
Comparison of some Negotiation Algorithms using a 
Tournament-Based Approach 

Peter Henderson, Stephen Crouch, Robert John Walters, and Qinglai Ni 

Declarative Systems and Software Engineering, 
Department of Electronics and Computer Science, 

University of Southampton, 
Southampton, UK, SO17 1BJ 

{ph, stc, rjw1, qn}@ecs.soton.ac.uk 

Abstract. This paper provides some results and analysis of several negotiation 
algorithms. We have used a tournament-based approach to evaluation and 
applied this within a community of Buyers and Sellers in a simulated car hire 
scenario. An automated negotiation environment has been developed and the 
various negotiation algorithms made to compete against each other. In a single 
tournament, each algorithm was used as both a Buyer-negotiator and a Seller-
negotiator. Each negotiating algorithm accommodates the parameters for 
negotiation as a set of desirable goals, represented as examples of product 
specifications. It was the task of each negotiating algorithm to get the best deal 
possible from every one of their opposites (i.e. Buyer versus Seller) in the sense 
of being close to the examples they were given as goals. One algorithm proved 
to be superior to the others against which it was made to compete. 

1   Introduction 

A significant problem in distributed e-commerce applications is the choice of 
algorithm used to carry out automated negotiation on behalf of a client [3], [4], [6], 
[7], [8], [12]. Even very simple algorithms can have behaviour which is acceptable in 
a restricted scenario but which might be unpredictable in a more liberal environment. 
In order to gain some confidence in algorithms we were planning to deploy, we 
decided to establish a simulation environment in which they could be evaluated. 

In 1984 Robert Axelrod published The Evolution of Cooperation [1], a book that 
amongst many other things discussed the results of two tournaments that attempted to 
find the best automated algorithm at playing the iterated Prisoner's Dilemma, a 
deceptively simple game with its origins in economic game theory. In this game, 
competitors are required either to co-operate or defect (i.e. not co-operate) in a series 
of rounds. Each participant can observe the behaviour of its opponent and choose to 
collaborate or defect on the next round according to how it feels the opponent may 
perform. The rewards are highest for a defector whose opponent collaborates. But 
they are lowest if both defect. The optimal long-run strategy is for both to collaborate, 
where the rewards are not as high as they are for a lone defector but where they are 
much higher than if both defect. 
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One of the many interesting aspects of the work was that the algorithm that 
emerged victorious against all the others was incredibly simple. Tit-For-Tat simply 
cooperated with its opponent on the first round, and from then on just reciprocated 
whatever its opponent did on the previous round. Surprisingly, this algorithm 
accumulated more rewards than the others, although it would never actually win a 
complete game. It won because it encouraged high scoring games with its opponents, 
and although it was always either drawn with or beaten, it subsequently attained the 
highest score overall (see [2]). 

Three characteristics formed the basis for its success: it never was the first to 
defect, it didn't hold grudges, but it was retaliatory. Cooperate with it, and you both 
do well. Defect against it and it does the same. We wondered if a similar result might 
hold where participants were engaged in negotiation. We have chosen to build a 
tournament that pits algorithms against each other, which, although simple, are of the 
sort that are actually used in commercial scenarios. 

At an abstract level, similarities may be identified between the tournament 
presented in this paper and the tournament conducted by Axelrod. However, there are 
some very notable differences, since this experiment deals with interaction on a far 
more detailed, and therefore semantically rich, level. 

Firstly, the scoring system has to be more comp lex. In negotiation, often there is no 
absolute notion of cooperation and defection as in the Prisoner's Dilemma.  For 
example, what one Seller views as defection by a Buyer is not always what another 
Seller would view as defection. The existence of this perceptual grey area means a 
more detailed scoring system to ensure consistency across scores was required. 

Secondly, the algorithms in this tournament are each given a set of negotiation 
goals, in the form of desired product specifications. Interpreting and reasoning about 
these goals in some way is an issue that has to be dealt with by the algorithms. 

