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Abstract

Observing, learning, and imitating human skills are intriguing topics in cognitive
robotics. The main problem in the imitation learning paradigm is the policy devel-
opment. Policy can be defined as a mapping from an agent’s current world state to
actions. Thus, understanding and performing an observed human skill for a cogni-
tive agent depends heavily upon the learned policy. So far, naive policies that use
object and hand models with trajectory information have commonly been developed
to encode and imitate various types of human manipulations. These approaches, on
the one hand, can not be general enough since models are not learned by the agent
itself but rather are provided by the designer in advance. It is also not sufficient
to imitate complicated manipulations at the trajectory-level since even the same ob-
served manipulation can have high variations in trajectories from demonstration to
demonstration.

Nevertheless, humans have the capability of recognizing and imitating observed
manipulations without any problem. In humans, the chain of perception, learning,
and imitation of manipulations is developed in conjunction with the interpretation
of the manipulated objects. To compose a human-like perception-action chain the
cognitive agent needs a generic policy that can extract manipulation primitives as
well as the essential (invariant) relations between objects and manipulation actions.

In this thesis, we introduce a novel concept, the so-called “Semantic Event Chain”
(SEC), that derives the semantic essence and the invariant spatiotemporal relations
of objects and actions to acquire a perception-action chain. We show that SECs are
compact and generic encoding schemes for recognizing, learning, and executing human
manipulations by relating them with manipulated objects. SECs basically make use
of image sequences converted into uniquely trackable segments. The framework first
interprets the scene as undirected and unweighted graphs, nodes and edges of which
represent image segments and their spatial relations (e.g. touching or not-touching),
respectively. Graphs hence become semantic representation of segments, i.e. objects
(including hand) presented in the scene, in the space-time domain. The proposed
framework then discretizes the entire graph sequence by extracting only main graphs
each of which represents essential primitives of the manipulation. All extracted main
graphs form the core skeleton of the SEC which is a sequence table, where the columns
and rows correspond to main graphs and spatial relational changes between each
object pair in the scene, respectively. SECs consequently extract only the naked
spatiotemporal patterns which are basically “essence of an action” and are invariant
to the followed trajectory, manipulation speed, or relative object poses.

In the perception phase, SECs let a cognitive agent not only recognize and classify
different observed manipulations but also categorize the manipulated objects consid-
ering their roles exhibited in the manipulations. This process is accomplished by
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comparing both spatial and temporal features of event chains of given manipulations.
By extracting only repetitive relational sequences, hence those which are commonly
observed in the demonstrated training set, the agent can further learn an archetyp-
ical SEC model for each manipulation type. The learning process of SEC models is
also enriched by recording additional decisive information such as relative coordinate
frames and motion start and endpoints.

The perception-action cycle is finally completed by using the learned SEC model
with the additional decisive information to derive high-level rules that the agent can
use to execute a similar manipulation regardless of the type and configuration of
objects presented in a new scene.

The main advantage of this framework is that SECs encode a manipulation in a
highly invariant and abstract way independent from object poses, perspectives, and
trajectories which can be interchanged to a very large degree. In this sense, SECs
reduce the problem of action representation to the analysis of small, scaled matrices.
With this the agent also gains the possibility of assessing the consequences of its own
manipulation by simply comparing the obtained SEC with the learned one. Further-
more, the SEC is a unified bottom-up approach that combines actions and objects
based on the temporal sequence of spatial relations between tracked image segments,
which for a given manipulation remains “essentially” the same. Hence, different from
model-based policy designs our system operates on spatiotemporal object relations
without making assumptions about the structure of objects and actions. In this sense,
the framework presented in this thesis is model-free.

To our knowledge, this is one of the first approaches which reaches an abstract
symbolic rule-like representation (manipulation primitives) for manipulation recogni-
tion, learning, and execution while being fully grounded in the signal (image segments)
domain.
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Introduction

One of the central goals in cognitive robotics is to recognize, learn, and imitate hu-
man behaviors without human intervention. It has, however, long been addressed
that raw observation and naive copying are insufficient to execute an action by a
robot. It is because individual manipulations, even when “doing the same thing”,
can take vastly different forms just due to changes in posture, in the followed trajec-
tory, and/or differences in the general (visual) context surrounding the manipulated
objects. Nevertheless, humans have no problem recognizing variations in manipula-
tions and even executing them under different circumstances. For instance, in human
perception, it is, in a general sense, the same picking up action, no matter whether
the left or right hand is following a circular or linear trajectory to pick up an apple
or an orange from a plate. The human perception system essentially captures and
interprets action invariants, essential primitives, by relating actions with objects. The
difficulty in cognitive robotics is the question of how to define a unified framework
that perceives and represents action primitives in conjunction with objects. This is
required to make robots learn novel actions and execute them even with different
objects and/or under different circumstances.

In order to accelerate the cognitive development process in robotics, we need to
first understand what an action physically means, how it is retrieved, represented,
and executed in the human perception-action system. In this thesis, we use differ-
ent terms such as action/motor primitives, action, and manipulation/manipulation
action. Action or motor primitives are the smallest components of actions. Different
sequences of primitives introduce different types of actions. From a robotics stand-
point, motor primitives generally stand for basic motor control commands to produce
actions by robots. The term action is rather a general description for any type of
motor behavior like “walking”, “playing”, or “cutting”. In the context of this thesis,
the more specific terms such as manipulation or manipulation action are used as sub-
sets of the term action. To phrase it another way, they are more specific definitions
in the sense of describing actions in which objects are basically manipulated by a
manipulator. As an example, the action “pushing” can be referred to as a manipu-
lation or manipulation action because an object, e.g., a box or a plate, needs to be
manipulated (pushed) by a manipulator, e.g., a hand.
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1.1 Action Understanding

The first step towards understanding actions starts with the primitives. The main
idea behind action primitives is that the problem of action representation can be
reduced into small scaled primitive sequences, compositions of which can then be
used to execute the action. However, the extraction of action primitives is non-trivial
and this problem is often addressed in the context of imitation learning. According
to Meltzoff and his colleagues (Meltzoff, 2002; Meltzoff and Moore, 1997; Rao et al.,
2004), infants follow four different phases to explore motor primitives and imitate
actions. In the early phase, so-called “body babbling”, newborns start with a random
trial-and-error method to learn what specific muscle movements yield particular body
configurations. This is a crucial step towards exploring “motor primitives” in infants.
In the later phase, 12- to 21-day-old infants distinguish and imitate different facial and
manual gestures even without getting any feedback from the experimenter (Meltzoff
and Moore, 1977). In the next phase, 14 month old infants continue with imitating
actions on objects that they have not seen before (Meltzoff, 1988). In the highest
phase of the imitation learning, 18 month old infants infer the attempted goal and
intention from unsuccessfully demonstrated actions and imitate them successfully.

Those experiments suggest that infants start creating their internal perception-
action mechanisms by exploring their motor primitives and mapping the observed
actions to their own motor primitives. Initially, the mapping phase could be even
without having the same intention or action goal compared to the imitated one.
In the later phases, the internal perception-action mechanism is continuously being
developed with understanding not only actions but also relations between actions and
objects. In the higher phases of the cognitive development, there is a generalization
stage in which actions can be imitated in different forms and under different unseen
conditions.

Action understanding and execution have a tight bond to neurophysiology as well.
Studies on mirror neurons (Rizzolatti et al., 2001; Rizzolatti and Craighero, 2004)
highlight the underlying neural mechanism of action understanding and execution.
Rizzolatti et al. (2001) advocate the “direct-matching hypothesis” which claims that
the understanding of actions in humans occurs as the visual representation of the
observed action is mapped onto the motor representation developed for the same
action in the nervous system. Such direct matching between action observation and
execution is supported by mirror neurons which are a type of visuomotor neurons
and were first discovered in the ventral premotor cortex of monkeys (Rizzolatti et al.,
2001). Mirror neurons tend to fire while the monkey is either performing an object-
directed action or observing another monkey or a human doing a similar action.
Nevertheless, mirror neurons respond neither to only objects nor to actions that are
mimed without objects. In the experiments of Umilta et al. (2001), a monkey was
first shown a fully visible grasping action and then a piece of food that was hidden
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behind a screen. It was recorded that more than half of the mirror neurons fired
while the monkey was observing only the beginning, but not the crucial hand-object
interaction happening behind the screen, of a new grasping or a holding action. This
strongly indicates that the monkey can understand and infer the intended action goal
in spite of having incomplete visual information.

Consequently, strong mirror neuron activity during the perception and execution
of actions is an important finding showing that action understanding and imitation
share a common neural layer in which action primitives are encoded. The visual
information basically triggers neural activities but can also be replaced with other
cues such as sound information. Although no electrophysiological studies about ex-
perimenting mirror neuron activities in humans were presented, there are many neu-
rophysiological and brain-imaging evidences indicating that a more developed mirror
neuron system exists also in humans (Rizzolatti and Craighero, 2004).

1.2 Affordances and Object-Action Complexes

While observing other individuals manipulating objects, we retrieve information not
only about the performed actions but also about the manipulated objects. In this
sense, object affordances play an important role in action recognition and planning
during the cognitive development. Assume an environment with a cup and a ball
placed on a table. To be able to perform a simple “filling” action, the cognitive
agent has to choose the cup but not the ball since balls have no hollow structure
and thus are not fillable. This example explicitly emphasizes that each object has
a certain set of affordances which suggests specific actions. Object affordances can
basically be defined as a set of expected behaviors from an object based on its visual
characteristics (e.g., shape and surface structure) without involving any model-based
recognition step. Therefore, any hollow shaped solid object, even if it has not been
seen before, can be used for the “filling” action since its affordances (being hollowed
and solid) suggest this action. The affordance principle was first introduced by Gibson
(1979), and especially in the recent years has had increasing influence in robotics (Hart
and Grupen, 2009; Montesano et al., 2008; Ridge et al., 2009).

Worgotter et al. (2009); Kriiger et al. (2011) extended the idea of the affordance
principle (Gibson, 1979) by introducing the concept of Object-Action Complexes
(OACs), claiming that objects and actions are inseparably intertwined. This is linked
to the way humans perceive the world by relating objects with actions. The OAC
concept proposes a human-like description by which an object is identified considering
both its (visual) properties and the actions that have been performed with it. In the
OAC concept, the performed actions are attached to the objects as attributes. If we
come back to the “filling” example above, since any kind of cylindrical, hollow object
could be used for filling, the action-type “filling” creates the object-type “container”.
However, when a sample “container” (e.g., a cup or glass) is turned upside down, it
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can not be filled at all and therefore, exhibits totally new affordances which can be
classified as “pedestal”. Now the former container has become a pedestal on which
we can put something. While physically the same thing, a “pedestal” is a different
object type altogether. Considering the perception-action loop, this example indicates
the significant role of object affordances in action planning. As affordances suggest
cognitive agents how to manipulate arbitrary unseen objects, the agent can, the other
way around, extract required object features for performing any desired action.

1.3 Semantic Event Chains

To acquire a generalized human-like perception-action mechanism, the cognitive agent
requires a manipulation representation system that can extract manipulation primi-
tives and invariant relations between objects and manipulations. To arrive at such a
representation is a very difficult problem and commonly one uses models of objects
(and hands) and trajectories to encode a manipulation (see next section for literature
discussion). These approaches, however, are not general enough because models are
almost always given by the designer and not learned by the agent itself. Further-
more, it is so far unknown how to solve the variability problem of manipulations in
a model-based way, since there is no definition for the correct model (or model-class)
to combine objects and manipulations together in all vastly differing manipulations.

In this thesis, we introduce the so-called “Semantic Event Chain” (SEC) which is
a novel, compact, and generic encoding scheme for manipulations. SECs can be used
to allow a cognitive agent to classify different manipulations by observation and to
categorize the manipulated objects based on their roles exhibited in the manipulation.
Furthermore, the agent can learn an archetypical SEC model in an unsupervised
way by observing demonstrated manipulations. In the process of learning, the SEC
model is enhanced with additional decisive information to make the robot able to
execute the manipulation with objects in different position and orientation. The main
advantage of this framework is that SECs link the signal domain (observed image
sequences) to a symbolic rule-like domain (manipulation primitives) by encoding a
manipulation in a highly invariant way, where, for a given manipulation, objects,
poses, perspectives, and trajectories can be interchanged to a very large degree. Thus,
SECs provide one possible, quite efficient way to perform manipulation recognition
and to execute a learned manipulation model. To our knowledge, this is one of the
first approaches which reaches an abstract symbolic representation for manipulation
recognition, learning, and execution while being fully grounded in the signal domain.

SECs are created based on a bottom-up approach in which raw image sequences
are first segmented to track objects and then represented by scene graphs that store
spatial segment relations (e.g., touching or not-touching) in the temporal domain.
Scene graphs are invariant to object and hand locations, trajectories, and poses in
3D. By using an exact graph matching technique main graphs of the manipulation
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are extracted. The sequence of these main graphs describes all structural changes
(manipulation primitives) in the scene. All those primitives are then encoded by
the SEC which is a sequence-table, the rows and columns of which represent spatial
and temporal anchor points, respectively. Comparison of the extracted SECs in the
spatiotemporal domain leads to both manipulation classification and object catego-
rization. The learning phase is then concluded by extracting common temporal and
spatial anchor points observed in all SECs of demonstrated type-similar manipulation
samples. Since a raw SEC representation is in an abstract form, stripped from all pose
and trajectory information, it is initially impossible to execute the learned SEC model
of a manipulation. Thus, to perform an accurate manipulation, SECs store additional
decisive information, for example relative coordinate frames and information about
motion start and endpoints, in the process of learning the SEC model. But, because
the SEC provides a temporal sequence of rules, we have well defined temporal anchor
points when we have to store the additionally required trajectory information. Fi-
nally, the learned SEC model and the additional information are used to extract rules
and anchor points in order to let the robot execute a similar manipulation regardless
of the initial state of the scene.

Consequently, this thesis presents a unified perception-action framework, moti-
vated by the mirror neuron system, by which a sequence of action primitives can be
recognized, learned, and executed considering the same symbolic SEC representation.
The agent can decide by self-observation whether or not an executed manipulation
sequence is correct. Thus, SECs give the machine a basic tool by which it can assess
the consequence of a manipulation step directly linking the symbolic planning domain
to the signal domain (image) addressing the difficult cause-effect problem of how to
observe and verify self-induced changes. In the same manner, the agent can imitate
the manipulation even when the object locations and camera perspective are altered.
Last but not least, SECs are essentially related to the affordance principle and the
OAC concept since manipulated objects can be categorized by considering their com-
mon roles in manipulations. Thus, the agent can suggest what kind of manipulations
are more likely to be performed with a given object as the agent is able to create a
link between objects and manipulations.

The proposed framework relies on a front-end algorithm which allows for the con-
tinuous tracking of scene segments. SECs are based on the sequence of neighborhood
relations between those segments, which for a given manipulation is “essentially” the
same. Hence, different from feature-based (or model-based) approaches our system
operates on spatiotemporal object relations without presupposing assumptions about
the structure of object and manipulation. Thus, the framework presented in this
thesis is model-free. This leads to a high degree of invariance against position and
orientation, but we need to make sure that segment tracking is stable, which is not
in the core of this thesis and currently achieved by several means described elsewhere
Abramov et al. (2010, 2012).
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1.4 The State of the Art

To date, there exists no common framework for both learning the semantics of ma-
nipulation actions in conjunction with the manipulated objects and executing the
manipulation after learning it from demonstrations. Different approaches have been
presented but rather for vision-based recognition of manipulations and human-motion
patterns, and non-visual recognition of other types of activities (Modayil et al., 2008;
Liao et al., 2005; Hongeng, 2004). In the literature, there exist many works on
vision-based object recognition (Mundy, 2006; Lowe, 2004) and manipulation execu-
tion (Fitzpatrick et al., 2003; Omrcen et al., 2009) which are related to this proposed
work. The latter will not be discussed any further, because vision is the focus of the
work presented in this thesis. In the following, short summaries of previous achieve-
ments obtained in these areas are given.

1.4.1 Scene Graphs

Graphs have been commonly used in scene analyses. Badler (1975) introduced the
first approach about the directed scene graphs in which each node identifies one ob-
ject. Edges hold spatial information (e.g., LEFT-OF, IN-FRONT-OF, etc.) between
objects. Based on object movement (trajectory) information events are defined to
represent actions. The main drawback of this approach is that continuous perception
of actions is ignored and is substituted instead by the idealized hand-made image
sequences.

Sridhar et al. (2010) represented a whole video sequence by an activity graph with
different levels each of which represents qualitative spatial and temporal relations
between objects involved in activities. Frequent subgraphs of the activity graph
define events, i.e. significant activities, which are classified by a level-wise graph
mining procedure. In addition to this, a Hidden Markov Model (HMM) is used to
improve calculations of the qualitative spatial relations from noisy video inputs. Since
the complete video sequence is represented by a single graph, the approach leads to
complex and large graphs which need to be decomposed separately.

Brendel and Todorovic (2011) analyzed human activity videos with weighted and
directed scene graphs nodes of which are homogeneous video subvolumes in the space-
time domain. Graph edges have three components: hierarchical, temporal, and spatial
subvolume relations. Although the proposed approach basically learns weighted least-
squares graphs that model the respective activity for monitoring, the framework does
not include any further process regarding the manipulated objects as well as execution
of the learned models.

Wen-Jing and Tong (2000) introduced a sub-scene graph matching method just for
object recognition, combining it with a Hopfield neural network to get local matches
between graphs. A scene is first represented by polygons that indicate the outer 2D
object boundaries. Vertices and sides of the polygon construct graph nodes and edges
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with additional information like local properties. Such a scene graph is partitioned
into subgraphs each of which is then compared with a model object graph by using
neural nets. To compute the final match of the complete scene graph additional
statistics are applied which combine matching results between subgraphs and models.
In their work, however, a separate neural network is required for each subgraph and
high computational time is needed to compute subgraph matches.

1.4.2 Recognition of Manipulation Actions

The visual analysis of manipulations, e.g., a hand manipulating an object, represents
an important subproblem in vision-based manipulation recognition and is relevant
for many vision-based applications such as learning from demonstration, work-flow
optimization, and automatic surveillance. However, manipulations are far less under-
stood than for example human motion patterns and only a few solutions have been
proposed so far (Vicente et al., 2007; Sridhar et al., 2008; Kjellstrom et al., 2008).

Sridhar et al. (2008) analyzed manipulations in the context of a breakfast sce-
nario, where a hand is manipulating several objects (cups, knifes, bread) in a certain
order. The whole image sequence is represented by an activity graph which holds
spatiotemporal object interactions. By using statistical generalization, event classes
are extracted from the activity graphs. Here, each event class encodes a similar pat-
tern of spatiotemporal relations between corresponding objects, and object categories
can be learned by calculating the similarity between object roles at each event class.
They demonstrated that objects can be categorized by considering their common roles
in manipulations. However, large activity graphs and the difficulty of finding exact
graph isomorphisms make this framework expensive and sensitive to noise. Further-
more, an artificial object setup was used to reduce and separate vision problems from
the manipulation-recognition problem.

Kjellstrom et al. (2008) segmented hand and objects from the video and then
defined hand/object features (shape-based) and manipulation features, providing a
sequence of interrelated manipulations and object features. Semantic manipulation-
object dependencies, e.g. drink/glass, are then extracted using conditional random
fields (CRFs) and connected hierarchical CRFs. Hand/manipulator and the manip-
ulated object together define the manipulation, and for this reason the recognition
process simultaneously involves both hand/manipulator and objects (Vicente et al.,
2007; Kjellstrom et al., 2008). In Vicente et al. (2007), manipulations are represented
as sequences of motion primitives. Here, five different manipulations of different lev-
els of complexity were investigated. The process is modeled using a combination
of discriminative support vector machines and generative HMMs. HMMs have also
been used by Ogawara et al. (2002) to extract manipulation primitives by learning
several HMMs and then clustering these HMMs such that each cluster represents one
primitive. Raamana et al. (2007) recognized simple object manipulations such as
pointing, rotating and grasping in a table-top scenario using HMMs and selected the
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best features for recognition automatically. These works demonstrate that HMMs
are a useful tool if the manipulation primitives are hidden in the sensory feature set
provided to solve the recognition tasks. Usually this the case if low-level features are
used instead of higher-level “object” like entities. However, in our case, manipula-
tions are represented by chained relations between image segments (see Chapter 2),
which directly represent manipulation primitives, and as such they can be compared,
grouped, and superimposed without having to assume a hidden model. This holds at
least for the manipulation examples considered in this thesis.

