In the most general sense, abstracting means letting go of some
details. For example, it is common in MDP to assume that the environment dynamics
can be described by a linear model, thereby leaving out non-linear details. The types
of abstraction that are used in this thesis are temporal and state abstraction. In

16 Background and Related Work

the former case, introduced in Section 2.2.1, the notion that actions are limited to
one time-step is generalised to allow for longer courses of action. In the latter
case, introduced in Section 2.2.2, state specific information are ignored to allow for
knowledge transfer between states.

2.2.1 Temporal abstraction

One problem with MDPs is that an action only affects the state and reward im-
mediately following in time. With no notion of a course of action persisting for
longer than a time-step, conventional MDP methods are unable to take advantage
of the simplicities and efficiencies sometimes available at higher levels of temporal
abstraction [93]. To address this issue, Sutton et al. introduced the options framework,
which elegantly extends the MDP concept to include temporal abstractions.

The central concept in this work is that of options, closed-loop policies for taking
actions over time [93]. The framework extends an MDP to allow the use of actions
(called primitive actions) and options interchangeably. The extension is natural
enough that dynamic programming and model-free learning methods work with
minimal modifications.

An option, like any other action, can be chosen by a policy. However, unlike
what happens for primitive actions, when an option is chosen, its internal policy is
followed for some period of time, until the option stochastically terminates. Formally,
an option o is defined as a tuple o = (I, π, β)), where:

• I is an initiation set, including the states from which option o can be chosen;

• π is the policy to be followed when option o is selected;

• β : S → R expresses the probability of termination of option o and depends on
the state.

A slight variation of the Q-learning update rule can be used to update the state-
option value upon option termination. The rule used is as follows [93]:

Q(st, ot)
α← r + γk max

o∈O
Q(st+k, o)−Q(st, ot), (2.9)

where r = rt+1+γrt+2+ . . .+γk−1rt+k is the discounted cumulative reward obtained
during the option execution. This rule leads Q to converge to the optimal state-
option value function under the same conditions of Q-learning, that all states are
visited infinitely many times in the limit.

2.2 Abstraction 17

Learning options

Options are useful tools to achieve good performance in Reinforcement Learning.
However, their core components are not trivial to define. As Jong et al. argue, when
options are used during the learning phase, they introduce bias in how the state-
action space is explored [50]. While this implies that options are a valuable tool
to direct exploration, it also means that they must be used with care, at the risk of
worsening performance.

Because hand-crafting options is expensive and error-prone, research has been
directed to automatic learning. Existing literature on this subject can be divided in
three different main areas: approaches based on state spaces structure, on intrinsic
motivation and on learning from demonstration. Most of the works use a variety
of approaches to identify goal states, which are then used to build options whose
objective is to reach such states.

Earlier work is focused on using the state space structure to identify useful goals.
McGovern and Barto infer goals online, based on commonalities across multiple
paths to a solution [65]. Stolle and Precup detect “bottleneck” states, which are states
frequently visited, during a variety of tasks with different goals [86]. Menache et al.
also use “bottleneck” states as sub-goals, but they use graph theory to compute
them [66]. Mannor et al. learn a model of the environment online and then use
a clustering algorithm to partition the state space; then, they create options for
reaching each of the regions [61]. Şimşek et al., similarly, split the state transition
graph in clusters, but they build graphs online and only using recent experience [27].
Jonsson and Barto use a Bayesian network to model actions in a factored state space
and introduce options that make changing the value of some state features easier,
thereby decomposing a complex task in simpler ones [52].

Other works focus on the notion of intrinsic motivation; that is, driving explo-
ration and deciding goals based on some notion independent on the reward. Şimşek
and Barto use the concept of relative novelty to identify states that connect areas of
the state space with different degrees of exploration; they use these states as goals
for options, assuming that such options are useful since they allow to transition to
different parts of the state space [83]. Bonarini et al. score states according to how
“interesting” they are; their notion of interest is related to how difficult it is to get to
a state and to remain in that state [11]. Vigorito and Barto work in a factored MDP
where they use the ability to change the value of a state variable as the driver for
intrinsic motivation; such notion both drives the exploration process and is used to
create options [104].

18 Background and Related Work

A third area of research focuses on learning options from expert information, such
as solution policies or demonstrations trajectories (i.e., traces interactions between
an expert agent and the environment). Pickett and Barto find commonly occurring
sub-policies in the solutions to a set of tasks [72]. Zang et al. break trajectories to
identify the best sub-problem in terms of size, frequency and abstraction; they then
build an option to solve the sub-problem and repeat the process [116]. Konidaris et al.
segment trajectories into a chain by detecting a change of appropriate abstraction
(or when the segment is too complex) and build an option to solve each segment
[54]. Subramanian et al. ask humans to give high level goals and build options to
solve them [88].

One of the key contributions of this thesis is a method to learn options from
demonstrations, based one the intrinsically motivating concept of “surprise”. Our
approach is to find “surprising” decisions made by experts in demonstrations, infer
their unpredicted intentions and use them as goals. This idea reflects studies in
cognitive research where infants were observed to get excited by unexpected events
and motivated to explore them further [85].

2.2.2 State abstraction

The biggest obstacle preventing the application of MDPs in practical scenarios is the
“curse of dimensionality”. This name is used to describe undesirable phenomena
that occur when dealing with high-dimensional data. In RL this happens when the
state space is too large; in such cases, dynamic programming methods take a long
time to converge, and model-free learning methods require an unacceptably long
learning time. This usually happens when states are described by many features,
because the state space size increases exponentially with the number of features.

This obstacle has prompted research in the area of state abstraction. Most of
the work in the area focuses on choosing a way to abstract the state space (i.e.,
partitioning it) prior to the learning phase. Jong and Stone use hypothesis testing
to discover useful abstractions using Q-values learned in multiple runs [51]. Cobo
et al. select the features that are useful to reproduce the behaviour of a given set of
demonstrations [19]. Hallak et al. use time-series data to select among the models
provided by a human expert [40]. Jiang et al. provide theoretical guarantees on
the used abstraction, but their approach requires the use of value iteration, which
is computationally expensive [49]. Džeroski et al. learn structural representations,
which form an abstraction over the state space [33].

2.3 Monte Carlo Tree Search 19

Function approximation techniques are a popular way to implicitly learn gener-
alisations over the state space. Tesauro use a neural network to play Backgammon at
a strong master level [101]. Sutton use sparse-coarse-coded function approximators
to generalise over the state space [91]. Stone and Sutton use a linear tile-coding
function approximator to play Robocup Soccer [87]. Ng et al. use Inverse Reinforce-
ment Learning to learn the parameters of a linear approximator of the Q function
that controls a small helicopter [69]. In recent years, deep neural networks have
produced unprecedented results. Mnih et al. use Deep Q-learning to play Atari
video games using pixels as input [68]. Silver et al. use a system based on deep
neural networks and Monte Carlo Tree Search, AlphaGo, to defeat the European Go
champion [82]. Heess et al. use deep neural networks to power a RL system that
learns locomotive behaviours in rich simulated environments [42].

A smaller corpus of research focuses on learning state abstractions online. To the
best of the candidate’s knowledge, only the works of McCallum fall in this area. In
[62], he expands temporal memory to distinguish variations in rewards, and does so
via hypothesis testing; this approach, however, is slow because memory is expanded
one step at a time. In [63] he proposes to store raw history, so when memory is
expanded, history can be re-analysed to properly compute values; this approach,
reportedly, does not handle noise very well. In [64], McCallum et al. proposes to use,
along with stored history, a tree to know how deep (how far back in history) one
needs to look to distinguish situations: branches are added when a statistical test
says that samples come from two different distributions1.

One of the key contributions of this thesis is a method to use state abstraction
during the learning phase. The proposed approach is based on statistical tests, which
are used to switch from coarse to more fine-grained abstraction as estimates become
reliable enough.

2.3 Monte Carlo Tree Search

When a problem involves two or more agents, it is said to be in the realm of Game
theory. Game theory is an area at the intersection of Artificial Intelligence and
Mathematics that deals with situations in which multiple agents, each with its own
utility function, interact with each other.

One such game can be described by the following components:

1The test used is Kolmogorov-Smirnov [22]

20 Background and Related Work

• S: the set of states, where s0 is the initial state;

• ST ⊂ S: the set of terminal states;

• n ∈ N : the number of players;

• A: the set of actions;

• f : S × A→ S: the state transition function;

• R : S → Rk: the utility function;

• ρ : S → (0, 1, . . . , n): player about to act in each state.

A game starts in state s0. At each time step t, the agent ρ(st) is informed of
the state st and performs an action at ∈ A; the state then transitions according to
st+1 = f(st, at) and the agent receives a reward R(st+1). The game terminates if the
current state is terminal; i.e., st ∈ ST . Each agent i has its own policy πi : S × A→
[0, 1]; such that 0 ≤ πi(s, a) ≤ 1 and

∑
a∈A πi(s, a) = 1 for all s, which determines

the probability of performing action a in state s.

2.3.1 Combinatorial games

Games can be classified based on certain properties that they may or may not have.
The most popular such properties are:

• Zero-sum: A game is called “zero-sum” if the reward to all players sums to
zero. In the case of 2-player games, this means that the players are in direct
competition: every advantage a player gains yields an equal disadvantage to
the opponent, and vice versa.

• Information: If the game state is fully observable by players, the game is said to
have “perfect information”.

• Determinism: A game is called “deterministic” if chance plays a role in state
transitions and/or rewards.

• Sequential: A game is called “sequential” if player actions are applied one
after the other; the alternative is that actions are applied simultaneously. The
subtle difference is that in non-sequential games, a player acting after another
will have knowledge of the action chosen by the previous player and its
consequences.

2.3 Monte Carlo Tree Search 21

Games with two players that are zero-sum, perfect information, deterministic,
discrete and sequential are described as combinatorial games. These include games
such as Go, Chess and Tic Tac Toe, as well as many others. Solitaire puzzles may
also be described as combinatorial games played between the puzzle designer and
the puzzle solver, although games with more than two players are not considered
combinatorial due to the social aspect of coalitions that may arise during play. Com-
binatorial games make excellent test beds for AI experiments as they are controlled
environments defined by simple rules, but which typically exhibit deep and complex
play that can present significant research challenges, as amply demonstrated by Go.
[14]

2.3.2 Tree search techniques

In non-trivial games, the reward is often delayed. In particular, in many games
the reward is non-zero only in terminal states. That means that, in order to figure
out what the best action is, an agent needs to look far into the future. Since the
evolution of the state is dependent on every agent’s decisions, the most natural way
to represent the problem is through a tree data structure.

The simplest tree-search technique is called minimax and is suitable to combi-
natorial games. Minimax attempts to minimise the maximum loss of an agent; in
zero-sum games, this is the same as maximising the minimum gain of the agent.
To this end, Minimax explores the virtual tree of the game, where nodes represent
states and edges represent actions; the tree alternates player levels and opponent
levels. Player levels represent states where the player is the one to execute the next
action, opponent levels represent states where the opponent is.

Minimax associates a value to each node of the tree, and does so recursively.
Starting from the root, and applying recursion, the algorithm calculates the value of
a node (representing state s) as follows:

• on a leaf (s is terminal) the value is the utility of the state, R(s);

• on a non-leaf node in a player level the value is the maximum value among those
of the children plus the value of the current node, R(s);

• on a non-leaf node in a opponent level the value is the minimum value among
those of the children plus the value of the current node, R(s);

In games like Chess and Go, the utility of all non-terminal states is zero, making
the algorithm propagating the leaf values upstream without modification.

22 Background and Related Work

Often, the tree is not explored completely because most non-trivial games have a
very large state space. In such cases, the exploration of the tree is stopped a a certain
depth and a heuristic h : s → R is used instead of the actual final outcome of the
game. The algorithm then calculates the value of a node as follows:

• on a leaf (s is terminal) the value is the utility of the state, R(s);

• on a node at depth at least d the value is calculated by the heuristic function h(s);

• on a non-leaf node in a player level the value is the maximum value among those
of the children plus the value of the current node, R(s);

• on a non-leaf node in a opponent level the value is the minimum value among
those of the children plus the value of the current node, R(s);

Deep Blue, the algorithm that defeated the Chess world champion Gary Kasparov,
used this algorithm: it explored the tree up to 12 moves and then used a heuristic to
compute the value of the state [45].

Minimax can be extended by using further heuristics to prune the tree (α − β

pruning), however, this is not relevant for understanding the content of this thesis
and is therefore not covered here.

Minimax can also be extended to deal with a larger number of players. The
resulting algorithm, maxn, maximises the reward of each player at each step. This,
however, is not relevant to this thesis and is therefore not covered.

Minimax can finally be extended to deal with non-deterministic state transitions.
This is done by adding “chance” levels, where the recursion step chooses a random
value from one of the children nodes. This algorithm, called “Expectimax” is also
not relevant and therefore not covered.

2.3.3 The algorithm

Monte Carlo methods are a class of algorithms that rely on repeated random sam-
pling to obtain numerical results. These methods have proven successful first in areas
like numerical integration, and have since been used in a wide array of domains,
including game research [14].

In fact, random sampling could be an alternative approach to compute the value
of actions that could relieve the agent from the burden of having to explore the
whole tree. This could be done, ideally, by sampling random games after each initial
action. This, however, is only possible if the agent has, beside the simulator of the

2.3 Monte Carlo Tree Search 23

environment, a simulator for every other agent. Since this is not realistic, the next
two options are:

• To assume the other agents perform random actions; this, however, has serious
limits because in reality opponents are likely to choose better-than-average
actions (from their perspective).

• To assume the other agents are perfectly rational; this means falling back to
Minimax/Expectimax, including the disadvantage of having to explore all of
the large tree.

A hybrid approach could be to apply the same principle of Minimax until a
certain depth, and then use the average outcome of random games to estimate the
value of leaf nodes. This has the advantage of providing a heuristic that does not
require domain expertise, but does not solve the problem of having to explore the
full tree up to the preset depth limit.

Figure 2.2 A representation of an asymmetric tree.

Monte Carlo Tree Search (MCTS) offers a solution to this problem by providing
asymmetrical exploration of the search tree as illustrated in Figure 2.2. To do this,

24 Background and Related Work

Figure 2.3 A representation of the Monte Carlo Tree Search algorithm (image from
[14]).

MCTS iteratively builds progressively better value estimates by deepening its search
in the tree only in branches that look promising according to its current estimates.

This is done by repeatedly executing four phases, one after the other. The four
phases, illustrated in Figure 2.3, are:

• Selection: in this phase, the tree is descended along the path of the most
promising actions according to the current estimates, until a leaf is reached.

• Expansion: in this phase, if the leaf reached is above a certain depth threshold,
it is expanded by adding all possible actions as children.

• Simulation: in this phase, the actions indicated by the path root–leaf are run
into the simulator, followed by a sequence of random actions (up until the
game ends or up to a certain length).

• Back-propagation: in this phase, the value of the outcome of the simulation (or
a heuristic, if the simulation stopped before the end of the game) is used to
update the statistics of the nodes in the path root–leaf.

This gives MCTS another advantage over Minimax: the four phases can be
repeated as many times as the time allotted for the computation permits, and can be
stopped at any time. The pseudocode for MCTS is shown in algorithm 1.

2.3 Monte Carlo Tree Search 25

Algorithm 1: Pseudocode for MCTS.
Input :State s
Input :Depth limit l
Input :Playout length p
Input :Heuristic function h
Input :Simulator sim

1 create root node r
2 r.visits← 0
3 r.total_reward← 0
4 repeat
5 select a leaf node n
6 if n.depth < l then
7 create children nodes of n
8 end
9 actions ← actions from r to n+ p random actions

10 s’← sim(s, actions)
11 for every node n′ in the path r–n do
12 n′.visits← n′. visits +1
13 n′.total_reward← n′.total_reward +h(s′)
14 end

15 until allotted time expires

2.3.4 UCT

The process illustrated above is missing an important detail: the definition of what
a “promising node” is. The default policy is to choose an unexplored node and, if
all nodes are explored, to choose the node with the highest value. This policy is
not robust because it can cause a strong branch to never be explored because of an
unlucky first visit; conversely, a weak branch could become the action of choice
because of a lucky first visit. To address this problem, UCT is used to drive the tree
exploration [53]. UCT stands for UCB1 applied to Trees, where UCB1 stands for
Upper Confidence Bound [6].

UCB1 minimises a measure called “regret” in “bandits”, which can be thought as
depth-1 trees. Regret is the difference between the reward that could be earned by
choosing optimally and the reward that was actually earned.

RN = μ∗n− μj

K∑
i=1

E [Tj(n)] , (2.10)

26 Background and Related Work

where μ∗ is the best possible expected reward, E [Tj(n)] denotes the expected number
of plays for action j and K is the number of actions.

This is implemented by adding to the value of a node a number that increases
with the exploration of other actions and decreases with the exploration of the node
action. The UCB1 formula is as follows:

UCB1 = Xj +

√
2 lnn

nj

, (2.11)

where Xj is the average reward from action j, nj is the number of times action j was
tried and n is the overall number of plays so far.

UCT generalises UCB1 to trees, where the behaviour of UCB1 in deeper, recently
created nodes causes a drift in the probability distribution of rewards. UCT is proved
to also minimise regret and minimally changes the UCB1 formula:

UCT = Xj + 2Cp

√
lnn

nj

, (2.12)

where Xj is the average reward from action j, nj is the number of times action j was
tried at the node, n is the sum of nj for all actions and CP > 0 is a constant.

2.3.5 Dynamic Difficulty Adjustment

Video games present challenges to players. Some game genres, through careful level
design, present an increasing level of challenge as the game progresses. Examples of
this are Super Mario Bros and Portal. Other games, where game play is emergent from
simple rules, as opposed to imposed by level design, have a harder time modulating
the level of challenge to players. In many games, this is roughly addressed by letting
the player select a level of difficulty: the menu with “Easy”, “Medium” and “Hard”
(and variations) is something every video game player has seen in their lives.

This approach has several limitations: first, it groups potentially millions of
players in three (maybe up to five) groups in terms of skills. This is likely too coarse
to reflect reality. Another limitation is that, once chosen, the difficulty selection
cannot be changed through the game. This ignores the fact that players get better at
the game, let alone that they have different learning curves. Finally, this approach
to skill selection is uni-dimensional. Many games require a varied set of skills;
shooting games, for example, require fast reflexes, precise aiming, team coordination,

2.4 Summary 27

awareness of surroundings and knowledge of the levels. The level of the player
at each of these skills cannot possibly be conveyed by selecting a point on a uni-
dimensional scale.

Addressing this problem represents a big challenge for video games. Balancing
the difficulty of the game to the skills of the player is one necessary step to allow
the player to enter the “flow” state. Flow is a mental state where a person is deeply
focused on the task at hand and feels disconnected from reality to such an extent
that the sense of time is altered [25]. Flow has been described as a state of extreme
immersion and has been studied both qualitatively and quantitatively in the field of
video games [48]. Sweetser and Wyeth translated the model of flow to the specific
field of games and proposed GameFlow [94]. Cowley et al. translate the ideas of
flow into video games from an information processing point of view [24].

While a balance of difficulty and skills is not necessary to achieve immersion [48],
it is a requirement to reach the deeper state of flow [25, 94, 24]. Researchers in the
Artificial Intelligence field have studied techniques to achieve difficulty adjustment
or at least game customisation to increase satisfaction. Togelius et al. used evolu-
tionary techniques to generate tracks for a racing game that were tailored to the
individual player [102]. Leigh et al. used co-evolution to find dominant strategies in
a game that were tuned away by humans in an iterative process, aimed at making
all strategies as balanced as possible [56]. Hunicke proposed a method to balance
the challenge of a shooting game by altering supply and demand of game items
(e.g., by scaling the frequency spawn of health packs or the damage of opponent
weapons) [46]. Hao et al. propose a technique that limits the computation time
allotted to Monte Carlo Tree Search (MCTS), increasing or decreasing it, respectively,
if the MCTS-controlled agent is faring too poorly or too well [41]. Andrade et al. use
Reinforcement Learning to predict the outcome of different actions at a given time
and program their AI controller to choose an action higher or lower in the ranking
depending on how well their agent is doing against the human player.

In this thesis, we propose a novel technique inspired by the work of Andrade
et al. and addresses some of its shortcomings. This research is detailed in Chapter 5.

2.4 Summary

This chapter introduced background information necessary to comprehend the rest
of this thesis. First, concepts of Reinforcement Learning were introduced, which
are necessary to understand the contributions in Chapters 3 and 4; the concept of

28 Background and Related Work

Abstraction in RL was also introduced, which is at the base of the contributions
in Chapter 4. Then Monte Carlo Tree Search was presented, which is extensively
used in Chapter 5. Finally, Dynamic Difficulty Adjustment was introduced, which is
required to better understand Chapters 5 and 6.