Thirdly, in this tournament, all algorithms face each other, including instances of 
themselves, as Buyers versus Sellers. 

Previously we have looked at architectures for e-commerce systems [10], [11], [12] 
and been interested in how federations of applications co-operate, particularly when 
new applications can join the federation at any time. Networks of e-commerce 
negotiation algorithms have exactly this property and have become a test case for us. 

Chapter 2 describes the nature and context of the experiment. The car hire 
negotiation scenario is discussed in Sect. 2.1 and the negotiation environment is 
outlined in Sect. 2.2. Sect. 2.3 details the generic behaviour of the negotiators, and 
Sect. 2.4 introduces the use of example specifications as goals, and describes the two 
sets of examples used for the experiments. 

Chapter 3 provides a behavioural description and brief discussion of each of the 
seven algorithms. 

Chapter 4 presents the results of the experiments and provides some analysis and 
discussion of these results, which are further discussed in Chapter 5. 
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2   The Experiment 

2.1   The Car Hire Scenario 

The chosen scenario for the negotiation tournament was car hire. If we consider a 
single Buyer and Seller pair in the tournament, a Buyer's objective is to secure the 
best deal possible for hiring a car, with respect to a given set of car specifications. The 
Buyer has a set of examples of deals they would accept. Each entry in this set consists 
of four attribute name and value pairs for the following attributes: 

− Days the length of time we wish to hire the car 
− Price the price we would like to pay 
− Features  some linear, quantified grade of features (e.g. air conditioning, electric 

windows), higher number represents more features 
− Class the desired size of the car, higher number represents larger car 

A set of examples consists of car specifications, each representing an acceptable 
outcome of negotiation. The Seller also has a set of examples, representing the cars 
they wish to hire out, reflecting their stock constraints. 

Specifying negotiation criteria as examples provides an abstract yet flexible 
method of stating a negotiator's desires, although the potential exists for ambiguity 
between these example criteria. There is not always a clear correlation between these 
examples, and interpreting them in the context of the negotiation process and using 
this understanding to guide actions are behavioural tasks of the negotiator [13]. 

Table 1. A set of examples to be used as Buyer goals 

Days Price Features Class 
9 250 4 2 
6 150 2 2 

 
Consider the examples in Table 1. If these are examples used by a Buyer, then we 

see that they are after a particular class of car and want about 9 days of hire. They are 
prepared to compromise on days (and features) but only for a significant saving in 
cost. If the Buyer using these examples receives an offer that is close to one of these 
examples, they would be inclined to accept it. If they have to make a counter offer, 
they will construct one using an algorithm which takes into account offers they have 
received and which attempts to stay close to these examples. It is algorithms of this 
sort (for Sellers as well as Buyers) that we wish to evaluate. 

2.2   The Negotiation Environment 

A negotiation environment was developed within which multiple automated 
negotiators could compete. Two applications form this environment: 

− Supervisor  responsible for initiating the environment, including the negotiators. 
Maintains a list of algorithms, one of which can be adopted by each negotiator 
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− Negotiator  given a set of negotiation examples and environment parameters 
(round cut-off, opponent negotiator identities) and is responsible for conducting 
negotiation 

The environment allowed for a configurable number of Buyer and Seller negotiators 
to be instantiated for a single tournament, each with their own algorithm for 
conducting negotiation, and each with a set of either Buyer or Seller examples. These 
examples provide a set of acceptable goals for each negotiator. Once the scenario has 
been initiated, it remains fixed. Therefore, it is not possible to simulate situations 
where a negotiator switches its  behaviour to that of other algorithms during a 
negotiation. However, this can be achieved by modelling multiple behaviours within a 
single algorithm. In which case, the algorithm can switch between them when it sees 
fit.  

The negotiation environment was designed and implemented such that the process 
of inserting a new algorithm into the tournament and allowing it to compete with the 
others was simple and rapid. This process was as follows: 

− Description the algorithm is described in pseudocode 
− Translation & Compilation this pseudocode is translated into Visual Basic and 

compiled into an executable 
− Add to Supervisor List the name of the algorithm is added to the Supervisor's list 

of available algorithms  

To a great extent, by careful design of the pseudocode language, the translation to 
Visual Basic is mechanistic. 