1.4.3 Recognition of Human Motion Patterns

Recognition of human motion has received much attention in recent years and many
contributions exist, but are often unrelated to manipulation recognition (Laptev and
Perez, 2007; Niebles et al., 2008; Dee et al., 2009; Hakeem and Shah, 2005; Calinon
and Billard, 2004, 2005, 2007; Maurer et al., 2005; Gilbert et al., 2011; Junejo et al.,
2011). Much work has been done by the group of Aude Billard (Calinon and Billard,
2004, 2005, 2007; Maurer et al., 2005) addressing the aspect of gesture recognition.
Naturally a strong focus lies here on finding a way to describe complete trajectories
and different methods (including Principal Component Analysis, Independent Com-
ponent Analysis, HMM and Hopfield nets) have been used in different combinations
to address this problem and also to deal with the question of sequence learning (Mau-
rer et al., 2005). In Laptev and Perez (2007) spatiotemporal volumes of optical flow
are used to classify human motion patterns. In Niebles et al. (2008) human actions
are learned in an unsupervised way by using spatiotemporal “words” that represent
space-time interest points. Dee et al. (2009) segment images into regions of similar
motion structure and learn pair wise spatial relations between motion regions, roughly
corresponding to semantic relations such as “above”, “below”, and “overlapping”. By
combining these learned spatial relations with the segmentations learned from data, a
compact representation can be provided for each video, representing a motion-based
model of the scene, which allows classifying videos containing different kinds of mo-
tion patterns, e.g. indoor scenarios with moving people, roads, squares or plazas. In
Hakeem and Shah (2005) events involving multiple agents are detected and learned
considering temporally correlated sub-events. In Gilbert et al. (2011) simple 2D cor-
ners are grouped in both the spatial and the temporal domains, using a hierarchical
process at each stage and the most descriptive features are then learned by using data
mining. This way, fast and accurate action recognition in video sequences is achieved
in real time. Junejo et al. (2011) propose a self similarity-based descriptor that can
be used for recognizing human actions under different views. A set of feature is first
extracted and then euclidean distances between extracted features for all frame pairs
are stored in a Self Similarity Matrix (SSM) which is invariant to view changes.
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1.4.4 Object Recognition and the Role of Context

Despite the progress that has been made in the past decades, the recognition of
objects using visual cues remains a highly challenging task and still there exists no
vision system reaching human object-recognition capabilities. This is mainly due
to the fact that objects take vastly different appearances in images because of the
following factors: (i) relative pose of an object to a camera, (ii) lighting variations, and
(iii) variance in appearance of objects (size, color, shape) belonging to the same class.
Object recognition systems extract certain object-relevant characteristics in images
and match them against stored object representation or models, which can be either
2D or 3D. We roughly distinguish between geometry-based, appearance-based, and
feature-based approaches. Geometry-based approaches use a geometric description of
a 3D object and match its projected shape against the image of the object (Mundy,
2006; Mundy and Zisserman, 1992). This approach, however, requires that the object
can be initially segmented from the image. Appearance-based algorithms use global
image patterns to perform recognition (Turk and Pentland, 1991; Murase and Nayar,
1995; Belhumeur and Kriegmant, 1996). For example, Turk and Pentland (1991)
projected face images onto a face-specific feature space and used the distance of a
projected image to the eigenvectors of the face space for classification.

These methods show invariance to changes in viewpoint and lighting conditions,
but are sensitive to occlusions. Feature-based algorithms find local interest points
in the image, e.g., SIFT (Lowe, 2004), that have invariant properties with respect
to pose, lighting, and affine transformations (Fergus et al., 2003; Nister and Stewe-
nius, 2006; Sivic and Zisserman, 2003). Local feature histograms are then matched
against model representations for object recognition. Feature-based methods depend
on the quality and number of features that can be extracted from the image, and thus
perform best for images containing rich texture.

In the above described “classical” approaches to object recognition, the context
in which the object is embedded is usually considered to be of minor importance
or even harmful to the recognition procedure, and the problem is sometimes eased
by segmenting the object from the background prior to recognition. On the other
hand, evidence from visual cognition as well as computer vision suggests that objects
appearing in a consistent or familiar background can be more accurately detected and
recognized than objects appearing in an inconsistent scenario (Torralba, 2003; Helbig
et al., 2010; Hoiem et al., 2008; Oliva and Torralba, 2009). Recently it has been
shown in psychophysical experiments that also action context can facilitate human
object recognition (Helbig et al., 2010).

This observation is to some extent in agreement with our study, where objects,
which can be associated with certain manipulations, are obtained indirectly by clas-
sifying and recognizing actions and without using prior object knowledge.
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1.4.5 Execution of Manipulation Actions

In this thesis, we explain how to execute a manipulation from the learned SEC model
by the example of a pushing action (see Chapter 2). Therefore, we here address
works that highlight learning and execution of pushing actions. In the literature
many works focus more on the (mechanical) aspects of controllability and planning
of stable pushing actions (Lynch and Mason, 1995; Li and Payandeh, 2007). Such
aspects are not in the core of this thesis.

In Fitzpatrick et al. (2003) the authors showed how an agent can learn simple
pushing actions on a toy object and then execute them as goal-directed behaviors.
During the training phase, the time evolution of the initial hand position and the
direction of object displacement at the moment of contact were continuously recorded.
As will be shown in chapter 2, this is to some degree similar to our approach. In each
trial the robot learns to map from the initial hand position to the direction of object
movement. However, the robot had only four possible initial positions which restricts
the flexibility of manipulations in the execution phase of the learned maps. The high
number of required trials (approximately 70) is another unrealistic drawback of this
work.

In a different study (Omrcen et al., 2009) the problem of learning a general pushing
rule has been addressed. The rule represents the relationship between the point and
angle of push on the object’s boundary and the observed object motion right after the
pushing action. In the learning case the robot experimented with different pushing
actions on different objects at different positions. The normalized retinal images
of the experimental data served as input to a neural network to predict the object
velocity in all directions. However, the input images had to be down-sampled to
20x15 pixels which causes much information loss. Moreover, in the testing case the
robot has to drive an optimization process, the computational complexity of which is
relatively high.

In Salganicoff et al. (1993), the authors described an on-line learning method
for pushing an object to a desired (image) position. The system used past pushing
operations to estimate future pushing actions. The main handicap of their approach
is that the object is connected to the robot with a rotational point contact.

1.5 Outline and Contributions

This thesis divides into three main parts. The first part highlights the main algo-
rithms used for classifying manipulations, categorizing manipulated objects, learning
archetypal SEC models, and executing manipulations from the learned SEC models.
In the second part, we evaluate the statistical robustness of the proposed algorithms,
whereas the last part addresses different experiments to which those core algorithms
are applied.
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The contribution of each chapter can be summarized as follows:

e Chapter 2 was published in Aksoy et al. (2010, 2011a,b) and introduces scene
graphs and semantics event chains to analyze the object-action relations in
image sequences. This chapter proposes novel approaches to extract and encode
the semantics of manipulation actions in conjunction with manipulated objects
for the issues of monitoring, learning, and execution.

e Chapter 3 evaluates the robustness of the proposed semantic methods with
synthetic data and compares it with neural networks. All provided experiments
in this chapter serve to test action classification, object categorization, and
learning phases in the face of different types and degrees of noise.

e Chapter 4 provides three different application studies each of which benefits
from different aspects of the scene graphs and semantic event chains. Further-
more, this chapter discusses the crucial problems observed in real experiments
by comparing with the ones driven from simulated environments. The first
application study given in this chapter was published in Aksoy et al. (2011a).
Main concepts introduced in the second and third application studies are parts
of European projects IntellAct and GARNICS, respectively. The last study was
also introduced as a part of a patent (Worgotter et al., 2012a).

Finally, in Chapter 5 the thesis is concluded by comparing the SEC framework
with other approaches and by discussing the limitations. We also present an outlook
for future investigations.
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Methods for Analyzing of Object-Action
Relations

In cognitive robotics, recognition and execution of a manipulation after learning from
demonstration is one of the most intriguing and still unsolved problems. In this chap-
ter, we introduce the so-called “Semantic Event Chain” (SEC) as a novel and generic
scheme for manipulations. SECs basically encode object-action relations in the spa-
tiotemporal domain for further semantic analyses. In the next sections, we provide
a comprehensive description of the core methods used for recognizing, learning, and
executing manipulations with SECs. Parts of this work were also published in Aksoy
et al. (2010, 2011a,b).

2.1 Introduction

We mainly aim at defining a generic method for manipulations that can be used
to allow an agent to learn by observation not only to distinguish between different
manipulations but also to classify the observed objects and to execute manipulations.
In this sense, we implemented an approach that gives the agent a basic tool by which
it can assess the consequence of a manipulation step by directly linking the symbolic
planning domain to the signal domain (image) addressing the difficult cause-effect
problem of how to observe and verify self-induced changes in the scene.

We start with providing an overview of different algorithmic steps of our approach
(see Fig. 2.1 and 2.2). Fig. 2.1 shows a processing example of a manipulation resulting
in its semantic event chain representation. We first extract all frames from the manip-
ulation movie (Fig. 2.1 (a)). Frames (Fig. 2.1 (b)) are then segmented (Fig. 2.1 (¢)) by
superparamagnetic clustering in a spin-lattice model (Dellen et al., 2009; Abramov
et al., 2010), which allows for consistent marker-less tracking (Fig. 2.1 (e)) of the
individual segments due to spin-linking across images using optic-flow information.
The scene is then represented by undirected and un-weighted graphs (Fig. 2.1 (d)),
the nodes and edges of which represent segments and their neighborhood relations,
respectively. Graphs can change by continuous distortions (lengthening or shortening

13
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Relevant Example of a Manipulation Action
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Figure 2.1: Processing example and semantic event chain representation. (a) Frames
from a movie recorded during a manipulation. All frames (b) are segmented (c) by
superparamagnetic clustering in a spin-lattice model (Dellen et al., 2009), which also
allows for consistent marker-less tracking (e) of the individual segments. From the
image segments, graphs are constructed (d) where graph nodes represent the segments’
centers and graph edges encode whether or not two segments touch each other. Then
we encode a manipulation by storing only main graphs between which a topological
change has taken place (f). Such a change happens whenever an edge or a node has
been newly formed or has been deleted. This type of representation is then given by
the semantic event chain (g), which is a sequence-table, where each entry encodes
the spatial relations between each segment pair p;; counting graph edges (2 means
that segments touch (denoted by red edges), 1 means that they overlap (denoted by
blue edges), 0 means that there is no edge between two segments, and absence of a
previously ezisting segment yields 9). (h) Each column of SECs represent a temporal
rule which are then enriched with pose and trajectory (position) information for the
execution process of manipulations.
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Figure 2.2: Block diagram of the algorithm

of edges) or, more importantly, through discontinuous changes (nodes or edges can
appear or disappear). Such a discontinuous change represents a natural breaking
point: All graphs before are topologically identical and so are those after the break-
ing point. Hence, we can apply an exact graph-matching method at each breaking
point and extract the corresponding topological main graph. The sequence of these
main graphs (Fig. 2.1 (f)) thus represents all structural changes in the scene. This
type of representation is then encoded by the semantic event chain (Fig. 2.1 (g)),
which is essentially a symbolic representation encoding the manipulation by a tempo-
ral sequence of rules (motor primitives). Each entry of SECs encodes spatial segment
relations where 0 means that there is no edge between two segments, corresponding to
two spatially separated segments, 1 means that one segment overlaps with the other
completely, and 2 represents segments that touch each other. A special case exists
when segment has disappeared, which is denoted by 9. Note that the complete image
sequence, which has here roughly 100 frames, is represented by an event chain with a
size of only 7x 8. The above described steps (1-4) are also presented in Fig. 2.2, show-
ing the block diagram of the complete algorithm. The following steps (5-7) utilize
the SEC to compute similarity values between videos showing manipulations (step
5), to perform action classification (step 6A) and conjointly performed segment cat-
egorization (step 6B). The approach learns from demonstration an archetypal event
chain (model-SEC) consisting only of consistently repeated rows (spatial relations)
and columns (motor primitives) (step 7). Finally, the observed manipulation is ex-
ecuted after defining temporal and spatial anchor points and planning phase (step
8) on the learned SEC model which can basically be enriched with required pose
and trajectory information at each temporal rule (Fig. 2.1 (h)). In the following, we
describe all different algorithmic steps in detail.

2.2 Preprocessing, Segmentation & Tracking (Step
1)

Manipulation movies are recorded in indoor environments with limited context. All
movies used in this study can be found at www.dpi.physik.uni-goettingen.de/
~eaksoye/movies.html (See Appendix A.3). Typical examples are shown in Fig. 2.4.



www.dpi.physik.uni-goettingen.de/~eaksoye/movies.html
www.dpi.physik.uni-goettingen.de/~eaksoye/movies.html
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Figure 2.3: Schematic of recording and visual preprocessing. (a) Stereo camera setup.
(b,c) Original example frames from the left and right image sequences. (d) Sparse
phase-based disparity map. (e,f) Extracted segments for the left and right image.

We use a stereoscopic camera setup using AVT Marlin FOS80C CCD firewire cameras
and lenses with variable focal length of 2.7-13.5mm (see Fig. 2.3(a)). Distance to
the manipulation scene is about 1.0 — 1.5 m. Images are rectified (see Fig. 2.3(b-
c)), stereo and optic-flow information is extracted by different standard algorithms
(Pauwels and Van Hulle, 2008; Sabatini et al., 2007). An example of a resulting
sparse phase-based disparity map is shown in Fig. 2.3(d). For step 1 (Fig. 2.2), we
use an image-segmentation method, developed by us earlier, in which segments are
obtained and tracked by a 3D linking process (see Fig. 2.3(e-f)). The method has
been been described in detail elsewhere (Shylo et al., 2009; Dellen et al., 2009; Dellen
and Worgdtter, 2009; Abramov et al., 2010). It is mainly implemented on GPUs
and operates close-to real-time at about 23 fps at a resolution of 256 x 320 pixels.
For reasons of brevity details are omitted here. The main result from these steps is
that we receive consistently tracked image segments, the fate of which can be used to
encode a manipulation as described next.
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Figure 2.4: Four different real action types.  (a),(d),(g),(j) Original images,
(b),(e),(h),(k) corresponding image segments, and (c),(f),(i),(l) scene graphs from
the following manipulations: Moving Object, Making Sandwich, Filling Liquid, and
Opening Book. In blue and red are indicated Overlapping and Touching relations.
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2.3 Relational Scene Graphs (Step 2)

Following the extraction of segments (Step 1), we analyze the spatial relations between
each segment pair. We denote spatial relations by p; ; in which ¢ and j are the segment
numbers. Note that spatial relations are symmetric, i.e. p;; = p;;.

As mentioned in the algorithmic overview above, we define four relations between
segments: Touching=2, Qverlapping=1, Non-touching=0, and Absent=9, which refers
to an image segment that is not observed in the scene. We redefined standard concepts
used in the field of topology (e.g. hole, neighbor, etc.) on purpose to make the
terminology more appropriate in the context of manipulation recognition. Terms
such as overlapping and touching are directly referring to primitive manipulations.
Whenever necessary, we use 3D-information from our stereo setup to disambiguate
perspective effects, which would lead to false relations when using only 2D.

Given that image segments often have strangely-shaped as well as noisy borders,
the correct assignment of these relations is non-trivial and we had to design a fast and
efficient special algorithm for this. As this is not in the core of this thesis, details are
provided only in Appendix A.1. This algorithm gives us the required spatial relations
(e.g. Touching, Owverlapping.etc.). The spatial relations can also be calculated by
simply counting the number of edges at each graph node as described in Aksoy et al.
(2010)

Once the image sequence has been segmented and spatial relations have been
extracted, we represent the scene by undirected and unweighted labeled graphs. The
graph nodes are the segment labels and plotted at the center of each segment. Nodes
are then connected by an edge if segment relations are either Touching or Overlapping.

Fig. 2.4 shows original frames and corresponding segments and their scene graphs
from four different real action types: Moving Object, Making Sandwich, Filling Liquid,
and Opening Book. In the Mowving Object action a hand is putting an orange on a
plate while moving the plate together with the orange (Fig. 2.4 (a-c)). The Making
Sandwich action represents a scenario in which two hands are putting pieces of bread,
salami, and cheese on top of each other (Fig. 2.4 (d-f)). In the Filling Liquid action
a cup is being filled with liquid from another cup (Fig. 2.4 (g-i)). The Opening Book
action describes a scenario in which a hand is opening a book (Fig. 2.4 (j-1)).

2.4 Main Graphs (Step 3)

In order to clarify the remainder of the algorithm better, we use simple, artificial
scenes to describe steps 3 to 6 of Fig. 2.2. Real scenes will be referred later. Fig. 2.5 (a-
b) depict original frames and their corresponding segments of an artificial Moving
Object action (sample action 1) in which a black round object is moving from a
yellow vessel into a red vessel.
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Figure 2.5: Simple example of the Moving Object action (sample action 1). (a) Orig-
inal images. (b) Corresponding image segments. (c) Semantic scene graphs. In blue
and red are indicated Overlapping and Touching relations. (d) Original semantic
event chain (£}). (e) Derivative of the semantic event chain (£}). (f) Compressed
semantic event chain (€).

Scene graphs, such as those depicted in Fig. 2.4, represent spatial relations be-
tween nodes. Unless spatial relations change, the scene graphs remain topologically
the same. The only changes in the graph structures are the node positions or the edge
lengths depending on the object trajectory and speed. Consequently, any change in
the spatial relation between nodes corresponds to a change in the main structure of
the scene graphs. Therefore, those changes in the graphs can be employed to define
manipulation primitives. Considering this fact, we apply an exact graph-matching
method in order to extract the main graphs by computing the eigenvalues and eigen-
vectors of the adjacency matrices of the graphs (Sumsi, 2008). A change in the
eigenvalues or eigenvectors then corresponds to a structural change of the graph.
The whole image sequence of the artificial Moving Object action has 92 frames, how-
ever, after extracting the main graphs, only 5 frames are left, each defining a single
manipulation primitive (Fig. 2.5 (c)).
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2.5 Semantic Event Chains (SECs) (Step 4)

All existing spatial relations in the main graphs are saved in the form of a table where
the rows represent spatial relations between each pair of nodes. The maximum total
number of spatial relations, hence the maximum total number of rows, is defined as

Protal = n(n —1)/2 | (2.1)

where n is the total number of segments. For the sample Moving Object action we
have n = 4 (yellow and red vessels, a black moving object, and a green background)
and therefore piota1 = 6. Those relations are pa 1, p3.1, pa1, P32, Pa2, and pas.

Since any change in the spatial relations represents an event that defines an action,
we refer to this table as original semantic event chain (&,). Fig. 2.5 (d) shows it for
the artificial action explained above.

It is now important to understand that these tables contain spatial-relational
information (rows) as well as temporal information in the form of a sequence of time-
points (sequence of columns) when a certain change has happened. To compare two
manipulations with each other, spatial and temporal aspects are being analyzed in
two steps by different sub-string search algorithms.

To achieve this, we first perform two data-compression steps. In general, it suffices
to only encode the transitions from one state (one column) in the original chain (&,)
to another (next column). Therefore, we can perform a derivative-like operation on
&, and represent the result by &; to simplify the chains.

For this we scan each row of &, from left to right and substitute “changes” by
combining their numerical values into a two-digit number. For example a change from
Overlapping to Touching, hence from 1 to 2, is now encoded by 12. When nothing has
changed a double digit, like 11, occurs. Rows where nothing ever happens (e.g. row
p32 in Fig. 2.5 (d)) are immediately removed since they do not define any event. The
resulting representation (&) is, thus, a mild, loss-less compression of the original one.
It is a preprocessing step and is required for the second compression step. Fig. 2.5 (e)
shows &} for the sample Moving Object action.