Chapter 3

Learning Options from

Demonstrations

The options framework, introduced in Section 2.2.1, opens the door to tempo-
ral abstraction in Markov Decision Processes. Temporal abstraction allows MDP
methods to model the effects of longer courses of action, called “options”, which
span across several time-steps. While yielding these advantages, options have one
significant drawback: it is difficult to define “good” options. Research has con-
tributed several approaches to learning options, either using the structure of the
state space [65, 86, 66, 61, 27, 52], by leveraging on the concept of intrinsic motivation
[83, 11, 104] or by learning from demonstrations or solutions [72, 116, 54, 88].

In this chapter, we introduce a novel algorithm to learn options from expert
demonstrations. In this context, an expert demonstration is a trace of the interaction
between the expert and the environment, where by expert we mean any agent
who is familiar with the environment. Our approach to learning behaviours from
demonstrations is to find “surprising” decisions made by the experts, infer their
intentions and use them as goals. This idea reflects studies in cognitive research
where infants were observed to get excited by unexpected events and motivated to
explore further [85].

3.1 Options construction

The proposed approach produces options whose policy is goal-directed. This is
in line with previous research in this area, as discussed in Section 2.2.1. More

30 Learning Options from Demonstrations

specifically, the policy of every option learned by the proposed approach is greedy
on a reward function that is zero for every state except goal states.

Formally, the reward function of option o is defined as

Ro(s) =

⎧⎨
⎩c if s = go

0 otherwise
, (3.1)

where c > 0 is a constant term and go is the goal of option o. This reward function
induces a value function Vo via the Bellman operator described in Equation 2.6
which, in turn, defines a policy via greedy action selection:

πo(s) = argmax
a

Ro(s) + γ
∑
s′

T (s, a, s′)Vo(s
′). (3.2)

The initiation set for option o is the set of all states g∗o from which it is possible to
reach the goal state, except goal states themselves:

Io = g∗o \ {go}. (3.3)

The termination probabilities are defined as:

βo(s) =

⎧⎨
⎩0.2 if s ∈ Io
1 otherwise,

(3.4)

where 0.2 is hand-tuned.

3.2 Identifying Useful Sub-goals

Our procedure analyses expert demonstrations. A demonstration is a sequence of of
states and actions that describe the interaction of an expert with the environment.
The first step is then to identify useful sub-goals. The algorithm we use assumes
that if a sub-goal is useful, at least one of the demonstrations makes good use of it.
In other words, the algorithm cannot identify sub-goals that do not appear as such
in the demonstrations.

The intuition behind our method to identify sub-goals is to rewrite the demon-
strations in terms of intermediate goals and steps taken to reach them. That is, we
want to rewrite every step (si, ai) of the demonstration as (si, πi(si)). Such problem

3.2 Identifying Useful Sub-goals 31

Algorithm 2: Goals extraction; uses a multi-set structure, which is a set where
information about the number of occurrences of each element is preserved.

Input :Environment model T
Input :Expert demonstration demo

1 last_s, _← last(demo)
2 goals←multi-set ∅
3 prev_s← last_s
4 cur_goal← last_s
5 for s, a ∈ reverse(demo) do

6 R̂← zero everywhere except in cur_goal
7 π ← Value_Iteration(T, R̂)
8 if π(s) �= a then
9 add prev_s to goals

10 cur_goal← prev_s
11 end
12 prev_s← s
13 end
14 return goals

has a very large number of solutions; to constrain it, we impose that all policies πi

must be goal oriented, as defined in Equation 3.2. We then search for the smallest
set {πi}i of such policies that allows the rewriting process.

We propose a greedy algorithm to search for a solution. The algorithm walks
through each demonstration backwards, assuming the current goal is the last state of
the demonstration. At each step it computes the best action to take to reach what is
believed to be the current goal; it then compares such action with the action taken by
the expert. If there is a mismatch, the current goal is updated via a simple inference
and it is added to the set of recognised goals. Algorithm 2 shows the pseudocode
for such procedure. Notice that the procedure expects the model of the environment
state transitions T to be given as input: this is necessary to perform Value iteration
and compute the policy induced by the goal-oriented reward function.

Algorithm 2 finds an exact solution only in deterministic MDPs. In stochastic
MDPs, a state and action pair does not uniquely determine the next state but rather
it conditions the probability distribution of the next state. As a consequence, the
next state in the demonstration is not necessarily the goal that the expert wanted to
achieve. Not knowing the intent of the expert, we assume that the next state is what
the expert wished to achieve. This is a heuristic that seems to work well in practice.

32 Learning Options from Demonstrations

3.3 Reduce the Number of Sub-goals

Algorithm 2 outputs a multi-set of goals. A multi-set is a data structure similar to a
normal set, but where information about the number of occurrences is preserved.
These are all the goals necessary to equivalently rewrite all the demonstrations as
discussed above. However, the output will likely include a large quantity of goals,
and it is undesirable to add as many options to the MDP so as not to slow down
learning too much.

Some of the goals detected by the algorithm may be similar to each other, and it
therefore makes sense to aggregate them. We propose two approaches to this end.
The first method uses a distance measure and, using graph theory and clustering,
aggregates states that are similar in terms of the state transitions graph structure.
The second method aggregates goals by abstracting some state features, assuming
the MDP is factored.

3.3.1 Graph-based Clustering

The first approach we propose to perform goals aggregation is based on graph theory.
In particular, aggregation is based on the state transitions graph. The similarity
concept that we base our approach is captured by the likelihood of transitioning
from one state to another state, assuming the best action to this end is chosen. In
particular, we define distance such as two states are more distant the less likely it is
to transition from one state to the other. We then define a distance measure between
states si and sj as follows:

Δ(si, sj) = min
a∈A

1

T (si, a, sj)
,

where T (si, a, sj) is the probability of transitioning from state si to state sj when
executing action a.

This distance measure is then used to build a probability matrix. We use the
all-pairs shortest path algorithm to build the probability matrix [35]. This algorithm
has a complexity O(|S|3), however, the idea is that this algorithm is run only once in
a precomputation phase and, thus, does not affect learning time.

The distance matrix is fed to the DBSCAN clustering algorithm [34]. DBSCAN
has been chosen because it does not require a specification of the number of clusters,
unlike many other clustering algorithms. The clusters are sorted by size and a
random representative from the top k clusters is selected, where k is arbitrary. The

3.3 Reduce the Number of Sub-goals 33

so-chosen representatives form the set of learned sub-goals, and can then be enriched
with an initiation set, a policy and a distribution of termination probabilities and
so be transformed in options. Notice that, while k is known in advance, DBSCAN
allows us not to bias the number of clusters; we then sample k of the clusters found
by DBSCAN.

3.3.2 Features-abstraction Aggregation

One of the main drawbacks of the method described above is its computational
complexity. Therefore, we propose a second method that is based on state abstraction.
This method assumes the MDP is factored; that is, states consist of values assumed
by a fixed set of features. In this case, aggregation can be performed by ignoring
some features and considering as the same “state” all states which have the same
values on the features that are not ignored.

This greatly reduces the number of goal states. Furthermore aggregated states
can become more meaningful if ignored features happen to carry information that is
only relevant for action decision but not to describe a situation in which the agent
wishes to be (i.e., a goal). For example, consider an agent driving a car: while it is
certainly useful to know if another car is coming from the left, the same information
is an over-specification when describing the goal of “being at the destination”.

In order to allow for options to use multiple goals, we need to slightly alter the
definitions in Equations 3.1 and 3.3 as follows:

Ro(s) =

⎧⎨
⎩c if s ∈ Go

0 otherwise
(3.5)

and
Io = G∗

o \Go, (3.6)

where Go is the set of goals of option o and G∗
o is the set of all states from which it is

possible to reach any goal.
The aggregated goals are sorted by the number any of their internal states has

been detected as a goal by the algorithm. Afterwards, the top k goals are selected,
where k is arbitrary.

34 Learning Options from Demonstrations

3.4 Experiments

We tested the proposed method for learning options from demonstration in two
settings that are popular in Reinforcement Learning research. The first, simpler
setting is a grid world, where every state is simply the agent location in the world.
The second, more challenging setting is the popular arcade video game Pac-Man.

The testing environments have been implemented in Python3 using the Numpy
library1 [106] and the Scikit Learn toolkit2 [71]. We used GNU Parallel3 to parallelize
the execution of experiments [99]

This section details the experimental setup of both settings and presents the
results of the experiments.

3.4.1 Grid-world experimental setup

In the first experimental setup, we tested the Q-learning algorithm in a grid-world.
A grid-world is an environment where a state is described only by a location in
the world; the agent navigates such environment by choosing to move in one of
the cardinal directions. The shape of such environment is very similar to that used
in [93], where a square 13 × 13 world is divided in 4 areas by means of barriers.
Figure 3.1 shows a representation of such environment. Barriers are interrupted
to allow traveling from one “room” to another; these holes are called “hallways”.
The environment is non-deterministic: the probability of transitioning in the desired
direction is 2

3
; the agent moves in one of the other cardinal directions with probability

of 1
3
, that is 1

9
for each of them.

Flavors

We used the grid-world topology described above in two different flavors.

• The black states separating the four areas are walls, meaning they are impene-
trable. This is the same setting used in [93].

• The black states separating the four areas are ponds, which means they are not
impassable, but have a low reward. The rationale behind this choice is to make
the hallways part of the paths chosen by the experts rather than unavoidable
steps. This is because our algorithm detects as subgoals only states that the

1http://www.numpy.org/
2http://scikit-learn.org/
3http://www.gnu.org/software/parallel/

3.4 Experiments 35

0

45 47

Figure 3.1 The grid-world used in the experiments. The yellow squares represent
the destinations used in the different experiments: the one in the upper corner is
labeled as [0], the one in the hallway is labeled [45] and the other one is labeled [47].
These labels will be used to present the results of the experiments. The black squares
represent unreachable states in the wall setting and low rewards states in the ponds
setting.

experts explicitly chose among the others - as opposed to states that were
simply not avoidable.

Specifically, while normal states have a reward of 0, ponds have a reward of
−10. The final state has reward 1000. When the final state is reached, the execution
terminates.

The key difference between the two flavors lies in where the obstacles are en-
coded. In the “walls” case, the unreachability of the blocks is encoded in the reward
function, which our algorithm knows. As a consequence, the expert decision of pass-
ing through the hallways is not surprising. In the “ponds” scenario, the penalty of
these states is encoded in the reward function, which is unknown by our algorithm.
As a consequence, the decision of the expert of passing through a hallway rather
than directly over a wall is unpredictable and therefore picked up by our algorithm.

In each of the flavors, different sets of experiments are run: each set of experi-
ments uses a different destination for the agent. The states we chose as destinations
are shown in Figure 3.1. We selected these destinations for specific reasons: one of
them is in a corner, away from most common paths; another one is in a hallway,
which is one of the hand-crafted options in [93]; the third one is close to a hallway
and, as such, is part of many common paths.

36 Learning Options from Demonstrations

By choosing different destinations, it is possible to compare the performance of
agents using different sets of options. If the options are close to the destination, the
agent is advantaged because when it chooses a random, exploratory action, it is
more likely that it will select an option the will lead it close to the destination. On
the other hand, if the options are all far from the destination, they will put the agent
at disadvantage.

Q-learning details

The value of the discount factor of the MDP was set to γ = 0.97. The options are
generated according to Equation 3.1 using c = 50. The exploration strategy used in
the experiments is ε-greedy, with ε = 0.1.

Baseline

The purpose of the experiments is to compare the quality of the hand-crafted options
used in [93], aiming at the hallways, denoted by H, with that of options learned
from demonstrations by our algorithm, denoted L. These sets of options are also
compared against the set of primitive actions only, denoted A. Sets A∪H and A∪L
are also tested,

We selected the handcrafted options as the baseline for comparison, rather than a
random selection of states, because the former are supposed to perform better. This
is because, due to the structure of the environment, a hallway state is for sure in
any path that travels between two different rooms. Given this, their contribution to
the Q-learning algorithm is expected to be more useful than that of other random
locations [93].

Goals number reduction

We reduced the number of detected goals using the graph-based technique described
in Section 3.3.1. We then selected a representative from each of the top 4 clusters
of goals. The number 4 is selected to provide a fair comparison with the baseline,
which uses 4 options.

3.4 Experiments 37

Experimental procedure

Each of the 5 setups (A,H, L,A∪H andA∪L) was repeated 200 times, each allowing
Q-learning to run for 3000 episodes. For the setups including learned options L, a
new set of demonstrations was generated at every repetition as follows:

• a state was randomly selected as a goal;

• a reward function was generated as in Equation 3.1;

• Value Iteration was used to compute the optimal value function;

• the optimal policy was computed from the optimal value function;

• a random initial state was selected;

• the optimal policy was followed until the goal state was reached;

• every step of this interaction was recorded and made into a demonstration.

3.4.2 Grid-world experiments results

In this section we present the results of the experiments performed in the grid-world.
We will often refer to “bad” options when referring to options that lead to an area in
the state space that is far away from the destination state the agent is pursuing.

Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 show the result of the experiments that have
been run. The X axis is the number of episodes, while the Y axis is the (average)
number of steps per episode.

The plots show the average performance on 200 experiments run over 3000
episodes. Experiments have been repeated 200 times because the performance
showed a high variance, which is due to the dependence on the random initial state.
For each of environment, options set, destination and repetition, 4 demonstrations
were generated and were used to learn options. All of the experiments have been
run on both the “pond” and “wall” settings and on all of the destinations, [0], [45],
[47] (Figure 3.1 visually shows where such states are located in the environment.
Results are presented using a sliding window with size of 20 to average values and
hence smooth the curves.

In the following, we will often mention that an option is close/far from a destina-
tion: this is actually a short-hand to say that the subgoal which is captured by an
option is close/far from the destination. For the sake of conciseness, we will stick to
the former, shorter version.

38 Learning Options from Demonstrations

Top-left corner as destination

Figure 3.2 Results of experiments in the “pond” settings with destination as the
top-left corner (state [0]). A denotes the set of primitive actions (cardinal directions),
H denotes handcrafted options (the hallways), and L denotes the set of learned
options.

Figures 3.2 and 3.3 show the results of the experiments where the agent’s desti-
nation is the top-left corner, labeled as [0] in Figure 3.1.

In the pond setting, in Figure 3.2, the agents using primitive actions and hand-
crafted options (A∪H) or actions and learned options (A∪L) both converge, but the
former performs consistently better than the latter. The agent using primitive actions
only (A) performs worse at the beginning becomes the best performer at the end of
the process. We interpret this difference as an effect of the ε-greedy strategy: when
an agent randomly chooses a bad option, it ends up further away than it would
by just choosing a bad action. Agents using only options, either hand-crafted (H)
or learned (L) performs very poorly, because the distance of the options from the
destination makes it unlikely that the destination is ever reached.

It is worth analysing the particular performance curve of the agent using only
primitive actions, which decreases, then increases and finally decreases again in
all the pond settings (figures 3.2, 3.4, 3.6). At first, this may seem strange, because

3.4 Experiments 39

Figure 3.3 Results of experiments in the “wall” settings with destination as the
top-left corner (state [0]). A denotes the set of primitive actions (cardinal directions),
H denotes handcrafted options (the hallways), and L denotes the set of learned
options.

Q-learning performance, on average, improves over time [92]. In this plot, however,
the curve represents the number of steps taken for each episode rather than the
cumulative reward, which is the metric that has the property of decreasing on
average in Q-learning. Let us analyse what causes this particular performance
curve. At first, the agent knows nothing about the environment and even about
its destination; in fact, it will only learn about what the destination is when it
accidentally walks on it. In this situation, it makes sense that the number of steps
is high because the agent aimlessly wanders around the environment. Over time,
the agent finds what the destination is and its wandering decreases as it learns the
environment topology. When the agent figures out that walking through the pond
is expensive, the number of steps increases again because the agent needs to figure
out ways to get to the destination that do not pass through the pond. In the end,
when the agent has good knowledge of the environment, the number of steps is
minimised.

In the wall setting, in Figure 3.3, the agents using learned options, either with
primitive actions (A ∪ L) or without (L) both outperform the agents using hand-

40 Learning Options from Demonstrations

crafted options and primitive actions (A∪H) or primitive actions only (A). This may
seem surprising because the wall setting should not allow the algorithm to produce
meaningful options. This is actually the case, but with the twist that, often, the only
option that is learned is the destination itself. This biases the exploration directly to
the destination, therefore showing the agent the correct path very early on.

Top hallway as destination

Figure 3.4 Results of experiments in the “pond” settings with destination as the
top hallway (state [45]). A denotes the set of primitive actions (cardinal directions),
H denotes handcrafted options (the hallways), and L denotes the set of learned
options.

Figures 3.4 and 3.5 show the results of the experiments where the agent’s desti-
nation is the top hallway, labeled as [45] in Figure 3.1.

In the pond setting, in Figure 3.4, the best performers are clearly the agents using
hand-crafted options, either with primitive actions (A ∪ H) or without (H). This
is because the destination is exactly one of the options, making it very easy for
the agent to find a good path to the destination. The difference in performance of
these two agents is an effect of the ε-greedy strategy: when a bad option is chosen,
the agent is taken further away from the destination than it is when choosing a

3.4 Experiments 41

Figure 3.5 Results of experiments in the “wall” settings with destination as the top
hallway (state [45]). A denotes the set of primitive actions (cardinal directions),
H denotes handcrafted options (the hallways), and L denotes the set of learned
options.

bad action. The agent using only primitive actions (A) also performs well after an
initial exploration phase. The agent using learned options and primitive actions
(A ∪ L) converges performs better earlier on, but is later surpassed by the agent
using only primitive actions (A). This is, once again, due to the ε-greedy strategy.
Finally, the agent using only learned options (L) performs the worst, showing that
our algorithm did not learn the destination as one of the options. This is because
movement towards the top hallway are not surprising given it is the destination.

In the wall setting, in Figure 3.5, the agents using hand-crafted options, either
with primitive actions (A∪H) or without (H) both perform well from the beginning,
once more, because the destination is one of the subgoals. In this case, also sets L
and A ∪ L perform well, again because the topology makes it so that, most of the
times, the only learned option is the destination. Also set A performs well, even
though it takes longer to converge.

42 Learning Options from Demonstrations

Figure 3.6 This figure shows the results obtained in the “pond” setting with destina-
tion [47]. For details, see Figure 3.2.

2 steps away from top hallway as destination

Figures 3.6 and 3.7 show the results of the experiments where the agent’s destination
is the state on the left of the hallway, labeled as [47] in Figure 3.1.

In the pond setting, in Figure 3.6, the agents using primitive actions with or
without any set of options (A ∪ L, A ∪H and A) perform very well. Agents using
only options (H and L) perform unexpectedly poorly. We hypothesize that, due to
the low rewards received, the algorithm does not have sufficient information to tell
which of the option is the best one to choose since they all appear equally bad.

In the wall setting, in Figure 3.7, the performance of the agents using learned
options, either with primitive actions (A ∪ L) or without (L) are about the same as
the pond setting. The agent using primitive actions only (A) reaches convergence
more quickly and the agent using hand-crafted options and primitive actions (A∪H)
performs better in general. The agent using hand-crafted options only (H) also
perform better than in the pond setting; however, since the destination is only close
to the options but not coincident, reaching it takes some luck (i.e. time).

3.4 Experiments 43

Figure 3.7 This figure shows the results obtained in the “wall” setting with destina-
tion [47]. For details, see Figure 3.2.

When used along with primitive actions, learned options perform about as well
as hand-crafted options, with a slight advantage in most cases. Furthermore, it can be
noticed that the bias introduced by the options in the random exploration provides a
speed-up in the learning process, letting the agents reach a stable performance after
only a few tens of episodes. This is one of the cases in which the introduction of a
bias (as mentioned in [50]) is benefiting the learning process; since it is derived by
the behavior of experts, the exploration tends to follow the footsteps of the experts.

3.4.3 Pac-Man experimental setup

In this section we describe the second experimental setup and associated results
used to test the ideas proposed in this chapter. The testing environment used here
is the famous arcade video game Pac-Man. The experiments are designed to show
the benefits of using options learned from demonstration compared to standard Q-
learning in controlling a Pac-Man agent. Notice that the purpose of this work is not
to implement the best Pac-Man agent but, rather, to show that using options learned
from experts gives learning agents an advantage. These are two different problems:
engineering Pac-Man agents to achieve the best performance versus autonomously

44 Learning Options from Demonstrations

learning how to effectively play. We choose to focus on the second problem, and use
Pac-Man as a test-bed.