In a typical tournament, a Buyer's target is to secure one car from each Seller, 
whilst the Seller's target is to sell one car to each Buyer. If we adopt a global view of 
all negotiations, we essentially observe a series of pair-wise negotiations between 
each possible Buyer/Seller/algorithm permutation, with successful negotiations 
resulting in the exchange of a car from a Seller to a Buyer. In other words, after a 
tournament is complete, every Buyer will have negotiated once with every Seller, and 
vice-versa, and every algorithm in a tournament will be represented as both a Buyer 
and Seller. 

In a typical tournament, although all negotiations between Buyers and Sellers are 
handled concurrently, the actions of each Buyer do not affect other Buyers, and the 
same is true for Sellers. This is because each Seller potentially has one car to hire out 
to each Buyer. However, if we give each Seller less cars than there are Buyers, the 
actions of a Buyer have possible ramifications for other Buyers, since those which 
typically take more time in reaching agreement may not secure a car. This makes it 
possible for us to run a tournament with the added element of competition for 
resources, where an algorithm's efficiency contributes to success. This has not been 
done in the experiments reported here. 

To measure the success of a negotiator following a tournament, a simple scoring 
system was devised and applied to each outcome of each negotiation for a negotiator. 
Only two possible outcomes of negotiation between a Buyer and a Seller exist: 

− Accept After a negotiator has received an offer, they can choose to accept it. 
However, if instead they make a counter-offer, that received offer can no longer be 
accepted (unless the same offer is made again). For each acceptance a negotiator 
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manages to secure with another, either by accepting an offer themselves, or having 
one of their offers accepted, a measure of 'distance' between that offer and their 
given set of examples provides us with a base score. Therefore, accepting an offer 
(or having it accepted) that perfectly matches one of their examples will get them 
the best score possible. An acceptance facilitates one car being passed from the 
Seller to the Buyer as a resource. 

− Quit Determined and imposed by the negotiation environment, if a Buyer-Seller 
pair is still negotiating after a given number of rounds, their negotiations are 
terminated and they each receive a score of zero. In addition, the Seller does not 
sell a car, and the Buyer does not receive one. This outcome represents the penalty 
for not reaching an agreement, and therefore provides an incentive for each 
algorithm to reach agreement quickly. However, they are not told prior to the 
tournament how many rounds they are not allowed to exceed. Similar in 
motivation to the Axelrod tournament, algorithms cannot therefore attempt to do 
better than their negotiation opponents by using their knowledge of the maximum 
number of rounds to try to take advantage [5]. 

It is in the best interests of a negotiator's algorithm to reach agreement with their 
opposites under any circumstances, and to do so quickly. It is intentional that securing 
a bad deal quickly and receiving a low score is a better outcome than not securing a 
deal and receiving a zero score. Another approach would have been to offer 
algorithms the choice of quitting negotiations themselves instead of making another 
offer, and many scoring methods could have been employed. However, it was decided 
that the main objective of the tournament is to ascertain how well each algorithm can 
negotiate with each other, not how well strategically they can quit negotiations. An 
algorithm that knows when to quit against another, perhaps to attain the best payoff, 
does not tell us very much about how effectively it negotiates. However, such an 
algorithm can be simulated. It would simply repeat its final (rejected) offer until such 
time as the supervisor intervened. 

The algorithm used for calculating the distance between an accepted offer and a set 
of examples was straightforward. For each attribute in an offer, a minimum and a 
maximum allowed value are imposed. No penalty is awarded for going outside of 
these ranges, but any offending attributes are constrained within those ranges. These 
range values are accessible by an algorithm, and this mechanism therefore provides a 
sanity check against offers that may inhibit the operation of the system, but more 
importantly these range values provide a scope for scoring algorithms. The scoring 
function takes an accepted offer and an example and returns an inverse measure of 
'distance' between the two, as a value between 0 and 1. i.e. the higher the score, the 
closer the offer to the given example. 

