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We propose a scheme for quantum information processing based on donor electron spins in semiconductors,
with an architecture complementary to the original Kane proposal. We show that a naïve implementation of
electron spin qubits provides only modest improvement over the Kane scheme, however through the introduc-
tion of global gate control we are able to take full advantage of the fast electron evolution timescales. We
estimate that the latent clock speed is 100–1000 times that of the nuclear spin quantum computer with the ratio
T2 /Tops approaching the 106 level.
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I. INTRODUCTION

The interest in constructing the components of a solid-
state quantum computer �QC� device where the logical qu-
bits are encoded by single donor spin1,2 or charge3 degrees of
freedom is largely based on the nexus to scalable fabrication
technology in the semiconductor industry. The nuclear spin
Kane QC,1 is of particular interest due to the relatively long
coherence timescale of P-donor nuclear spins, which bodes
well for qubit storage. On the other hand, simulations of
electron exchange mediated two-qubit logic gates in the
Kane scheme4–6 showed that the gate fidelity is limited pri-
marily by the electron coherence where the dephasing times-
cale was expected to be closer to the typical gate operation
time of O��s�. Recent measurements7 indicate that the co-
herence time for phosphorus donor electron spins in silicon
is considerably longer-greater than 60 ms at T=4 K. This
surprisingly long coherence time means that donor electron-
spin based quantum computers may be a more desirable goal
in terms of relative simplicity of qubit identification, readout,
and inherent gate speed.

Proposals for donor-electron spin quantum computing as
variations on the original Kane theme already exist. That of
Vrijen et al.2 based on g-factor engineering calls for the fab-
rication of complex heterostructures, and the ability to drag
the electron wave function into high-g regions without ion-
ization. The “digital” quantum computer concept8–10 relies
on the ability to coherently transport electron spins along the
Si–oxide interface using surface gates. The use of electron
spins in quantum dot systems has been considered several
times previously, for example, in GaAs systems11 and
SiuGe heterostructures.12 A phosphorous donor electron
QC based on the dipole interaction was proposed in Ref. 13.
A recent review of silicon quantum-computer architectures
can be found in Ref. 14.

Between the original Kane proposal and these two vari-
ants we present a new proposal for a solid-state quantum
computer where the qubits are also encoded on the spins of
Si:P donor electrons, yet retaining the relative simplicity of
the original Kane design. In this proposal we literally turn
the Kane donor based nuclear spin QC concept inside out

and couple it with new ideas for spin readout. The phos-
phorus donors now serve to localize the electron spins in
space, and to provide local qubit addressability through the
electron–nuclear hyperfine interaction. Contrary to the essen-
tial and rather complex role played by the nonlogical spins in
the Kane proposal—the electron spins—here the nuclear
spins are essentially frozen spectators. The donor electron
spin based quantum computer has potentially an inherently
faster clock speed than the nuclear spin version due to the
much larger magnetic moment. To fully access this is non-
trivial. By introducing new concepts in global control of spin
qubits and correction of spectator evolution, we show by
direct simulation that the inherent speed of the electron spin
timescales can be fully exploited. Single gate operations are
achieved with gate times down to tens of nanoseconds, com-
mensurate with the exchange based CNOT gate on the order
of 150 ns. We estimate that the electron spin donor QC will
have an inherent clock speed around 100 times that of the
nuclear spin QC, with T2 /Tops approaching 106 �see Table I�.
A summary of recent work on single donor electron spin
readout15–19 completes the proposal.

This paper is organized as follows. We introduce the no-
tion of effective single-spin gate operation through global
control supplemented by only weak local control, and cor-
rection of spin spectators in the nanosecond temporal arena
of fast electron spin dynamics. We contrast the gate speeds
achieved with the relatively slow canonical single-spin/

TABLE I. Table summarizing the relative timescales for locally
controlled nuclear �Ref. 5� and electron spin qubits compared to the
globally controlled electron spin case. For both nuclear and electron
spin qubits the effective dephasing time is taken to be the faster of
the two, T2�60 ms �Ref. 7�.

Qubit TX T2 /TX TCNOT T2 /TCNOT

n-spin 6 �s 104 16 �s 4�104

e-spin
�local control�

2 �s 3�104 O�10 �s� O�103�

e-spin
�global control�

30 ns 2�106 148 ns 6�105
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single-gate control paradigm, where the gate operation is
limited to the microsecond timescale. In the global control
using weak local control and correction paradigm we dem-
onstrate how �X, Y, Z, and Hadamard� single qubit opera-
tions, and the CNOT gate can be carried out, and provide the
actual timescales through numerical simulations. We then
discuss readout, scale-up issues and quantum error correc-
tion.