Q-learning details

To test our algorirthm, we used Q-learning enriched with some options learned
from our algorithm. Here, we specify the parameters used in Q-learning, as well
the specific exploration strategy associated. The discount factor of the MDP is set
γ = 0.97 (a commonly chosen value [92]), while the reward peak for goal-driven
policies was arbitrarily set to 50. The exploration strategy used in the experiments
is Annealing ε-greedy, with ε = 0.1 (also, a common choice [92]). The annealing
schedule is based on the episode number k and is defined as ε(k) = 0.1/(1 + e

3k
1000

−3).
These parameters have been chosen to create a sigmoid function where most of
the descent happens between episodes 500 and 1500. Figure 3.8 shows the function
described above.

Figure 3.8 Annealing schedule for exploration parameter ε.

3.4 Experiments 45

Pac-Man

The video game Pac-Man4 is an arcade game that was popular in the 1980s.
In this game, the player controls Pac-Man, an agent moving in a two-dimensional

environment whose purpose is to collect all the white pills. Pac-Man is chased by a
number of ghosts, each of which will kill Pac-Man if he collides with them. There
are also a number of special capsules that make all the ghosts weak for a limited
period of time. If Pac-Man collides with a weak ghost, the ghost dies and reappears
at the center of the game area in a non-weak state. The level used in the experiments
is shown in figure 3.9.

We used the implementation of Pac-Man developed by University of California,
Berkeley, for their Artificial Intelligence course5.

A score is given to players depending on their performance:

• -1 at every time step;

• +10 for every eaten pill;

• +200 for every killed ghost;

• +500 upon victory (eating all pills);

• -500 upon defeat (being eaten by a ghost).

State space

The state space in Pac-Man is very large, including information about whether or
not every single pill and food pellet has been eaten, the position and state of each
ghost as well as the position of Pac-Man. This all induces a combinatorial state space
that is un-treatable in standard Q-learning.

In order to reduce it, we extracted a set of features and used them as the MDP
state features. The features we adopted are the following:

• direction of the closest pill;

• direction and distance of the closest non-weak ghost;

• number of capsules in the level;

4Additional information can be found at http://www.gamasutra.com/view/feature/3938/the_

pacman_dossier.php?print=1 (checked on March 3rd, 2016).
5Available at http://ai.berkeley.edu (checked on March 3rd, 2016).

46 Learning Options from Demonstrations

Figure 3.9 The video game used in the experiments, Pac-Man. Pac-Man, the yellow
entity, is about to eat a capsule; the smaller white dots are pills and the coloured
entities with eyes are ghosts.

3.4 Experiments 47

• number of weak ghosts and the direction of the closest.

Here, distance information can assume values close, midrange, far and very-far, de-
pending on the length of the shortest path as computed by the Dijkstra algorithm
[23]. Directional information represents the direction that Pac-Man should follow to
reach the object via the shortest path.

Automatic agents

The experiments compare the goals detected by the algorithm from two different
automatic agents. That is, these automatic agents are the experts in our setting. In
this section we present the mechanisms driving such automatic agents’ behaviour.

Both automatic agents include a perfect model of the game and both compute a
heuristic value for the state that would hypothetically follow each available action,
and select the action that would yield the highest score. Both agents compute the
score taking into account information about non-weak ghosts and pills according to
the following formula:

scorec =

⎧⎨
⎩−max(0, 7− g)2 − p

100
if p > 0

−max(0, 7− g)2 + 1000 otherwise
, (3.7)

where g is the length of the shortest-path to the nearest non-weak ghost and p is the
length of the shortest-path to the nearest pill.

Conservative agent

The first agent, which we call the conservative agent, uses Equation 3.7 to evaluate
the states value. This formula encourages reaching the closest pill while staying 7

tiles away from the closest non-weak ghosts. The agent, thus, avoids taking risks
by staying at a safe distance from threats. While this does not take into account the
possibility of ambushes, it is effective in practice.

Aggressive agent

Meanwhile, the second agent, which we call aggressive, takes into account the same
information as the conservative as well as that regarding weak ghosts and capsules.
The formula it uses is as follows:

scorea = scorec − 1000 · c− 100 · n− 10 · w, (3.8)

48 Learning Options from Demonstrations

where c is the number of capsules present on the level, n is the number of weak
ghosts and w is the length of the shortest-path to the nearest weak ghost. The formula
in Equation 3.8 encourages eating capsules and weak ghosts. The aggressive agent
will therefore tend to earn more points. However, this behaviour is risky because it
does not take into account for how long the ghosts are going to remain weak.

Finally, Ghosts are driven by a stochastic policy. A random action is chosen at
every junction and repeated until another junction is encountered.

Goal number reduction

We reduced the number of detected goals using the features abstraction technique
described in Section 3.3.2. We then select the top 4 clusters of goals and create a
multi-goal option for each of them.

The features which we used to aggregate goals, are those that do not carry direc-
tional information. This choice has been driven by the need to address redundancy
in the obtained goals and also by the uselessness of directional information. Since
directional information is descriptive of specific details rather than high-level ideas,
it is less useful when used to characterise a goal.

Experimental procedure

The procedure followed for the experiments with each agent A ∈ {cons, aggr}
(Section 3.4.3) is as follows:

1. A set DA of 1000 Pac-Man games is recorded.

2. A model of the environment TA is learned analysing games in DA.

3. Algorithm 2 is used to extract goals from games (used as demonstrations):

GA =
⊎

d∈DA
EXTRACT_GOALS(TA, d), where

⊎
indicates a multi-set sum. A

multi-set is a set where information about the number of occurrences of each
element is preserved. Notice that Algorithm 2 returns a multi-set.

4. Aggregate states that have equal values for the heuristically selected features
described above; let F be the set of such features:

GA,v = {gi | ΠF (gi) = v}, for all v, where ΠX indicates the relational algebra
projection operator, which strips the input of all features except those in X .
Notice that each GA,v is a multi-set, as opposed to a set.

3.5 Pac-Man experiments results 49

5. Rank all multi-sets GA,v based on their cardinality in descending order.

6. For each of the first top 4 ranked multi-sets G of goals:

(a) create a reward function that is zero everywhere except for goals in G;

(b) run Value Iteration on reward R and model TA to find a policy π;

(c) compute the set G
∗

of all states from which it is possible to reach any state
in G;

(d) create an option o = (I, π, β) as follows:

• I = G
∗ \G;

• π = π;

• β(s) =

⎧⎨
⎩0.2 if s ∈ G

∗ \G
1 otherwise

.

(e) add o to OA (remember A ∈ {cons, aggr})

After computing the options, Q-learning was run 200 times for 3000 episodes
(enough for the learning curve to qualitatively settle) with agents using one of A,
A ∪Oaggr or A ∪Ocons as the options set.

Notice that in this set of experiments, unlike in the grid-world ones, the model is
learned directly from the expert demonstrations, as opposed to being given in input.

3.5 Pac-Man experiments results

In this section we report the results of our experiments. First, we quantitatively
analyze the data, and then we discuss the top detected goals and the performance of
Q-learning with and without options learned with our algorithm.

Quantitative analysis of Q-learning performance

The experiments showed that using options learned by the proposed algorithm
leads to better performance when compared to not using options. To quantitatively
measure the performance of the different agents, we computed the average reward
per episode for each of the 200 runs of each of the 3 agents. This operation induces
a probability distribution for each agent, all of which appear to be approximately
normally distributed, as shown in Figure 3.11. Table 3.1 shows the means and
standard errors of the data. Two two-samples t-tests (with unequal variance) have

50 Learning Options from Demonstrations

Cons. Options Aggr. Options No Options
Mean 1560.33 1513.39 1431.65
Std. err 109.72 58.84 120.70

Table 3.1 Mean and standard error of the average reward per episode across the 200
runs of the experiments

(a) Conservative agent

#C #WG ΔG #Det.
3 4 - 177636
4 0 v. far 157646
2 4 - 155110
1 4 - 144402

(b) Aggressive agent

#C #WG ΔG #Det.
4 0 v. far 156254
1 0 far 125638
2 0 far 120047
3 4 - 117520

Table 3.2 Most often extracted goals. #C is the number of capsules, #WG is the
number of weak ghost, ΔG is the distance of the closest non-weak ghosts and #Det.
is the number of detections.

been executed to pairwise compare each of the agents using options with the agent
not using options. Both t-tests determined that the distributions mean are different
with p-value < 0.001, therefore confirming that both agents using learned options
perform significantly better than the agent that does not use options.

Extracted goals

Analysing the extracted goals can give useful insights into how the proposed al-
gorithm works. Table 3.2 shows the top 4 goals (those selected to become options)
detected for both agents.

Table 3.2 reveals that the conservative agent has a preference for leaving weak
ghosts alone. In fact, among the top goals, most of them have weak ghosts and they
are all alive. The only state where no ghost is weak shows another priority of the
agent: that of staying as far away as possible from ghosts.

On the other hand, the aggressive agent shows a strong preference for eating
weak ghosts. Reaching this conclusion from the table is not intuitive because our
approach is based on detection of goal states rather than actions. The table reports,
as goals, the states following the action of eating. On the other hand, a human would
intuitively consider the action of eating itself as a goal. While this is not possible
to detect with our algorithm, it is a direction for future research to narrow the gap
between human reasoning and the algorithm output.

3.5 Pac-Man experiments results 51

(a) Score against episode number.

(b) Win/loss ratio against episode number.

Figure 3.10 Agents performance

52 Learning Options from Demonstrations

Figure 3.11 Histograms of the average reward per episode.

Q-learning performance

Performance of the agents is shown in Figures 3.10a and 3.10b, respectively in terms
of cumulative reward and of average outcome. The two figures show qualitatively
similar curves, which confirms that the score measure adopted is closely related
to games outcome. The most notable difference is in the performance of the agent
using aggressive options which, even while scoring similarly to the other agents,
has a comparatively lower victories/games ratio. This is due to the nature of its
algorithm: this agent pursues and eats weak ghosts, thus scoring well; however,
getting close to weak ghosts is dangerous since they may switch back to a non-weak
state, making Pac-Man an easy prey.

The fact that the automatic conservative agent still outperforms all the learning
agents can be partially explained by the better granularity that it uses to observe the
features. In fact, Equation 3.7 uses the raw value of the distance features rather than
the aggregated one used by the learning agents.

The advantage of the agents using options, with respect to the agent not using
them, can be explained by the bias introduced by options in the exploration phase;
this is in line with the opinion expressed by Jong et al. [50]. These results provide
supporting evidence that such bias can be positively harnessed when options are
learned by experts using our algorithm. All the agents, ultimately, reach similar

3.6 Summary 53

performance. However, the bias introduced by the options brings better results in
the early stages of the exploration.

Figures 3.12 and 3.13 show, respectively, the number of distinct explored states
and state-action pairs since the beginning of the experiment up to every episode. It
can be seen that the agent using aggressive options has explored the most, while
being the worst performer (as showed in figures 3.10). This suggests that the
difference in performance is not attributable to the quantity of explored states or
state-action pairs but, rather, to their quality. We argue that such quality is biased
towards good quality thanks to the experience extracted from expert demonstrations;
here, the term “good quality” is used to indicate better performance achievement.

It is worth noting that the number of explored states is well below the number of
possible states, which is given by:

4 cardinal
directions︷︸︸︷

5︸︷︷︸
Dir.
food

·

4 cardinal
directions

+ None︷︸︸︷
5︸︷︷︸

Dir.
ghost

·

1 of 4
values

(see Sec.
3.4.3)︷︸︸︷
5︸︷︷︸

Dist.
ghost

·
0 – 4︷︸︸︷
5︸︷︷︸

#capsules

·
0 – 4︷︸︸︷
5︸︷︷︸

#weak
ghosts

·

4 cardinal
directions

+ None︷︸︸︷
5︸︷︷︸

Dir.
weak
ghost

= 12, 500. (3.9)

This is because the states where one or both of the ghosts are weak are relatively
rare and thus represent a poorly explored region of the state space.

3.6 Summary

In this chapter, we investigated how options learned from expert demonstrations
can improve the performance of Q-learning. Q-learning can be affected by the bias
introduced by options, and options learned from experts are good candidates to
deliver a good bias. We proposed one algorithm to achieve this goal and tested it in
two very different environments. The first being a simple grid-world, typically used
in Reinforcement Learning research to show a proof of concept. the second, more
challenging, is the arcade video game of Pac-man. The experiments performed in
these experiments support the thesis that options can be effectively learned from
demonstration using the proposed algorithm and produce performance improve-
ments.

The study in this chapter shows how expert knowledge can be extracted through
demonstrations via the concept of surprise. This is useful to initially navigate, even
if sub-optimally, a complex state-space if the agent has no prior knowledge. The

54 Learning Options from Demonstrations

Figure 3.12 Exploration rate of the agent. The X axis shows the number of the
episode, the Y axis shows the number of distinct states visited since the beginning of
the experiment. Results are averaged over 200 runs of Q-learning.

next chapter shows another approach to tackle the problems arising from the lack of
prior knowledge: starting the learning process by simplifying its state representation
and only refining it over time, as more experience is collected.

3.6 Summary 55

Figure 3.13 Exploration rate of the agent. The X axis shows the number of the
episode, the Y axis shows the number of distinct states visited since the beginning of
the experiment. Results are averaged over 200 runs of Q-learning.

Chapter 4

Dynamic Choice of State Abstraction

Markov Decision Processes are based on the Markov assumption which states that it
is sufficient to know the current state of the environment to make predictions about
the outcome of actions. One way for an agent to learn useful information about
the environment dynamics is by interacting with it, in a sequence of observations
of state and action. Based on the Markov assumption, Temporal Difference (TD)
algorithms [90] encode useful information about the environment in the form of
associations of states to utilities. For example, Q-learning, one of the most popular
TD algorithms, associates state-action pairs to future rewards [107]. When a TD
agent needs to make a decision, it will choose the action that is likely to yield the
highest long-term utility value according to previous experience.

If states are rich in information, in the early stages of the learning process, the
agent knowledge of the environment is sparse. If the agent considers every feature
making up the state, it will take a considerable amount of time to learn associations
for all of the many possible states, especially if outcomes are stochastic. To quote
Andre and Russell, “Without state abstraction, every trip from A to B is a new
trip” [5]. During this learning period, an agent may make blind decisions due to
“details” in the state preventing an exact match with past experience. TD agents
lack the ability to use knowledge of states similar to the current one. This research
problem falls under the umbrella of Transfer learning [100] and, at a higher level,
Generalisation [92].

The most common approach to address this issue is to use linear approximation
[103, 95]. In this instance, an agent only has to learn the weights of the linear
transformation mapping state features to utility. However, a linear approximation
may not be sufficient if non-linear dynamics exist in the environment. In this case,
sparsity issues are addressed by stripping states of “superfluous” details. This

58 Dynamic Choice of State Abstraction

process is called state abstraction, and it consists in aggregating states. By only
considering the most important information and ignoring details, two states that are
effectively different will appear the same, inducing a partitioning of the state space.
The drawback of this, however, is that if the information used to encode states is not
rich enough, the agent will not be able to make informed decisions. Examples of this
approach are coarse coding and tile coding [92].

State abstraction has attracted attention in the reinforcement learning community
in the past two decades. Most of the literature on the subject focuses on choosing an
abstraction prior to the actual learning [51, 19, 40, 49]. McCallum’s work, however,
explored online state abstraction, which is also the focus of our work. [62–64].

In this chapter we propose an algorithm that shifts from coarse partitionings
to more fine-grained ones through time. The choice of which partitioning to use
is done at every step and can be different from state to state, allowing for more
flexible learning. The criteria used by our algorithm to decide when to enrich state
information is to compare the confidence interval of utility estimates. The idea is that,
at the beginning of the process, most decisions are made using coarse partitionings
while, in the long run, more choices are made with more informative partitionings.
To our knowledge, this is the first attempt to combine both coarse and fine-grained
partitionings online.

We evaluate our algorithm by comparing it with Q-learning in the context of the
video game Pac-Man. Our experiments show that the proposed algorithm produces
better performance than fixed state-size Q-learning during the learning phase. We
also propose a strategy to direct exploration in a way that allows the algorithm
to switch to fine-grained abstractions earlier. Experiments show that this strategy
produces better performance than the standard ε-Greedy.

4.1 Dynamic Abstraction Choice

In reality, because environments are often stochastic, a number of trials are necessary
for each state and action pair to evaluate reasonable estimates. In particular, in
the early stages of an agent’s life, its knowledge is rather sparse, often leading
to blind decisions. To deal with this, a common approach is not to model the
entire MDP, but a simplified one obtained by reducing the state space size via
state aggregation [105, 100]. By means of carefully engineered state aggregations,
Q-learning generalizes well over the little information it has.

4.1 Dynamic Abstraction Choice 59

However, it is desirable that in the long-run, the agent makes its decisions
considering all the nuances of each state, rather than based on coarse aggregations.
More information on the state allows the agent to make more informed decisions.

We propose a novel algorithm to achieve the advantages of both situations, at the
cost of a slight increase in processing time. In the following, we refer to abstractions
as functions mapping a state to an aggregation of states. Each abstraction induces
an abstrated state space of smaller size than the original one and, consequently, a
smaller Q-table. However, such Q-tables do not need to be memorized since they
can be inferred by appropriately aggregating entries of the original Q-table.

The algorithm we propose, “Multi-Abstraction Q-learning”, is presented in pseu-
docode in Algorithm 3. Multi-Abstraction Q-learning is given a list of abstractions
of decreasing granularity, and maintains the Q-table associated with the original
state representation. At decision time, the algorithm chooses the most granular
abstraction whose Q-values are precise with sufficient confidence.

Formally, an abstraction is defined as βi : S → Si. We also introduce an ordering
for abstractions, based on their granularity. Formally, an abstraction β is more gran-
ular than a second abstraction β′ (denoted β > β′) if both the following conditions
hold:

• Any two states s, s′ ∈ S mapped to the same abstracted state by (the more
granular) abstraction β are also mapped to the same abstracted state by (the
more coarse) abstraction β′. Formally:

∀s, s′ ∈ S . β(s) = β(s′)⇒ β′(s) = β′(s′)

• There is at least a pair of states s, s′ ∈ S that are mapped to different abstracted
states by (the more granular) abstraction β but that are mapped to the same
abstracted state by (the more coarse) abstraction β′. Formally:

∃s, s′ ∈ S . β(s) �= β(s′) ∧ β′(s) = β′(s′)

Algorithm 3 is given a list of abstractions of decreasing granularity. The algorithm
decides which action to take by choosing the most suitable abstraction at every
time step. The chosen abstraction is the most granular one that provides a high
confidence that the action with the highest estimated Q-value is actually the best
one. Confidence of a state-action pair (s, a) is computed by running a t-test over the

60 Dynamic Choice of State Abstraction

history H(s, a) of values that the Q-table entry Q(s, a) has assumed. The steps used
to test the confidence of an abstraction are as follows:

1. the action a∗ with the highest estimated Q-value is found;

2. the boundaries ⊥a,�a of the confidence intervals of all actions a are calculated;

3. for all a �= a∗, test whether⊥a∗ > �a: each test is passed with a 1−σ confidence
level;

4. if all the tests are passed, it is reasonable to assume that the true Q-value of a∗

is actually the highest.

Optimization

The procedure described in Algorithm 3 has some significant inefficiencies. However,
notice that they can be overcome and have been introduced in the listing for the
purpose of clarity. In the follwing paragraphs, we briefly explain how to address
these issues.

There are two main bottlenecks. The first is at line 12, where the union operation
iterates over all the states to find the siblings. This adds a significant amount of
computational time to compute the same information repeatedly. In fact, caching
the state space partitioning (i.e. the sets of “siblings”) for each abstraction is a better
solution. By doing so, the time complexity of retrieving such information is constant
at the cost of a linear (in the number of states and abstractions) increase in memory
complexity.

The second bottleneck is the procedure at line 13 which computes the confidence
intervals. The procedure iterates over the whole set Xj

a of samples at every invoca-
tion to compute their mean and variance. An alternative, more efficient solution is
to store mean and variance of the Q-value for every state-action pair and update
them online [108]. It is, then, possible to efficiently compute mean and variance
of a virtual union set by aggregating the stored statistics [109]. This modification
makes storing the history of Q-values unnecessary, significantly reducing the space
requirements of the algorithm.

Confidence driven exploration

While ε-greedy is expected to shrink the confidence intervals in the long run through
random exploration, it has no awareness of their existence. It is reasonable to sup-

4.1 Dynamic Abstraction Choice 61

a ∈ K1
a /∈ K2

(a)

a ∈ K1
a /∈ K2

(b)

a /∈ K1
a ∈ K2

(c)

a /∈ K1
a ∈ K2

(d)

a ∈ K1
a ∈ K2

(e)

a ∈ K1
a ∈ K2

(f)

a ∈ K1
a ∈ K2

(g)

a /∈ K1
a /∈ K2

(h)

Figure 4.1 A visual qualitative representation of the possible situations in which
confidence intervals overlap. Here, a∗ is the action with the highest mean and a is
another action. When confidence intervals overlap, the confidence level cannot be
guaranteed. On top of each subfigure, the decision made by Algorithm 4 at lines
11–12 is indicated.