Then, in a second compression step all double-digits (00, 11, 22, and 99) are
removed leading to &.. This representation has lost all temporal information and
is used for the spatial-relational analysis only. £! of the artificial action is given in
Fig. 2.5 (f). The original chain (&,) will then be used for the temporal analysis.

2.6 Similarity Measure (Step 5)

Next we will discuss how to calculate the similarity of two actions. Essential this
comes down to sub-string search algorithms in the spatial as well as the temporal
domain. In the spatial domain we are searching for the correspondences between rows
of two compressed event chains to reduce the combinatorics (see section 2.6.1). Then
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Figure 2.6: Different version of the simple Moving Object action (sample action 2).
(a) Original images. (b) Respective image segments. (c) Semantic scene graphs. In
blue and red are indicated Overlapping and Touching relations. (d) Original semantic
event chain (£2). (e) Derivative of the semantic event chain (£2). (f) Compressed
semantic event chain (£2).

in the temporal domain the order of columns is examined to get the final recognition
result (see section 2.6.2).

To explain this we created one more sample for the artificial Moving Object action.
Fig. 2.6 depicts the main graphs with respective image segments of sample action 2
in which a red rectangular object is moving from a blue vessel into a yellow vessel
following a different trajectory with different speed as compared to the first sample.
Moreover, the scene contains two more objects which are either stationary (red round
object) or moving randomly (black round object). Following the same procedure,
the event chain &2 and their compressed versions (£3 and &2) for the second sample
are calculated and given in Fig. 2.6 (d-f). Note that even though the second sample
contains more objects, the dimensions of the different chains are accidentally the
same. This is of no importance as the sub-string search described next does not rely
on dimensions, allowing to compare arbitrarily long action sequences.

2.6.1 Spatial Similarity Analysis

The goal of this subsection is to provide the first of two subsequent analysis steps,
required to obtain a final measure of similarity between two event chains. The first
step is based on a spatial analysis comparing the rows of compressed event chains (&}
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and £2) accounting for a possibly shuffling of rows in different versions of the same
manipulations. This way the number of possible relations is reduced before we can
finally, in the second step, find the true similarity measures.

Let ¢! and &2 be the sets of rows for the two manipulations, written as a matrix

(e.g. Fig. 2.5 (f) and 2.6 (f)):

1 1
74171 T1,2 r
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where r; ; represents a relational change between a segment pair

ri; € {01,02,09,10,12,19, 20, 21, 29,90, 91,92} .

The lengths of the rows are usually different and given by indices ~.

Now each row of ¢! is compared with each row of £2 in order to find the highest
similarity. The comparison process searches for equal entries of one row against the
other using a standard sub-string search, briefly described next. Assume that we
compare the a'® row of £! with the b row of £2. If row a is shorter or of equal length
than row b (v < 4?2), the a™ row of & is shifted 42 — ! + 1 times to the right. At
each shift its entries are compared with the one of the b"* row of €2 and we get as a
result set F,; defined as:

Fa,b:{ft: t€[17’7§_7¢1+1]}7

100 &
fe= 7251, ) (2.2)
b

i=1

where 7 is the normalization factor and i is the row index and with

1 if T(lzi = Tgi-i—t—l
0i = { 0 else ’ (2:3)
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where the set F,; represents all possible similarities for every shift ¢, given by
f+, which holds the normalized percentage of the similarity calculated between the
shifted rows.

As usual for sub-string searches, we are only interested in the maximum similarity
of every comparison hence we define:

Ma,b = maX(Fa,b),

For the case 7! > 17, a symmetrical procedure is performed by interchanging all
indices of Egs. (2.2), (2.3) above.

Spatial similarity values between all rows of £! and £2 are stored in a matrix Cspatial
with size m x k as

M,y Mo --- My

My, Moy -+ Myy
Cspatial = . . 5

My1 My -+ My

The final similarity value (spatiar) between the rows of two compressed event
chains is calculated by taking the mean value of the highest similarities across both
rows and columns of Cspatiar as

1 & .
wspatial = E z; m]aX(MiJ)? J € [17 te 7k]7 (24)
if
max(Mi;) = max(My), t€ Lo ,m] (25)
J

Note that Eq. (2.5) above makes the similarity measurement symmetrical.

The complete similarity matrix (Cspatiar) between the artificial Moving Object sam-
ples (¢! and &%) is given in Table 2.1. Visual inspection of &! (Fig. 2.5 (f)) and &2
(Fig. 2.6 (f)) immediately confirms these similarity values. We find 100% similarity
(Yspatiar) between both artificial “manipulations”. One can see that Eq. 2.4 can still
lead to multiple assignments of permutations with the same maximal similarity. This
is resolved by the temporal similarity measurement stage following below. In more
realistic scenes 100% is, of course, often not reached (see Fig. 2.7 below) and one
needs to define a threshold above which one would consider two similarity values as
equal.

However, we also observe that there are several 100% matches between rows in
these examples. As a consequence, for the second example two permutations 2! and
£2?% exist with equal row-matching probability as given in Table 2.2. Note, for real
scenes after thresholding, even more permutations might exist. Hence, the analysis
in not yet complete.
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2.6.2 Temporal Similarity Analysis

In the now following second step we can use the time sequence, encoded in the order
of events in the event chains to find the best matching permutation and thereby arrive
at the final result. To this end will now use temporal information, hence the original
chain (§,), to find the truly matching permutation. Note that the derivative like
term (&;) can also be used for temporal analysis as presented in Aksoy et al. (2011a),
however, the real similarity value can not be reached since it is slightly compressed.

Thus, we compare both permutations 55*’, p = 1,2 of the second event chain,
shown in Tab. 2.2 (a-b), with the first one . In such cases where ! has more rows
than 53”, hence rows which have no correspondences, 502” will be filled with dummy
rows that have no possible similarities.

Let £! and 531’ be matrices with the sizes of ¢ x u and ¢ X v and assume that u < v

as
1 1 1
€11 €12 " €1y
1 1 1
1 €21 G2 € u
So = : : : )
1 1 1
€1 €q2 €qu
and
217 2? 2P
65,1 6%2 [N 6%7,”
P P P
2, _ |21 €22 "7 €2
fo - . . . . )
2, 2, 2,
€q1 Cq2 " Cqu

where 531’ is a permutation of £2 and el{j and ei’; represent the possible relations
between any segment pair

&

501 P21 P31 Pe,1 P32 P3,6
P21 100% | 25% | 100% | 50% 50%
P31 100% | 25% | 100% | 50% 50%
P 25% | 100% | 25% 50% 50%
P42 50% 50% 50% 0% 100%
pis | 50% | 50% | 50% | 100% | 0%

Table 2.1: Similarity table (Cspatiar). Similarity values between the rows of ! and &2
the artificial Moving Object samples.
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: 2 e
P21 < 100% = p2q 11121
P31 <= 100% = pe,1 12111
Pa1 = 100% = P31 0 2120
Pa2 = 100% =  p3g 1 2 000
pa3 <= 100% = p32 00021

(a) Permutation £*

& £22 £

P21 <= 100% = pe1 1 2111
P31 <= 100% = p2q 11121
pan1 <= 100% = p3q 02120
pa2 <= 100% = p36 1 2 0 00
Pa3 = 100% = P3,2 0 0 0 21

(b) Permutation £22

Table 2.2: Permutations 7.

e;; €{0,1,2,9} . (2.6)

Following this, the columns of ! and 5?,1’ are compared. Note that by contrast to
rows, columns of event chains are never shuffled unless they represent different types
of actions. Therefore, the column orders of type-similar event chains have to be the
same. Assume that we compare the a'* and b columns of ¢! and 53% respectively.
The procedure is very similar to the one for the spatial analysis.

Since the lengths of the columns ¢ are the same, no shift-operator is required and
columns are directly compared index-wise as

ab—@25 (2.7)

where j is the column index and with

2p

1 ifel =e
0; = ja T Tab 2.
! {O else ’ (2:8)
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where 6, holds the normalized percentage of the similarity value calculated be-

tween columns.

P

C 1 2, . .
Similarity values between all columns of {; and " are stored in a matrix (i,

with the size of u X v as

01,1 01,2 e 01,1}
p 02,1 02,2 e 02,v
temporal = . : . : ’
eu 1 9u72 e eu v

)

The final similarity value T/ermpoml between the columns of two event chains is
then calculated by taking the mean value of the highest similarities across rows as

1 .
femporal = E Z mja“X(el'J)7 S [17 T 7U] (29)
=1

For each permutation 531’ given in Tab. 2.2 a wtpemporal value is calculated by using

Egs. (2.7), (2.8), and (2.9), yielding 9., 0rq = 84% and 97, o.qr = 100%. Note that
we use Longest Common Subsequence (LCS) in order to guarantee that the order of
columns is the same. LCS is generally used to find the longest sequence observed
in both input sample sequences. Columns of event chains are used as sequences for
this task. Since the number of sequences is constant, the problem is solvable in
polynomial time by dynamic programming. Consequently, our two sample actions
have 100% similarity and permutation £ represents the final row correspondences
to the first action. The best matching permutation is further used for categorizing
objects as described in sub-section 2.8.

As mentioned above, in real scenes often 100% are not reached and we call two
actions “type-similar” as soon as their final similarity value exceeds a certain thresh-
old. We would also like to point out that the final spatial and temporal similarity
values are not necessarily identical. Action classification should use the final temporal
similarity values as this measure is more restrictive and therefore provides the final
means for classification.

The question arises, why we use a 2-step process as the second step might suffice
on its own. In this case however all possible permutations would have to be analyzed,
which can be very costly (up to O(n!)) for big event chains. Particularly, decisive
“no-match decisions”, which occur for all non-type similar manipulations — hence,
quite often — could only be obtained at the end of the complete permutation analysis.
Whereas, when performing spatial analysis which has the time complexity of O(n?),
this result is obtained faster. This leads to a substantial algorithmic speed-up and
makes the choice of a two-step algorithm useful.
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2.7 Action Classification (Step 6A)

We applied our framework to four different real action types: Mowving Object, Making
Sandwich, Filling Liquid, and Opening Book (see Fig. 2.4). For each of these actions,
we recorded four movies with highly different trajectories, speeds, hand positions,
and object shapes. These examples were introduced to show that really different
instantiations of a manipulation will still be recognized as belonging to the same
type.

Event chains of each real test data are compared with each other by using the
similarity measurement algorithm explained in Step 5. We used 7! as a normalization
factor in Eq. (2.2) and thresholded the maximum similarity in Eq. (2.4) in order to
increase the number of permutations, thus, accuracy. The resulting final maximal
similarity values are given in Fig. 2.7. Each test data has high similarity with the
other versions of its type-similar action (see close to diagonal) and almost always, the
similarity between type-similar actions is much bigger than the similarity between
non-type-similar actions.  The minimum similarity value for type-similar actions
is measured as 64% between the first and forth versions of Filling Liquid, but the
similarity between Filling Liquid and non-type-similar actions is far less. Setting a
threshold at 64% would, across all examples, lead to zero false negatives and to one
false positives (opening book version IV and making sandwich version IV), which

Moving Making Filling Opening
Object Sandwich Liquid Book
A—T ey, e, e g,

5656555555666 656 55
[ A A A A A N
2222222222222 22
Version | ‘ 35 Y
Moving {Version 1l 33
UL RVESNTTN100 100100 88 18 18 30
Version IV EERE:EIR:E] 30
Version | 14 18 31
Making {Version Il 14 18 30
Sandwich) version Ill 38| 15 8
Version IV 33
Version | 16 20
Filling {Version 1l 26 24
Liquid Y version Ill m 38 36 1833
Version IV 100 26 27 23 23
Version |

26 100 100} 100

27 100100 84 94

18 23. 84 100/ 80
23 100 94 ' 80 1008KY

Opening Version Il

Book ) version Il

Version IV &)

Figure 2.7: Similarity values between event chains of the real test data set.
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would be confused with other manipulations. This is interesting as opening or closing
a book can indeed look very similar to the making sandwich (picking up a book-
cover and closing it indeed looks very similar from picking up an object and putting
on another object). In the making-sandwich action many subcomponents exist where
objects are being moved. Thus, in general the manipulation analysis shown in Fig. 2.7
corresponds very well to our human understanding of action (sub-)components!

Note, as soon as the complete table has been measured, it is also accessible to
unsupervised classification (X-means, (Dan Pelleg, 2000)). We have done this by
using correlation values between columns as features and we receive four classes with
no outliers. Hence with clustering one gets completely correct classification of all
individual manipulations.

2.8 Segment Categorization (Step 6B)

The row correspondence, determined by finding the best matching permutation, also
implicitly encodes the similarity of the graph nodes between the two different exam-
ples.

We will explain this using again the two artificial examples (Fig. 2.5 and Fig. 2.6).
The row similarity values of the second permutation given in Table 2.2 (b) represent
the correspondences between manipulated nodes in ¢! and £2.

The question, which we would like to answer is: which nodes represent segments
that play the same role in type-similar actions.

This can be achieved in a fully unsupervised way by a simple counting procedure.
We first analyze which node number in ¢! is repeating in conjunction with which
node number in £2 in Table 2.2. We start with node number 1 in &', which occurs in
relations ps 1, p31 and py;. Its corresponding best matching relations are given by:

P21 <= 100% = pe,1
P31 = 100% = p21 = 1=1
pa1 <= 100% = p31

While node 1 is repeating three times in ! (left side), the same node number 1 in
&2 (right side) is also repeating three times. However, node numbers 2, 3, and 6 in &2
occur only once. Therefore, we conclude that graph nodes 1 in both examples, ¢! and
€2, had the same roles. In fact, both graph nodes represent the green background in
both actions.

We continue the node relation analysis with node number 2 in ¢!, and obtain

P21 <= 100% = pe;1
Pa2 <= 100% =  p3p

Node number 2 in ¢! is repeating twice with node number 6 in 2. Those graph
nodes represent the yellow and blue vessels within which the moving objects are
initially placed and from which they then move away.

For the case of node number 3 in ¢! we obtain

= 2~~6
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P31 <= 100% = p2;

paz <= 100% = P32

Node number 3 in &' corresponds to node number 2 in 2 because both of them

are repeating twice. Those graph nodes define the destination vessels for the moving
objects.

= 3=2

The last node number 4 in &' is obtained as

pa1 <= 100% = p31
pap =100% = p3g = 4=3
pPa3z <= 100% = P32

Node number 4 in &' and node number 3 in £? are both repeating three times.
In fact, both graph nodes represent the moving objects, which are the round black
object in ¢! and the rectangular red object in £2.

In the case of having the same highest value more than once, e.g. having two
times 100% similarity values in the same row of the similarity matrix, segment cat-
egorization might lead to ambiguous results, i.e. one segment would correspond to
two different segment in the other manipulation. This sort of conflicts can be solved
by taking the second highest values in the similarity matrix and calculating the node-
similarity again. This way we always achieve unique segment categorization results.

We applied this categorization algorithm to our four different real manipulation
scenes (Fig. 2.4). The results showed that the manipulated segments in each action
type can be categorized according to their roles in the actions. Fig. 2.8 illustrates the
categorization results, e.g. the Moving Object actions include three different segment
groups here named by their object-names for simplicity (apples or oranges, plates,
and hands) each of which performed different roles. In the Filling Liquid action the
hands are grouped correctly despite having different poses. Note that for the sake
of simplicity the backgrounds are ignored in Fig. 2.8 although they are also detected

Moving Object Making Sandwich Filling Liquid Opening Book
Apple & Bv d R*h L*f F*II E M M
pple read, ight eft u mpty

Orange Plates Hands  cpeese etc.  Hands Hands Contamers Contamers Hands Books Hands
[ecien % e . st —
£ g[ . O _______ ‘ b ! . /& p
5 B
®» 0

A .............................................. A ...... i

Figure 2.8: Segment categorization results. In each action type, the manipulated seg-
ments can be classified and grouped based on their action roles. Note, classification
happens at the level of segments or segment groups. A link to the object-domain (in-
dicated by the dashed arrows) could be introduced by including explicit object models,
but this is not part of this study.
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and grouped correctly.

While we are here strictly at the level of segments it is evident (albeit non-trivial!)
that this unsupervised categorization process could be coupled to object models, thus,
providing access to object categorization, too. It is interesting to remark that in this
case any object-like entity will be classified strictly in the context of the observed
manipulation. Thus, steps 6A and 6B are tightly linked as depicted by the gray box
in Fig.2.2. For example a “cup-being-filled” would be grouped with other objects-
being-filled. The same cup, when occurring in an action of “cup-used-as-pedestal”
(where the cup is first turned upside down and then something is put on top), would be
classified together with other objects-used-as-pedestals. This relates to the cognitive
concept of affordances (Gibson, 1977) and will be discussed later in more detail.

2.9 Learning Algorithm (Step 7)

In the next step we will show that the SECs of different instantiations of type-similar
manipulation can be combined by statistical learning to render a model SEC for this
manipulation type. Also this is done in an unsupervised way.

We know that rows of the event chain encode the main relational changes between
segments. To arrive at a model, the learning procedure just needs to search for all
common relational changes observed across repeated type-similar manipulations. A
simple averaging algorithm suffices for this.

We describe an on-line version of the learning, but the same procedure could also
be employed in batch-mode. Learning is initiated by assigning small weights w] to
all rows and wf to all columns of the first observed chain. When observing the next
manipulation, we use Step 6A (action classification) to find out if it is type-similar.
If this is the case the weights of each row and column are incremented by a small
amount Aw; if the row and column have a correspondence in the new event chain.
If the new chain has additional, so far unobserved rows, the model is extended by
these rows, which start with the initial small weight value. This is repeated as long
as desired but usually 10 instantiations suffice for a stable model. After this, weights
are thresholded, deleting all rows and columns which are subthreshold and returning
the resulting model event chain for this manipulation type.

In addition to this, for each manipulation instance, action-relevant segments (seg-
ment groups) are extracted and labeled according to their roles within the observed
action as explained in Step 6B (segment categorization).

Note, online learning could suffer from bad first examples with which all next
following manipulations would be classified. There are obvious work-arounds, for ex-
ample cross-comparing the manipulations with each other. Ultimately, batch-mode
learning is more useful. For this one would first record scenes from many manipu-
lations, then perform clustering of the similarity matrix (e.g. Fig. 2.10) after which
learning can be done for each cluster in the same way as described above.
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Figure 2.9: Sample frames from 10 different versions of a “Putting an object on a
plate” action. In this action type a hand is appearing in the scene, putting different
kinds of objects (e.g. apple, orange, a piece of bread, etc.) on a plate following
different trajectories with different speeds, and then leaving the scene.

We applied the learning framework in batch-mode to two different manipulation
types: “Putting an object on a plate” and “Taking an object from a plate” each
of which has 10 different versions with strongly different trajectories, speeds, hand
positions, and objects (see Fig. 2.9 to get an impression of the level of difference).

Unsupervised classification of the similarity matrix (see Fig. 2.10) is used to clas-
sify those 20 versions. Note, some times high similarity values (around 50%) are
observed between non-type-similar actions. The reason is that except for the se-
quencing, which is inverted for “putting” versus “taking”, primitives of both action
types necessarily look similar. Differences are big enough, though, such that unsu-
pervised classification will still lead to completely correct classification. Due to noisy
segmentation low similarity values (around 40%) are also observed between type-
similar actions. However, such noisy outcomes do not affect the classification phase.

Next, a SEC model is learned for each manipulation class by searching for the
similar common rows and columns observed in all 10 different versions as explained
above. Fig. 2.10 (b-c) show the learned SEC models for both action types with
corresponding row (w]) and column (wf) weight values. To prove the accuracy of the
learned SEC models we prepared 5 test movies which all contain both action types —
putting and taking —, but performed in different temporal order (or sometimes with
two hands at the same time!). Fig. 2.11 shows some sample frames from each of the
test movies.