This function is applied to all examples and the highest score of these represents 
the negotiator's overall score for that accepted offer. To ensure a more representative 
spread of results, and to reduce the effect of anomalies, the tournament was executed 
many times and the results averaged. Following this process, each negotiator is given 
an average sub-total that represents the negotiator's average score over all executions 
of the tournament. This sub-total is then multiplied by the factor of resources the 
negotiator was able to purchase or sell, depending on whether they were a Buyer or a 
Seller, to determine a final score. 
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2.3   Negotiation Behaviour 

The negotiation process between a Buyer and Seller consists of a series of offers and 
counter-offers being made until an agreement is reached, with a single offer 
consisting of Days, Price, Features and Class attribute and value pairs. Of course, 
during negotiation it may prove impossible for a Buyer to acquire exactly what they 
want from the Seller, or vice versa, so each negotiator must be able to compromise on 
certain attributes in order for negotiation to be successful. However, it is obvious that 
it is not in the best interests of each negotiator to over-compromise, simply because 
this could mean they secure a deal which does not match with their desired criteria. 
The manner and degree in which a negotiator deviates from those criteria is dictated 
by the negotiation strategy they employ. 

Figure 1 shows the messages that will flow between two negotiators, one 
configured as a Buyer and one as a Seller. The supervisor will tell one or other (we 
will always use the Buyer) to start. 

 

Fig. 1. The negotiation scenario 

Offers will alternate according to a predefined behaviour specified in the negotiator. 

Pseudocode representation of the behaviour of the negotiator 

on receive start from supervisor { 
    compute initial offer; 
    send offer to partner; 
} 
on receive offer from partner { 
    evaluate offer; 
    if (offer is acceptable) { 
        send accept to partner; 
        exit; 
    } else { 
        compute new offer; 
        send offer to partner; 
   } 
} 
on receive accept from partner {exit;} 
on receive quit from supervisor {exit;} 
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Eventually either one of the negotiators accepts or the supervisor tells both to quit. 
Each negotiator is initialised with this behaviour, and is told that it is buying or selling 
against a set of examples with which it has been furnished. Each algorithm will take a 
different approach to implementing one or other of the basic actions: 

− compute initial offer, 
− evaluate offer, 
− compute new offer. 

Before we go into further detail of the actual algorithms that we use, we need to say a 
little more about the examples. 

2.4   The Examples 

In order to understand how and to what extent the examples contribute to the results, 
two very simple sets were used, each with different qualities. Set one is shown in 
Table 2 and Table 3. 

Table 2. Buyer example set 1 

Days Price Features Class 
9 200 4 2 
8 190 3 2 

Table 3. Seller example set 1 

Days Price Features Class 
7 300 3 2 
4 150 2 1 

 
Essentially, for the Buyer and the Seller, each of their examples is roughly 

consistent with each other, and appears quite rational. Comparing the Seller's  
examples with the Buyer's examples shows the Buyer would take one less day and a 
slightly less featured car for $10 less, whilst the Seller would like to hire out a less 
featured, smaller car for half the price.  

Set two is shown in Table  4 and Table 5. 

Table 4. Buyer example set 2 

Days Price Features Class 
10 200 3 4 
8 140 2 3 

Table 5. Seller example set 2 

Days Price Features Class 
8 260 2 2 
6 170 2 1 
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These examples were designed to be less consistent and more difficult to reason 

about. If we consider the Buyer's second example, the Buyer wishes to hire a big, low 
features car for 8 days at $140, yet would be willing to pay $60 more for two extra 
days and a slightly better featured, larger car. However, the Seller's second example is 
$170 for a small car with low features for 6 days. His first however, is a great deal 
more for only two extra days and a moderately sized car. It should be noted that the 
first set of examples appears to provide a little more room for 'negotiation 
manoeuvring' than the second set. In other words, the Buyer and Seller negotiation 
criteria are further apart in the first set than the second set. Giving the algorithms a 
smaller bargaining arena gives us the opportunity to observe how well they perform 
under such tight circumstances. 