62 Dynamic Choice of State Abstraction

pose that using a different exploration strategy making use of this knowledge would
produce better results. Such a strategy would bias the exploration so as to perform
actions whose confidence intervals are preventing the use of the next abstraction. We
propose a variation on the traditional ε-greedy strategy that integrates such bias. The
close-form definition is slightly cumbersome; so, with clarity in mind, we provide
the pseudocode instead. The pseudocode in Algorithm 4 describes such procedure
and is meant to replace line 22 of Algorithm 3.

This procedure requires two parameters εCI and εR, which set the probability of
exploring versus exploiting, similarly to ε-greedy. Unlike ε-greedy, however, this
procedure performs a second type of exploration. That is, with probability εCI, it
selects an action whose confidence interval needs to be reduced in order for the next
abstraction to be usable.

Figure 4.1 shows a qualitative representation of the reasoning behind Algorithm
4. Depicted are the different possible situations in which confidence intervals of
actions a∗ (action with the highest mean) and a overlap. On top of each subfigure,
the behavior of the algorithm in lines 11–12 is reported. Notice that in many cases
there will be multiple actions matching the criteria of a: in such cases the choice is
random among them. For the sake of concisenes, in the remainder of this section as
well as in Algorithm 4 we will refer to the confidence interval of the estimate of the
average Q-value of action a simpy as the confidence interval of a.

Line 11 of Algorithm 4 captures cases shown in figures 4.1a, 4.1b, 4.1e, 4.1f, 4.1g,
where the upper bound of the confidence interval of some action a is higher than
the average Q-value of the best action a∗. Such actions are stored in set K1. Line 12
of Algorithm 4 captures cases shown in figures 4.1c, 4.1d, 4.1e, 4.1f, 4.1g, where the
average Q-value of some action a is higher than the lower bound of the confidence
interval of the best action a∗. Such actions are stored in set K2. Algorithm 4 makes
the simplifying assumption that further samples will shrink the confidence intervals
without moving the average value. Notice that this does not introduce bias since the
average value is an unbiased estimate of the mean value. With this assumption in
mind, the procedure selects:

• a random action from K1 if K1 �= ∅ and K2 = ∅ because the only way to remove
the overlaps of the confidence intervals is to shink those of the actions in K1;

• a∗ if K1 = ∅ and K2 �= ∅ because, while choosing actions from K2 would also
be an effective way to remove the overlaps, choosing a∗ is the choice with the
highest expected future reward;

4.2 Experiments 63

• a random action from K1 ∪ {a∗} if K1 �= ∅ and K2 �= ∅ because of the same
reasons explained above.

Notice that the case where K1 = ∅ and K2 = ∅ is only possible if the all the ab-
stractions are usable, but this case is captured in lines 2–4. Following this strategy,
confidence intervals that are overlapping will shink until they do not overlap any-
more, therefore allowing the usage of the next abstraction, until the most fine-grained
abstraction is usable.

4.2 Experiments

We evaluate the effectiveness of our algorithm using Pac-Man, a real-time arcade
retro game1. Games of this type are of interest to the scientific Artificial Intelligence
community due to the challenges of open-endedness and tight time-constraints they
pose [78]. Pac-Man has been used as test-bed in a sizeable amount of literature,
including [37, 77, 80]. We adopted the implementation currently used in UC Berkeley
to teach AI, originally developed by DeNero and Klein [32]2. Our algorithms were
implemented in Python using the Numpy library3 [106] and parallelized using
GNU Parallel4 [99]. We use the same Pac-man environment detailed in section 3.4.3,
however we use a simpler level topology, as depicted in figure 4.2. This is not a
standard Pac-Man level, but a simpler one, provided with the code-base. We chose
this because experiments require less computational time.

Players receive a score based on their performance. In the implementation we
used, Pac-Man receives 10 points for each eaten pill, and it loses 1 point at each time
step, while receiving 200 points every time a ghost is killed. Furthermore, 500 points
are earned upon victory (i.e. when all the pills have been eaten), while 500 points are
lost upon death. These scores have been chosen by the developers of the framework,
and we adopt them without changes in this work.

Tests

The first question we wanted to answer is what significance setting σ yields the
highest performance in Multi-Abstraction Q-learning (Algorithm 3) with εCI strategy.

1Additional information can be found at http://www.gamasutra.com/view/feature/3938/the_

pacman_dossier.php?print=1 (checked on March 3rd, 2016).
2Currently available for download at http://ai.berkeley.edu/project_overview.html
3http://www.numpy.org/
4http://www.gnu.org/software/parallel/

64 Dynamic Choice of State Abstraction

Figure 4.2 A screenshot of the video game used in the experiments, Pac-Man.

To answer this question, we tested the algorithm with σ ∈ {0.1, 0.2, 0.5, 0.9}. All
the configurations used food and threatening ghosts information to describe states,
successively adding edible ghosts information and, lastly, capsules information. In
these tests, we set εCI = 0.05 and εR = 0.05.

Secondly, we wanted to evaluate whether shifting abstractions - from coarse to
fine-grained - improves agents performance. To test this, we ran tests on Pac-Man
using different agent algorithms:

• Q-learning where states included food and threatening ghosts information;

• Q-learning where states included food, threatening ghosts and edible ghosts
information;

• Q-learning where states included food, threatening ghosts, edible ghosts and
capsules information.

We compared the performance of these algorithms with those of the best configura-
tion from the previous test, that with σ = 0.9. The exploration strategy used in these
three configurations was ε-Greedy with ε = 0.1.

We ran tests using each of these algorithms for 30000 consecutive episodes and
we measured the reward collected during each of them. We repeated this 50 times

4.2 Experiments 65

and averaged the results. Agent performance is expected to improve over time, as
they gather information on the environment: however, improvement rate and final
performance depend upon the agent algorithm and its state representation.

The final question we wanted to answer is to what degree the performance of the
other experiments are due to Multi-Abstraction Q-learning versus to the εCI-Greedy
strategy. To test this, we ran experiments using the following algorithms:

• Multi-Abstraction Q-learning with ε-Greedy with ε = 0.1;

• Q-learning with εCI with εCI = 0.05 and εR = 0.05.

We compared the performance of these algorithms with the performance of the best
configuration in the first experiment, that with σ = 0.9. The features used in these
experiments are the same used in the first set of experiments; that is, all of them:
food, threatening/edible ghosts and capsules.

State space

Performance of MDPs are heavily influenced by the shape of the state space. In
our experiments, the state space is the Cartesian product of 8 features. Each of
the features is related to objects in game; i.e., threatening/edible ghosts, pills and
capsules. Features are either distance or direction information to such objects.

The “direction” feature specifies the direction that Pac-Man should follow to
reach the closest object of the category. The direction information can assume five
different values: one for each of the cardinal directions, plus an additional value
used when there are no instances of the objects; e.g., if all the ghosts are edible, there
is no threatening ghost. In the case of distance, the feature specifies �log2 d�, where d

is the length of the shortest path to the closest object of the category. Shortest paths
are computed by the Dijkstra algorithm for shortest path on graphs (see [23] for
more information). Distance information can be null as well.

Annealing exploration

We compared different exploration strategies; i.e. ε-Greedy and our proposal, εCI-
Greedy, showed in Algorithm 4. Even though we presented the naïve versions of
the two strategies, in our experiments we used the simulated annealing version.
This technique slowly decreases the amount of exploration as time progresses, so
to gradually shift from an exploration policy to the greedy policy over time. In ε-
Greedy policies this is done by decreasing the value of ε. In εCI-Greedy, we similarly

66 Dynamic Choice of State Abstraction

Figure 4.3 Scores of the games (y axis) per successive episode (x axis) using Multi-
Abstraction Q-learning with εCI-Greedy, varying significance parameter.

decrease both εR and εCI. The annealing schedule we chose is based on the sigmoid
function, s(x) = 1

1+ex
. Our schedule is defined as follows:

ε(t) = ε̂ · s (u · (m− t)) ,

where ε̂ is the maximum value for the exploration parameter, t is the current episode
number, m is the desired center for the schedule and u controls the width of the
function.

4.3 Results

In this section we discuss the results of the experiments we performed. All the
figures in this section are smoothed using a moving average weighted by a Hanning
function. The Hanning function is bell-shaped and smoothly zeroes at the edges.
Using it to weight contributions in a moving window gives greater importance to
central elements while still taking the surrounding element in account.

In the first experiment, different σ-values are compared in Multi-Abstraction
Q-learning (Algorithm 3) using εCI-Greedy. The scores achieved by the different

4.3 Results 67

Figure 4.4 Decisions made with each abstraction (y axis) for each successive episode
(x axis), using σ = 0.2 in Multi-Abstraction Q-learning with εCI-Greedy.

configurations are shown in Figure 4.3. It is surprising that the lines dominating the
chart are those using 0.5 and 0.9 as σ-values.

The most likely explanation for this is that 0.1 and 0.2 are too conservative values.
While in normal t-tests values of 0.1 are unacceptably high, the trend here is heavily
shifted. In fact, orthodox t-tests assume that the distributions are static over time.
Here, however, (expected) Q-values veer from the common initial value towards
their true values. For this reason, seemingly “premature” Q-values, which have a
“high variance” from a t-test perspective, reliably estimate the best action.

Figures 4.4 and 4.5 show the percentage of decisions that have been made with
each abstraction in successive episodes for the two configurations σ = 0.2 and
σ = 0.5. There is a remarkable difference in that the former keeps using coarse
abstractions throughout the learning process, while the latter barely uses any, except
at the very early stages.

Figure 4.6 shows the percentage of victories for the configurations in the first
experiment. The configurations winning the most often are σ = 0.1 and σ = 0.2.
Considering the scores shown in Figure 4.3 this seems counterintuitive, because one
would expect that the configurations with the highest scores are also those winning

68 Dynamic Choice of State Abstraction

Figure 4.5 Decisions made with each abstraction (y axis) for each successive episode
(x axis), using σ = 0.5 in Multi-Abstraction Q-learning with εCI-Greedy.

the most often. However, these numbers make sense when the structure of the
game is considered: to maximize the score, Pac-Man needs to eat ghosts, but that
poses an added risk in terms of winning/losing (i.e. if the ghost suddenly turns
back to a threatening status). Figure 4.7 shows the average number of ghosts eaten
in each successive episode: it can be observed that there is a significant difference
between the configurations σ = 0.1 and σ = 0.2 and the configurations σ = 0.5 and
σ = 0.9. The similarity of the trends showed in Figures 4.7 and 4.3, where dominant
configurations are σ = 0.5 and σ = 0.9 in both cases, supports this theory.

In the second experiment, our technique is compared with three configurations
of Q-learning, each using an increasing amount of features. Figure 4.8 compares
them to the best configuration of the first experiment, Multi-Abstraction Q-learning
with σ = 0.9.

The curves show that the Q-learning configuration with the least features, at
first, performs the best, showing that using more features at the beginning worsens
the performance. However, this configuration is later surpassed by the Q-learning
configuration using the intermediate amount of features, showing that having more
features pays off when sparsity fades out. Finally, the Q-learning configuration using

4.3 Results 69

Figure 4.6 Victories to total games ratio (y axis) per successive episode (x axis) using
Multi-Abstraction Q-learning with εCI-Greedy, varying significance parameter.

the most features surpasses both the other two Q-learning configurations. These
trends show how, in normal Q-learning, more features produce better performance
at later stages at the cost of performance in the early stages.

Except at the very beginning of the process, Multi-Abstraction Q-learning pro-
duces significantly better results than the other configurations. Importantly, it also
converges to the same values as the Q-learning configuration using all of the features:
this shows that the early improvement in performance does not come at the cost of
later performance.

It could be argued that our approach can be replaced by predetermined rules. In
fact, the intersection points of Q-Learning performance curves in Figure 4.8 provide
a clear indication of when it is convenient to switch abstraction. This would produce
better performance than any of the three Q-Learning agents. However, because our
approach allows each state to be used at a different abstraction, it is more adaptive
and produces far better performance during the learning phase, as shown in Figure
4.8.

It could also be argued that, since the final performance of Multi-Abstraction
Q-learning is the same as that of standard Q-Learning, an agent might as well just

70 Dynamic Choice of State Abstraction

Figure 4.7 Eaten ghosts (y axis) per successive episode (x axis) using Multi-
Abstraction Q-learning with εCI-Greedy, varying significance parameter.

use standard Q-Learning. While this is true, the advantage of Multi-Abstraction
Q-learning is an improvement in performance during the learning phase as opposed
to an improvement in final performance.

The results of the third experiment are shown in Figure 4.9. The experiment
shows that Multi-Abstraction Q-learning and εCI-Greedy do create a sinergy in
performance. On one side, εCI-Greedy does not seem to affect the performance
of Q-learning; on the other side, Multi-Abstraction Q-learning without εCI-Greedy
performs worse than Q-learning. However, when Multi-Abstraction Q-learning is
used in concert with εCI-Greedy, they produce better performance than all other
combinations.

Statistical analysis of Q-learning performance

The experiments showed that Multi-Abstraction Q-learning produces better per-
formance than Q-Learning with any set of features. To quantitatively measure the
performance of the different configurations, we computed the average reward per
episode for each of the 50 runs of each of the 3 agents. This operation induces
a distributions for each agent, all of which appear to be approximately normally

4.4 Summary 71

Figure 4.8 Score (y axis) per succesive episode (x axis) using Multi-Abstraction Q-
learning with εCI-Greedy versus standard Q-learning with different sets of features.

distributed, as shown in Figure 4.10. Table 4.1 shows the means and standard errors
of the data. Three two-samples t-tests (with unequal variance) have been executed
to pairwise compare the agents sorted by average per-episode reward. All t-tests
determined that the distributions mean are different with p-value < 0.001, therefore
confirming that both agents using learned options perform significantly better than
the agent that does not use options.

4.4 Summary

In this chapter we presented a novel variation of Q-learning, which we name “Multi-
Abstraction Q-learning”. The algorithm we propose uses different state-abstractions
for each state, increasing the level of detail over time. This allows the agent to
overcome the initial sparsity in its utility estimates, typical of richer state represen-
tations. The agent can still make full use of the maximum level of detail later on
in the learning process. Our experiments show that this algorithm produces better
performance than standard Q-learning.

72 Dynamic Choice of State Abstraction

Figure 4.9 Score (y axis) per succesive episode (x axis) using Multi-Abstraction
Q-learning with ε-Greedy versus εCI-Greedy.

Figure 4.10 Histograms of the average reward per episode.

We also proposed a novel exploration strategy, εCI-Greedy. This strategy directs
exploration to reduce sparsity of information, thereby allowing the agent to switch to

4.4 Summary 73

more detailed abstractions earlier. Our experiments show that this strategy produces
better results than standard ε-Greedy.

Both Chapters 3 and 4 reported studies where the objective for an agent is to
perform as well as possible. Chapter 5 focuses on a more specific scenario, that of
a video game, and on different goal, that of making the agent perform at the same
level of its opponent.

74 Dynamic Choice of State Abstraction

Algorithm 3: Multi-Abstraction Q-learning algorithm for abstraction shifting.⊎
indicates a multiset sum; a multiset is a set where information about the

number of occurrences of each element is preserved. X indicates the sample
average. Procedure CI computes the confidence interval of the mean of the
given sample.

Input : Learning rate α
Input : Exploration parameter ε
Input : Abstractions β1 > β2 > . . . > βm

Input :Default Q-value, initQ
Input :Significance level for t-tests, σ

1 for s, a ∈ S ×A do
2 Q(s, a)← initQ
3 H(s, a)← empty list // history of Q(s, a)

4 end
5 s← observe state
6 repeat
7 j∗ ← m
8 found← false
9 for j ← 1 . . .m do

10 ξ ← { s′ ∈ S | βj(s
′) = βj(s) } // siblings

11 for a ∈ A do
12 Xj

a ←
⊎

s′∈ξ H(s′, a) // samples of siblings
13 ⊥j

a,�j
a ← CI(σ,Xj

a) // lower and upper bounds
14 end

15 a∗ ← argmaxa∈A Xj
a

16 if ⊥j
a∗ > �j

a for all a ∈ A, a �= a∗ then
17 j∗ ← j − 1
18 found← true
19 go to line 22
20 end

21 end

22 a∗ ←
{
argmaxa∈A Xj∗

a with prob. 1− ε

random(A) with prob. ε
23 perform action a∗

24 s′ ← observe state
25 r ← receive reward
26 q̂ ← r + γmaxa′∈A Q(s′, a′)
27 Q(s, a∗) α← q̂ −Q(s, a∗)
28 append q̂ to H(s, a∗)
29 s← s′

30 until apocalypse

4.4 Summary 75

Algorithm 4: C.I. driven exploration.

1

⎧⎪⎨
⎪⎩

return a∗ with prob. 1− εCI − εR

return random(A) with prob. εR

go to line 11 with prob. εCI

2 if j∗ = 1 // most granular abstraction already in use then
3 return a∗ // no exploration needed
4 end
5 if found // acceptable abstraction found then

6 ĵ ← j∗ − 1 // use it
7 else

8 ĵ ← m // use the most coarse one
9 end

10 a∗ ← argmaxa∈A X ĵ
a

11 K1 =

{
a ∈ A

∣∣∣∣ �ĵ
a > X ĵ

a∗

}
12 K2 =

{
a ∈ A

∣∣∣∣ X ĵ
a > ⊥ĵ

a∗

}
13 if K1 �= ∅ andK2 �= ∅ then
14 return random(K1 ∪ { a∗ })
15 else if K1 �= ∅ then
16 return random(K1)
17 else
18 return a∗

19 end

MQL QL w/4 QL w/3 QL w/2
Mean 1281.07 1152.11 1133.77 1099.25
Std. err 23.71 20.51 9.46 7.62

Table 4.1 Mean and standard error of the average reward per episode across the
50 runs of the experiments in Figure 4.8. Columns report values, respectively, for
Multi-Abstraction Q-learning and for Q-Learning with features Fd,Gh,ScGh,Cp,
Fd,Gh,ScGh and Fd,Gh.

Chapter 5

Monte Carlo Tree Search for Dynamic

Difficulty Adjustment

Video games are computer driven simulations that allow players to experience
emotions uncommon in their daily lives. Racing, fighting and shooting games,
to name the most popular genres, can bring the player in tense, adrenaline-rich
experiences. This immersing experience can reach an extreme called the state of
“flow”, where the player dissociates from reality to such an extent that they lose
time perception. One essential prerequisite to reach flow, among others, is a balance
between player skills and challenge offered by the game. When a game is too easy
the player experiences boredom, while if the game is too difficult they experience
anxiety. Both these situations disrupt the immersion and prevents it from reaching
its deepest levels.

This has led researchers to investigate mechanisms to adapt the game difficulty
to the player. This research is reviewed in section 2.3.5. Some researchers base
their works on the assumption that a balanced game is one where the outcome is
completely unpredictable (chance of victory is 50%) [4]. Inspired by the work of
Andrade et al., we propose a technique based on theirs, approaching the problem
from a different angle. We test our technique in a 2D fighting video game, the
Fighting ICE platform, and compare it with the technique proposed by Andrade
et al.. Experiments show our technique has better performance in terms of game
balancing.

The work reported in this chapter is the output of a collaboration with fellow
Ph.D. student Simon Demediuk. This chapter only reports the part of this collabora-
tion that I focused on; that is, the Dynamic Difficulty Adjustment agents.

78 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

This chapter is structured as follows: section 5.1 describes the technique proposed
in [4], section 5.2 details our proposed technique and some variations, section 5.3
reports the experiments we performed and section 5.4 presents the results and
discusses the results of the experiments.

5.1 Challenge Sensitive Action Selection

Andrade et al. [4] propose using Reinforcement Learning to achieve Dynamic Diffi-
culty Adjustment. Their objective is to achieve a zero health-points (HP) difference
between the human player and their agent in a fighting game; this serves as a
proxy for a game with an unpredictable outcome (a 50% chance of victory). To
achieve this, they periodically test the current HP difference between players and
increase/decrease the level of their agent depending on where the HP difference
leans.

Their agent is driven by the Challenge Sensitive Action Selection (CSAS) al-
gorithm. CSAS is based on Reinforcement Learning (RL). The agent first gather
knowledge of the domain at hand and is then able to offer predictions of the conse-
quences of choosing each action given a state of the environment/game. CSAS uses
RL as an oracle and performs the action selection on top of it.