Fig. 2.12 depicts the similarity results between two learned models and all 25
movies, 20 of which are the training data and the remaining 5 are unknown test data.
Similarity is measured as described in Step 5. In red and blue are indicated the
similarities for a given movie with the “Putting an object on a plate” and “Taking an
object from a plate” models, respectively. For the first 10 training data the learned
model of “Putting an object on a plate” has higher a similarity, whereas the model
of “Taking an object from a plate” has a lower one (Fig. 2.12, green area). It is the
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Figure 2.10: (a) Similarity values between event chains of “Putting an object on a
plate” and “Taking an object from a plate” actions. (b) The learned SEC model for
the action type “Putting an object on a plate” with corresponding row (wl') and column
(w§) weight values. These weight vectors are just for illustration since different weight
values might be observed for different action types due to degree of noise in the event

chains. (c¢) Same for “Taking an object from a plate”.
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Figure 2.11: Sample frames from 5 different mixzed actions in which both manipulation
types “Putting an object on a plate” and “Taking an object from a plate” are performed
in different orders. (a) A hand is first taking a piece of bread from a plate and then
putting it on a different plate. (b) Another piece of bread is moved from one plate to
another with a different trajectory. (c) A hand is replacing an orange. (d) A hand is
first putting an orange on a plate and then taking a piece of bread from another plate.
(e) A hand is putting an orange on a plate and in the mean time the other hand is
simultaneously taking an apple from the second plate.
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Figure 2.12: Simularity results between the two learned modes and all 25 movies. In
red and blue are indicated the similarities for a given mowvie with the “Putting an
object on a plate” and “Taking an object from a plate” models, respectively. First 20
data are the training data and represent different versions of the “Putting an object
on a plate” and “Taking an object from a plate” actions, respectively. The last 5 data
represent the mized actions used for testing the learned models.
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other way around for the next 10 training data (Fig. 2.12 yellow area). However,
for the last 5 test data, in which both manipulation types are performed in different
orders both learned models have high similarity. (Fig. 2.12 blue area). When doing
time-slicing (data not shown) one sees that the similarity in the last 5 data for either
manipulation increases together with the completion of the respective manipulation.
Thus, one after the other in the first 4 movies and simultaneously in the last one,
where both actions are performed simultaneously.

2.10 Manipulation Execution with SECs (Step 8)

In this last step of the whole framework, we will address the problem of executing a
manipulation starting from a SEC. Clearly, the naked SECs explained so far, do not
contain information regarding pose, trajectory, and object recognition without which
a meaningful execution can not be realized. Therefore, in the process of learning
a manipulation model (step 7) additional information must be stored, for example
the start and endpoint of movement trajectories. As the SEC provides a temporal
sequence of rules, we have well defined temporal anchor points when we have to store
the additionally required trajectory information.

Explanation of this section will mainly be based on a pushing action which is
performed by means of SECs and additional stored information. For this purpose, we
used the Webots software that simulates a 6 DOF Neuronics Katana robot arm. The
experiment consists of two phases: Learning and execution (steps 7-8 in Fig. 2.2).
In the first phase we perform manipulation demonstration which is repeated using
different setups. For this we already use the robot simulation and program it by
hard-coding to push a red box to a green box on a table until they touch each other
and then the robot is going to a home position. Note that it is not required that
the red and green boxes should touch each other in some exact configuration just to
ignore the pose estimation problem which is not in the focus of this thesis.

From these demonstrations a SEC-model is then learned as explained in the previ-
ous section. During learning also additional decisive information, for example relative
coordinate frames and information about motion start and endpoints, is recorded. In
the second phase (execution), we use the SEC and the additional information to let
the robot execute a similar pushing action regardless of the initial state of the table.

2.10.1 Segmentation and SEC-generation

Fig. 2.13 and Fig. 2.14 show a processing example of a manipulation resulting in
its semantic event chain representation. We first extract all frames from the ma-
nipulation movie (Fig. 2.13 (a)) with corresponding depth maps from a range finder
(Fig. 2.13 (b)). Frames are then segmented by a simple HSV color-based segmen-
tation algorithm, which allows for consistent marker-less tracking of each object
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Figure 2.13: Pushing action. (a) Original images from a movie recorded during
the action. (b) Corresponding depth map from a range finder. (c) Corresponding
HSV color-based segmented images with extracted 3D scene graphs (see steps (1-2)
in Fig. 2.2). Note that each object is represented by a unique segment label (e.g.
1, 2, 3, and 4 that represent table, red box, green box, and robot arm, respectively).
Graph nodes represent the segments’ centers and graph edges encode whether or not
two segments touch each other in 3D.

(Fig. 2.13 (c)). Note that each object is represented by a unique segment label (e.g.
1, 2, 3, and 4). Once segments are calculated we drive a simple color-based object
recognition algorithm to replace those unique labels with object names (e.g. table,
red box, green box, and tip of robot arm instead of 1, 2, 3, and 4, respectively). After
this step the agent knows which segment corresponds to which object. The scene is
then represented by semantic graphs (Fig. 2.13 (c)). Nodes represent object center
points and edges between nodes exist whenever two objects touch each other in 3D.
As explained in step 3 we apply an exact graph matching method to extract the cor-
responding topological main graphs. The sequence of these main graphs represents
all structural changes (manipulation primitives) in the scene. The movie frames that
hold such changes are called “Key Frames”. Fig. 2.14 (a-c) show the “Key Frames”
with corresponding depth map, segments, and main graphs for the action in Fig. 2.13.
The final semantic event chain representation is depicted in (Fig. 2.14 (d)). In SECs
continuous time is now replaced by time-chunks where the same main graph persists
until in the next chunk a new one appears. Each row in a SEC represents the tempo-
rally changing spatial relations between one pair of objects in the scene, for example
the first row in (Fig. 2.14 (d)) shows the relation between the red box and green box.
Note that in this section we will omit the spatial relation overlapping since it is also
different interpretation of the relation touching in 3D world. Therefore, from now on
we will use three spatial relations; no connection (i.e. no touching), touching, and
absence), each will be represented by letters (e.g. N, T, and A) instead of decimal
numbers (e.g. 0, 2, and 9) for the sake of simplicity.

Consequently, the complete image sequence, which has here roughly 320 frames,
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Figure 2.14: Semantic event chain representation. (a) Original “Key Frames”. (b)
Corresponding depth maps. (c) Corresponding HSV color-based segmented images
with extracted main graphs (see step 3 in Fig. 2.2). (d) Corresponding semantic event
chain (see step 4 in Fig. 2.2), which is a sequence-table, where each entry encodes the
spatial relations between each segment pair p;; at each main graph. There are three
possible spatial relations defined between segments: no connection (N), touching (T),
and absence (A). N means that there is no edge between two segments, corresponding
to two spatially separated segments, T represents segments that touch each other, and
absence of a previously existing segment yields A.

is represented by an event chain with a size of only 3 x 7. Note that several spatial
relations, for example between green bor and robot arm, are not included in this
SEC since they do not contain any N-T or T-N transitions, which are decisive for a
manipulation. Thus, we can always ignore such rows in the semantic event chain since
they do not describe any manipulation relevant event. The SEC is also converted into
a machine readable format to be able to encode additional object, pose, and trajectory
information. Please see the Appendix A.2 for a machine readable (GraphML) format
of the SEC.

These aspects are represented by steps (1-4) in Fig. 2.2, showing the block diagram
of the complete algorithm.

2.10.2 Defining Temporal Anchor Points

For learning we record the same pushing action from 10 different perspectives by
changing the camera positions and extract the corresponding SECs. Fig. 2.15 shows
the same, specific moment of the manipulation for each of the 10 different manip-
ulation instances which allows us to get an impression of the level of perspective
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Figure 2.15: Differences between the same moment of the pushing manipulation in all
10 different versions.

difference. All movies used in this study can be found at http://www.dpi.physik.
uni-goettingen.de/~eaksoye/movies.html (See Appendix A.3). As described in
step 5, we then calculate the pairwise percent-similarity between the manipulations
to show that indeed a high mutual similarity exists between those 10 repetitions.
Fig. 2.16 depicts the confusion matrix where one outlier with only 54% similarity
occurred due to some error in the image segmentation.

Having assured that the individual SECs represent indeed the same manipulation
we are allowed to perform a weighted average and extract all re-occurring rows and
columns in the ten SECs as explained in step 7. The resulting SEC is shown in
Fig. 2.17. Weights w represent the normalized occurrence frequency of a given row
or column and are sometimes less than 1.0 due to the situation that not all rows
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Figure 2.16: Similarity values between 10 different versions of the pushing action.
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and columns are present all the time in the individual SECs. This is also visible
by comparing model (Fig. 2.17) with the single SEC in Fig. 2.14. For example, the
third row and sixth column of the single SEC in Fig. 2.14 are detected as noisy
data and thresholded in the model SEC in (Fig. 2.17) since they are not observed in
other demonstrated versions. Thus, the model represents the archetype-SEC for this
particular pushing action.

At this stage it is important to note that the start points of each temporal chunk,
given by the time moments of the different columns in the model-SEC, represent
temporal anchor points (Key Frames of the movie sequence). The SECs, thus, solve
a difficult chunking problem in a natural way: By these anchor points the different
motor primitives needed for a manipulation are already defined. Furthermore, these
moments are also decisive for defining the spatial anchor points at the objects, needed
to define actually execute an action.

2.10.3 Defining Spatial Anchor Points

The temporal anchors tell us “what happened when?”, but they do not yet answer the
question “how did it happen?”. In the most general case, we would also have to know,
(1) which objects are moved, (2) how the final spatial configuration (relative poses)
of the objects looks like, and how the movement trajectories are shaped requiring (3)
start- and endpoints and (4) trajectory shapes.

We will in the following section show that an analysis at the temporal anchor
points, hence of the Key Movie Frames, suffices to extract components 1-3: 1) objects
involved, 2) required poses, and 3) movement start and end-points, which define
motion segments. Only when wanting information about (4) the complete movement
trajectory we need to analyze also movie frames between the key frames.

To keep the algorithm general we assume that only one prime mover exists (usually
the robot arm), bimanual manipulations need a different treatment. As the robot
arm can only do “one thing at a time” we can in general state that for all possible
manipulations the manipulation is started when the robot arm produces the first
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Figure 2.17: The learned SEC model for the pushing action with corresponding nor-
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N-T (non-touching to touching) transition in the SEC and that it ends when the
arm produces a T-N transition. Thus, we first have to find the prime mover by
analyzing the image segments. Furthermore, it is evident that all other existing N-T
transitions are decisive for the manipulation. Hence, we need to analyze those — one
after the other — too. Somewhat more unusual, we will also make use of the fact that
continuous contact of prime mover with another object effectively makes the other
object a secondary mover allowing us to use vector addition in task space for defining
the complete motion path. For example, as long as the robot arm remains in contact
with the red object (unchanging T relation), we can neglect the robot arm and just
consider the newly resulting spatial relations of red object with other objects (here
the green object) as spatial anchors'. Note, this reflects also the aspect of a robot
using a tool. As long as the machine holds the tool, the robot’s body is essentially
extended and the tool defines now the end-effector of the machine Worgotter et al.
(2009).

2.10.4 Planning

In the planning phase we first analyze the 10 demonstration pushes to see how the
movement segments actually looked like. By D1-D8 we denote in the following those
constraints which are used to actually define the movement segments for execution.
As we do not need poses, we did not implement any pose estimation steps.

To find the prime mover, we take the first N-T transition (N3 2—7T53) in the model-
SEC (Fig. 2.17). Here we use conventional row,column indices just for making it easier
to find the entries in the SEC. Now we subtract the image segment configuration at
key frame at N5 from that at T5 3, leading to a difference image only at the robot-arm
image segment as the red box has not yet moved.

D1: Thus, we obtain as prime mover the “robot arm segment”.

Then we consider the actual start points of the movement (red points in Fig. 2.18),
which are widely distributed. The average is given by the starred red point.

D2: Hence there are essentially no constraints on the starting point S; of the
complete sequence.

Next, we record at key frame at 7,3 the coordinates of the red object at the
touching point (see green points in Fig. 2.18).
D3: This defines the endpoint F; for this specific motion segment V;.

!There might be some complicated manipulation actions where the arm (or hand) touches (or
picks up) a second object before releasing the first. In this case, the argument about secondary
mover would not hold. But such manipulations are uncommon and even for a human quite difficult.
Hence, we do not consider them.
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Figure 2.18: Start (S1,S2) and end (E1, Es, E3) point distribution as provided by the
training dataset. Starred points are the average locations. Robot manipulator travels
along the path given by vectors Vi, Vs, V3. The coordinate origin is at the center of
the red object. The motion vector for pushing is depicted by the color-changing vector
that connects red with green object. Distance A is defines as |Ey — S| and vector Vs

has length A.

We need to make sure that execution can cope with all kinds of different spatial
configurations of robot arm and object. This requires defining a coordinate system
which allows for such a generalization. To this end we use as the coordinate origin
the segment center of the first touched object. This definition holds true for all
conceivable basic single- or dual-object manipulation actions as relations between
objects are decisive for the manipulation(s). Hence, we can always fix the origin on
the first one touched and define coordinates relative to this?, where we use any generic
cartesian coordinate system just keeping it fixed for the remainder of the process.

D4: Thus, the center of the first touched object defines the coordinate origin.

The second found N-T transition concerns the red and the green object (N3 —
Ti.4). As there is no change between the relation of robot arm and red object (relation

2Most basic, uni-manual manipulations are performed either at one object, leading to some
configuration change at the object, or at two objects, where the first touched object is combined
with the second one. Other manipulations, where more objects are directly involved are very rare
(e.g. grasping two objects keeping both in the hand and combining them with a third one) or they
can be considered as a chain of single- or dual-object manipulations.
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remains 75 4) we have indeed found a “secondary” mover (the red box) and a second
touched object (the green box).

The segment center of the green object (the second touched object) defines to-
gether with the coordinate origin (center of red object) the so-called dual object con-
nection vector (short: connection vector). Also this definition holds for all dual-object
manipulations where a first object is supposed to make contact with a second object.
In all these cases the first object must travel along a path (vector) that connects it
to the second one. Clearly, in many dual-object manipulations additional difficult
pose-constraints may arise, but the general connection vector will remain the same.

D5: Thus, the connection vector is spanned between the centers of the first and
second touched object. Movement segment V5 should follow the direction of this vec-
tor.

Now we need to define the path length. So far, the definitions do not require any
prior knowledge about the actual action to be performed. They hold for pushing as
well as, for example, for pick-and-place actions. The fact that we want to perform a
pushing action only comes in now: Similar to above, we record for key frame at 77 4
the coordinates of the red and green objects at their touching point. They are shown
back-projected onto the start frame in Fig. 2.18 (pink and blue). One can see that
for a push, start and endpoints Ey, Ss, E5 of the motion segments are roughly aligned
with the connection vector (see Fig. 2.19 A and Fig. 2.18).

DG6: Points E1, S, Ey can be computed from the 3D-coordinates representing the
intersection of the connection vector with the edges of the objects (Fig. 2.19 B).

D7: From this, we also note that the distance A = |Ey — S| defines the length
of the second motion segment V5. It’s direction is given by the connection vector.

The core of the manipulation ends at the 7, 4 — Ny 5 transition of robot arm with

red object. The final homing motion of the robot arm, which follows thereafter, is
not relevant for the manipulation and can be performed in any possible way. We

(b)

Figure 2.19: Start and end points as given by demonstration (A), and as calculated
for execution (B).
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look at the now following N5 — Ay ¢ transition at the prime mover and plot the end
points Ej5 from Ay (black points in Fig. 2.18) producing a set of actually observed
final endpoints of the robot arm, which are also widely distributed.

D8: Any endpoint for the motion can be used as long as the robot arm withdraws
from the red object in a collision-free way.

2.10.5 Execution

Once the planning phase is realized, the robot starts the actual execution process. For
this, the model-SEC is used and every transition is treated like a rule. Constraints
D1-D8 are attached to the transition rules as defined above.

For example the first N-T transition corresponds to a rule that demands that some
movement by the prime mover should take place such that at the end the robot arm
touches the red box and so on.

Thus, a new visual scene is presented to the system and segmented as usual.
Robot arm, red box, and green box are recognized by their color or by any other
object recognition algorithm. The model-SEC is split into its rules and the actual
movement sequence is prepared by calculating the movement segments relative to the
target objects. Start point 5] is given by the momentary location of the robot arm.
Again we use as coordinate origin the center of the red object and the connection
vector points to the center of the green object. This origin- and vector-definition
holds for all dual-object manipulations. For the specific purpose of pushing, and
as explained above, the respective start and endpoints Ey, Sy, s are now computed
from the 3D-coordinates representing the cross-section of the connection vector with
the edges of the objects (Fig. 2.19 B). The movement amplitude for the second N-T
transition is in the same way given by A = |E; —Ss|. We note that the touching point
of the second object can be a bit over-estimated by this procedure if the diagonal of the
object is aligned with the connection vector. In this case we will get a bit of a “push-
second-object-away” when executing the action. This shows that pose estimation
will at some point have to be added, too. Movement from S; to E; is defined by
any collision-free trajectory all other motion segments are straight. The last motion
segment is a homing movement to any desired endpoint (Ej).

Without having to explain the details, execution now proceeds by following the
N-T or T-N transitions from the model-SEC using conventional inverse kinematics
for the Katana arm by vector addition of all motion segments until the sequence of
motion segments has been consumed.

It is important to note the the robot has now immediately also a means to check
whether the outcome of its actions are correct. After each movement of the arm, the
machine needs to check the resulting relational changes between the image segments.
These should match the changes in the model-SEC (see Chapter 4 for an example).
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2.10.6 Simulation Results

We let the agent realize the pushing action considering the learned model-SEC, and
the motion segments as defined above. Fig. 2.20 (a-c) show how the robot arm pushes
the red box to the green box even if the object locations are different. In Fig. 2.20 (d-e)
we used a red sphere and a bigger red box as pushable objects. In such cases the robot
arm can still execute the manipulation. In Fig. 2.20 (f) a red cone and one more blue
sphere were used. Finally, the robot arm chose and pushed the red conic to the big-
ger green box. All those simulation results, with corresponding depth, segment, and
graph representations, can be found at http://www.dpi.physik.uni-goettingen.
de/~eaksoye/movies.html (See Appendix A.3). Finally we performed a self-check
and Fig. 2.21 shows the SEC obtained from the last execution example in Fig. 2.20,
which is very similar to the model-SEC by which the robot can accept its own exe-
cution as correct. This is true for all executed examples.

These results show that with such a semantic representation the agent can learn
and imitate a pushing manipulation independent of object shapes and positions.

N & & & H'a'aa a =

Figure 2.20: Ezecution results. (a-c) Robot arm pushes the red boz to the green box
even if the object locations are different. (d-e) A red sphere and a bigger red box are
used as pushable objects. (f) A red cone is used as a pushable object and one more
blue sphere is added in the scene.
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Figure 2.21: SEC obtained from execution of the last example in Fig. 2.20.

2.11 Discussion

In this chapter, we have introduced a novel representation for manipulations, called
the semantic event chain, which focuses on the relations between objects (including
hands) in a scene. The representation generates column vectors in a matrix where
every transition between neighboring vectors can be interpreted as an action rule (key
frame), which defines which object relations have changed in the scene. Hence, event
chains reach a rather high level of abstraction, but on the other hand, they remain
tightly linked to the images from which they originate, because they rely on con-
tinuously tracked segments. We have devised simple algorithms based on sub-string
comparisons and counting procedures by which event chains can be compared and
actions as well as segments can be classified in an unsupervised way. No prior object
models are required in this approach and learning of archetypal event chains (model-
SECs) from demonstrations relies only on weight upgrade of consistently repeating
rows (spatial relations) and columns (repeating rules). Apart from the demonstration
no other supervision is needed in this step, hence SECs are learned in a model-free
way. The learned SECs are further enriched by determining the movement segments
by which the manipulation can be executed regardless of the configuration of the
objects in a scene. Execution phase can then follow the enriched SEC rules and the
robot can test its own success by checking the SEC, which results from execution,
against the model-SEC.