Although we have run experiments with larger example sets, the results are 
essentially as those reported here. The smaller example sets make clearer what is 
going on. 

3   The Algorithms 

Seven algorithms were developed and submitted to compete in the tournament. Each 
algorithm had to address the following three questions: 

− What constitutes an initial offer if the algorithm is a Buyer? 
− Under what circumstances is an offer accepted? 
− If the most recently received offer is not accepted, how is a counter-offer 

formulated? 

In these terms, let us describe the seven algorithms that we compared. 
The first two algorithms, Random and JustAccept, were trivial. These algorithms 

were included purely for comparison with other algorithms. Obviously, any algorithm 
should always do better than Random or JustAccept, so these two algorithms provide 
a 'comparison bar' for the lowest level of performance. Interestingly, we discovered 
that some algorithms were not able to beat either of these trivial choices. 

3.1   Random 

Random simply produced random offers, by picking a random number between the 
minimum and maximum ranges for each attribute. Each time an offer was received, 
random would have a 10% chance of accepting it. 

− Compute Initial Offer: choose arbitrary values for each attribute within permitted 
ranges 

− Evaluate Offer: accept probabilistically (for these experiments, with 10% chance) 
− Compute New Offer: choose arbitrary values for each attribute within permitted 

ranges 
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3.2   JustAccept 

JustAccept simply accepted the first offer it received, and if it was a Buyer, its first 
offer was simply its first example. 

− Compute Initial Offer: choose first example 
− Evaluate Offer: always accept 
− Compute New Offer: never happens 

3.3   AgreeRandomAttribute 

This algorithm only attempts to negotiate with respect to its first example, which 
forms its first offer if it is a Buyer. After receiving an offer, it uses its first examp le as 
an offer template. Into this offer template it randomly substitutes an attribute value 
from the opponent's offer. This offer template forms the new offer. It will accept an 
offer if it only has one attribute different from any one of its examples. 

− Compute Initial Offer: choose first example 
− Evaluate Offer: accept if agreement in all but at most one attribute 
− Compute New Offer: alter one attribute to equal value received from opponent 

3.4   AgreeProgressive  

AgreeProgressive was a more accommodating, and more sophisticated, version of 
AgreeRandomAttribute. It utilises a matrix that acts as a mask for merging an 
example and an offer to form a new offer. The merging process is simple: the best 
matching example to the last received offer is used as the temp late, and the matrix 
decides which attribute values in the template to substitute. In the first four rounds, 
the algorithm will accept an offer with only one different attribute to one of its 
examples. Otherwise, on a per-round basis, it cycles through each attribute, 
substituting the appropriate attribute in the closest matching example for the 
corresponding attribute in the last received offer. The closest matching example is the 
one with the least number of different attributes from the last received offer. 

In the next 6 rounds, the number of attributes to substitute is increased to two. 
Every possible permutation of two attributes is attempted. A received offer is 
accepted if it differs from one of its examples by only two attributes. 

In rounds 11 to 14, all possible permutations of three attributes are attempted, and 
offers are accepted if different from an example by only three attributes. When the 
algorithm reaches round 15, it will accept whatever offer is sent by the opponent. 

− Compute Initial Offer: choose first example 
− Evaluate Offer: accept if agreement in all but at most one (two, three, ...) 

attributes 
− Compute New Offer: alter one (two, three, ...) attributes to equal value in example 

nearest to offer received from opponent 
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3.5   Tit-For-Tat 

This algorithm represents a simple interpretation of Axelrod's Tit-For-Tat in the 
context of negotiation. It replicates on an attribute-attribute basis the inverse 
behaviour of the opponent. This behaviour is determined by simply comparing the 
opponent's most recent offer with the one received before that. e.g. if the opponent (as 
a Seller) deducts $10 off the price, the Buyer as Tit-For-Tat will add $10. Until Tit-
For-Tat has two offers to compare, it initially cooperates by adding 10% onto its 
previous offer. 