When in a state s, CSAS computes the Q-value Q(s, a) of all actions a in that state.
It is worth remembering that the Q-value Q(s, a) indicates the expected long-term
cumulative reward of performing action a in state s and performing all successive
actions optimally (according to its own knowledge, encoded in the Q function
itself). The reward used by Andrade et al. is the change in HP difference between
the players: positive if the action causes more damage than it receives, negative
otherwise. CSAS then ranks all actions according to their Q-value and chooses the
action to perform based on the current level. In particular, the current level is a
number between 0 and 1 and expresses a percentile.

Initially the level is set at 0.5, which makes CSAS choose the 50th percentile
action (the action with the median value). The level can then increase leading to
the selection of stronger actions, if the agent is losing the fight, or decrease if the
agent is winning. The level is altered based on the HP difference periodically. In
their experiments, Andrade et al. alter the level every 100 cycles, corresponding to
roughly one every 9 seconds, for a total of 10 updates during a single fight.

This technique presents several limitations. The main limitation is the level
update frequency: performing this too frequently can result in jittering behaviour,

5.2 Targeting outcomes 79

while performing it too slowly can prevent the agent from adapting before the
fight ends. Another limitation is that the Q-value assumes that subsequent moves
are optimal, therefore preventing the mechanism from choosing a sub-optimal
strategy and instead focusing on sub-optimal-in-the-short-term decisions. Finally,
the position of an action with respect to the other actions in the ranking is not a good
indicator of how strong an action is in absolute terms. In general, there can be more
advantageous states where most of the actions are going to be stronger than desired;
the opposite can also happen.

5.2 Targeting outcomes

In light of the limitations highlighted in the previous section, we propose techniques
that try to address the shortcomings of CSAS. Our techniques, similarly to CSAS,
rely on an oracle to provide values for given state-action pairs. However, we use
Monte Carlo Tree Search (MCTS) as such oracle, because it does not require to choose
compromises between state-representation richness and learning time - MCTS, in
fact, does not require learning time and uses the complete state information to carry
its computation. This comes at the cost of performing computations online; however,
even in the short time allotted for decision (less that 1

60
of a second), MCTS produced

good performance.
It is worth remembering that MCTS builds a tree to search the best course of

action. It expands the tree asymmetrically, going more in depth in more promising
branches. The algorithm starts from the root node, representing the current state. It
then repeats the following steps repeatedly, as many times as time permits:

1. descends the tree all the way to a leaf led by most-promising steps;

2. decides whether to expand the leaf by adding its children, one for each action
(and descends into a child if it does);

3. performs a simulation of the evolution of the game given the actions encoded
in the path root–leaf followed by some random actions;

4. computes some metric from the resulting state and updates the average score
of all traversed nodes.

After building the tree, MCTS selects an action considering the average score or the
number of visits of the children of the root node. A more in-depth introduction to

80 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

MCTS is given in section 2.3. Notice that different score metrics as well as different
action selection strategies lead to very different results.

5.2.1 Reactive Outcome Sensitive Action Selection

0 0.5 1
Node score

0.5

0

Fu
nc

tio
n

to
be

m
ax

im
iz

ed

ROSAS

Figure 5.1 Action selection strategy used by ROSAS.

The first technique we propose is called Reactive Outcome Sensitive Action Selection
(ROSAS). ROSAS, similarly to CSAS, uses value estimates that are higher the stronger
an action is. In the situation of a fighting game, we set ROSAS to use MCTS
with a score metric that is proportional to the HP difference (the score needs to
be normalised to be between 0 and 1, as required by UCT).

ROSAS then chooses the action that leads to the score closest to 0.5. In the fighting
game scenario, this means a HP difference of 0. Formally, ROSAS uses the following
formula:

action = argmin

⎧⎨
⎩0.5− r[a].score if r[a].score ≤ 0.5

r[a].score− 0.5 otherwise
, (5.1)

5.2 Targeting outcomes 81

where r is the root node of the tree and r[a] is the child of r corresponding to action
a. Basically, this is the distance from the score of 0.5. Figure 5.1 shows the function
that ROSAS minimises.

5.2.2 Proactive Outcome Sensitive Action Selection

0 0.5 δ 1
Node score

0.5

0

Fu
nc

tio
n

to
be

m
ax

im
iz

ed

POSAS

Figure 5.2 Action selection strategy used by POSAS.

A shortcoming of ROSAS is that the agent only fights back when it is losing. This
can interrupt suspension of disbelief in the player, as it feels unnatural. To overcome
this, we propose Proactive Outcome Sensitive Action Selection (POSAS), which attempts
to solve this by keeping a more aggressive behaviour even if it is not losing. The
idea is to treat scores slightly higher than neutral still as equally desirable. This way,
POSAS will not wait to be put in a losing condition before fighting back.

82 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

The formula used by POSAS is the following:

action = argmin

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.5− r[a].score if r[a].score ≤ 0.5

r[a].score− (0.5 + δ) if r[a].score > 0.5

0 otherwise

, (5.2)

where δ regulates how much advantage the agent needs to have before becoming
“docile” again, r is the root node of the tree and r[a] is the child of r corresponding
to action a. Basically, this is the distance from the interval [0.5, 0.5 + δ]. Figure 5.2
shows the function that POSAS minimises.

5.2.3 True ROSAS and True POSAS

-MAX HP 0 +MAX HP
HP difference

0

1

N
od

e
sc

or
e

True ROSAS

Figure 5.3 Score metric used by True ROSAS.

The main strength of MCTS when compared with other search techniques, such
as minimax [79], is that it build the search tree asymmetrically, saving resources for

5.2 Targeting outcomes 83

-MAX HP 0 δ +MAX HP
HP difference

0

1

N
od

e
sc

or
e

True POSAS

Figure 5.4 Score metric used by True POSAS.

branches that are more promising1. However, ROSAS and POSAS misuse this tool
of asymmetry: since the score metric pushes exploration towards branches that lead
to higher HP differences, the bulk of MCTS computation time is directed towards
the wrong branches. The branches that we would like most time to be spent on are
those leading to a low (in absolute value) HP difference.

To address this problem, we propose True ROSAS and True POSAS. These algo-
rithms both use the default action selection strategy of MCTS: choosing the action
with the highest score. However, they use different score metrics to both define what
the score that should be maximised is and to drive the tree exploration towards
branches maximising that score.

1α− β pruning can also avoid exploring some branches, but there is no guarantee it will be able
to do so, because that depends on whether it can establish some bounds around the values nodes in
that branch can assume.

84 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

True ROSAS defines the score metric as follows:

node.score =

⎧⎨
⎩

MAX_HP−x
MAX_HP if HP difference ≥ 0

MAX_HP+x
MAX_HP otherwise

, (5.3)

where x is the HP difference after the action. Figure 5.3 shows the score metric
function used by True ROSAS.

In the same spirit, POSAS defines the score metric as follows:

node.score =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if 0 ≤ HP difference ≤ δ

MAX_HP−x+δ
MAX_HP if HP difference > δ

MAX_HP+x
MAX_HP otherwise

, (5.4)

where x is the HP difference after the action. Figure 5.4 shows the score metric
function used by True POSAS.

5.2.4 Steeper variations

Assuming one of our adaptive agents is effective, it will maintain a small HP differ-
ence. In such situation, it may be more effective to use a score metric that is steeper
around a zero HP difference and saturates at zero at larger HP difference values. To
test this, we introduce steeper variations of True ROSAS and True POSAS. We define
their score metrics as follows. Equation 5.5 shows the metric for Steeper True ROSAS,
while 5.6 shows the metric for Steeper True POSAS. In both equations, the number
100 is an arbitrary choice, corresponding to 20% of the maximum players HP.

node.score =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

100−x
100

if 0 ≤ HP difference ≤ 100

100+x
100

if −100 ≤ HP difference < 0

0 otherwise

, (5.5)

where x is the HP difference after the action. Figure 5.5 shows the score metric
function used by Steeper True ROSAS.

5.2 Targeting outcomes 85

-MAX HP -100 0 +100 +MAX HP
HP difference

0

1

N
od

e
sc

or
e

Steeper True ROSAS

Figure 5.5 Score metric used by Steeper True ROSAS.

node.score =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 0 ≤ HP difference ≤ δ

100−x+δ
100

if δ < HP difference ≤ δ + 100

100+x
100

if −100 < HP difference ≤ 0

0 otherwise

, (5.6)

where x is the HP difference after the action. Figure 5.6 shows the score metric
function used by Steeper True POSAS.

5.2.5 Adaptive variations

The steeper variations rely on the adaptive agent to perform well to begin with.
However, this could not be the case. In such situations, if the HP difference grows
too large, the score metric of the steeper variations will flatten and assume the value
of zero, because the steepness is only within a range around 0. Ideally, an agent
would adapt the steepness so as to be as steep as possible while making sure to

86 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

-MAX HP -100 0 δ δ+100 +MAX HP
HP difference

0

1

N
od

e
sc

or
e

Steeper True POSAS

Figure 5.6 Score metric used by Steeper True POSAS.

-MAX HP -|orig. HP diff.| 0 +|orig. HP diff.| +MAX HP
HP difference

0

1

N
od

e
sc

or
e

Adaptive True ROSAS

(a)

or
ig

H
P

di
ff

−400

−200

0

200

400HP diff

−400
−200

0
200

400

S
core

0

1

Adaptive True ROSAS

(b)

Figure 5.7 Score metric used by Adaptive True ROSAS visualised in 2D (a) and 3D (b).

always have a gradient towards the better actions. We propose adaptive variations
of True ROSAS and True POSAS that achieve this. Notice that the score metric of

5.2 Targeting outcomes 87

-MAX HP -|orig. HP diff.| 0 δ δ+|orig. HP diff.| +MAX HP
HP difference

0

1

N
od

e
sc

or
e

Adaptive True POSAS

(a)

or
ig

H
P

di
ff

−400

−200

0

200

400HP diff

−400
−200

0
200

400

S
core

0

1

Adaptive True POSAS

(b)

Figure 5.8 Score metric used by Adaptive True POSAS visualised in 2D (a) and 3D (b).

such agents is bi-dimensional: the variables are the HP difference after the action
and the HP difference before the action.

The formula for Adaptive True ROSAS is as follows:

node.score =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y−x
y

if 0 ≤ HP difference ≤ |orig. HP diff.|
y+x
y

if |orig. HP diff.| ≤ HP difference < 0

0 otherwise

, (5.7)

where x is the HP difference after the action and y is the HP difference before the
action. Figures 5.7 (a) and (b) show the score metric function used by Adaptive True
ROSAS.

In the same spirit, POSAS defines the score metric as follows:

node.score =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 0 ≤ HP difference ≤ δ

max(100,y)−x+δ
max(100,y)

if δ < HP difference ≤ |orig. HP diff.+δ|
max(100,y)+x
max(100,y)

if −|orig. HP diff.| ≤ HP difference < 0

0 otherwise

, (5.8)

where x is the HP difference after the action and y is the HP difference before the
action. Figures 5.8 (a) and (b) show the score metric function used by Adaptive True
POSAS.

88 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

5.3 Experimental setup

To assess if our approach can achieve a 50% win rate, we setup two experiments
where we let each of our agents face a set of opponents. In the first experiment,
our agents face a set of pre-programmed opponents. In the second experiment, the
agents face a set of human players. We choose the Fighting ICE2, a 2D fighting game,
as a testing platform. The Fighting ICE has been used in the past as an environment
for AI agent competitions.

Our agents are implemented in Java, so that they can interface with the game.
In addition to CSAS and all our proposed agents, two MCTS variations are im-
plemented. For a complete list, refer to Figure 5.9a. As opponents for the first
experiment the entire set of participants to the Fighting ICE competition at the
Computer Intelligence in Games (CIG) 20163 is used. The competition has received 14
submissions: for a complete list, refer to Figure 5.9b.

In the first experiment, we run 90 games for each combination of one of our
agents and one CIG 2016 competition participant. Every other game we reverse P1
and P24. The fights feature all the 3× 3 combinations of characters available in the
game (refer to Figure 5.9c).

For every agent we test, there are then

3︸︷︷︸
AI characters

· 14︸︷︷︸
opponents

· 3︸︷︷︸
opp. characters

· 2︸︷︷︸
swap sides

· 5︸︷︷︸
repetitions

= 1260

fights, and in every fight there are 3 rounds. We consider rounds separately, since
they are unrelated from each other: this makes for a total of 1260 · 3 = 3780 rounds
or data points for each agent. Hereafter, we refer to a “fight” as a single round.

In the second experiment, we face a selection of our agents with a set of 31 human
players. The participants to this experiment are aged between 21 and 59, with an
average of 26.8(standard deviation 10.7) and a median of 25. Of the participants,
25 are males and 6 are females. We asked the participants to fill a brief survey to
gather information about familiarity and skill level with 2D fighting games prior the
experiment. The average reported familiarity level, in a scale from 0 (never heard of
the genre) to 3 (very familiar with the genre), 1.65 (equivalent to about 55%). The

2Developed by the Intelligent Computer Entertainment (ICE) lab. at Ritsumeikan University,
Japan, and available at http://www.ice.ci.ritsumei.ac.jp/~ftgaic/

3Available at http://www.ice.ci.ritsumei.ac.jp/~ftgaic/Downloadfiles/2016Competition.zip
4The game is not exactly symmetric, and some bots behave better when placed on one side.

5.3 Experimental setup 89

CSAS
ROSAS
POSAS
True ROSAS
True POSAS
Steeper True ROSAS
Steeper True POSAS
Adaptive True ROSAS
Adaptive True POSAS
MCTS (most visits)
MCTS (highest score)

(a) Testing agents

Thunder01
MctsAi
paranahueBot
MrAsh
JayBot2016
Tomatensimulator
Ranezi
IchibanChan
KeepYourDistanceBot
Poring
Snorkel
Triump
DragonSurvivor
BANZAI

(b) 2016 participants

ZEN
GARNET
LUD

(c) Characters

Figure 5.9 Agents and characters used in the experiment: in (a) the agents we are
testing, in (b) the participants of the 2016 competition in order of final rank when
playing the ZEN character, in (c) the characters available in the game.

CSAS
ROSAS
Adaptive True ROSAS
MCTS (highest score)

(a) Testing agents

P01
...

P26
(b) Human participants

ZEN
(c) Characters

Figure 5.10 Agents and characters used in the experiment: in (a) the agents we are
testing, in (b) the participants of the 2016 competition in order of final rank when
playing the ZEN character, in (c) the characters available in the game.

90 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

average reported skill level, in a scale from 0 (never played before) to 4 (very good),
is 1.71 (equivalent to about 43%).

In the experiment with humans, we only use a subset of our agents in order to
make experiments about 30 minutes long. We want to test a "non True" agent as well
as a "True" one, along with CSAS and MCTS as baselines. We decide to use ROSAS
and Adaptive True ROSAS as they do not have proactive behaviour and therefore
represent the more basic versions of our AIs. The opponents are fought one after the
other, with a short questionnaire before each fight. The order of the opponents is as
follows: ROSAS first, then CSAS and Adaptive True ROSAS in random order, then
MCTS (highest score) and finally ROSAS again. This specific protocol is chosen to use
ROSAS to measure the players ability before and after fights. This data is used in a
parallel study that is not reported in this thesis. Only the character ZEN is used in
the second experiment.

Our purpose is to test whether the tested agents achieve a 50% win/loss rate
and whether they achieve an average 0 HP difference at the end of the fights. Fur-
thermore, we want to gather insights from human players regarding the perceived
difficulty as well as realism and enjoyment for the various AIs.

5.3.1 Implementation details

All of the agents we test rely on MCTS, one way or another. The MCTS algorithm
can be tweaked in many ways, and here we report the choices we made in our
implementation.

Since the Fighting ICE is a real-time game, actions need to be computed at a high
frequency: the game queries both participant bots at every frame. Since there are 60

frames per second, each frame lasts approximately 16.7 ms5. The engine also needs
time to compute the effects of the previous frame actions on the game state, before
handling it to the agents for the next decision. For this reason we allocate 40% of
each frame to the engine and only allow MCTS to run for the remaining 60%. This
is a conservative estimate, but we come to the conclusion that this is a better price
to pay than being late. Being late, in fact, would mean executing the action in a
different state than the state it was meant to; this, in a real-time game where pixels
matter, can mean a great deal.

To allow MCTS more computational time when a quick response is unlikely
necessary, we distinguish cases where the characters are at most 150 pixel away from

5The game actually relies on a graphic library that makes frames shorter if it is currently late on
the schedule.

5.4 Results and Discussion 91

Agent Mean TOSB (0.4 < p < 0.6)
p-value

CSAS 30.418 >0.999
ROSAS 29.242 >0.999
POSAS 34.220 >0.999
True ROSAS 29.674 >0.999
True POSAS 46.585 <0.001
Steeper True ROSAS 31.357 >0.999
Steeper True POSAS 47.233 <0.001
Adaptive True ROSAS 32.214 >0.999
Adaptive True POSAS 47.591 <0.001
MCTS (highest score) 78.312 >0.999
MCTS (most visits) 79.823 >0.999

Table 5.1 The victories percentage of the fights in the first experiment, against bots.

each other. When characters are close, we let MCTS run for 2 frames, we limit the
tree depth to 2 and we limit simulations to 40 frames. When characters are more
distant, we let MCTS run for 6 frames, we limit the tree depth at 8 and we limit
simulations to 60 frames. In both cases, MCTS projects the current state ahead the
proper number of frames (assuming no action from both characters) so as to make
decisions that will be relevant when the time is up.

We only create children of a node after it has been visited 10 times. Each tree is
adversarial, meaning that odd levels model actions of our agent, while even levels
model actions of the opponent. We limit playouts to be 4 moves long, 2 for each
character.

Finally, we set the constant for UCT to Cp = 0.1. This is the best value in a
preliminary search we run.

5.4 Results and Discussion

In this section we report the results of the experiments. We also discuss in depth
various aspects of the approaches of the agents.

Of all the fights we run, some failed for technical reasons. We present here the
results of fights that did not fail and where some HP was successfully taken from
either of the players. This selection step was necessary as sometimes the AIs get
entangled in a loop of non-offensive behaviours (such as throwing kicks while out
of range). This can happen to decision tree-based AIs when the rules do not predict

92 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

Agent Mean TOSB (0.4 < p < 0.6)
p-value

CSAS 40.860 0.472
ROSAS 46.825 0.037
Adaptive True ROSAS 51.075 0.066
MCTS (highest score) 90.323 >0.999

Table 5.2 The victories percentage of the fights in the second experiment, against
humans.

Agent Mean Std. err. TOST (|HP| ≤ 125)
p-value

CSAS -74.996 2.501 0.264
ROSAS -35.442 1.454 0.041
POSAS -33.394 1.560 0.049
True ROSAS -35.974 1.373 0.033
True POSAS -22.350 1.461 0.024
Steeper True ROSAS -47.834 1.698 0.099
Steeper True POSAS -34.258 1.765 0.074
Adaptive True ROSAS -34.284 1.246 0.020
Adaptive True POSAS -24.273 1.414 0.022
MCTS (highest score) 146.084 3.222 0.577
MCTS (most visits) 155.548 3.237 0.611

Table 5.3 Final HP differences of the first experiment. Initial HP is 500.

Agent Mean Std. err. TOST (|HP| ≤ 125) p-value

CSAS -28.796 10.436 0.051
ROSAS -12.304 3.842 <0.001
Adaptive True ROSAS -13.194 4.321 <0.001
MCTS (highest score) 268.043 18.553 0.914

Table 5.4 Final HP differences of the second experiment. Initial HP is 500.

5.4 Results and Discussion 93

some situation or when they are designed to play defensively. In such situations,
adaptive AIs are unlikely to initiate an attack, so in some cases the fight ends before
they strike their first attack. Even MCTS-based AIs can get stuck; this is because of
technical limitations: the trees generated by such AIs do not look far into the future
due to the real-time constrains, and this can make all actions look equally valuable
when the characters are too far away, because any damage would occur too far into
the future for MCTS to take it into account.

Tables 5.1, 5.2, 5.3, and 5.4 report statistics of the data collected during the
experiments. Let us focus first on tables 5.1 and 5.2. The tables show statistics of the
percentage of victories for our agents in the fights, respectively for the experiment
with bots and the one with humans. We can see that only three of the agents
achieved an average percentage of victories close to 50% in the experiments with
bots: True POSAS, Steeper True POSAS and Adaptive True POSAS. In the experiment
with humans only two agents achieved an average percentage of victories close to
50%: ROSAS and Adaptive True ROSAS.