The work presented in this chapter is, to our knowledge, the first approach which
reaches an abstract symbolic representation for manipulation recognition, learning,
and execution while being fully grounded in the signal domain. One of the advantages
comes with SECs is that each column of a SEC can be interpreted as a state that
defines motor primitives. Therefore, we can conclude that SECs do not include any
hidden state which is the most important difference from other conventional proba-
bilistic methods such as hidden Markov models.

We also emphasize that no object recognition was used in our approach. Graph
nodes, in other words image segments, are invariant to object type and appearance.
SECs relate the objects only with performed actions. As a consequence of that,
objects can be categorized based on their roles in actions. For instance, the agent can
relate a pen with both writing and piercing actions and thus can further use the pen
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not only to write something but also to make a hole in a paper due to its sharp tip.
This is an important achievement in the sense of object affordances first defined by
Gibson (1977).

The procedure of encoding only the relational changes without depending on the
segment shape makes SECs invariant to perspective changes as long as the visual
entities (i.e. image segments) are visible. The confusion matrix given in Fig. 2.16
supports this claim since it shows high similarity values between perspectively differ-
ent versions of the same pushing action. It is also important to note that such visual
entities can be detected by any kind of continuous tracking system. This makes SECs
compatible also with other front-ends.

We are aware of the fact that the algorithm uses some simplifications and thus
has some drawbacks such as our approach highly depends on conventional computer
vision techniques. Therefore, any failure in the tracking procedure would harm our
approach. Other than that, objects can be over-segmented which causes many sub-
graphs that have to be analyzed separately. However, this cannot be solved in the
low level signal domain since we have no object model-based assumption that can be
used as ground truth for segmentation. An extra high level reasoning method needs
to be used.

Moreover, during the execution phase, no object dynamics or pose estimations are
considered. Due to this fact, in some cases it was observed that the object could not
be pushed in the desired direction, because of wrong object and/or gripper poses and
the frictional restrictions both on the background and object surface. However, such
additional required information can also be attached to SECs during demonstrations.

All this notwithstanding, our proposed execution procedure can be macronized for
all dual-object manipulations. In a very abbreviated form, the instructions for such a
macro would read:

1. Identify prime mover.

2. Identify first touched object by first N-T transition and set coordinate origin.

3. Define first motion segment.

4. (Extract relative poses between prime mover and first object, if needed).

5. Identify second touched object and fix connection vector and coordinate system.

6. Define second motion segment for second N-T transition relative to this coordinate
system. (For pushing do this by cross-sectioning with object borders).

7. (Extract relative poses between objects involved, if needed).

8. Define third motion segment (home).
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Such a macro can be enriched by adding pose information from a pose estima-
tion algorithm where required. This would be needed for a pick&place manipulation
(which is also a dual object manipulation), where the final resulting relative pose of
the two combined objects is most of the time important. Aspects of grasping an ob-
ject (e.g. grasp preparation and the performing of a grasp) are not considered at all
in this framework. Grasping is a very difficult technical problem but for manipulation
actions it takes usually just a preparatory role. We do not wish to downgrade the
importance of this role but the actual outcome of the manipulation is in most cases
only in a secondary way affected by the way an object is grasped. Clearly, if the grasp
is totally unsuitable, a pick&place action will fail. But these considerations must be
taken into account before the first N-T transition in the SEC and are not part of this

paper.



Statistics on Semantic Event Chains

In real experiments we observed that SECs can contain not only noisy indexes but
also extra noisy rows and/or columns due to noisy segmentation. Case study I and
II given in chapter 4 provide some examples for real noisy SECs. Therefore, the
algorithms used for analyzing SECs have to be robust against noise. In this chapter,
we discuss some statistical results on the robustness of such algorithms. The chapter
contains two sections: First, we test how stable the proposed algorithms used for
action classification, object categorization, and learning of an archetypal SEC model
are, and then, we compare the robustness of the action classification algorithm with
neural networks in the second section. For this purpose, we create a seed SEC with
a certain size, which is then altered by adding noisy rows and columns and/or by
changing the indexes with a noisy one. By increasing the noise level in the seed, the
stability of the proposed algorithms are examined for different SEC sizes.

3.1 Analysis of the Similarity Measure

In chapter 2, we have shown that the similarity measure leads to action classification,
object categorization, and also learning of a SEC model (see step 5 in Fig. 2.2).
Therefore, the step of measuring the similarity plays the most crucial role in the
whole framework. In the first section of this chapter, we address the question of
how the similarity measure behaves when the degree of noise in SECs increases.
Furthermore, we analyze the effects of such behaviors on the action classification,
object categorization, and learning algorithms, separately.

To produce more data for statistics, we first create a seed SEC that encodes a
manipulation. Fig. 3.1 shows a sample seed SEC that holds spatial relations between
a hand, a table, and a box. For each element of the seed, we define a probability value
(p) which represents how likely the seed element will be changed to a dissimilar one
in order to introduce noise. The probability entries for the sample seed are shown in
Fig. 3.1. Such probability values are also defined for each row and column to introduce
additional noisy rows and columns as observed in real scenarios. Note that we let
the system add maximally one noisy row/column between each existing row /column.

47
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Figure 3.1: Producing noisy data for statistical analysis. For each element of the seed
a probability value (p) is defined. Such probability values are also used for introducing
additional noisy rows and columns. The p value is then varied from 0 to 1 with
the step of 0.1. At each noise level 100 SEC samples are produced, which are then
compared with the seed.

The p value is then varied from 0 to 1 with a step of 0.1. Fig. 3.1 depicts how the
noisy SECs look like at different noise levels. As expected, when p equals to 0, the
noisy SEC and the seed are identical. However, at the highest noise level (p = 1)
all elements of the seed are flipped and new noisy rows and columns (shown in red)
are added. At each noise level, 100 SEC samples are produced, each of which is then
compared with the seed by using the method given in step 5 in chapter 2.

In Fig. 3.2, the red curve shows the mean values with standard error means of all
100 similarity measures, each between the seed and one noisy sample, for the case
when we both flip the seed indexes and add noisy rows and columns to the seed given
in Fig. 3.1. It is obvious that the slope of the curve is changing dramatically around
p = 0.5 after which the similarity measure swings around 30%. The blue curve in
Fig. 3.2 indicates the mean similarity values for the case when we add only noisy
rows and columns without flipping the original SEC indexes. In this case, the results
are much more promising as the mean similarity value is still around 70% even at
noise level 0.8. Such high similarity values can be observed when p is only 0.2 in
the red curve. Those curves prove that the noisy rows and columns do not affect
the similarity algorithm significantly as long as the original SEC indexes remain the
same. Once the SEC indexes are flipped the similarity measure drops dramatically.
This is an important feature showing the importance of the original SEC indexes for
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Figure 3.2: Mean values of all 100 similarity measures, each for one sample, at dif-
ferent noise levels. The red curve is for the cases when we both flip the seed indezes
and add noisy rows and columns to the seed given in Fig. 3.1. The blue one is for the
case when we add only noisy rows and columns to the same seed. The vertical bars
show the standard error mean.

the similarity measurement algorithm.

It is important to note that the similarity measure never drops to 0 in both cases.
The reason is that, as the main algorithm given in step 5 in chapter 2 is searching
for the correspondences between rows of two SECs, because the rows of two type-
similar SECs can be shuffled, some incorrect matchings with low similarity values can
incidentally be calculated.

Fig. 3.2 illustrates behaviors of the similarity measures of a 3 x5 seed (see Fig. 3.1)
for two different noisy cases. Now, we would like to analyze the effects of such
behaviors on the action classification, object categorization, and learning issues in
detail. For this purpose, we created four different seeds with different sizes: 4 x 6,
5x7,6x8,and 8 x 8. Fig. 3.3 shows all those SEC seeds to get an impression of the
level of difference. For each seed, we produced 100 noisy samples at different noisy
levels by following the method illustrated in Fig. 3.1.

3.1.1 Effects on Action Classification

In step 6A in chapter 2, we have explained how the similarity measures between SECs
can be used for classifying actions. Fig. 2.7 in chapter 2 depicted that the minimum
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Figure 3.3: Four different seeds with different sizes: 4 X6, 5x 7, 6 x 8, and 8 x 8. For
each seed 100 noisy samples are created at each noisy level by following the method
Wllustrated in Fig. 3.1.

similarity value for type-similar actions was 64% for all four real action scenarios:
Moving Object, Making Sandwich, Filling Liquid, and Opening Book. Therefore, we
concluded that setting a threshold at 64% would be enough to distinguish action
classes. Considering this result, for further statistical analysis we can make an as-
sumption claims that similarity between type-similar actions should be above 64%
for a correct classification.

Fig. 3.4(a) illustrates the mean similarity values with standard error means be-
tween the four seeds defined in Fig. 3.3 and their noisy samples for the case when we
both flip the seed indexes and add more rows and columns to the seeds. The first
impression the figure conveys is that the similarity measure is invariant to SEC size,
since all four curves are exhibiting similar behaviors. This figure also demonstrates
that, according to the assumption above, classification above a noise rate of 0.2 can
not be achieved successfully due to low similarity values.

Fig. 3.4(b) indicates the mean similarity values between the same four seeds and
their noisy samples, but for the case when we add only noisy rows and columns without
flipping the original seed indexes. In such a case, classification is still applicable
around noise rate 0.6, which is much better than the previous case. One reason of
such high difference is that any change in the original SEC elements is interpreted as
being a different action representation, thus, compared to the size the original SEC
elements are more crucial in the process of similarity measurement. Another reason
is that noisy rows are eliminated once the correspondences between the shuffled rows
are calculated.

3.1.2 Effects on Object Categorization

In chapter 2, we have also discussed that in conjunction with action classification
the manipulated objects can be categorized based on their performed roles. Fig. 2.8
in chapter 2 illustrated how such a categorization looks like for four real scenarios:
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(b) For the case when we add only noisy rows and columns without
changing the original seed indezes.

Figure 3.4: Similarity behavior of four SEC seeds at different noise rates. The vertical
bars show the standard error mean.
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(b) For the case when we add only noisy rows and columns without chang-
ing the original seed indezes.

Figure 3.5: The mean value of the matched object numbers between the four SEC seeds
and their noisy samples. The vertical bars show the standard error mean.
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Mowving Object, Making Sandwich, Filling Liquid, and Opening Book.

Now, we would like to analyze how the object categorization results are changing
when we compare the noisy event chains with the original seeds. Fig. 3.5(a) depicts
the mean value of the matched object numbers between the seeds given in Fig. 3.3
and their noisy samples for the case when we both flip the seed indexes and add noisy
rows and columns to the seeds. For example, at noise level 0.2 approximately 80% of
the manipulated objects are correctly categorized, which means that one out of every
5 objects mismatched. This mismatching rate becomes more important when we note
that seeds in Fig. 3.3 have maximally 5 objects. This result actually supports the
assumption made for action classification above, such that once the similarity result
between actions drops to less than 64% (as observed at p = 0.2 in Fig. 3.4(a)) actions
can not be distinguished correctly as the manipulated objects are also starting to be
mismatched at the same noise rate (p = 0.2). Consequently, the noise rate 0.2 becomes
a critical point for both action classification and object categorization. Moreover, this
figure proves that sizes of seeds are not effective on object categorization as well, since
all curves in the figure exhibit similar behaviors.

Fig. 3.5(b) shows mean values of object matching results for the case when we
add only noisy rows and columns without flipping the original seed indexes. Here,
the results are better as observed in the action classification case, because the same
object matching rate (80%) occurs around the noise rate 0.6.

3.1.3 Effects on Learning

Another claim given in chapter 2 is that an archetypal SEC model can be learned
by considering repetitive rows and columns observed in the training data (see step 7
in chapter 2). It is now important to analyze how stable the learning algorithm is
while the noise rate is increasing. For this purpose, we used all 100 noisy event chain
samples, produced for each seed given in Fig. 3.3, as a training data set to render a
model SEC. Since each seed is the ground truth of its own model, we then compared
the learned model with its respective seed to calculate the deviation.

Fig. 3.6(a) shows similarity results between learned models and seeds for the noisy
case when we both flip the seed indexes and add more rows and columns to the seeds.
Due to being ground truth, 100% similarity is expected between seeds and models.
However, such high similarity measures can not be observed as shown in Fig. 3.6(a).
In the case of adding only noisy rows and columns without flipping the original seed
indexes, it is observed that the models can be correctly learned until the noise rate
0.4 as depicted in Fig. 3.6(b). As those two figures emphasize, the learning method is
more affected by flipped SEC indexes than by adding only noisy rows and columns.

In Fig. 3.7(a-b), three SEC models with corresponding row and column weight
values, learned at different noise levels (p = 0.1, p = 0.2, and p = 0.4), are shown for
two noisy cases. In the first case (see Fig. 3.7(a)), as the weight values are dramatically
decreasing some incorrect rows and columns are included, whereas in the second case



54 Chapter 3: Statistics on Semantic Event Chains

Mean Similarity Measure

201 b

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise Rate (p)

(a) For the case when we both change the original seed indexes and add noisy
rows and columns to the seeds.

100

801

701

60

501

Mean Similarity Measure

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise Rate (p)

(b) For the case when we add only noisy rows and columns without changing
the original seed indexes.

Figure 3.6: Similarity measures between learned SEC models and their original seeds.
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Figure 3.7: Learned SEC models with corresponding row and column weight values at
three different noise levels: p = 0.1, p = 0.2, and p = 0.4. (a) For the case when we
both flip the seed indexes and add noisy rows and columns to the seeds. (b) In the case
of adding only noisy rows and columns without changing the original seed indezes.

(see Fig. 3.7(b)) only weight values are slightly decreasing.

3.2 Comparison of Classification Algorithms

In the second section of this chapter, our intent is to focus on the action classification
algorithm and compare it with feed-forward backpropagation neural networks. We
start with a brief summary of neural networks and afterwards compare the classifica-
tion approaches.

3.2.1 Feed-Forward Backpropagation Neural Networks

A neural network is a combination of many artificial neurons each of which is a
mathematical model of a biological neuron. Neural networks generally have multiple
layers: input, hidden, and output layers. Dashed box in Fig. 3.8 shows how such a
multi-layer network looks like. Neurons in each layer are basically connected with the
one in the subsequent layer by a specific weight value which is used to calculate the
output of the network. In feed-forward networks, information is essentially flowing
forward from the input layer to the output layer without forming any loop. Such
networks use backpropagation (Rojas, 1996) as a supervised learning technique in
which some sets of inputs with desired outputs are fed to the network for training.
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The backpropagation method first calculates an error value by comparing the network
output with the desired output values, and then propagates the error back to the
network for updating the weights during the training phase. The network is mainly
trained with an iterative process until the error converges to a small value after which
the network is assumed to be learned. Each network iteration with the entire training
data set is called an epoch, and in each epoch the weights are adjusted with a variable,
so-called the learning rate, which defines how the new acquired information will be
combined with the previous one. Low learning rate, e.g. 0, would lead to ignoring
the new information and, thus, network learns nothing. Higher learning rates let the
network take the new acquired information into account. A comprehensive survey on
feed-forward backpropagation neural networks can be found in Nelson and Illingworth
(1991); Mitchell (1997).

After this brief introduction, we can now explain how to combine SECs with neu-
ral networks for the classification issue. We are, here, interested in the robustness of
the action classification algorithm, and therefore, to have more test data we create
four different 6 x 6 SEC seeds each representing one action type. As explained in
section 3.1, for each seed we provide 100 noisy samples at different noise levels. How-
ever, in this case we do not add any extra noisy rows or columns, but rather flip the
seed indexes. This is because the neural networks rely on a fixed-size feature vector
as an input. For efficient classification we create a multi-layer neural network with
two hidden layers, each with five neurons, and one output layer with four neurons,
each corresponding to one class type. Fig. 3.8 illustrates the complete neural network
and also mapping of a sample SEC matrix into a fixed-size feature vector.

Feature Vector

(2) Feedforward Backpropagation Neural Network

9 1

9 .

Sematic Event Chain 2 , —7 :
P o A\\v'!{c}\v(/ ; classy
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Figure 3.8: Feed-forward backpropagation neural network with two hidden layers. The
output layer has four neurons, each corresponding to one class type. SECs are con-
verted to a form of a vector form which is fed to the network as an input.
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3.2.2 Classification Results

The reliability of the classification algorithm is examined with those four action seeds
and with their noisy samples. The neural network depicted in Fig. 3.8 is trained
with 1000 epochs at the learning rate 0.5 with 400 noisy samples (100 for each seed),
created at the noise rate 0.1, by taking the desired output values into account. The
testing phase of the network is then realized with new 400 noisy samples produced at
different noise levels that vary from 0 to 1 with the step of 0.1. To correctly verify the
network output, a coding technique is used to convert the output to a binary form
by using the closest Euclidean distance. For instance, the network output with the
values of {0.1,0.2,0.8,0.5} is encoded as {0,0,1,0}.

The same training and testing data are used to evaluate the similarity-based clas-
sification algorithm explained in step 6A in chapter 2. In the training phase, a SEC
model for each seed is learned, which is then compared with the noisy test samples to
measure the similarities at each noise rate. The same coding technique is also used
here to convert the final similarity measures to a binary output form.

Fig. 3.9 (a-d) indicate the final comparison of the similarity-based and neural-
network-based classification algorithms for all four action seeds. In blue and red
bars are indicated the total numbers of true positive (T'P) and false positive (F'P)
calculated at different noise rates. In binary classification, T'P indicates the number
of relevant samples correctly retrieved as positive and F'P stands for the number of
irrelevant samples wrongly retrieved as positive. As depicted on the left in Fig. 3.9 (a)
for the first seed the number of T'P is still above 50% at the noise rate 0.5 in similarity-
based classification. However, in the case of neural-network-based classification, the
number of T'P is slightly less than the one in similarity-based classification, and even
less than the number of its own F'P at the same noise rate 0.5, as shown on the right
in Fig. 3.9 (a). When we take a look at the other three action classes, we observe that
the number of T'P is always above 80% even at the noise rate 0.3, and the rate of TP
versus F'P is getting lower only after the noise rate 0.6 in the case of similarity-based
classification (see left side in Fig. 3.9 (b-d)). In neural network results, such high
number of TP (80%) is mostly not observed after the noise rate 0.2, and in some
cases the number of F'P exceeds the number of T'P at the noise rate 0.5 (see right
side in Fig. 3.9 (b-d)).

To correctly measure the performance of classification algorithms, we calculate
the Precision and Recall values which are two popular metrics in machine learning.
Precision signifies the proportion of correctly predicted relevant samples (T'P) to
the total number of all retrieved samples. On the other hand, recall indicates the
rate of correctly retrieved relevant samples (7'P) to the total number of all relevant
items. Precision versus recall (PR) graphs finally represent retrieval effectiveness
of classification algorithms. In the PR graphs, the main goal is to be at the upper
right corner, such that the precision value is higher than the recall value. Further
information on information retrieval and PR graphs can be found in Witten and
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(d) Classification results for the fourth SEC seed.

Figure 3.9: Comparison of the similarity-based and neural-network-based classification
algorithms for all fourth SEC seeds. In blue and red bars are indicated the total
numbers of true positive (I'P) and false positive (FP) calculated at different noise
rates that vary from 0 to 1 with the step of 0.1.
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Figure 3.10: Precision versus Recall curves at the noise rates 0.1, 0.2, 0.3, and 0.4.
Red, green, blue, and black colors stand for the class types 1, 2, 3, and 4, respec-

tively. Solid and dashed lines are for the similarity-based and neural-network-based
classification algorithms, respectively.

Frank (2005); Davis and Goadrich (2006).

Fig. 3.10 depicts some sample PR curves of both similarity-based and neural-
network-based classifiers at noise rates 0.1, 0.2, 0.3, and 0.4. Each color (red, green,
blue, and black) here represents one of four class types, and solid and dashed lines
are for the similarity-based and neural-network-based algorithms, respectively. As
explained above an ideal PR curve should be at the upper right corner and this is
observed only at the noise rate 0.1 just in similarity-based method (solid lines). Once
the noise rate increases, curves of both methods deviate to the left bottom as the

number of F'Ps increases. Hence, after the noise rate 0.2 we do not generally observe

any significant difference between curves except for some class types (e.g. blue dashed
line deviates less).