− Compute Initial Offer: choose first example 
− Evaluate Offer: accept if offer within a margin of one example 
− Compute New Offer: for each attribute, reflect opponent's behaviour by moving 

the same degree in the opposite direction: if opponent closes gap, then close gap. If 
opponent opens gap, then open gap 

3.6   Retreat 

This algorithm begins by offering the first example. As negotiation progresses, it then 
proceeds to 'back away' from this example in the opposite direction of the opponent's 
last received offer. If the opponent's offer is close to this example, it accepts the offer. 

− Compute Initial Offer: choose first example 
− Evaluate Offer: accept if agreement within a margin 
− Compute New Offer: for each attribute, regardless of whether opponent opens or 

closes gap, open gap by 10% 

3.7   TestAlgorithm 

This algorithm employed a numerical method to dictate its offers, and to determine 
whether to accept an opponent's offer. This is an attempt to emulate the kind of 
rational algorithm which is often deployed in practice, where some quantitative 
knowledge of the domain is used to refine its decision making process. 

− Compute Initial Offer: choose first example 
− Evaluate Offer: accept if agreement within a margin 
− Compute New Offer: numerical method of moving within region of disagreement 

with opponent 

4   Results 

The results with the first example set are given in Table 6 and Table 7. The results 
with the second example set are given in Table 8 and Table 9. To ensure fair testing 
and comparable results, the configuration of the environment remained the same; only 
the example sets were different for both rounds of experimentation. The results are 
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not entirely as we would have expected. We did not predict that AgreeProgressive 
would do as well as both Buyer and Seller. Nor did we expect the rational 
TestAlgorithm to do so badly as a Seller. 

Table 6. Buyers using the first example set 

Negotiator Algorithm Resource Used Score Final Score 
Buyer4 AgreeProgressive 1 0.937 0.937 
Buyer5 Tit-For-Tat 1 0.901 0.901 
Buyer1 TestAlgorithm 1 0.898 0.898 
Buyer7 JustAccept 1 0.883 0.883 
Buyer2 Random 0.986 0.799 0.788 
Buyer6 Retreat 0.857 0.786 0.674 
Buyer3 AgreeRandomOne 0.7 0.673 0.471 

Table 7. Sellers using the first example set 

Negotiator Algorithm Resource Used Score Final Score 
Seller4 AgreeProgressive 1 0.948 0.948 
Seller6 Retreat 0.993 0.920 0.913 
Seller7 JustAccept 1 0.860 0.861 
Seller2 Random 0.993 0.781 0.776 
Seller3 AgreeRandomOne 0.843 0.819 0.691 
Seller5 Tit-For-Tat 0.857 0.794 0.680 
Seller1 TestAlgorithm 0.857 0.737 0.631 

Table 8. Buyers using the second example set 

Negotiator Algorithm Resource Used Score Final Score 
Buyer4 AgreeProgressive 1 0.860 0.860 
Buyer7 JustAccept 1 0.823 0.823 
Buyer1 TestAlgorithm 1 0.816 0.816 
Buyer2 Random 0.993 0.748 0.742 
Buyer5 Tit-For-Tat 0.843 0.757 0.638 
Buyer6 Retreat 0.571 0.511 0.292 
Buyer3 AgreeRandomOne 0.457 0.441 0.202 