To quantitatively measure the confidence in these results, we model the distri-
bution of the outcomes as a Binomial distribution, and we perform two one-sided
Binomial tests, each of which measures the confidence that the actual parameter p
of the Binomial distribution is, respectively, above 0.4 and below 0.6. In Tables 5.1
and 5.2, the highest of the two p-values resulting from the tests is reported. The
tests on the data from the first experiment, with bots, place > 99.9% confidence that
the parameter p of the Binomial distribution is indeed within [0.4, 0.6] for the above
mentioned agents. The tests on the data from the second experiment, with humans,
place > 95% confidence for 0.4 < p < 0.6 only in the case of ROSAS. This surprising
result can be explained by the fact that, due to our peculiar protocol, we had twice
as many data points for ROSAS than for any other agent, causing higher confidence
in the statistical test.

Let us now focus on Tables 5.3 and 5.4. The tables show statistics of the final HP
difference in the fights in the experiments with bots and with humans, respectively.
Each player starts the battle with 500 HP. All of our agents achieve an average final
HP difference closer to 0 than CSAS. To quantitatively measure the confidence that
the average final HP difference is within an interval around 0, we run the two one-
sided t-test (TOST), which is a statistical test for equivalence [57]. This test performs
two one-sided t-tests having opposite orientations: one test has a null hypothesis
assuming the mean of the population to be larger than +Δ, the other assuming it is
smaller than −Δ, and reports the highest of the two p-values found.

94 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

In Tables 5.1 and 5.4, the value of Δ is reported in brackets, while each cell reports
the p-values of the test. The tests place > 95% confidence that most of our agents
(except the “Steeper” variations) achieve an average final HP difference within ±125
HP against bots. An even higher level of confidence is achieved (> 99.9%) in the
experiment with humans. The better performance of the agents against humans
compared to bots can be explained by the relatively low skill level reported by our
participants. As will be discussed later, a fundamental limitation of adaptive agents
is the maximum skill level they can play at: the lower the skill level of an opponent,
the easier it is for the adaptive agent to match the skill level.

These results suggest that most our agents can track the HP of the opponent and
adapt to it, and some of them reliably achieve a 50% victory rate. This is convincing
evidence that our algorithms achieve their purpose. Furthermore, the numbers seem
to support the idea that our agents outperform CSAS.

Finally, the results of the MCTS agents show that the near-0 average final HP
difference achieved by the adaptive agents is not the natural result of MCTS, but a
specific outcome of our algorithms.

5.4.1 Discussion

Our algorithms closely match the desired outcome of a 0 HP difference, suggested
in previous work [4] as an appropriate level of difficulty. Some of the algorithms
achieved a 50% victory rate, which has been suggested in the literature [110, 60, 43]
as an appropriate level of difficulty. However, not all of them achieved this result; in
fact, one can notice that only proactive agents succeeded in this. This is due to the
inherent nature of the algorithms responding to the players action. Purely reactive
agents, in a situation of low health for both players, will take damage before dealing
any, and therefore lose more often than not. Proactive agents partially deal with
this aspect. This can be seen in table 5.1, where the algorithms in the ROSAS family
achieve a slightly lower mean compared to those in the POSAS family. It seems that
further work in finding the exact balance between reactivity and proactivity could
achieve even better results, but there is no guarantee on the robustness of such agent.
For example, in a different environment, with different initial HP, or faster/slower or
more/less powerful moves, performance could slightly improve or slightly worsen.

The added value of a 50% victory rate lies in the uncertainty of the outcome
which keeps the player on the edge. Considering this, we suggest that another
(possibly more accurate) metric for such uncertainty could be the HP difference
between the players throughout the game. A HP difference close to 0 throughout the

5.4 Results and Discussion 95

Figure 5.11 Boxplot of the final HP difference distribution for each tested agent.

game is a symptom of an unpredictable game, which could keep the player on the
edge for a longer span of time. For this reason we speculate that there could be more
value in keeping the player on the edge of losing rather than achieving an exact 50%
win rate. In this sense, our agents seem to perform well. This can be observed in
Figure 5.11, which shows the evolution of the HP of both characters as well as their
HP difference; in particular, the figure shows the distribution of the HP difference
by representing quartiles using different colours. We can observe that our *OSAS
agents track a 0 HP difference more accurately and precisely than CSAS. Notice that
the HP of the players seems to never reach 0 because in some fights the AIs get stuck
in a non-attacking cyclic pattern.

Rank vs Score

As explained in Section 5.1, one of the limitations of CSAS is in its strategy for
selecting stronger or weaker actions. The rank, while being a proxy for actions
strength, is not the best: the median action, for example, can be stronger or weaker

96 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

(a) CSAS (b) MCTS (most visits)

(c) ROSAS (d) POSAS

(e) True ROSAS (f) True POSAS

5.4 Results and Discussion 97

(g) Adaptive True ROSAS (h) Adaptive True POSAS

Figure 5.11 The evolution of HP of the two players and their difference during fights.
The data is aggregated across fights.

depending on the situation. We analysed the data generated by our experiments
to observe this phenomenon directly. Figures 5.12 show the histograms of the rank
of selected actions by different AIs. CSAS, in Figure 5.12b, tends to choose actions
ranked in the middle. However, ROSAS and POSAS, in Figure 5.12c and 5.12d, tend
to choose actions more at the extremes of the ranks spectrum.

Since ROSAS and POSAS choose actions more likely to yield a 0 HP difference
and considering the heavy tails shown in these plots, it seems that choosing actions
in the middle as often as CSAS does is not very effective to achieve 0 HP difference
outcomes. This matches the results shown in Table 5.3.

In fact, we can look at the histograms of the score of selected actions, shown in
Figure 5.13. It is evident that CSAS tends to choose its actions in a more restricted
“score” region. This may also be due to the its delay in adapting to the opponent
ability, which causes CSAS to choose stronger/weaker actions later, and therefore
less frequently than desirable.

Limitations

As effective as it can be, an intrinsic limitation of all DDA agent systems is that the
difficulty level provided by the agents is limited by the maximum level the AI can
play. In this case, our DDA agents are all limited by the maximum strength of MCTS.
Figure 5.11 also shows the results from an agent that uses MCTS with the aim of

98 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

(a) CSAS (b) MCTS (most visits)

(c) ROSAS (d) POSAS

Figure 5.12 The histogram of the rank of selected actions for different Adaptive AIs.
Since more actions can have the same value, the rank is computed as an interval: in
the histogram, for every action we computed the minimum and maximum rank a
and b and increased all the points between a and b by 1

b−a
. The data is aggregated

across fights.

5.4 Results and Discussion 99

(a) CSAS (b) MCTS (most visits)

(c) ROSAS (d) POSAS

Figure 5.13 The histogram of the score of selected actions for different Adaptive AIs.
The data is aggregated across fights.

100 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

(a) vs BANZAI (b) vs DragonSurvivor

Figure 5.14 Boxplot of the final HP difference for each tested agent against specific
opponents. The data is aggregated across fights.

winning rather than providing an adaptive level of difficulty. In these experiments
the MCTS agent seemed able to deal with different opponents. However, it may be
the case that a stronger bot or a professional human player can consistently beat this
traditional MCTS agent. In this case our agents will not be provide a suitable level
of difficulty for that bot or player.

This phenomenon can begin to be observable in our experiments themselves:
not all of the opponents were at the same level. Figure 5.14 shows boxplots of the
final HP difference of the tested AIs against two specific opponents. We chose these
opponents specifically to highlight how performance of our agents change relative
to the maximum performance they can achieve (which is similar to that achieved by
MCTS). Specifically, Figure 5.14a shows the performance of the agents against BAN-
ZAI, quite a weak opponent: the performance of the adaptive agents is very good,
targeting a 0 HP difference with small variance; notice how well MCTS performs
against BANZAI. On the other hand, Figure 5.14b shows the performance of the
adaptive agents against DragonSurvivor, quite a strong opponent: the performance
of the adaptive agents is quite poor (in terms of targeting a 0 HP difference), as is
that of MCTS (in terms of achieving a large positive HP difference).

Future Work

The agents tested in the experiments implement piece-wise linear functions, as
defined in Section 5.2. However, smooth functions could be tested instead, such

5.4 Results and Discussion 101

(a) Difficulty (b) Realism (c) Enjoyment

Figure 5.15 Boxplot of the results of our surveys. The blue rectangles include the
inner quartiles, the green line indicates the median and the dashed purple line
indicates the mean.

as Gaussian-shaped ones. This could solve the problem discussed in Section 5.2.5,
because such functions would never actually reach 0 and always provide small
differences in action values that would help rank the actions even when the HP
difference is far from 0.

Human perception

In our experiment involving humans, we asked our participants to complete a small
survey after every fight, to assess the perceived enjoyment, realism and difficulty
against every opponent. In particular, we asked every player to rate each fight on a
scale from 1 (least) to 5 (most) in term of difficulty, realism and enjoyment. Figures
5.15 (a)–(c) show the results of the surveys in boxplots.

As expected, the most difficult agent was MCTS (highest score). At the other end
of the spectrum of difficulty is ROSAS, being perceived as fairly difficult, but not
to an extreme extent. Notably, MCTS (highest score) was also the least enjoyable,
while ROSAS was the most enjoyable. Finally, ROSAS is also the most realistic of
the agents.

While some of these differences are small, the overall picture seems to be that
the agent preferred by the participants is ROSAS. These results show a preference
for a "non True" agent over a "True" one, while the results of the study on victory
rates and final HP differences show that "True" agents have better performance.

102 Monte Carlo Tree Search for Dynamic Difficulty Adjustment

A possible explanation is that "True" agents, while achieving quantitatively better
performance, are too responsive in their matching their opponent HP, resulting in
a higher perceived difficulty and possibly disrupting disbelief. Further research in
this direction is needed to investigate these aspects.

5.5 Summary

In this chapter, we proposed and tested novel techniques in the area of Dynamic
Difficulty Adjustment (DDA). Our techniques use Monte Carlo Tree Search (MCTS)
with a variety of action selection policies and utility functions. Our approach aims
at achieving a 50% win rate; however, due to practical constraints, we used a proxy
instead, targeting a zero HP difference in a 2D fighting game.

The experiments conducted suggest that our technique performs better than a
related state-of-the-art technique, Challenge Sensitive Action Selection (CSAS) [4],
in that it achieves more reliably both a small final HP differences and a victory rate
closer to 50%. The experiments show the robustness of our approach, testing our
DDA agents against adversaries with a variety of skill levels. Finally, our techniques
require less parameter tuning than CSAS.

This chapter showed a technique to adapt the skill level of an automatic agent in
a video game to that of the opponent; that is, a technique to achieve DDA. The next
chapter reports a study that shows the potential of DDA in theme parks scenario,
where having visitors lose track of time (while waiting for an attraction) can have a
positive impact on the memory of the experience and increase customers return rate.

One of the most sought-after experiences by gamers is immersion. Since DDA
can ease the way into a state of immersion, more research in the area is desirable.
This research contributes to the area by proposing a practical and well-grounded
approach to the problem.

Chapter 6

Opportunities for AI Techniques in

Theme Parks

If you have ever been to a theme park, especially during a peak season, you know
the frustration of being stuck in queues. While a theme park inherently promises
a day of novel experiences and family-friendly entertainment, the reality is that
customers spend many hours of their day simply waiting for these experiences to
begin. In fact, queuing times at popular theme parks can be hours long for a single
attraction [44].

On-going research and industry developments aim at reducing queue times by
carefully structuring the layout of the park to improve customer flow [1], provid-
ing queue skipping mechanisms to allow for structured load-management [21], or
scheduling staff rosters and live show times to increase attraction turn-over rates or
entice customers away from specific attractions at busy times [10].

However, as with any overloaded system, there is a limit to how much actual
queuing time can be reduced. Thus, rather than (or in addition to) attempting to
reduce the actual queuing time, theme park managers may instead aim to reduce the
perceived waiting time. That is, to induce a sense of time passing quickly in waiting
customers by improving the quality of the queuing experience [55].

The problem of long waits stems from boredom, a state of mind in which time
seems to slow down. This is caused by a lack of stimuli provided by the queuing
environment, which causes customers to redirect more attention to the passage of
time [114]. The opposite of boredom, at the other end of the spectrum, is “flow”, a
state of peak enjoyment and high focus experienced by individuals engaged in play
[25]. Theme park managers would much rather have their waiting customers in the
latter rather than the former.

104 Opportunities for AI Techniques in Theme Parks

In the context of a research project with a theme park industry partner, we
developed an Augmented Reality (AR) video game prototype and we deployed
it in a theme park queue. Considering that video games are a popular avenue for
people to reach the state of flow [94, 24], here we present the results of our in-the-
wild experiment and argue that video games, in the specific context of theme park
queues, can greatly benefit from the use of Dynamic Difficulty Adjustment (DDA)
to 1) engage a diverse audience, made up by children as well as adults of different
cultures, genders and gaming experiences, 2) overcome the lack of familiarity that
may stop customers from quickly giving up with the game and 3) increase the
longevity of the game by offering an increased challenge as players become more
skilled.

While research in DDA exists [111, 2, 7, 8, 31, 112, 47], limited adoption in
industry settings is an indicator for the limitations of the existing techniques, which
can come short in effectiveness and realism. We hope this study will motivate more
work in the area by showing the opportunities of DDA in a real world industry
scenario. For example, the technique proposed in chapter 5 could be tested in an
real-world queue environment.

This chapter is structured as follows: section 6.1 gives an introduction to the
concept of attention and flow in time judgement psychology; section 6.2 details the
design of the game we developed; section 6.3 describes the setup of our experiment;
section 6.4 reports and discusses the results of the experiment; section 6.5 discusses
the limitations of this work.

6.1 Attention and Flow

Time judgement, the process by which the brain perceives the passage of time, is
sensitive to the division of mental attentional resources between temporal and non-
temporal tasks [114]. In particular, the more demanding non-temporal information
processing is, the more attentional resources are consumed by it, leaving fewer
resources for timing [113]. When too much resources are dedicated to temporal
tasks, the mind enters the state of boredom, an unpleasant state of mind that can
cause anger and anxiety and has been linked to various types of misbehaviour [114].
At the other end of the spectrum, compared to boredom, is flow. Flow is a mental
state of peak enjoyment and deep focus, popular among game researchers for its
peculiarity that people experiencing flow lose track of time. When in a state of flow

6.2 Game design 105

[25], attentional resources are almost fully allocated for non-temporal information
processing and, as a result, time judgement is minimised.

One more advantage of flow, from a game perspective, is that a player immersed
in the game will continue to play the game [24]. To ensure that players remain
immersed in a particular video game, the game must not cause frustration nor
boredom, all too common emotions in games that are, respectively, too difficult or
too easy. To avoid this, the level of challenge presented by the game to the player
needs to be tuned to the player’s skill level in that game. If the level of challenge
is appropriate for the individual player, the player is more engaged; otherwise, the
player may become frustrated or disengaged [18].

The process of adapting the difficulty of a game involves changing the strategies
and behaviour of the AI opponent or characteristics of the environment to match the
skill level of the player. This also produces a video game that is longer-lived, since
the game can alter its level of challenge as the skill level of the player progresses. The
area of Dynamic Difficulty Adjustment (DDA), a sub-area of Artificial Intelligence,
studies techniques that aim at addressing these problems and is an active area of
research. Existing DDA research is presented in Section 2.3.5.

Games not using DDA (the vast majority), usually ask the player what level of
challenge they would like, in the form of a choice between options such as “easy”,
“medium” or “hard”. These static difficulty settings are used by developers to group
players into a limited number of skill ranges.

This approach has a fundamental limitation: it divides the world in a small
number of categories, which is not guaranteed to capture the diversity of the players
base. This problem is exacerbated in theme parks, where the customer base is quite
heterogeneous, comprising of children and adults, boys and girls, gamers as well
as non gamers, etc. Theme parks, therefore, are an excellent example of real-world
scenario that will benefit from the introduction of DDA in its digital interactive
technologies.

In this study, we do not develop a DDA system; rather, we conduct an experiment
to motivate further work to investigate DDA in theme park contexts.

6.2 Game design

We develop a video game based on Augmented Reality. This choice of technology
is driven by the potential for AR to build upon the theme of the ride and enhance
the queuing experience; this can help to prevent the suspension of disbelief of the

106 Opportunities for AI Techniques in Theme Parks

player from being broken. Furthermore, it gives the player the feeling that the ride
has already “started”, which has been suggested as making longer waits acceptable
to the waiting customer [59, 28].

The game is playable on mobile devices such as Android or Apple smartphones.
With their device in hand, the queue members can point the camera towards special
AR markers that are placed on the sides of the queue every few meters. While the
game app normally shows a grey-scale representation of what the phone camera
sees, when scanning a marker, an augmented reality portal opens up above the
marker. This initiates the beginning of a level, after which enemies and collectables
gradually spawn out of the portal. It is the task of the players to (individually or as a
group) destroy the enemies by tapping with their fingers on them; at the same time,
the must drag enough collectables to clear the level. The natural flow of the queue
environment provides a time limit for the level: when there is an open space ahead
of the players, social pressure makes them move on from the AR marker. To mitigate
risk to expensive smartphones, the gameplay requires “turrets” to be pressed upon
at all time: when a turret is not pressed, no projectiles will be generated from it; this
should result in a player firmly holding the phone while the others tap on the screen.
Once the level is completed, the player needs to find a new marker to play the next
level. The game gradually intensifies with more and stronger enemies as the player
progresses through levels, coupled with more powerful weapons and upgrades that
can be bought (with points, not money) in a virtual shop between the levels.

Normal gameplay is periodically interrupted by a message that a “boss” enemy
is appearing. Players are then required to locate a special boss AR marker with
the smartphone camera. A separate but similar portal with another shield dome
is augmented over the boss AR marker. The boss is represented by a large single
enemy that slowly flies towards the shield at a slower rate compared to normal
enemies. Unlike the standard enemy portals, all players in the queue will see and
attack the same boss regardless of which boss AR marker they are viewing and
advance a level if the boss has been successfully defeated by the collective effort.
The boss is defeated if it receives sufficient laser taps from all players present in the
queue before reaching the shield. The number of taps required to defeat the boss
dynamically scales with the number of smartphones actively playing in the queue.

6.3 Experimental setup 107

6.3 Experimental setup

In the following section we provide details of an in-the-wild user study that utilised
the prototype in a real world theme park queue. A public study was chosen over a
controlled user study because we are targeting perception of waiting time in the con-
text of theme park queues and members of these queues embody specific emotions
and expectations. Synthesising a controlled queue from recruited participants would
impact the results of study due to the different state of mind of the participants.

6.3.1 Study Site and Demographics of Participants

The study was conducted at the Movie World theme park on the Gold Coast, Aus-
tralia. The study was run over three days from Friday 6th to Sunday 8th of January,
2017. These dates were chosen to gain access to peak crowds during the Australian
primary and secondary school summer holidays. The experiment was run during
the entire 9am to 5pm operating hours of the theme park. However, due to queues
being too small at some periods of the day, data was primarily acquired between
11am and 4pm on all three days.

While the prototype was designed for the queue of the sci-fi themed Justice
League attraction, the experiment was instead conducted at the western themed
Wild West Falls attraction. This was due to operational concerns during the chosen
dates, including a larger expected queue at the Wild West Falls attraction. While
feedback from a few participants and nonparticipants indicated that the clash in
theme was noticed, it did not appear to significantly impact the experience of the
participants.

In total, 100 groups of participants played the game and 25 of these groups
conducted the post play interview. While we did not formally collect demographic
data, we observed that most groups of players were young families with at least
one member under the age of 18 and that almost all participants were fluent in
English. This aligns with the family oriented nature of the Movie World theme
park and general park admission statistics that identified roughly 60% of guests as
being local Australian residents. On average, groups played for 15 minutes and 10
seconds, while the median value is 13 minutes. Figure 6.1 shows the distribution of
the waiting times.

108 Opportunities for AI Techniques in Theme Parks

0 20 40 60 80

Waiting time (min)

0

5

10

15

20

25

F
re

qu
en

cy

Histogram of waiting times

Figure 6.1 Distribution of waited time in our sample

6.3.2 Experimental Design

The prototype was installed onto eight Samsung Galaxy S5 phones that were reused
throughout the three experimental days. The prototype included instructions on how
to play the game as well as information for participants regarding the experiment.
These devices were connected to the local server via WiFi to coordinate boss battles
and to store survey results. The devices were locked such that participants could
only play the game on the phone and not use it for any other purpose. Each device
was given both a physical identifier (marked on the back of the phone) and a digital
one.

Participants fell into one of two groups; players and non-players. Players were
recruited by the investigators by occasionally approaching the back of the queue,
where they would demonstrate the game and describe the experiment to the last
group of guests in queue and ask whether they would like to participate. If surround-
ing groups enquired about game, they were also presented with the opportunity to
participate. Signage was also posted around the entrance to the attraction to advise
theme park guests of the experiment. Only one device was provided to each group
of family or friends and they were encourage to play together on the one device.

6.3 Experimental setup 109

Players were told that they could play the game as little or as much as they liked
and were requested to return the device to another investigator located at the head
of the queue just before they got on the attraction. The recruiting investigator then
recorded the device identifier and the time that it was provided to the players.