Consequently, our experimental results show that there is no significant difference
between two classification algorithms. Although one algorithm performs slightly bet-
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ter for an action type at a specific noise rate, it is not consistently the same for all
other action types at other noise rates.

3.3 Discussion

In this chapter, some statistical results on the robustness of our proposed algorithms
for action classification, object categorization, and learning were highlighted. For
this, a seed SEC with a certain size was created and then was altered in two different
ways: (1) by adding noisy rows and columns and (2) by replacing original seed indexes
with a noisy one. As the noise level in the seed was increasing, we tested how the
similarity measure changed, how the classification, categorization, and learning issues
were affected, and especially how stable the classification algorithm was compared to
neural networks.

The first outcome of the experiments was that the mean similarity measure never
dropped to zero even all seed elements were flipped. This is because the similar-
ity algorithm searches for the maximum correspondences between each row of SECs.
Furthermore, experiments showed that the proposed classification and categorization
algorithms were invariant to the size of event chains. The main argument for this
conclusion is that the curves of seeds with different sizes exhibited quite similar be-
haviors as depicted in Fig. 3.4 and also in Fig. 3.5. These figures as well as Fig. 3.6
also proved that adding only noisy rows and columns had no dramatic affect on the
proposed algorithms as long as the original SEC elements remain the same. The
reason is that noisy rows and columns are automatically eliminated while the best
matching permutation between the shuffled rows is being calculated as explained in
step 5 in chapter 2.

The experimental results further showed that at the noise rate 0.2 approximately
20% of objects were mismatched as the similarity value between type-similar actions
was getting less than roughly 64%. This statistical result is actually consistent with
the one observed in four real action scenarios explained in step 6A in chapter 2.

Finally, and most importantly, we compared the proposed similarity-based action
classification algorithm with a feed-forward backpropagation neural network. The
most important drawback of using neural networks is that they need fixed-size feature
vectors as inputs. However, this makes the whole approach unrealistic since SECs can
contain noisy rows and columns and can also be in different sizes even for different
versions of the same actions as observed in most of real scenarios. On the other hand,
statistical results proved that similarity-based classifier had the advantage of being
able to cope with noisy rows and columns. Another downside of using such neural-
network-based approaches is the training phase for which a huge data set with desired
outputs is needed although they are quite fast and efficient. It is also important to
note that outputs of neural networks highly depend on the training phase. If networks
are not properly trained, results are bad. However, we have already shown that our
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proposed learning algorithm can render a model SEC even from 10 training samples
by considering repetitive rows and columns as explained in step 7 in chapter 2. Thus,
from the viewpoint of memory usage, using similarity-based classification algorithm
is more efficient.

Last but not least, in Fig. 3.9 (a-d) we analyzed the total number of TP and FP
in both classification methods at different noise rates. As an important finding, we
observed that the similarity-based classifier performed slightly better, because even
around the noise rate 0.3, which means 30% of all entries in the whole event chain are
flipped (which is quite a substantial deterioration of the original event chain!), the
number of T'P is approximately 80%. Performance measures (PR curves) of those
two classifiers also emphasized that there was no significant difference between two
approaches as both curves deviates almost by the same amount to the left bottom
while the noise rate was increasing.

Consequently, statistical results are indicating that our proposed similarity-based
classification algorithm is as robust as neural networks. In addition to this, we can
categorize objects in conjunction with action classification. This issue would need an
additional processing step in neural-network-based approaches, because correspon-
dences between objects are ignored while mapping SECs to feature vectors. The
possibility of executing actions directly from the learned SEC model can also be
counted as another advantage of using our proposed algorithms.



Applications

So far, we introduced a general concept for recognizing, learning, and executing ma-
nipulation actions by means of SECs and statistically analyzed robustness of the
whole algorithm. In this chapter, we highlight some basic application areas of se-
mantic graphs and event chains in the context of manipulation and scene analyses
in cognitive robotics. We, here, basically provide three different applications each of
which benefits from different aspects of the semantic graph representation. In the first
application (Case study I) we emphasize that an agent can recognize (in)correctness
of its own actions by trial and error even though the scene is rearranged with different
objects compared to the learned one. In Case study II we focus on how SECs of long
and complex chained manipulations structurally vary from one version to another in
a simulated environment to address the most crucial problems observed in real-world
patterns. The last application, Case study I, introduces a slightly new concept for
gardening with a cognitive system that analyzes plant development parameters by
means of enhanced scene graphs.

Note that Case study I given in this chapter was published in Aksoy et al. (2011a).
Main concepts introduced in Case study II and III are parts of European projects
IntellAct (http://www.intellact.eu) and GARNICS (http://www.garnics.eu),
respectively. Case study I was also introduced as a part of a patent (Worgotter
et al., 2012a).

4.1 Case Study I: Learning and Replaying an Ac-
tion Sequence

Artificial intelligence (Al) systems almost always follow logic rules structured as: pre-
condition, action, post-condition. Assessment of success of rule-execution requires
measuring the post-condition. Hence, such systems rely on Thorndike’s law of cause
and effect (Thorndike, 1911) and, traditionally, they were defined by their program-
mers. Thus, it is difficult to find ways for an agent to learn cause-effect rules by
itself (without explicit interference of a supervisor, see “grounding problem”, (Har-
nad, 1990)). Furthermore, especially in complex situations, agents are faced with
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the problem of how to assess “effect” as many aspects of a situation might change
following an action (see “frame problem”, (McCarthy and Hayes, 1969)).

In the following we show results of a system that allows learning the rules of
an action sequence without explicit supervision and then executing actions in a sce-
nario self-assessing “action-effects”. Both processes rely on the event chains and the
agent can without any pre-defined rule set learn the sequence and then assess the
(in)correctness of its actions just by comparing the resulting chains. Condensation
into event chains thus helps solving the grounding- as well as the frame problem.

Our robot system is quite simple, consisting of a 3 DOF arm with magnetic gripper
(Neurorobotics, Sussex). Thus, we used “pushing” as well as “pick-and-place” as
action repertoire. To generate trajectories we used predefined dynamic movement
primitives (Ijspeert et al., 2002; Kulvicius et al., 2012) and trajectory start- and end-
points (for touching) were visually pre-defined and transferred onto the robot via a
standard inverse kinematics procedure (no servoeing). Motion generation and control
are not in the focus of this study, therefore we kept this simple here (for an advanced
treatment of these aspects see Kulvicius et al. (2012)). Objects for pick-and-place
were magnetic.

The desired action sequence was first demonstrated by a human. Fig. 4.1 (a-b)
(blue frame) show sample frames of the action sequence in which a hand is “pushing”
a lid off a container and then “picking-and-placing” a ball inside. We assume that
the event chains of this action sequence is learned by our system as explained in 2.9
in chapter 2. It can be broken into two sub-chains and the final result is shown in
Fig 4.2 (a,b).

In the next step we confront the robot with a scene, provide it with a possible set
of motion-trajectory start points, and let the robot randomly try out pushing and
pick-and-place actions. Fig. 4.1 (c-f)(red frame) show a subset of the different types
of actions the robot has tried out (many more were performed but cannot be shown
here). The blue tip of the robot arm is visible in the images. Note, objects are usually
different from the ones used by the human. In Fig. 4.1 (c¢) the robot is only pushing a
lid but does not continue with pick&place. In (d) a black ball is pushed. Fig. 4.1 (e)
shows how the robot picks up a ball and then drops it on the table. Panel (f) represents
an action where the robot is taking the ball from a container and places it on the
table. All these examples do not (or only incompletely in (¢)) reproduce the observed
action sequence. Fig 4.1 (g-h) (green frame) show the correct action sequence which
at some point was also executed by the robot. All movies used in this experiment
can be found at www.dpi.physik.uni-goettingen.de/~eaksoye/movies.html (See
Appendix A.3).

Corresponding event chains of all those action sequences are given in Fig 4.2. Due
to different noise sources (in tracking, segmentation or depth information) the sizes
of individual event chains can vary considerably. Still, as discussed in chapters 2 and
3, individual chains contain the relevant information, which is not harmed by noise-
induced rows and columns. As a consequence, even very different looking event chains
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Figure 4.1: Action sequence of (a) pushing a lid off a container and then (b) putting
a ball inside demonstrated by a human (blue frame). Different types of robot actions
(red frame). (c) pushing a lid, (d) pushing a ball, (e) lifting a ball and dropping it on
the table, (f) taking the ball from a container and putting it on the table. The green
frame shows a robot action sequence similar to the one performed by the human, in
which (g) a lid is first pushed off and then (h) a ball is placed inside a container.

can be robustly compared to the learned models (a,b) using the described similarity
algorithm in chapter 2. Figure labels (a-h) in Fig. 4.1 correspond to those in Fig. 4.2.
Colored boxes in Fig. 4.2 show rows with high similarities. This occurs for panel
(c) and (g), which are similar to (a), as well as for (h), which is similar to (b). A
similarity table is shown in Fig. 4.2 (i). It shows that manipulation (c) is similar to
the learned pushing model (a). The same is true for manipulation (g), which both are
above 60% similarity. Only manipulation (h) is similar to the pick and place-inside
model (b) with 75% similarity. Sequence (g-h) of both manipulations following each
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Figure 4.2: Corresponding event chains of human demonstrated actions and different
types of robot actions. The numbers 0, 1, 2, and 9 in SECs stand for Non-touching,
Overlapping, Touching, and Absence, respectively. Labels (a-h) correspond to the
manipulations shown in Fig 4.1 (a-h). (a,b) Event chain model extracted from human
demonstration of (a) “pushing” as well as (b) “pick-and-place-inside”. (c-f) Event
chains corresponding to the wrong or incomplete actions in Fig 4.1 (c-f, red frame).
(g9,h) Event chains corresponding to the correct sequence in Fig 4.1 (g,h, green frame).
(i) Similarity table between all actions the robot has tried (c-h) and the learned models
(a,b) demonstrated by the human.

other is, thus, correctly recognized as being the one that reproduces the complete
learned model (a-b).

Consequently, this case study is indeed a simple set of examples, however, it
demonstrates that by using SECs recognition of manipulations is possible for a robot.
The main achievement, we believe, lies here in the very high level of abstraction,
which allows the robot to recognize (in)correctness of its actions without any super-
vision even when objects and their arrangements are very different in the different
scenes. Moreover, the robot can successfully derive the correspondences between ma-
nipulated objects used in different scenes by considering only their roles as explained
in chapter 2. For instance, the red container and black lid used in human demonstra-
tion (see Fig. 4.1 (a-b) (blue frame)) correspond to the black container and red lid
that the robot tried with (see Fig 4.1 (g-h) (green frame)).
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4.2 Case Study II: Semantic Observation and Exe-
cution of Manipulations

An intelligent way of imitating human behaviors requires parsing human action prim-
itives and transferring them to a robot in a semantic manner. Therefore, the agent
needs to be controlled from the signal (image) level to the semantic level by con-
sidering object-action relations that potentially change during manipulations. Our
intent, in this section, is to address the problem of semantic decomposing of human
actions in conjunction with manipulated objects to be able to reproduce actions with
robots. This case study is implemented as a part of the European project IntellAct
(http://www.intellact.eu) which mainly concentrates on two types of application
scenarios (so-called LABEX (Laboratory Experiment) and AUTAS (Automated As-
sembly)) in which actions need to be monitored and reproduced by a virtual-reality-
enhanced simulation as well as by physical robots. The main reason of using the vir-
tual simulation is that scene graphs can be acquired with less noise compared to those
from real segmented scenes. Hence, simulated results can be used both to derive more
accurate learning policy and to address the most crucial vision-based problems ob-
served in real-world patterns. The first proposed scenario, i.e. LABEX, is more about
monitoring long and complex human manipulations for correctness, however, the sce-
nario AUTAS is more about teaching a cognitive robot how to assemble a benchmark
in an industrial context. In both scenarios SECs are used to bridge the gap between
signal and semantic levels. Note that all simulation experiments given in this section
are implemented with “projective virtual reality” provided by the Institute for Man-
Machine Interaction from the RWTH-Aachen (http://www.mmi.rwth-aachen.de).

4.2.1 Scenario 1: LABEX

In this scenario, we realize a scientific experiment in a laboratory environment. The
laboratory setup is chosen as having two cupboards (cupboard_left and cupboard_right)
with doors opening in different directions and two trays (tray-1 and tray_2) to carry
two different experiment containers (container_1 and container_2). The LABEX sce-
nario contains in total 13 different objects (including the hand, door handles, etc.)
and has three different versions in order to analyze structural deviations in a semantic
manner.

We start with virtual simulation of the scenario. First, simulated scenes are rep-
resented by graphs; nodes and edges of which represent objects and their 3D spatial
relations. The main difference between simulation and real experimental procedures is
that segmentation of a scene is not required in the simulation since each object is con-
structed by a predefined model. Thus, we can directly exclude common segmentation-
based vision problems. Moreover, in simulations, spatial relations between objects
are calculated by taking bounding boxes of each object into account. For instance, a
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graph edge appears in the case of having intersecting bounding boxes. Fig. 4.3 shows
some sample simulation frames with bounding boxes (depicted in yellow) of different
objects.

In all three LABEX scenarios, a hand is basically taking out trays with objects
from one cupboard and putting them back in another cupboard after replacing objects
on trays. However, for each replacement, cupboard doors need to be opened and
closed and trays need to be supported on a global pedestal to replace objects. In each
version of the scenario, actions are repeated in different orders. Fig. 4.4 depicts some
sample simulated frames with corresponding semantic graphs from the first version of
the scenario. Complete list of objects with their corresponding graph node numbers
is as follows:

Graph node 1: Hand , Graph node 8 :  Handle_right ,
Graph node 2:  Tray_1 , Graph node 9:  Cupboard_right |
Graph node 3: Pedestal , Graph node 10 : Container_1 ,
Graph node 4 :  Door_left | Graph node 11 : Container_2 ,
Graph node 5 : Handle_left , Graph node 12 :  Tray_2 ,

Graph node 6 :  Cupboard_left Graph node 13 :  Table .
Graph node 7: Door_right ,

Main action steps followed in this first version can be summarized as follows:

1. Open the door of the left cupboard (Open_left_door)

2. Take out the first tray and support it on a global pedestal (Take_out_tray_1)
3. Close the door of the left cupboard (Close_left_door)

4. Remove the first container (Remove_container-1)

5. Open the door of the left cupboard (Open_left_door)

6. Insert the first tray back into the left cupboard (Insert_tray_1)

7. Close the door of the left cupboard (Close_left_door)

-~
“'!' V.

Figure 4.3: Sample simulation frames from the LABEX scenario. Yellow lines repre-
sent the bounding boxes of surrounded objects.
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Figure 4.4: Sample simulated frames with corresponding semantic graphs from the
first version of the LABEX scenario. Although the scenario has in total 13 main
steps (see text), the hand basically repeats 6 different actions: Open, Take_out, Close,
Remowe, Insert, Put. Graph nodes from 1 to 13 correspond to Hand, Tray_1, Pedestal,
Door_left, Handle_left, Cupboard_left, Door_right, Handle_right, Cupboard_right, Con-
tainer_1, Container_2, Tray_2, and Table, in order.
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8. Open the door of the right cupboard (Open_right_door)

9. Take out the second tray and support it on a global pedestal (Take_out_tray-2)
10. Put the first container on the second tray (Put_container_1)
11. Remove the second container (Remove_container_2)
12. Insert the second tray back into the right cupboard (Insert_tray_2)

13. Close the door of the right cupboard (Close_right_door)

Despite of having in total 13 main steps, the hand basically repeats 6 different
actions: Open, Take_out, Close, Remove, Insert, and Put. Fig. 4.5 illustrates how
those 6 action types, shown in different colors, are embedded in the complete SEC of
the scenario. Although the scenario has 1391 frames, it is now encoded by a 25 x 57
matrix, rows and columns of which represent pairwise object relations (e.g. 1 and 0
stand for Touching and Non-touching) and motor primitives, respectively.
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Figure 4.5: Semantic event chain of the first version of the LABEX scenario. Fach ac-
tion type (Open, Take_out, Close, Remove, Insert, and Put) is depicted by a different
color. The rows are manually rearranged, and relational changes between graph nodes
are highlighted in red. 1 and 0 stand for Touching and Non-touching, respectively.
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In the SEC, each action type is actually encoded by a certain set of relational
changes which are highlighted in red. For the sake of simplicity, we manually rearrange
the rows, hence, it can easily be seen which objects, i.e. graph nodes, play roles in
which action types. For instance, during the first action Open_left_door, depicted in
green color, only graph node pairs 1-4, 1-5, 4-13, and 5-6 exhibit relational changes as
indicated in red, and all other pairs remain the same. The Open_left_door action, i.e.
first four columns of the SEC, corresponds to the first four graphs shown in Fig. 4.4.
In the SEC, the same relational changes, however, between different object pairs (1-
7, 1-8, and 8-9), are observed in the case of performing the action Open_right_door.
This is actually evidence of the fact that in a certain action always the same relational
changes are observed even though different objects are manipulated in different time
points. The same outcome is observed in other actions (7Take_out, Close, Remouve,
and Insert) as well. Note that as observed in the comparison of Open_left_door with
Open_right_door or of Insert_tray_1 with Insert_tray_2, some versions of an action type
might naturally include more relational changes due to involving more objects.

Now, we repeat the same actions in a different order and also add a new action
type to create a new version of the scenario LABEX. The main aim here is to point
out any structural change in the SEC in the case of changing action orders and of
including new action types. Fig. 4.6 shows some sample frames with respective scene
graphs from the second LABEX version. Main action steps of this second version is
as follows:

1. Open the door of the right cupboard (Open_right_door)
2. Take out the second tray and support it on a global pedestal (Take_out_tray-2)
3. Close the door of the right cupboard (Close_right_door)
4. Remove the second container (Remove_container_2)
5. Open the door of the right cupboard (Open_right_door)
6. Insert the second tray back into the right cupboard (Insert_tray_2)
7. Close the door of the right cupboard (Close_right_door)
8. Open the door of the left cupboard (Open_left_door)
9. Take out the first tray and support it on a global pedestal (Take_out_-tray-1)
10. Displace the first container (Displace_container_1)
11. Put the second container on the first tray (Put_container_2)
12. Insert the first tray back into the left cupboard (Insert_tray-1)

13. Close the door of the left cupboard (Close_left_door)
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Figure 4.6: Sample frames with corresponding scene graphs from the second version

of the LABEX scenario.
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When we compare the two versions, it is obvious that the hand, here, repeats the
action sequence starting from the right cupboard and ending with the left cupboard.
Moreover, instead of the action Remove_container_2 performed in the first version,
the hand executes a new action tagged as Displace_container_1. The SEC of the new
version, given in Fig. 4.7, finally exhibits the same structure. The main difference is, as
expected, the order of the graph node pairs since the action sequence starts the other
way around. The other difference is the new action type, i.e. Displace_container_1,
which appears in a new blue block in the SEC. This outcome concludes that SECs of
long action sequences remain structurally the same even if the sequence order varies.

In the third and last version we slightly change the sequence in a way that the
order is more shuffled and another new action, tagged as Replace_tray_1, is added.
Fig. 4.8 (a-b) illustrate some sample frames with respective scene graphs and SEC
from the last version. The SEC, here, encodes each action set in the same way as
observed in other versions. The main differences are again the sequence order and
existence of the new action.

So far, we have analyzed the scenario in the virtual reality (VR) domain. Next,
we would like to address basic problems which might occur in real laboratory exper-
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Figure 4.7: Semantic event chain of the second version of the LABEX scenario. A
new action type tagged as Displace_container_1 is added. The SEC exhibits the same
structure with the first version. The rows are manually rearranged, and relational
changes between graph nodes are highlighted in red. 1 and 0 stand for Touching and
Non-touching, respectively.
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(b) Semantic event chain. Action orders are shuffled and a

new action type tagged as Replace_tray_1 is added.