Table 9. Sellers using the second example set 

Negotiator Algorithm Resource Used Score Final Score 
Seller4 AgreeProgressive 1 0.923 0.923 
Seller7 JustAccept 1 0.732 0.732 
Seller2 Random 0.986 0.692 0.682 
Seller3 AgreeRandomOne 0.836 0.795 0.664 
Seller6 Retreat 0.757 0.699 0.529 
Seller5 Tit-For-Tat 0.714 0.618 0.441 
Seller1 TestAlgorithm 0.571 0.472 0.270 
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Some algorithms never reach agreement, even though doing so entails such a 
severe penalty. The reasons for this are threefold: firstly, the algorithms do not know 
how many rounds of negotiation they are allowed. If they did, they could simply 
accept the last offer made by their opponents before the cut-off. Secondly, each 
negotiator faces the simple dilemma of whether to accept the other negotiator's latest 
offer, or to make another offer. Because they have no global view of how negotiations 
will turn out, they cannot know at any point during negotiations whether the most 
recent offer received is the best they will ever get. Thirdly, the negotiation behaviour 
that emerges as a result of the inherent nature of each algorithm, when faced with the 
other, may guarantee they never reach agreement. Retreat, for example, could never 
reach agreement with AgreeRandomAttribute if each of their examples were 
sufficiently far apart. 

AgreeProgressive was more successful than we expected. The behaviour reported 
here was repeated in other experiments, including for larger example sets. Most 
importantly, it is the only algorithm that will always reach agreement as long as the 
negotiation cut-off is at least 15 rounds (for 4 attributes). At round 15 it eventually 
agrees with whatever the opponent is then offering. As long as this is the cas e, this 
ensures that the algorithm is never penalised for not reaching agreement early enough. 
Secondly, the nature of the algorithm means that it gradually alters its negotiation 
strategy from initially very stubborn (only agreeing to one attribute), to very 
conciliatory (agreeing with all four attributes, and therefore accepting the offer). 
Every possible permutation of offer agreement within these two extremes is presented 
to the opponent, and therefore the likelihood that an offer will be accepted increases 
with every iteration. Thirdly, because the algorithm is initially very stubborn, this 
allows the algorithm to take advantage of any concessions that may be made by the 
opponent in the earlier stages of negotiation, before it begins to compromise on a 
greater scale. This can be seen with TestAlgorithm. Unlike algorithms such as Retreat 
and TestAlgorithm, AgreeProgressive does not waste time making ‘bluff’ offers. It 
immediately attempts to find a formula for mutual agreement. Tournament cut-off 
permitting, this will always be the case. 

However, if the cut-off is set to less than 15 rounds, AgreeProgressive does not do 
so well, for a very specific reason. Let us take the results of a cut-off of 12 rounds as 
an example. Whilst the other algorithms generally maintain their ranking order, 
AgreeProgressive as a Buyer slips to around fifth in the rankings, whilst the Seller 
slips to around sixth. The reason for this poor performance is how it performs against 
itself. Intuitively, it could be reasoned that agreement would occur automatically by 
round five; both would be conceding two attributes, and both would accept offers 
different by two attributes. However, when negotiating against itself, 
AgreeProgressive requires that negotiation reach the final 15th round for agreement to 
occur. The reason for this is symmetry of behaviour. Since both Buyer and Seller 
follow the same strict pattern of attribute agreement, when the Buyer makes his 
second offer with one attribute in agreement with the Seller’s initial offer, the Seller 
will agree on the same attribute. This effectively ensures that the Seller’s next offer is 
the same as the Seller’s first offer. This ‘reflective’ behaviour continues until round 
15, where the Buyer will accept the Seller’s offer regardless. Therefore, if negotiation 
does not reach round 15, both the Buyer and Seller representatives of 
AgreeProgressive are penalised, which is reflected in the rankings. 
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The relative success of JustAccept is a consequence of the nature of the other 
algorithms and the structure of the tournament. JustAccept does well because it 
always reaches a deal and because the opponents are behaving reasonably in that their 
offers are realistic. When JustAccept is acting as a Buyer, this is a close 
approximation to real life, where goods on sale are offered at a fair price and Buyers 
just accept that. It doesn't do quite as well as a Seller, but even there its behaviour is 
reasonable because Buyers open with reasonable bids. This algorithm is obviously 
open to exploitation, but the tournament has been structured to prevent this. 
Nonetheless, JustAccept has performed its role as a benchmark for calibrating the 
performance of others. The only algorithm to perform consistently better than 
JustAccept was AgreeProgressive, assuming the number of negotiation rounds was at 
least 15. 