Of note is that it was initially planned to recruit participants at the entrance to the
attraction queue, out of sight of the actual queue. However, this proved ineffective as
most potential participants were in a hurry to join the queue and therefore declined
to hear more about the game. This relates to the queue design dimension of queue
members wanting to get started; guests were eager to join the queue and reserve
their spot in queue but once they were already waiting they were more receptive to
being provided with additional entertainment.

At the head of the queue, when a device was returned to the investigator located
there, a ten question Likert-style survey was loaded (see Section 6.4.4) on the device
and the players were asked to complete it as a group, with the results being registered
against the devices digital identifier and stored on the game server. After the survey
was completed, the investigator asked the group to estimate, without looking at a
clock, the amount of time that they had been in queue since they were provided
with the device. Where estimations within the group varied and no consensus was
reached, each estimation was recorded. These estimates, along with the device
identifier and the time that the device was returned, were then recorded.

Non-playing participants were recruited in a similar fashion to playing partici-
pants but instead of being provided with a device they were simply provided with a
token with a unique identifier on it and asked to return the token to the investigator
at the head of the queue. Once at the head of the queue, the non-players were also
asked to estimate their wait time since being given the token and these details were
recorded similarly to playing participants. Non-players did not answer the survey
or participate in the interviews as most of the questions in these were aimed at
qualitatively analysing the queue experience in relation to the gameplay experience.

6.3.3 Data Collection and Analysis

Through this experimental design, we are able to track the progression of players
and non-players through the queue. Actual wait time is calculated by taking the
difference between the time that the participant is at the back of the queue and the
time he or she is at the front of the queue. The degree of time misperception is then
calculated as the difference between the actual wait time and the perceived wait time
(participants’ time estimations). The game also recorded how long players were

110 Opportunities for AI Techniques in Theme Parks

interacting with the game during their total time in the queue, giving a measure of
engagement with the game.

Non-player participants provided a baseline and by comparing the degree of
time misperception of the two groups we determine the impact that our prototype
had on perceived waiting time. Additionally, survey data provided a quantifiable
perspective on the player experience while the interviews allowed for more expres-
sive and open ended qualitative data to be collected. The results of analysing the
data are provided in the next section.

6.4 Results and Discussion

We validated our hypothesis using data collected during the experiment. In this
section we provide a quantitative analysis of numerical data. Our hypothesis is
that playing with our game while waiting in line makes players perceive time as
passing more quickly. To test this, we computed the perception error for players and
non-players, as described in Section 6.3.3. Table 6.1 reports statistics for the samples
and Figure 6.2 shows a box-plot of their distribution. Notice that the mean/median
perception error is more negative in players than in non-players. In the following
sections we analyse the statistical significance of this difference and we present other
evidence supporting our hypothesis.

6.4.1 Statistical Significance and Effect Size

We compared the perception error of players and non-players using a two indepen-
dent samples t-test and a Mann-Whitney rank test. Both tests reported p-values
< 0.001, indicating that the difference observed is very likely not due to chance. We
also computed Cohen’s d coefficient to estimate the effect size of playing on time
perception error (using the formula provided in [20]). The value found indicates
that the effect size is medium, suggesting that the difference found is of concrete
significance. Table 6.2 reports the results of these tests in detail.

6.4.2 Correlations

To verify whether some of the variables we collected correlate with time perception
error, we computed the Pearson’s correlation coefficient r for some pairs of variables.
This coefficient tests for linear correlation and can range between -1 and +1, it gives

6.4 Results and Discussion 111

non-players players
Group

−60

−40

−20

0

20

Pe
rc

ep
ti

on
er

ro
r

Boxplot of perception error for players and non-players

Figure 6.2 Box-plot of perception error for players and non-players

Group Count Mean (min) Std. Dev. (min) Median (min)
Non-players 100 3.74 6.74 3
Players 100 -0.41 8.53 0

Table 6.1 Statistical metrics of perception error for players and non-players. The two
groups both count 100 participants, but these round numbers were not planned and
are a coincidence.

Test Result

Mann-Whitney rank test p < 0.001 (Ua = 6681.5)
Cohen’s d d = 0.54

Table 6.2 Results of statistical significance tests and effect size test.

an indication of how well the data fits into a perfect line, where -1/+1 indicate a
perfect negative/positive correlation and 0 indicates no correlation at all. We found
some correlations to be statistically significant, which are shown in Table 6.3. All the
variables we found to be significantly correlated to time perception error are proxies
to how much attention a participant dedicated to the game over time. The fact that
all these correlations are negative seems to indicate that an increase in attention to

112 Opportunities for AI Techniques in Theme Parks

0 200 400 600 800 1000 1200

Final Score

−20

−15

−10

−5

0

5

10

Pe
rc

ep
ti

on
er

ro
r

(m
in

)

(a) Score of last level

0 2000 4000 6000 8000 10000

Total Score

−20

−15

−10

−5

0

5

10

15

Pe
rc

ep
ti

on
er

ro
r

(m
in

)
(b) Total score

0 2 4 6 8 10 12 14 16

Played Time (min)

−20

−15

−10

−5

0

5

10

Pe
rc

ep
ti

on
er

ro
r

(m
in

)

(c) Played time

0 5 10 15 20 25

Game Time (min)

−20

−15

−10

−5

0

5

10

Pe
rc

ep
ti

on
er

ro
r

(m
in

)

(d) Game time

Figure 6.3 Correlation between some variables and perception error.

Variable Result

Time actually played vs Perception error r = −0.33 (p < 0.01)
Time the game was running vs Perception error r = −0.30 (p < 0.01)
Total Score vs Perception error r = −0.35 (p < 0.01)
Score on last level) vs Perception error r = −0.34 (p < 0.01)

Table 6.3 Correlations found significant, along with their r coefficient and the p-value.

6.4 Results and Discussion 113

the game correlates with a more negative perception error; that is, a lower estimate
of elapsed time. Figures 6.3a through to 6.3d show scatter plots of the correlations.
Although this correlation is not large, it is statistically significant; this is in agreement
to the outcome of the statistical significance and effect size that were reported in the
previous section.

6.4.3 Linear Regression

We fit a linear model to compute the magnitude of each contribution to the overall
time perception under the assumption that the contributions are linear and inde-
pendent. The results suggest that time spent playing and time spent not playing
contribute in different magnitude to the overall perceived time. In mathematical
terms, we computed A, B and C so that the following formula was as accurate as
possible:

A · non-playing time +B · playing time + C = perceived time (6.1)

To do this, we performed a basic linear regression. The coefficients can be interpreted
as follows: every minute not playing (while in the queue) is perceived as A minutes;
every minute playing is perceived as B minutes; people usually always perceive
a wait of at least C minutes (that is, C is the intercept in the linear formula). We
computed the three coefficients using three sets of data: players only, non-players
only, and both players and non-players together. The three sets of coefficients
we found are reported in Table 6.4, along with the R-squared statistic, which is a
statistical measure between 0 and 1 indicating how closely the data matches the
formula. Even though these findings are limited by the strong assumptions made
and by the average R-squared statistic, the numbers suggest that, when estimating
perceived time from playing/non-playing time, the contribution of the time spent
playing to the overall the perceived time is many times lower than the contribution
of the time spent not playing. Using the data from both groups, we found that the
same amount of actual time was perceived roughly 5 times longer by non-players
than by players.

6.4.4 Survey analysis

After playing during their wait in the queue, players were asked to complete a 10
question survey, each answer being given on a Likert scale; we used a 5 step Likert

114 Opportunities for AI Techniques in Theme Parks

Using A B C R2 Ratio A/B

Players and non-players 0.87 0.17 5.49 0.6 5.24
Non-players only 0.94 0 4.73 0.64 N/A
Players only 0.75 0.24 6.27 0.5 3.15

Table 6.4 Results of the linear regressions conducted. A and B are, respectively,
coefficients for non-playing time and playing time; C is the intercept. R2 is a
statistical measure 0 ≤ R2 ≤ 1 indicating how closely the data matches the formula
A * non-playing time + B * playing time + C = perceived time.

Question Mean Std. Dev.

I played the game as much as possible in the queue. 3.92 1.17
Playing the game made time pass more quickly. 4.09 0.92
I enjoy waiting in long queues. 1.76 1.13
I often use my mobile phone while waiting in long queues. 3.72 1.28
I would appreciate a game like this being available in other
long queues.

3.87 1.02

I would rather play my favourite mobile game in a queue
than the game that was provided.

3.4 1.07

Playing this game with a group makes time pass more
quickly.

3.98 0.99

I/we explored different strategies in the game. 3.48 1.06
Progressing in the game made me feel better about my
progress in the queue.

3.72 0.97

I would play this game again if I re-entered this queue. 3.78 1.19
Table 6.5 Statistics of the survey responses that we collected. Responses, in a Likert
scale, are assigned values 1 to 5 which represent, respectively, strong disagreement
or strong agreement.

scale, including “Strongly disagree”, “Disagree”, “Neutral”, “Agree”, “Strongly
agree”, along with an extra option “Not applicable”.

Table 6.5 shows mean scores for every question. Players seem to agree on the
positive impact of the game, with high mean scores on questions such as “Playing the
game made time pass more quickly” and “I would appreciate a game like this being
available in other long queues”. However, some player stated that they would prefer
playing some other game. The data seems to support that some of the strategies are
indeed effective, such as playing in group and giving players a sense of progression.
Figure 6.4 show the distribution of answers to selected items of the survey.

6.5 Limitations and Future Work 115

Not
applicable

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

0

5

10

15

20

25

30

35

40

45

I would appreciate a game like this being available in other long queues.
Playing this game with a group makes time pass more quickly.
Progressing in the game made me feel better about my progress in the queue.
Playing the game made time pass more quickly.

Figure 6.4 The figure shows the distribution of answers for selected questions of the
survey administered to participants.

6.5 Limitations and Future Work

Studies in the wild dramatically differ from controlled in studies in that several
parameters or aspects of a study cannot be fully controlled by the research team.
This study was no exception and indeed the current limitation of our work primarily
stem from this.

Due to operational constraints of the theme park (i.e., peak season) being oper-
ated by our industry partner, we were not able to carry out the entire study where
we had originally planned (the “Justice League” area) and in fact we had to switch to
a new area (the “Wild Wild West” ride area). This was responsible for some thematic
disconnection in the game content, which could however be easily fixed as suggested
in the previous sections on. Similar constraints also limited the amount of time that
we devote to our experiments and ultimately impacted how many people ended
in our experimental samples. In our future work, we hope to carry out additional

116 Opportunities for AI Techniques in Theme Parks

experiments in the wild with content better aligned to a predetermined theme park
area. Preliminary discussions with our industry partner seem to indicate that a
solution can be found to overcome our previous logistical issues.

Also, we did not deploy any of the content we had originally planned to include
in-between levels e.g., a “shop” to purchase new weapons and power-ups, which
could have had a positive impact on longevity as well as on perceived waiting times.
We were hesitant adding this new feature could have impacted the stability of our
game prototype: we leave this as future work, as well.

Finally, we did not compare time perception in participants playing their favourite
mobile game in the queue as this would have meant a supplementary layer of com-
plexity in tracking each individual user behaviour on the provided mobiles (which,
in fact, were sand-boxed for security reasons). We feel this could be an interesting
experiment to run, which, however, would not weaken the strength of our results
but rather it could put them in a broader perspective. Moreover, it could be argued
that while time perception was an essential element in our experience and that other
games could fare well in this respect, it would not be easy to reproduce the kind of
social experiences our AR game prototype delivered without extensive deliberate
design, ruling out the vast majority of existing mobile games.

6.6 Summary

This chapter presented the work done with a theme park industry partner: an
Augmented Reality (AR) video game prototype was developed and deployed it in a
queue area. We presented our findings in terms of users time perception. The data
collected suggests that video games in queues can bring great benefits to customers
and therefore to theme parks. The results of the experiment indicate that time
perception is significantly different (slower) for players compared to non-players,
with a medium sized effect. In particular, there seems to be a correlation between
variables related to the degree of attention and the time misperception. Fitting the
data through a linear model shows that playing can give up to a 5x speedup to
perceived time.

Despite the overall positive results, some participants reported that they would
rather play their favourite game in the queue. This could be partially due to the
unfamiliarity of people with the new game, which could make someone reluctant
to put an effort in the new experience when they could instead play their favourite
mobile game. Additionally, some participants played a shorter amount of time than

6.6 Summary 117

they waited, which seems to suggest that the game can get boring after a period of
time. These are indications that the video game could benefit by the introduction of
Dynamic Difficulty Adjustment (DDA). DDA would in fact lower the entry barrier
to the game, allowing a more gentle introduction that would benefit less confident
players. DDA would also scale the difficulty up for the more skilled players so that
the game would keep them entertained for a longer period of time, possibly long
enough for them to reach the head of the queue.

A final but important benefit, this can serve in extending the ride experience
to the queue area, making the whole theme park experience more immersive for
customers.

Chapter 7

Conclusions

The focus of this thesis was Artificial Intelligence (AI) applied to games, which
is attracting a lot of research from very big players in the technology scene. This
is because of two distinct reasons: first, games are an excellent test field for AI
techniques, being non-trivial but at the same time not containing all the nuances
of the real world; second, top video games, with budgets in the order of tens of
millions US dollars, want to offer players an all-round realistic experience. The
first part of the thesis focused in particular on learning systems, based on the
Reinforcement Learning paradigm, while the second part focused on AI techniques
aimed at enhancing player experience in video games.

The objectives of this thesis were to study novel approaches and methods to
the problems of learning behaviours in large and complex environments and of
Dynamic Difficulty Adjustment (DDA) in video games. Furthermore, the thesis
offered an assessment of the potential for DDA in the context of theme parks digitally
augmented areas.

The studies in this thesis answered four research questions:

Q1 Can goal-oriented options be learned from expert demonstration by using the
concept of surprise? Will such options accelerate the learning process?

A1 Yes, and they can both accelerate the learning process as well as produce better final
performance in a reasonable learning time. The key contribution in answering this
question is an algorithmic solution to learn options from expert demonstrations
based on the notion of “surprise”. This algorithm detects unexpected expert
decisions and infers the expert motivating goal. Extracted goals are used to
create goal-oriented options that bias learning in a positive way, increasing
performance during the learning process. The use of the concept of surprise
had not been investigated before in the problem of learning options.

120 Conclusions

Q2 Can an agent refine its abstraction on the knowledge of the environment over
time?

A2 Yes, by progressively choosing a more refined abstraction when there is enough data to
be confident in its reliability despite data sparsity. The key contribution in answer-
ing this question is an algorithmic solution to perform online state abstraction
in Markov Decision Processes using standard Student’s t test. This was cou-
pled with an ad-hoc heuristic exploration strategy to further improve agent
performance. These techniques increased performance in the learning process
by avoiding the problem of data sparsity. This approach of progressively
using finer-grained abstractions by considering more features had not been
investigated before in RL.

Q3 Can an agent playing in a game target a 50% chance of victory while maintain-
ing believability?

A3 Yes, in the context of a fighting game, an agent reducing the HP difference between
players can achieve a victory rate around 50%. The key contributions in answering
this question are a set of algorithmic solutions to target a 50% chance of victory
in games. These algorithms use Monte Carlo Tree Search to choose the action
most likely to produce the desired outcome, while maintaining a believable
behaviour. These approaches built on well-established ideas in the research
communities of psychology and video games AI and improved on the state of
the art.

Q4 Is there evidence to suggest that adjusting the difficulty of a game played in a
queuing environment can improve time perception?

A4 Yes, given the large effect on time perception of playing a game while queuing and
the feedback from players themselves, there is evidence to make a case for difficulty
adjustment. The key contributions in answering this question are the analysis
and discussion of real-world data that suggests that applying DDA to games
played in a theme park queuing area could benefit time perception of players,
making them feel like they had been waiting a shorter time span than they
actually had. A quantitative analysis of data collected in a theme park queuing
environment had not been performed before. This can inform theme parks
managers on how to improve the experience of their customers.

This thesis explored techniques to improve the efficiency of Reinforcement Learn-
ing. In particular, tabular state-action representations were used; further research is
desirable to apply the same approaches to the modern visual-based Deep Learning

7.1 Future Works 121

architectures, which have the advantage of not requiring a special state represen-
tation, further generalising the approach. Moreover, the individual techniques can
be studied further: the proposed state abstraction technique can be mixed with
other orthogonal approaches, while options discovery can be improved by beans of
automatic features selection.

The latter part of the thesis focused on DDA in games. In particular, one study
proposed a technique based on MCTS to tackle the problem. While MCTS has the
advantage of not requiring any learning time, it is limited in that it is computationally
expensive at run time. Further research is required to apply the same idea to a RL-
based approach. Furthermore, DDA can be used to tailor groups of players sharing
some traits of personality, or even tailor individual players.

Finally, we reported the results of a study that measures the effects of time
perception on theme park customers queuing for an attraction. We argued that DDA
has a large potential in these venues; further studies are required to verify this with
an actual DDA-powered game deployed in a theme park queue.

7.1 Future Works

In this section we touch on directions for future work that build upon the different
contributions.

Learning Options from Demonstrations

Chapter 3 presented an algorithm to extract options, which are high-level behaviours,
from expert demonstrations. The proposed algorithm detects a goal every time an
expert makes an unexpected decision; a pruning step is used to reduce this large
set. Unfortunately, this latter part is computationally expensive; this can be solved
by providing the pruning method with a list features to be used for aggregation.
Automatic approaches to completing this task are avenues for future work. Another
important limitation of this work is that the approach was only applied to tabular Q-
learning and not to approximated Q-learning. Further study is necessary to explore
the suitability of the method with approximated Q-learning.

Dynamic Choice of State Abstraction

Chapter 4 introduced a novel approach to state abstraction, useful when knowledge
of the state space is sparse. The method stores experience with as much detail

122 Conclusions

as possible, but abstracts away most details when taking decisions; over time, as
knowledge become less sparse, the abstractions used for decision-making become
less sever. The proposed algorithm takes advantage of similarity in Q-values of
similar states. In particular, factored state spaces where states in (hyper-)rectangular
regions share similar values are a good fit for the algorithm. However, this performs
well only if the entirety of the state space follows this “hierarchy of importance” of
the features; on the other hand, it performs poorly if there are different regions of
the state space with different hierarchies of importance. For example, in the case
of Pac-Man, in states where a threatening ghost is nearby, food direction is less
important ghost direction, while in states where all threatening ghosts are distant,
the opposite is true. To optimise the use of redundancy in these cases, an algorithm
would need to consider multiple, separate sets of features. This means that the input
should not be a sequence of abstractions but rather a lattice of abstraction. This is
because a list allows for only one “line of specialization”, whereas a lattice allows for
more possibilities. In other words, the proposed algorithm does not have a choice
in what information to add over time: it can solely choose when to add it. Using a
lattice, different sets of features could be selected for different states and they would
still all converge to the abstraction with all features in the end. This is currently
the strongest limitation of the algorithm and is an important direction for future
research.

Monte Carlo Tree Search for Dynamic Difficulty Adjustment

Chapter 5 presented a novel approach to achieve Dynamic Difficulty Adjustment
(DDA) in video games, allowing for more balanced automatic opponents. The
technique works on top of any mechanism that can compute the value of all actions
in a given state in term of a given reward function; both Reinforcement Learning and
Monte Carlo Tree Search are suitable techniques (in the study, the latter was used
for convenience). The approach can be used in various flavours, but the essence is
to always choose the action that leads to the smallest difference in terms of games
score between the two players; this is a proxy for a 50% victory rate, which should
indicate a balanced game, one where the outcome is uncertain. This is motivated
by research on flow [25], a mental state of deep immersion: a necessary condition
to allow someone to enter the state of flow is dealing with a task not too easy nor
difficult. However, a 50% win rate may not be the best fit for that definition, and
further research is required to reach a deeper understanding.

7.1 Future Works 123

Opportunities for AI Techniques in Theme Parks

Chapter 6 reported the results of a study where an Augmented Reality video game
was deployed in a theme park queuing area. In the context of the experiment,
time perception of players and non-players was measured, showing an important
difference between the two, with players feeling time passed more quickly. At
the same time, some participants reported that they would have rather played
their favourite mobile game. This suggests the potential for games in theme parks
and shows current problems that can be addressed by DDA (to ease introduction)
opponents and other more challenging AI opponents (to keep players challenged).
Notice that, beside difficulty, other player-customised dynamic adjustments in queue
video games could bring a positive effect. For example, players showing a preference
for action could be given tougher enemies to defeat, while players who seem to like
customising their weapons could be given a larger variety of items and power-ups.
These dynamic customisation could mitigate the challenge of game designers of
producing a game that is entertaining to a large and varied audience, spanning
different age ranges, gaming experience, culture, and gender.