Figure 4.8: Some sample frames with corresponding scene graphs and SEC of the third

version of the LABEX scenario.
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iments. We can essentially assume that the VR data can be used as a ground truth
for the real data since simulation results are noiseless. Thus, we can easily see how
the semantic graph approach deviates due to problems in early vision.

Fig. 4.9 (a-b) show sample original frames with respective segments and scene
graphs from two different real LABEX experiments. In the first one, a hand is opening
a cupboard door, extracting a tray with an object, and then closing the door. In the
second one, the action sequence is repeated the other way around by starting from
the cupboard on the right. In the semantic graphs it is obviously seen that the scene
is now represented by more graph nodes which lead to dramatic changes in the graph
structure. Potential reasons for such structural changes can be summarized under
three different branches: (1) Domain fragmentation, (2) Object recognition, and (3)
Occlusion.

At the early stage of our vision system, we segment images based on super-
paramagnetic clustering of pixels considering color and depth cues (Papon et al.,
2012a; Abramov et al., 2012). In such clustering-based approaches large regions
might be represented by at least two different segments due to high attractive forces
between segments. Those artifacts are defined as domain fragmentation (Abramov
et al., 2012; Eckes and Vorbriiggen, 1996). It is also non-trivial to detect new upcom-
ing objects in early vision. Such new approaching objects are generally represented
by many segments as well. For instance, as shown in Fig. 4.9 (a-b) cupboard doors
and the cupboards’ insides, while doors are being opened, are represented by at least
two different graph nodes due to these two reasons. Our recent tests show that apply-
ing a longer relaxation process during the segmentation phase might overcome such
problems, however, the system then requires faster hardware to process the movies
still in real-time. Alternatively, a model-based object recognition approach could be
involved at this stage in order to detect sub-graphs (segments) and to merge them.
This process can highly simplify the scene for further calculations of respective SECs.
It is, here, important to note that so far the proposed algorithm did not make use
of any object recognition approach. Therefore, it requires high-level reasoning to
re-form segments.

Partial or full occlusion is another common non-trivial problem in video segmenta-
tion. Occlusion is the case when an object becomes (partially) invisible due to being
covered by another object. For instance, as shown in Fig. 4.9 (a), due to occlusion,
tracking of the blue global pedestal fails while the hand is putting the tray on top.
Most segmentation algorithms indeed suffer from occlusion problems since they make
use of only color and depth cues without any predictions for the next time point. Our
vision system is now being improved by means of particle filters which predict each
segment position even under occlusion and reinitialize the segmentation procedure
with those predictions (Papon et al., 2012b).

Note that all those proposed solutions for the respective problems are works in
progress. However, we can conclude that due to those three main reasons scene graphs
structurally deviate compared to the ones observed in the VR domain.
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(a) First version. Cupboards are represented by at least two different graph nodes. Due

to occlusion, tracking of the blue global pedestal fails while the hand is putting the tray
on top.

(b) Second version. Cupboard doors and cupboards insides are represented by at least
two different graph nodes.

Figure 4.9: Sample original frames with respective segments and scene graphs from
two different real LABEX experiments. Scene graphs include many sub-graphs and

are more complicated. Potential reasons are: (1) Domain fragmentation, (2) Object
recognition, and (3) Occlusion.
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4.2.2 Scenario 2: AUTAS

In the second scenario, we aim at teaching a cognitive robot how to assemble a
benchmark in an industrial context. For this purpose we use a standardized assembly
task, the so-called “Cranfield Benchmark” (Collins et al., 1984), on which the robot
first learns how to assemble different parts in a correct order and then executes the
complete manipulation sequence.

Fig. 4.10 depicts some sample steps from the assembly procedure of the Cranfield
benchmark. The complete assembly set includes two big face-plates, painted in green
and blue, and a black pendulum in between. A yellow shaft is additionally needed to
support the face-plates. The red and brown pegs with different shapes and sizes are
used to loosely connect all parts. Note that unlike the original benchmark, all parts
are here colorized to increase the accuracy in the early vision phase.

Since the complete assembly sequence is quite long and consists of similar repet-
itive sub-actions (e.g. hold, lift, and place), we can downgrade the whole task to a
fundamental action unit, a so-called “Peg in Hole” (PiH) action in which a hand is
basically holding a peg and then placing it in a hole. It is important to note that
although the PiH action seems to be simple, it is getting complicated due to pose
estimation. Unless the peg is held in a certain orientation with respect to the hole,
the action will not be executed successfully. Fig. 4.11 (a) illustrates the simulated
version of the PiH action with corresponding graphs. The respective SEC of this
version is given in Fig. 4.12 (a).

Different human demonstrations of the PiH action are shown in Fig. 4.11 (b-d).
Due to the same three problems, discussed in the scenario LABEX in the previous
subsection, segmented images include noisy elements which lead to extra nodes and/or
edges in the scene graphs. This side effect can obviously be observed as extra rows
and/or columns in the corresponding SECs given in Fig. 4.12 (b-d). Despite of having
such noisy cases, the essential SEC structure given in Fig. 4.12 (a) can still be observed
in all human demonstrations as illustrated with colored frames in Fig. 4.12 (b-d).
Note that similarity values between all human demonstrations (Fig. 4.12 (b-d)) and

X E"?i b4

Figure 4.10: The Cranfield Benchmark (Collins et al., 1984). The complete assembly
set includes two big face-plates, painted in green and blue, and a black pendulum in
between. A yellow shaft is additionally needed to support the face-plates. The red and
brown pegs are used to loosely connect all parts.
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&

(d) Two sequential human demonstrations with respective segments and scene graphs.

Figure 4.11: Virtual simulation and human demonstrations of the PiH action.
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the simulated one (Fig. 4.12 (a)) are measured as 100%.

In this scenario, it is aimed at learning a representative SEC model of the PiH
action from demonstrations to let a robot execute the action directly from the SEC
model. However, it is evident that the naked SEC representation is not enough for the
execution phase since it includes information neither on objects nor of their poses.
Therefore, an extra mid-level reasoning mechanism is needed right after the early
vision stage. This issue is currently work in progress and can be solved by means
of object modeling. Particularly, segments will be used to calculate the best object
models only at decisive temporal anchor points (SEC columns), so that computation-
ally expensive object recognition and pose estimation units can be realized efficiently.
Such additional model-based information will then be attached to the graph nodes
for the execution issue.

Consequently, those two scenarios explained in this case study clarify decomposi-
tion of long and complex actions with SECs by considering main perception problems
in the early vision phase. It is also emphasized that some parts of the execution issue
are works in progress.
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Figure 4.12: Corresponding SECs of virtual simulation and human demonstrated PiH
actions. Labels (a-d) correspond to PiH actions shown in Fig. /.11 (a-d). Despite of
having noisy row/columns, (a) the essential SEC structure calculated from VR data
can now be observed in (b-d) all human demonstrations as illustrated with colored
frames. On the right of each SEC graph node and object correspondences are given.
Note that similarity values between all human demonstrations (b-d) and the simulated
one (a) are measured as 100%.
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4.3 Case Study III: Plant Growth Measurement
System

Scene graphs, explained so far, essentially encode object action relations in a more
abstract way. This last case study highlights how an agent can enhance scene graphs
in a way that each graph node becomes more descriptive for the perception phase.
In this sense, we introduce a cognitive gardening system that analyzes development
parameters of plants by means of enhanced semantic scene graphs.

Plants are living organisms and exhibiting slow behavioral changes over time. The
complexity of a plant structure increases proportionally during development even
in the case of restricted parametric treatments (e.g., changing only watering and
lighting conditions) and any change in the parametric space has a delayed effect
on the plant growth. In this case study, we address the problem of sensing and
controlling plant growth parameters by ways of semantic scene graphs for a cognitive
robot-plant interaction. For this purpose, semantic plant graphs are enriched with
a simple leaf model which shows behavioral changes like in size, color and mobility
with respect to the applied treatments. Such changes are used to monitor the plant
behavior and to learn the most appropriate action sequence (e.g, first water then
apply more light) for an optimal plant growth. This case study is a part of the
European project GARNICS (http://www.garnics.eu) and also described as a part
of a patent (Worgotter et al., 2012a). Note that all plant experiments including image
acquisition steps given in this section are provided by the Forschungszentrum Juelich
GmbH (http://fz-juelich.de).

4.3.1 Tracking of Plant Graphs

Our main intent is to get the control over the plant development parameters, such
as grow rate, in order to minimize and/or optimize water, nutrients, and light re-
quirements. Size and color distribution of plant leaves are important cues to monitor
the lack of such requirements. However, in the case of occlusion it is non-trivial to
track all leaves separately and estimate the actual plant grow rate. This is because all
leaves have almost the same color distribution and are weakly textured, except for the
vein structure. Fig. 4.14 (a-b) show a sample stereo image of a tobacco plant, leaves
of which are weakly textured, partly occluded, and have the same color distribution.

To track each leaf separately and drive accurate plant development parameters
we apply our segmentation algorithm and enrich the 3D graphs with ellipse mod-

Segmentation Dense

Disparity Map

Stereo

Sequence »| Plant Graphs || Edge Detection | Outlier Removal -»| Ellipse Fitting

Tracking

Figure 4.13: Block diagram of the algorithm
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(f)

Figure 4.14: Leaf modeling for a tobacco plant. (a) Original left image. (b) Original
right image. (c) Extracted segments for the left image. (d) The dense disparity map
obtained for extracted stereo segments. The disparity values are color-coded from blue
(small) to red (large). (e) Extracted plant graph. (f) Extracted edge points for the
graph nodes 28 and 26. (g) Edge points after removing the occluded ones and outliers.
(h) Fitted ellipses and graphs.

els by taking the dense disparity maps driven from stereo segments into account.
Fig. 4.13 shows the block diagram of the complete modeling approach. Fig. 4.14
(c-e) depict how the corresponding segments, dense disparity map, and graph of the
sample tobacco image look like. Dense disparity map is the representation of pixel
correspondences required for the depth perception. Once graphs are extracted, we fit
a simple ellipse model to each graph node. For this purpose, we first retrieve only
the extreme outer edges of each segment and then ignore those that are occluded and
outliers. Occlusion information of an edge point is easily calculated by comparing its
dense disparity value with the ones belonging to the neighboring pixels. Outliers are
detected by considering the history information of ellipses. Fig. 4.14 (f-g) illustrate
the detected edge points as well as the smoothed ones after removing the occluded
points and outliers for the graph nodes 23 and 26. Finally, ellipses are fitted to those
edge point clouds with the Least Square technique. Fig. 4.14 (h) shows how ellipses
for all graph nodes are fitted.

4.3.2 Leaf Modeling

As tobacco plant leaves used in our experiments are more like ellipsoidal, we represent
each leaf with a simple ellipse model. In the regression process, we fit an ellipse to IV
edge points (x;,y;), i € [1,---, N]. A general ellipse equation is

T;—xc) cos b i —Yec)sin 6 T;—xc)sin0—(y; —yc) cos O
(( ) ;r(y Ye) )2+(( ) h(y Ye) )2:1 7 (4.1)
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where z. and y. are the center coordinates of the ellipse, 6 is the tilt angle, and
w and h are the lengths of the minor and major semiaxes (width and height) of the
ellipse in the x and y directions, respectively. The fitting error of each point can be
calculated as

T;—c)cosb i—Yc ) sin 6 T;—xc)sin0—(y;—yc) cos 0
€lrims) = 1— (( ) :g(y Ye) )2 _ (( ) h(y Ye) )2 _ (4.2)

In the Least Square technique, to calculate ellipse parameters z., y., 6, w, and h
we minimize the total fitting error as

N

€total = Z[E(zi,yi)]Q . (43)

=1

Although the least squares is a fast and commonly used technique, it is not resis-
tant to outliers, i.e. noisy edge points. As an alternative, iterative-based ellipse fitting
algorithm, like random sample consensus (RANSAC) (Fischler and Bolles, 1981), can
also be used since it detects the outliers. However, RANSAC is a computationally
expensive and non-deterministic approach, as it can converge to an optimum solution
with a certain probability which increases proportionally to the number of iterations.
Therefore, in addition to the least squares we apply a cheap preprocessing step which
takes the previous history information of ellipses into account to detect outliers. In
the preprocessing step, for instance at frame number ¢, the ellipse model Ef of a graph
node j is computed by first calculating the absolute fitting error |e(, .| of each edge
point (z;,y;) according to the previously calculated ellipse model Eg_l. The points
with high fitting error, compared to a predefined threshold value, are counted as
outliers. The Least Square technique is finally applied only to inliers, thus, the to-
tal fitting error (€;q;) is much more minimized. Note that for the new appearing
segments the preprocessing step is ignored as there is no history data.

The preprocessing step is playing a more important role in the case of merged leaf
segments. Since our segmentation algorithm is based on color cues and all leaves have
almost the same color distribution, segments of neighbor leaves are more likely to be
merged. This is a crucial drawback of such a color-based segmentation algorithm as
the graph tracking phase can consequently fail. Fig. 4.15 (a-b) show a plant image
sequence, segments of which are merged and as a consequence graph node number 29
is wrongly tracked. However, in the preprocessing step edges of the new appearing leaf
are detected as outliers, and as the number of those outliers increases continuously
from frame to frame, we fit a new ellipse to outliers. Fig. 4.15 (c) depicts the final
fitted ellipses for the merged leaf segments.
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Figure 4.15: Plant sequence with merged leaf segments. (a) Original image sequence.
(b) Extracted segments with corresponding graphs. Two different leaves are repre-
sented by the same segment given in green, thus, tracking of the graph node number
29 fails. (c) Fitted ellipses. In the preprocessing step edges of the new appearing leaf
are detected as outliers and as the number of outliers increase from frame to frame a
new ellipse shown in white is fitted to outliers.

4.3.3 Extracting Measurement Parameters from Graphs

We applied the proposed graph tracking and leaf modeling algorithm to a tobacco
plant sequence which is first a seedling, then growing into a mature plant, and finally
wilting due to lack of water. Fig. 4.16 shows original plant images and corresponding
segments together with extracted graphs and fitted ellipses. Graphs are continuously
tracked and enriched with ellipse parameters which are changing proportionally to
the leaves.

Now, in the perception phase we are able to measure plant development parame-
ters like size, color, and mobility directly from graphs. Fig. 4.17 illustrates changes in
the leaf size and mobility for the graph nodes 21, 23, 26, and 37 of the plant sequence
given in Fig. 4.16. In red and green are indicated the h (height) and w (width) pa-
rameters of the fitted ellipses. In blue we plot the final fitting error (eyfinq) which
correlates the total fitting error (€4;) With size parameters as by:

h
€final = Etotal(a)<h - w) . (44)

This is an important correlation to be considered as having less total fitting error
(€1otar) does not guarantee that the leaf is growing in a proper way. The relation
between h and w values of the fitted ellipse has to be constant as observed in healthy
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Figure 4.16: A tobacco plant sequence and corresponding segments together with ex-
tracted graphs and fitted ellipses. Graphs are continuously tracked and ellipse param-
eters are changing proportionally to the leaves.

plants. As shown in Fig. 4.17, the €y, value is quite low while the leaves are growing
healthily. After the frame number 600, due to lack of water the leaves start wilting.
Therefore, ellipses are elongated in the major axis plane and €4 is getting higher.
Note that the reason of having less increment of €y, in the graph node 26 (see
Fig. 4.17 (c)) is that the leaf size is not changing so dramatically as observed for the
others.

Not only the size but also the color distribution of the leaves is an important
parameter. We calculate the color histogram of each leaf over H (Hue) and S (Sat-
uration) channels in HSV color space and attach this to the respective graph node.
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Figure 4.17: Leaf mobilities for the graph nodes 21, 23, 26, and 37 of the plant
sequence given in Fig. 4.16. In red and green are indicated the height (h) and width
(w) parameters of the fitted ellipses. Final fitting error (€pina) s given in blue.
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Figure 4.18: The 2D 30 x 32 Hue-Saturation color histograms of graph node 21 at
different frames. Around frame number 600 the color histogram starts to change
gradually and after frame number 700 there is a certain amount of variation. Original
immages in Fig. 4.16 explicitly illustrate the color variation.
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Fig. 4.18 depicts HS color histograms of graph node 21 at different frames to give
an impression of the differences in the color domain. Channel H is quantized into 30
bins and channel S into 32 bins. It is obviously seen that around frame number 600
the color histogram starts to change gradually and after frame number 700 there is
a certain amount of variation. Original images in Fig. 4.16 explicitly illustrate this
color variation.

Consequently, semantic scene graphs can be enriched by attaching more informa-
tion, like model parameters, color histograms, or even leaf poses given by dense maps.
This is an important step since measured parameters from the plant graphs will serve
as inputs to the perception phase in which rules for an optimal plant growth can be
extracted and learned. This issue is currently work in progress. Model parameters
are also useful to rectify segmentation failures as observed in the merged leaf seg-
ments. In this sense, an additional feedback mechanism which sends a control signal
from scene graphs to the segmentation unit is needed, hence, segmentation of the
next frame can be initialized with the model parameters. Implementation of such a
feedback loop is also work in progress.

4.4 Discussion

In this chapter, we have mainly concentrated on three different application areas
of semantic graphs and event chains in the sense of manipulation and scene analy-
ses. Each application example emphasized different aspects of the semantic graph
representation in cognitive robotics.

In the very first application, a robot was introduced with a manipulation sequence,
first “pushing” and then “picking-and-placing”, SECs of which were stored as learned
models. The robot then tried out several manipulations in various orders even on
different objects and judged (in)correctness of its own actions just by comparing
the resulting event chains. We have seen that, because of having noisy sources like
segmentation or depth maps, extracted event chains had different sizes. However,
even in such cases the main similarity algorithm had a robust performance. This
essentially proves that the SECs can be used for unsupervised monitoring of actions
as well as categorization of manipulated objects.

In the second application, we basically highlighted early vision problems observed
in the semantic decomposing of long chained manipulations by taking simulation
results as reference. In the process of simulated manipulations, no structural variation
was observed even though sequence orders were being varied. This proves the stability
of SECs. In the semantic analyses of human demonstrated manipulations different
segmentation-based problems were addressed. Accuracy of segmentation algorithms
can not be evaluated since there is no ground truth for the final segments. As a
consequence of that, objects can in the end be over-segmented, such as cupboards
and global pedestal which were represented by at least two different graph nodes as
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shown in Fig. 4.9 (a-b). In order to detect such subgraphs and to merge them for
further SEC calculation, a model-based object recognition approach can be used.

The last application scenario made use of such a model-based approach for plant
images. A simple ellipse model was calculated for each leaf segment and stored at the
respective graph nodes. As an important finding we have observed that even such a
simple model was enough to rectify segmentation failures, e.g. the merging problem.
Therefore, advanced object modeling and graph enrichment with those models can
be used in the semantic analysis of human demonstrated manipulations as well. It
is important to note that an additional feedback mechanism is needed to initialize
segments of the next frame with the model parameters. Then, any observed error can
not propagate from frame to frame.
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Conclusion and Outlook

All previous chapters, explained so far, include their own “Discussion” sections in
which main findings with corresponding advantages and drawbacks are discussed. In
this chapter, we will first provide a brief summary of each chapter and then conclude
the thesis by comparing our framework with other approaches and presenting an
outlook for future investigations.

In this thesis, we presented a novel perception-action framework, the so-called “Se-
mantic Event Chain” (SEC), which bridges the signal (image sequences) to symbol
(manipulation primitives) gap by considering the spatiotemporal relations between
objects (including hands) in a scene. SECs make a cognitive agent capable of rec-
ognizing manipulations without requiring prior object knowledge and to categorize
manipulated objects solely based on their exhibited roles in a manipulation. Further-
more, using this the agent becomes capable of executing a manipulation directly from
an archetypical SEC model which is learned from demonstrated manipulation samples
and enriched with additional decisive information. To our knowledge, this is one of
the first works in which the extraction of object-manipulation relations have become
possible in a model-free way by arriving at a very high symbolic representational level
while being fully grounded in the signal domain.