The results presented here are typical. In other experiments, with different example 
sets and identical environment configurations, the ranking of the algorithms remains 
similar to the results displayed here. AgreeProgressive consistently does exceptionally 
well against the others, as a Buyer or Seller, as long as the round cut-off is at least 15 
rounds. In its worst test it came third as a Buyer, but the tournament leader, Retreat in 
this case, was only ahead by a score of 0.006. Conversely, AgreeRandomOne 
performs very badly, always last in the rankings. The order of the middle rankings as 
shown in this paper is also representative. Of course, with some example sets, other 
algorithms do better than others, but in general big differences in the ranking are 
uncommon. 

5   Conclusions  

We have described a series of experiments that have allowed us to compare various 
negotiating algorithms. Following Axelrod we have taken the view that an algorithm 
is best if it does well against a range of opponents. Although negotiation is a more 
complex behaviour to describe (and hence to measure) than simple collaboration, we 
have arrived at a similar result to Axelrod. One algorithm has performed better than 
expected, consistently doing well against a range of opponents. The algorithm is not 
the simplest in our set, nor is it the one we expected to be best. These are observations 
we have explained, to some extent. Further experiments which we plan, with these 
algorithms and with new algorithms, will lead, we hope to a greater understanding of 
negotiated agreement in an e-commerce context. 

References 

1. Axelrod, R.: The Evolution of Co-operation. Basic Books Inc., New York (1984) 
2. Axelrod, R.: The Complexity of Cooperation. Basic Books Inc., New York (1997)  
3. Burg, B.: Agents in the World of Active Web Services. To be published in Springer 

LNCS, see http://www.hpl.hp.com/org/stl/maas/pubs.html 



14      Peter Henderson, Stephen Crouch, Robert John Walters, and Qinglai Ni  

4. Bichler, M., Segev, A., Zhao, J.L.: Component-Based E-Commerce: Assessment of 
Current Practices and Future Directions. ACM Sigmod Record: Special Section on 
Electronics Commerce, Vol. 27, No. 4 (1998) 7–14 

5. Binmore, K., Vulkan, N.: Applying Game Theory to Automated Negotiation. 
Netonomics, Jan. 99, see http://www.worcester.ox.ac.uk/fellows/vulkan (1999) 

6. Cranor, L.F., Resnick, P.: Protocols for Automated Negotiations with Buyer Anonymity 
and Seller Reputations. Telecommunications Policy Research Conference (TPRC 97), see 
http://www.si.umich.edu/~presnick (1997) 

7. Farhoodi, F., Fingar, P.: Developing Enterprise Systems with Intelligent Agent 
Technology. Distributed Object Computing, Object Management Group (1997) 

8. Fingar, P., Kumar, H., Sharma, T.: Enterprise E-Commerce. 1st edn. Meghan-Kiffer 
Press, Tampa FL (2000) 

9. Fogel, D.B.: Applying Fogel and Burgin’s Competitive Goal-Seeking through 
Evolutionary Programming to Coordination. Trust and Bargaining Games. Proceedings of 
the 2000 Congress on Evolutionary Computation (CEC 2000), IEEE Press Piscataway NJ 
(2000) 1210–1216 

10. Henderson, P.: Laws for Dynamic Systems. Proceedings of the Fifth International 
Conference on Software Reuse (ICSR 98), IEEE Computer Society Press, (1998) 330–
336 

11. Henderson, P., Walters, R.J.: Behavioural Analysis of Component-Based Systems. 
Information and Software Technology, Vol. 43, No. 3 (2001) 161–169 

12. Henderson, P.: Asset Mapping - Developing Inter-enterprise Solutions from Legacy 
Components. In: Systems Engineering for Business Process Change - New Directions, 
Springer-Verlag UK, (2002) 1–12 see http://www.ecs.soton.ac.uk/~ph/papers 

13. Sesseler, R.: Building Agents for Service Provisioning out of Components. Proceedings 
of the Fifth International Conference on Autonomous Agents (2001) 

 
 
 
 
 
 
 
 
 
 