Bibliography

[1] Ahmadi, R. H. (1997). Managing capacity and flow at theme parks. Operations
research, 45(1):1–13.

[2] Alexander, A. L., Brunyé, T., Sidman, J., and Weil, S. A. (2005). From gaming to
training: A review of studies on fidelity, immersion, presence, and buy-in and
their effects on transfer in pc-based simulations and games. DARWARS Training
Impact Group, 5:1–14.

[3] Andrade, G., Ramalho, G., Gomes, A. S., and Corruble, V. (2006). Dynamic game
balancing: An evaluation of user satisfaction. AIIDE, 6:3–8.

[4] Andrade, G., Ramalho, G., Santana, H., and Corruble, V. (2005). Challenge-
sensitive action selection: an application to game balancing. In Intelligent Agent
Technology, IEEE/WIC/ACM International Conference on, pages 194–200. IEEE.

[5] Andre, D. and Russell, S. J. (2002). State abstraction for programmable reinforce-
ment learning agents. In AAAI/IAAI, pages 119–125.

[6] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2-3):235–256.

[7] Avery, P. M. and Michalewicz, Z. (2010). Adapting to human gamers using
coevolution. In Advances in Machine Learning II, pages 75–100. Springer.

[8] Baldwin, A., Johnson, D., and Wyeth, P. A. (2014). The effect of multiplayer
dynamic difficulty adjustment on the player experience of video games. In CHI’14
Extended Abstracts on Human Factors in Computing Systems, pages 1489–1494. ACM.

[9] Bellman, R. (1957). A markovian decision process. Technical report, DTIC
Document.

[10] Birenboim, A., Anton-Clavé, S., Russo, A. P., and Shoval, N. (2013). Temporal
activity patterns of theme park visitors. Tourism Geographies, 15(4):601–619.

[11] Bonarini, A., Lazaric, A., and Restelli, M. (2006). Incremental skill acquisition
for self-motivated learning animats. In Nolfi, S., Baldassarre, G., Calabretta, R.,
Hallam, J., Marocco, D., Meyer, J.-A., Miglino, O., and Parisi, D., editors, From
Animals to Animats 9, volume 4095 of Lecture Notes in Computer Science, pages
357–368. Springer Berlin Heidelberg.

126 Bibliography

[12] Bradley, S. P., Hax, A. C., and Magnanti, T. L. (1977). Applied mathematical
programming, chapter Dynamic Programming, pages 320–362. Addison-Wesley.

[13] Broadbent, D. E. (1977). The hidden preattentive processes. American Psycholo-
gist, 32(2):109.

[14] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlf-
shagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in games, 4(1):1–43.

[15] Burton, L. J., Westen, D., and Kowalski, R. (2009). Psychology: Australian and
New Zealand. John Wiley & Sons Australia, Ltd.

[16] Casini, L., Macar, F., and Grondin, S. (1992). Time Estimation and Attentional
Sharing (short communication), pages 177–180. Springer Netherlands, Dordrecht.

[17] Černỳ, M., Plch, T., Marko, M., Gemrot, J., Ondráček, P., and Brom, C. (2015).
Using behavior objects to manage complexity in virtual worlds. arXiv preprint
arXiv:1508.00377.

[18] Chen, J. (2007). Flow in games (and everything else). Communications of the
ACM, 50(4):31–34.

[19] Cobo, L. C., Zang, P., Isbell Jr, C. L., and Thomaz, A. L. (2011). Automatic state
abstraction from demonstration. In IJCAI Proceedings-International Joint Conference
on Artificial Intelligence, volume 22, page 1243. Citeseer.

[20] Coe, R. (2002). It’s the effect size, stupid: What effect size is and why it
is important. https://web.archive.org/web/20170327212724/http://www.leeds.ac.uk/educol/

documents/00002182.htm. Accessed: 2017-03-27.

[21] Cope, R. F., Cope III, R. F., Bass, A. N., and Syrdal, H. A. (2011). Innovative
knowledge management at disney: human capital and queuing solutions for
services. Journal of Service Science, 4(1):13.

[22] Corder, G. W. and Foreman, D. I. (2014). Nonparametric statistics: A step-by-step
approach. John Wiley & Sons.

[23] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. The MIT Press, 2 edition.

[24] Cowley, B., Charles, D., Black, M., and Hickey, R. (2008). Toward an under-
standing of flow in video games. Computers in Entertainment (CIE), 6(2):20.

[25] Csikszentmihalyi, M. (1990). Flow: The psychology of optimal performance.
NY: Cambridge University Press.

[26] Csikszentmihalyi, M. and Csikszentmihalyi, I. S. (1992). Optimal experience:
Psychological studies of flow in consciousness. Cambridge university press.

Bibliography 127

[27] Şimşek, O., Wolfe, A. P., and Barto, A. G. (2005). Identifying useful subgoals
in reinforcement learning by local graph partitioning. In Proceedings of the 22nd
International Conference on Machine learning, ICML ’05, pages 816–823, New York,
NY, USA. ACM.

[28] Davis, M. M. and Maggard, M. J. (1990). An analysis of customer satisfaction
with waiting times in a two-stage service process. Journal of Operations Management,
9(3):324–334.

[29] Dayan, P. and Watkins, C. (1992). Q-learning. Machine learning, 8(3):279–292.

[30] Demediuk, S., Tamassia, M., Raffe, W. L., Zambetta, F., Li, X., and Mueller,
F. F. (2017a). Measuring player skill using dynamic difficulty adjustment. In
Proceedings of the Australasian Computer Science Week Multiconference. ACM.

[31] Demediuk, S., Tamassia, M., Raffe, W. L., Zambetta, F., Li, X., and Mueller,
F. F. (2017b). Monte carlo tree search based algorithms for dynamic difficulty
adjustment. In Computational Intelligence and Games (CIG), 2017 IEEE Conference on.
IEEE.

[32] DeNero, J. and Klein, D. (2010). Teaching introductory artificial intelligence
with pac-man. In Proceedings of the Symposium on Educational Advances in Artificial
Intelligence.

[33] Džeroski, S., De Raedt, L., and Driessens, K. (2001). Relational reinforcement
learning. Machine learning, 43(1-2):7–52.

[34] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Simoudis, E.,
Fayyad, U., and Han, J., editors, Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, volume 96, pages 226–231. AAAI Press.

[35] Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM,
5(6):345–349.

[36] Fraisse, P. (1963). The psychology of time. Harper & Row.

[37] Gallagher, M. and Ryan, A. (2003). Learning to play pac-man: an evolutionary,
rule-based approach. In Evolutionary Computation, 2003. CEC ’03. The 2003 Congress
on, volume 4, pages 2462–2469 Vol.4.

[38] Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent ad-
vances. INFORMS Journal on Computing, 21(2):178–192.

[39] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature
selection. J. Mach. Learn. Res., 3:1157–1182.

[40] Hallak, A., Di-Castro, D., and Mannor, S. (2013). Model selection in markovian
processes. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 374–382. ACM.

128 Bibliography

[41] Hao, Y., He, S., Wang, J., Liu, X., Huang, W., et al. (2010). Dynamic difficulty
adjustment of game ai by mcts for the game pac-man. In Natural Computation
(ICNC), 2010 Sixth International Conference on, volume 8, pages 3918–3922. IEEE.

[42] Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang,
Z., Eslami, A., Riedmiller, M., et al. (2017). Emergence of locomotion behaviours
in rich environments. arXiv preprint arXiv:1707.02286.

[43] Herbrich, R., Minka, T., and Graepel, T. (2006). Trueskill™: A bayesian skill
rating system. In Advances in Neural Information Processing Systems, pages 569–576.

[44] Hernandez-Maskivker, G. and Ryan, G. (2014). Could managers consider
waiting times as something positive. In 2014 International Conference on Global
Economy, Commerce and Service Science (GECSS-14), pages 352–355, Amsterdam,
Netherlands. Atlantis Press.

[45] Hsu, F.-h. (1999). IBM’s deep blue chess grandmaster chips. IEEE Micro,
19(2):70–81.

[46] Hunicke, R. (2005). The case for dynamic difficulty adjustment in games. In
Proceedings of the 2005 ACM SIGCHI International Conference on Advances in computer
entertainment technology, pages 429–433. ACM.

[47] Hunicke, R. and Chapman, V. (2004). Ai for dynamic difficulty adjustment in
games. In Challenges in Game Artificial Intelligence AAAI Workshop, pages 91–96.

[48] Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., and Wal-
ton, A. (2008). Measuring and defining the experience of immersion in games.
International journal of human-computer studies, 66(9):641–661.

[49] Jiang, N., Kulesza, A., and Singh, S. (2015). Abstraction selection in model-
based reinforcement learning. In Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 179–188.

[50] Jong, N. K., Hester, T., and Stone, P. (2008). The utility of temporal abstraction
in reinforcement learning. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’08, pages 299–306,
Richland, SC. International Foundation for Autonomous Agents and Multiagent
Systems.

[51] Jong, N. K. and Stone, P. (2005). State abstraction discovery from irrelevant
state variables. In IJCAI, pages 752–757. Citeseer.

[52] Jonsson, A. and Barto, A. (2006). Causal graph based decomposition of factored
mdps. J. Mach. Learn. Res., 7:2259–2301.

[53] Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In
Fürnkranz, J., Scheffer, T., and Spiliopoulou, M., editors, Machine Learning: ECML
2006, volume 4212 of Lecture Notes in Computer Science, pages 282–293. Springer
Berlin Heidelberg.

Bibliography 129

[54] Konidaris, G., Kuindersma, S., Grupen, R., and Barreto, A. S. (2010). Construct-
ing skill trees for reinforcement learning agents from demonstration trajectories.
In Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., and Culotta, A., editors,
Advances in Neural Information Processing Systems 23, pages 1162–1170. Curran
Associates, Inc.

[55] Ledbetter, J. L., Mohamed-Ameen, A., Oglesby, J. M., and Boyce, M. W. (2013).
Your wait time from this point will be... practices for designing amusement park
queues. ergonomics in design, 21(2):22–28.

[56] Leigh, R., Schonfeld, J., and Louis, S. J. (2008). Using coevolution to understand
and validate game balance in continuous games. In Proceedings of the 10th annual
conference on Genetic and evolutionary computation, pages 1563–1570. ACM.

[57] Limentani, G. B., Ringo, M. C., Ye, F., Bergquist, M. L., and MCSorley, E. O.
(2005). Beyond the t-test: Statistical equivalence testing. Analytical Chemistry,
77(11):221 A–226 A.

[58] Littman, M. L. (1994). Markov games as a framework for multi-agent rein-
forcement learning. In Proceedings of the eleventh international conference on machine
learning, volume 157, pages 157–163.

[59] Maister, D. H. (1985). The psychology of waiting lines. In Czepiel, J. A. and
Solomon, M. R., editors, The Service Encounter: Managing Employee/Customer Inter-
action in Service Businesses, chapter 8, pages 113–123. Lexington Books, Lanham,
MD, USA.

[60] Malone, T. W. (1980). What makes things fun to learn? heuristics for designing
instructional computer games. In Proceedings of the 3rd ACM SIGSMALL symposium
and the first SIGPC symposium on Small systems, pages 162–169. ACM.

[61] Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004). Dynamic abstraction
in reinforcement learning via clustering. In Proceedings of the 21st International
Conference on Machine Learning, ICML ’04, pages 71–78, New York, NY, USA. ACM.

[62] McCallum, R. A. (1993). Overcoming incomplete perception with utile dis-
tinction memory. In Proceedings of the Tenth International Conference on Machine
Learning, pages 190–196.

[63] McCallum, R. A. (1995). Instance-based utile distinctions for reinforcement
learning with hidden state. In Proceedings of the Twelfth International Conference on
Machine Learning, pages 387–395. Citeseer.

[64] McCallum, R. A., Tesauro, G., Touretzky, D., and Leen, T. (1995). Instance-based
state identification for reinforcement learning. Advances in Neural Information
Processing Systems, pages 377–384.

[65] McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in
reinforcement learning using diverse density. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML ’01, pages 361–368, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

130 Bibliography

[66] Menache, I., Mannor, S., and Shimkin, N. (2002). Q-cut—dynamic discovery of
sub-goals in reinforcement learning. In Elomaa, T., Mannila, H., and Toivonen, H.,
editors, Machine Learning: ECML 2002, volume 2430 of Lecture Notes in Computer
Science, pages 295–306. Springer Berlin Heidelberg.

[67] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition.

[68] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533.

[69] Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E.,
and Liang, E. (2006). Autonomous inverted helicopter flight via reinforcement
learning. In Ang, Marcelo H., J. and Khatib, O., editors, Experimental Robotics IX,
volume 21 of Springer Tracts in Advanced Robotics, pages 363–372. Springer Berlin
Heidelberg.

[70] OpenAI (2017). Dota 2. https://web.archive.org/web/20171123200000/https://blog.

openai.com/dota-2. Accessed: 2017-12-28.

[71] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in python. The Journal of Machine Learning Research, 12:2825–
2830.

[72] Pickett, M. and Barto, A. G. (2002). Policyblocks: An algorithm for creating
useful macro-actions in reinforcement learning. In Proceedings of the Nineteenth
International Conference on Machine Learning, pages 506–513. Morgan Kaufmann.

[73] Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition.

[74] Raffe, W. L., Tamassia, M., Zambetta, F., Li, X., and Mueller, F. F. (2015a).
Enhancing theme park experiences through adaptive cyber-physical play. In
Computational Intelligence and Games (CIG), 2015 IEEE Conference on, pages 503–510.
IEEE.

[75] Raffe, W. L., Tamassia, M., Zambetta, F., Li, X., Pell, S. J., and Mueller, F. F.
(2015b). Player-computer interaction features for designing digital play expe-
riences across six degrees of water contact. In Proceedings of the 2015 Annual
Symposium on Computer-Human Interaction in Play, pages 295–305. ACM.

[76] Risi, S., Vanderbleek, S. D., Hughes, C. E., and Stanley, K. O. (2009). How
novelty search escapes the deceptive trap of learning to learn. In Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09, pages
153–160, New York, NY, USA. ACM.

[77] Robles, D. and Lucas, S. M. (2009). A simple tree search method for playing ms.
pac-man. In Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium
on, pages 249–255. IEEE.

Bibliography 131

[78] Rohlfshagen, P. and Lucas, S. (2011). Ms pac-man versus ghost team cec 2011
competition. In Evolutionary Computation (CEC), 2011 IEEE Congress on, pages
70–77.

[79] Russell, S. J. and Norvig, P. (2009). Artificial intelligence: a modern approach (3rd
edition). Prentice Hall.

[80] Samothrakis, S., Robles, D., and Lucas, S. (2011). Fast approximate max-n
monte carlo tree search for ms pac-man. Computational Intelligence and AI in Games,
IEEE Transactions on, 3(2):142–154.

[81] Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative
filtering recommender systems. In The adaptive web, pages 291–324. Springer.

[82] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489.

[83] Şimşek, Ö. and Barto, A. G. (2004). Using relative novelty to identify useful
temporal abstractions in reinforcement learning. In Proceedings of the 21st Inter-
national Conference on Machine Learning, ICML ’04, pages 95–102, New York, NY,
USA. ACM.

[84] Spronck, P., Sprinkhuizen-Kuyper, I., and Postma, E. (2004). Difficulty scaling
of game ai. In Proceedings of the 5th International Conference on Intelligent Games and
Simulation (GAME-ON 2004), pages 33–37.

[85] Stahl, A. E. and Feigenson, L. (2015). Observing the unexpected enhances
infants’ learning and exploration. Science, 348(6230):91–94.

[86] Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning.
In Koenig, S. and Holte, R., editors, Abstraction, Reformulation, and Approximation,
volume 2371 of Lecture Notes in Computer Science, pages 212–223. Springer Berlin
Heidelberg.

[87] Stone, P. and Sutton, R. S. (2001). Scaling reinforcement learning toward robocup
soccer. In Proceedings of the Eighteenth International Conference on Machine Learning,
ICML ’01, pages 537–544, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

[88] Subramanian, K., Isbell, C. L., and Thomaz, A. L. (2011). Learning options
through human interaction. In In 2011 IJCAI Workshop on Agents Learning Interac-
tively from Human Teachers (ALIHT. Citeseer.

[89] Suguru, I., Ishihara, M., Tamassia, M., Tomohiro, H., Thawonmas, R., and
Zambetta, F. (2017). Procedural play generation according to play arcs using
monte-carlo tree search. In Game-ON’2017: 18th International Conference on Intelli-
gent Games and Simulation.

[90] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44.

132 Bibliography

[91] Sutton, R. S. (1996). Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In Advances in neural information processing
systems, pages 1038–1044.

[92] Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition.

[93] Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112(1–2):181 – 211.

[94] Sweetser, P. and Wyeth, P. (2005). Gameflow: a model for evaluating player
enjoyment in games. Computers in Entertainment (CIE), 3(3):3–3.

[95] Tadić, V. (2001). On the convergence of temporal-difference learning with linear
function approximation. Machine learning, 42(3):241–267.

[96] Tamassia, M., Zambetta, F., Raffe, W., and Li, X. (2015). Learning options
for an MDP from demonstrations. In Chalup, S., Blair, A., and Randall, M.,
editors, Artificial Life and Computational Intelligence, volume 8955 of Lecture Notes
in Computer Science, pages 226–242. Springer International Publishing.

[97] Tamassia, M., Zambetta, F., Raffe, W., Mueller, F. F., and Li, X. (2016a). Dy-
namic choice of state abstraction in q-learning. In Proceedings of the Twenty-second
European Conference on Artificial Intelligence. IOS Press.

[98] Tamassia, M., Zambetta, F., Raffe, W., Mueller, F. F., and Li, X. (2016b). Learn-
ing options from demonstrations: A pac-man case study. IEEE Transactions on
Computational Intelligence and Artificial Intelligence in Games.

[99] Tange, O. (2011). Gnu parallel - the command-line power tool. ;login: The
USENIX Magazine, 36(1):42–47.

[100] Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning
domains: A survey. The Journal of Machine Learning Research, 10:1633–1685.

[101] Tesauro, G. (1995). Td-gammon: A self-teaching backgammon program. In
Applications of Neural Networks, pages 267–285. Springer.

[102] Togelius, J., De Nardi, R., and Lucas, S. M. (2006). Making racing fun through
player modeling and track evolution. In Proceedings of the SAB Workshop on
Adaptive Approaches for Optimizing Player Satisfaction in Computer and Physical
Games, pages 61–70.

[103] Tsitsiklis, J. N. and Van Roy, B. (1997). An analysis of temporal-difference
learning with function approximation. Automatic Control, IEEE Transactions on,
42(5):674–690.

[104] Vigorito, C. M. and Barto, A. G. (2010). Intrinsically motivated hierarchical
skill learning in structured environments. IEEE Transactions on Autonomous Mental
Development, 2(2):132–143.

Bibliography 133

[105] Walsh, T. J., Li, L., and Littman, M. L. (2006). Transferring state abstractions
between mdps. In ICML Workshop on Structural Knowledge Transfer for Machine
Learning.

[106] Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: A
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22–30.

[107] Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, University
of Cambridge.

[108] Welford, B. (1962). Note on a method for calculating corrected sums of squares
and products. Technometrics, 4(3):419–420.

[109] West, D. (1979). Updating mean and variance estimates: An improved method.
Communications of the ACM, 22(9):532–535.

[110] Yannakakis, G. N. and Hallam, J. (2006). Towards capturing and enhancing
entertainment in computer games. In Hellenic Conference on Artificial Intelligence,
pages 432–442. Springer.

[111] Yannakakis, G. N. and Hallam, J. (2009). Real-time game adaptation for
optimizing player satisfaction. Computational Intelligence and AI in Games, IEEE
Transactions on, 1(2):121–133.

[112] Yannakakis, G. N. and Togelius, J. (2011). Experience-driven procedural
content generation. Affective Computing, IEEE Transactions on, 2(3):147–161.

[113] Zakay, D. (1998). Attention allocation policy influences prospective timing.
Psychonomic Bulletin & Review, 5(1):114–118.

[114] Zakay, D. (2014). Psychological time as information: the case of boredom.
Frontiers in psychology, 5.

[115] Zambetta, F., Raffe, W. L., Tamassia, M., Mueller, F. F., Li, X., Dang, D., Quinten,
N., Patibanda, R., and Satterley, J. (2017). Reducing perceived waiting time in
theme park queues via an augmented reality game. ACM Transactions on Computer-
Human Interaction (TOCHI).

[116] Zang, P., Zhou, P., Minnen, D., and Isbell, C. (2009). Discovering options from
example trajectories. In Proceedings of the 26th Annual International Conference on
Machine Learning, ICML ’09, pages 1217–1224, New York, NY, USA. ACM.