In chapter 2, the complete framework was introduced comprehensively by ex-
plaining algorithmic steps illustrated in Fig. 2.2. In the very first step, an acquired
image sequence was segmented into unique regions to allow stable tracking during
the whole manipulation. However, we emphasized that the realization of this step
is not in the core of this thesis since it was mainly achieved by several means de-
scribed elsewhere (Abramov et al., 2012). Once the segments were extracted, in step
2, they were replaced by scene graphs, nodes and edges of which are segments and
their spatial relations such as touching or overlapping. The next step computed the
main graphs from the complete graph sequence by taking the eigenvalues of graphs
into account. Each main graph basically represents a decisive relational change be-
tween segments, i.e. a manipulation primitive. SECs were then created in a matrix
form at the fourth step by storing spatial relations between each graph node at each
main graph. Hence, SECs reach a high-level symbolic representation of the manip-
ulation while still being tightly linked to the signal level, i.e. image segments from
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which they originate. In step number 5, we introduced a two-step similarity mea-
sure algorithm based on sub-string comparisons and counting procedures in which
first the spatial relations (rows) and then temporal relations (columns) of SECs are
compared for both classifying manipulations and categorizing manipulated objects
in an unsupervised way. In step 6A and 6B, we applied the proposed algorithm to
four different real manipulation sequences of scenes containing limited context. Each
manipulation type had four different versions which differed in trajectories, speeds,
hand positions, and object shapes. The experimental results in Fig. 2.7 and Fig. 2.8
showed that the agent can classify all these manipulation types by measuring the
degree of similarity between the manipulation sequences and it can also categorize
the participating manipulated objects according to their roles in the manipulations.
The next step highlighted the learning mechanism in which all re-occurring rows and
columns in the demonstrated SEC samples are extracted. The learning phase was
evaluated with two types of manipulations and their mixed versions. The results in
Fig. 2.12 indicated that the learned SEC models can be detected in longer chained
manipulations even when manipulations are performed concurrently or sequentially.
The step number 8 in chapter 2 concluded the framework by introducing the execu-
tion phase. We showed how to enrich SECs by storing additional decisive information
such as relative coordinate frames and motion start and end points to generate ma-
nipulations directly from the learned SECs. Manipulation experiments in Fig. 2.20
showed that regardless of object shapes and positions the cognitive agent can gener-
ate the learned manipulation and simultaneously evaluate its own execution success
by comparing the learned SEC model with the one resulting from its own execution.

In chapter 3, we presented statistical experiments that serve to test the robust-
ness of action classification, object categorization, and learning phases in the face of
different types and levels of noise. All synthetic data produced in the third chapter
included not only noisy indexes but also noisy rows/columns which were sampled from
a uniform distribution in [0,1]. As an important finding, we observed that once the
original event chain remained the same. Adding noisy rows/columns did not change
the similarity measure dramatically. Furthermore, the classification algorithm was
compared with feed-forward backpropagation neural networks and we concluded that
the proposed similarity-based classification algorithm is as robust as neural nets in
the process of manipulation classification. Besides, we underlined that SECs are not
compatible with neural network-like algorithms which require fixed-size feature vec-
tors. It is because rows of SECs are not always in a certain order, i.e. they can be
shuffled, and also sizes of SECs are not predictable and can vary from one manip-
ulation to another. As a consequence of that, while SECs are being converted to a
fixed-size feature vector, object information is certainly lost and therefore, neural nets
can not succeed well with object categorization. Last but not least, statistical experi-
ments indicated that our unified manipulation classification and object categorization
algorithms are invariant to the size of SECs.

Chapter 4 highlighted three different application areas of scene graphs and SECs
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in the field of cognitive robotics. In the first application study, we demonstrated the
feasibility of the perception approach through experiments with a robotic arm. By
observation, the robot extracted the SEC of a human manipulation, and then repro-
duced the associated manipulation type in a new scenario via repeated experimenta-
tion. At each try, the robot evaluated the accuracy of its own action by comparing
event chains extracted from human demonstrations with the ones obtained from its
own execution. Hence, we showed how a cognitive agent can decide (in)correctness
of its own action by trial and error while manipulating different objects in a different
scene context. In the second application, we further analyzed the semantic perception
of long and complex chained manipulations both in Virtual Reality (VR) and real
domains. We basically addressed the early vision problems (e.g. domain fragmen-
tation, object recognition, and occlusion) which yield noisy graphs and thus noisy
event chains in real experiments. By taking VR simulations as ground-truth we con-
cluded that event chains of real experiments have structural variations due to such
early vision problems and this can be overcome by making use of model-based object
recognition algorithms. The last application scenario studied a cognitive gardener
which analyzes plant developments by means of enriched scene graphs. We showed
how plant graph nodes can be enriched with simple leaf models and additional visual
information like color histograms. We used leaf models not only to control plant
growth parameters but also to cope with low-level early vision problems, e.g. merged
leaf segments as depicted in Fig. 4.15.

5.1 Related Approaches

Our framework introduces the semantic event chain which is a novel representation
that seems to hold some promise for extracting action semantics and for regenerating
them. It directly encodes the observed manipulations without hidden states. As event
chains remain tightly linked to the image segments, they are more invariant with
respect to viewpoint changes and object features than most other approaches. This
however only holds if the used visual entities, here image segments, carry sufficient
meaning, i.e. representing parts of objects. As a consequence, the semantic event
chain is composed of action primitives, and no hidden model needs to be assumed
(e.g. Hidden Markov Model) as required in other works to bridge the gap between
signal and symbol (Ogawara et al., 2002; Raamana et al., 2007).

Similarities exist between our approach and the work by Sridhar et al. (2008),
who analyzed manipulations in the context of an artificial breakfast scenario and rep-
resented the whole image sequence by an activity graph which holds spatiotemporal
object interactions. By using statistical generalization, event classes are extracted
from the activity graphs. Object categories are learned by calculating the similar-
ity between object roles at each event class. However, large activity graphs and the
difficulty of finding exact graph isomorphisms are a major drawback of this method.
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Furthermore, compared to our work, execution of the perceived manipulations is not
covered in their framework.

Our approach is different from the one presented by Kjellstrom et al. (2011).
In our method, event chains are already highly invariant with respect to viewpoint
changes and object features because the relations between segments are of qualitative
character - e.g., touching is already a semantic description -, while in the work of
Kjellstrom et al. (2011) semantics only emerge at the last stage of the modeling pro-
cess. In their approach, manipulations are classified according to the segmented hand
poses and velocities. Manipulated objects are then searched for in the neighborhood
of the hand with a histogram of gradients and categorized with support vector ma-
chines. The correlation between manipulation and object features is extracted with
factorial conditional random fields which do not model the data generation process.
Although their framework to a certain extent improves classification of both objects
and manipulations with contextual dependencies, they cannot generate manipulations
after learning from demonstrations since manipulation primitives are not extracted.
Another limiting factor is that the framework needs fully labeled training data.

Scene graphs and event chains, introduced first in this thesis, have also been in-
terpreted and extended in different contexts (Luo et al., 2011; Griffith et al., 2011).
In Luo et al. (2011), the authors built a kernel-based vectorial representation of event
chains, which makes SECs more compatible with machine learning techniques. They
basically used a different segmentation-based tracking technique to produce scene
graphs and event chains. Spatial relations (rows) of the extracted event chains were
then converted into string kernels for the issue of action classification. The kernel-
based approach indicated improvements in the manipulation classification phase, how-
ever, object categorization and execution were not discussed in their framework. Grif-
fith et al. (2011) used scene graphs to analyze co-movement relationships between the
robot arm (manipulator) and (manipulated) objects. The graph nodes represent the
tracked features of manipulator and manipulated objects. Edges are created when
manipulator and manipulated object perform the same movements. As the arm ma-
nipulates objects, the graph structure changes with the movement patterns of the
tracked features. A statistical test is then used to determine when to delete or insert
graph edges. Finally, structural changes in the graph sequences are used as signatures
of manipulations to categorize objects. Using only two types of objects (containers
and non-containers) and working in off-line mode are the main drawbacks of this
algorithm.

5.2 Features and Problems of the SEC Framework

In this thesis, we do not perform any object recognition in the classical sense (see sec-
tion 1.4.4). Image segments used for finding the SECs are “beneath” the object level,
which means that an object may be composed of several segments. Nevertheless,
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during the manipulation recognition procedure, image segments emerge naturally
in conjunction with their associated action, providing a means to extract “action-
relevant” objects from the scene by recognizing the respective actions in the SECs.
This result is congruent with psychophysical evidence that humans recognize objects
more easily if they are embedded in a consistent action context (Helbig et al., 2010).
The SEC approach has the advantage that it is highly invariant to the object’s ap-
pearance and only takes into account the functionality of the object with respect to
a given set of actions (see Fig. 2.8). However, the rich information provided by the
object’s appearance in the image is ignored and thus the algorithm does not allow
recognizing objects without providing any action context.

To our knowledge, this study is one of the first to show that it is indeed possible
to treat objects and actions as conjoint entities as suggested by the abstract idea of
Object-Action Complexes (OACs) (see section 1.2). In our framework, objects are
being categorized always in the context of the performed manipulation and the rule-
character of the event chains was used to let an agent assess the success of its own
actions. These properties are closely related to the OAC concept. Thus, a complete
semantic event chain (together with its actions and objects) represents a chain of
OACs and can be understood as a category which groups objects and actions into the
cognitive concept of a manipulation. Thus, the here suggested framework provides,
to our knowledge, the first entry point to a grounded, agent-learnable cognitive cat-
egorization process of rather high complexity. In addition, it provides a link to the
symbolic, language domain because of its rule-like character.

As SECs extract certain relations between object and manipulations, the agent can
simply suggest and execute different combinations by changing object or manipulation
types, for example, using a glass instead of a cup for the drinking action. We are
currently experimenting with such scenarios in which agent is supposed to interchange
objects and manipulations.

Our perception-action framework heavily relies on the “segment permanence” (i.e.
reliable tracking) which is performed by advanced computer vision methods and we
are aware that failures in the computer vision can harm our approach. Clearly, on
the computer vision side improvements can be made to better assure this, but this is
not in the core of this thesis.

It is important to note that in the case of heavily textured objects, feature binding
based on color alone as employed in the segmentation framework will lead to a large
number of segments, i.e. objects will be highly fragmented. This may cause problems
to the tracking procedures (matching complexity) and thus will affect the quality
of the SECs in an undesirable way. The main problem is that there is no compre-
hensive and common description to define “textures” or “objects”, hence there is no
ground truth for the final segmentation of objects unless making use of object mod-
els. Therefore, we need an additional high level reasoning mechanism to detect and
classify segment-groups as objects. We are currently investigating potential solutions
to this problem.
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Nevertheless, probably the most important feature of the here presented frame-
work is that SECs do not rely on image segments as their input. Any continuously
trackable entity, as long as it is sufficiently close to the semantic level, hence also
object-models, can be used to design an event chain. Thus, while we still think that
image segments are in many ways useful, the event chain representation and its core
algorithms are transferable to other inputs too.

And last but not least, adults can robustly classify objects and actions using a
very high degree of invariance and generalization. To reach such a high classification
robustness in artificial systems we are currently creating a large ontology of manip-
ulation actions by taking SECs as reference (Worgotter et al., 2012b). This may
help to understand how manipulation actions are fundamentally structured in the
spatiotemporal domain.
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A.1 Defining Segment Relations in a Fast and Ef-
ficient Way
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Figure A.1: Calculating the spatial segment relations between background, two ves-
sels, and two contents which are represented by segment number 1, 2, 3, 4, and 5,
respectively.

As defined in the main text, possible spatial relations of each segment pair are
Touching=2, and Quverlapping=1, No Connection=0, and Absence=9. The process of
calculating those relations has two main steps. In the very first step the segmented
image is scanned horizontally (from left to right) and vertically (from top to down)
to calculate the existing segment sequences. Following the scanning process, all lines
(vertical+horizontal) are counted where a certain segment sequence has been observed
and are stored in a list

L: (il,ig,ig,...) — Nng

where ng is the number of all vertical and horizontal lines with the segment
sequence (g, 1,2, ...).

Fig. A.1 illustrates how the sequences between 5 different segments can be calcu-
lated, e.g. (1) and (1,2,1,3,1) are observed as 225 and 40 times, respectively.

The second main step analyzes the existing sequences to calculate the spatial
relations between segment pairs. For this purpose, each sequence is iterated by con-
sidering the following rules:

e “Touching”: Segments follow one right after the other in any sequence are
touching, e.g. segments 5 and 3 are touching each other in such sequences
(...,5,3,...) or (..., 3,5,...).
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e “Overlapping”: (i) If a segment is observed twice in a sequence, all segments
in between are overlapping with it, e.g. in (...,1,5,3,1,...) 5 and 3 are both
overlapped (surrounded) by 1. (ii) However, the inner segments are not over-
lapping with each other, e.g. in (..., 1,5,3,1,...) 5 cannot overlap with 3 because
it is not observed twice.

To each rule corresponds a counter of hints (either C; ; or C¢;). For each segment
pair, counters store number of hints that show the rules are fulfilled for each segment
pair as

e C}, — ny: Number of hints that ¢ and j are touching.
e C, — n,: Number of hints that ¢ is overlapping with j.

Note that C}; = Cj; since the Touching relation is undirected, whereas Cf; is
not symmetric.

Each sequence S is processed separately. Its elements are stored in a stack one
after another. When the next element 4, is stored, the first rule indicates that 7,, and
the previous element 7,,_; have the Touching relation. Since the current sequence has
been found multiple times in the image (given by L(S)), the touching entry (i,,—1, )
is incremented by L(S):

Ct

in—1,in

+=I(S) .

Ezample: The sequence S := (1,5,3,1) is analyzed by storing the first element
11 = 1 in the stack. Since there are always more than one element required for the
stack, the algorithm immediately skips to adding the next element i5 = 5. The first
rule indicates that the pair (1,5) has the Touching relation. As a result, Cf; is
increased by L(S) = 40. The same operations are applied to the pair (5,3) in the
next step.

To fulfill the second rule the stored element needs to be checked whether it is
already in the stack. In this case, the elements of the first occurrence i and i,, are
recognized as having the Owverlapping relation with i,,. Therefore, the corresponding
counter will be updated as follows:

C(i)n,j += L(S), \V/j € {’is+1, --win—l} .

FExample: In the same sequence given in the previous example the next element
i4 = 1 is added to the stack and C§73 is incremented by 40. Since i4 occurred earlier
(is = 41), all elements in between, hence iy = 5 and i3 = 3, C? 5 and C 3 are increased
by L(S) = 40.

The second rule also indicates that those inner elements j do not overlap with
each other, thus:

C,(;nyjm e L(S),an,jm € {is+1, ...,in_l}, n 7é m.



106 Appendiz A: Appendix

Ezample: Due to this rule, C§ 5 and Cg 3 are decreased by 40.

Next, the inner elements are removed from the sequence. This is important in cases
of having recursive overlapping situations to get Overlapping relations only between
neighbor segments. In Fig. A.1 segment pairs (1,2) and (2,4) have the Overlapping
relations, whereas (1,4) has No Connection.

Ezample: For the sequence S := (1,2,4,2,1), iy is added to the stack in the
fourth step. By considering the description given above, we compute Cj 4+ = L(S5)
and C§ ,+= L(S). The elements i3 and 4, are then removed from the stack, which
leads to (1,2). The algorithm is continuing by adding i5s = 1 to the stack and by
computing Cj,+ = L(S) and C{,+ = L(S) as described above. In the end it is
observed that segment pairs (2,4) and (1,2) have the Overlapping relation, however,
(1,4) has No Connection.

Once all sequences are iterated, the values in Cj ; and C; are used to compute the
final spatial relations of the segments. Note that some counter values might be wrong
due to noisy segments. Instead of defining a minimum value as a static threshold,
each entry is normalized first using the size of the corresponding segments:

o T
by mln(NZ,N])

where /V; is a list that stores the pixel size of segment i. Normalization considers
only the smaller segment that makes the algorithm robust against noise and accu-
rate for small segments. Note that C?; is also normalized in the same way. Each
normalized entry C!; and C{; is then thresholded. Unless C!; and CY; exceed the
thresholds, relations are set to No Connection.

The main advantage of the proposed algorithm is that each step explained above
can be calculated separately and hence can be parallelized.

Note, more complex 3D spatial segment relations (e.g. inside above, under, etc.)
directly relate to the overlapping and touching relations as only a third dimension
needs to be added. The following example makes this clear. Consider two 2D-
Overlapping cases: “lying on top” (e.g. two flat objects) or “being inside” (of one
smaller object inside a container). Both are 2D-identical in the sense of being an
overlapping-relation, but with adding 3D one could define new relations (“on-top”
and “inside”).
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A.2 The GraphML File Format

SECs are in the form of human interpretable tables, not a machine readable format,
and they do not encode object, trajectory, and pose information. To address these
aspects, we choose a different, second form of representation: XML-based GraphML
file format (Brandes et al., 2010). The basis of the GraphML file is the SEC, where
every key frame is encoded as one GraphML tag with more information. This repre-
sentation is thus more detailed and difficult to read for a human. On the other hand,
the GraphML code is machine compatible and can be used for automatic, computer-
based manipulation processes such as recognition and execution. Essentially, it is
identical to a SEC, just using a different type of encoding, but with the additional
possibility of supplementing object, pose, and trajectory information.

Fig. A.2 shows the GraphML code of the action given in Fig. 2.13 and 2.14 in
chapter 2, where a robot arm is pushing a red box to a green box on a table. Third
and fourth “Key Frames”, shown in detail in Fig. A.2, represent the instant when the
red and green boxes are touching each other, thus, the relation between the boxes
is changing from “NoConnection” to “Touching”. Additional object and trajectory
information (e.g. 3D segment positions) is attached in the GraphML code as node
attributes. Note that pose information is not given in the GraphML code since it was
not required in the pushing example.

<?xml version='1.0' encoding='UTF-8'?>

<GraphML>

<KeyFrame ID="4">

<KeyFrame ID="39">

<KeyFrame ID="53">
<Node pos_X="137" pos Y="45" pos Z="101" type="Robot Arm" id="76"/>
<Node pos_X="90" pos Y="50" pos_Z="152" type="Red Box" id="226"/>
<Node pos_X="72" pos_Y="77" pos_Z="178" type="Table" id="236"/>
<Node pos X="75" pos Y="98" pos 7="152" type="Green Box" id="248"/>
<Edge target="226" relation="Touching" source="76"/>
<Edge target="236" relation="NoConnection" source="76"/>
<Edge target="248" relation="NoConnection" source="76"/>
<Edge target="236" relation="Touching" source="226"/>
<Edge target="248" relation="NoConnection" source="226"/>
<Edge target="248" relation="Overlapping" source="236"/>
</KeyFrame>

<KeyFrame ID="63">
<Node pos_X="128" pos_Y="65" pos_Z="102" type="Robot Arm" id="76"/>
<Node pos_X="79" pos Y="71" pos_Z="146" type="Red Box" id="226"/>
<Node pos_X="74" pos_Y="74" pos_Z="178" type="Table" id="236"/>
<Node pos_X="74" pos_Y="99" pos_Z="152" type="Green Box" id="248"/>
<Edge target="226" relation="Touching" source="76"/>
<Edge target="236" relation="NoConnection" source="76"/>
<Edge target="248" relation="NoConnection" source="76"/>
<Edge target="236" relation="Touching" source="226"/>
<Edge target="248" relation="Touching" source="226"/>
<Edge target="248" relation="Touching" source="236"/>

</KeyFrame>

<KeyFrame ID="83">

<KeyFrame ID="117">

<KeyFrame ID="124">

</GraphML>

Figure A.2: GraphML code of the action given in Fig. 2.13 and 2.14 in chapter 2,
where a robot arm is pushing a red box to a green box on a table.
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A.3 Index of Multimedia Extensions

The multimedia extensions (see Table A.1) to this thesis are at: http://www.dpi.
physik.uni-goettingen.de/~eaksoye/movies.html.

Extension Type Description
1 Video Artificial Moving Object Actions
2 Video Four Different Real Action Types
3 Video Learning Data Set
4 Video Case Study
5 Video  Pushing Action Training Data
6 Video Pushing Action Test Data

Table A.1: Multimedia Extensions
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