II. SINGLE QUBIT ROTATIONS

A. Qubit definition

The architecture of the basic donor electron spin qubit
with control gates and a resonant readout mechanism is
shown in Fig. 1. Single phosphorus nuclei play a primary
role as the localizing centres for donor electron spins which
encode quantum information in the canonical fashion as �0�
= �↓ � and �1�= �↑ �. To begin with, we analyze the dynamics
in the effective spin formalism for which the Hamiltonian for
the single qubit system in the absence of a rotating magnetic
field is

HQ = �BB�e
z − gn�nB�n

z + A�VA��e · �n, �1�

where B is the strength of the constant magnetic field, �z is
the Pauli Z matrix with subscripts e referring to electrons and
n referring to the nucleus and A�VA� is the strength of the
hyperfine interaction.

The hyperfine interaction between electron and nucleus is
controlled in the usual Stark-shift manner by varying the
bias, VA, on the A gate in order to deform the electron wave
function ��r ,VA� around the nucleus thereby changing the
hyperfine coupling A�VA� as A�VA�� ���0,VA��2.

It proves beneficial to restrict the Hilbert space of the
non-qubit spin: i.e., the nuclear spin space—in our case the
lowest energy state corresponding to the nuclear spin up. For
the Kane nuclear spin quantum computer the non-qubit elec-
tron spins were frozen out by through the large B=2 T back-
ground field leading to an relative electron spin-up/spin-
down polarization of 10−12 at 100 mK. Here the field serves
a similar purpose, but also relies on the extraordinary long
T1

�n��1 h of the donor nuclear spin. Since T1
�n� is much

longer than any other timescale in the system, the nuclear
spin once initialized in the up state �lowest energy state� is

for all intents and purposes predictably inert. The Kane con-
cept is thus turned inside out.

B. Single qubit Hamiltonian

We now describe the canonical method of controlling and
manipulate electron spins. In Sec. II C we will describe how
this method may be improved upon.

By biasing the A-gate correctly we are able to select the
qubit system �the targeted qubits�. In the canonical method,
the A-gate bias tunes the hyperfine interaction, bringing the
qubits into resonance with background rf field Bac and giving
us the ability to perform single qubit rotations as required. To
gain insight into the canonical control of the electron spin a
rf field of frequency �ac we write the single-spin electron
Hamiltonian as �assuming frozen nuclear dynamics in the up
state�:

HQ = ��BBz + A�VA���e
z + �BBac��e

x sin �act + �e
y cos �act� .

�2�

This turns out to be a good assumption for typical parameters
expected for the Kane architecture, as we show by numerical
simulation including both nuclei and electrons.

For an initial state �0� the well known Rabi solution gives
the probability of the electron being found in the state �1�
after time t as

P1�t� = ��BBac

�
	2

sin2��t

	
	 , �3�

where 
�=��A�−�ac is the detuning between the field
quanta and the resonant frequency of the qubit levels ��A�,
controlled by the hyperfine gate A�VA�. ��A�2

= ��BBac�2+	2�
��2 and the resonant frequency ��A� is
given to second order by

��A� = 2��BB + A +
A2

�BB + gn�nB
	 . �4�

In the canonical scheme, being able to perform single
qubit rotations is contingent on the ability to shift the elec-
tron spin in and out of resonance with the rf field. Calcula-
tions show that by applying a voltage to the A-gate, one can
effectively shift A.20 A natural state of operation is to tune the
frequency of the rotating magnetic field to the maximally
detuned state �ac=��0�. In the canonical scheme, when no
bias is applied to the A gates, A=A0, and each qubit is out of
resonance. When a bias voltage is applied, the qubits are
forced into resonance with the magnetic field.

In order for the canonical scheme to work, 
� must be
large compared to the full width half maximum �FWHM� of
the resonance to achieve fidelities at the 10−5 level. The
FWHM is given by 4�BBac /	. Clearly to locally control
spins using this method, we must reduce Bac at the expense
of gate operation time. For an error of P1�10−5 for the off
resonance qubits �i.e., those not taking part in the operation�
one requires Bac�10−5 T. This leads to a gate operation time
of 1.7 �s for the qubit being addressed. In Table I, this is
referred to as the locally controlled electron spin case.

There are several apparent problems with this canonical
single-gate scheme with an always on ac field. First, the mi-

FIG. 1. �Color online� Donor electron spin qubits in the Kane
configuration including A–J–A control gates, auxiliary readout do-
nors and SET readout.
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crosecond timescale is slow compared to the natural Z evo-
lution of the electron spins in the Bz=2 T field. Also, as a
result of this fast evolution, one must be able to tune the “A”
gate at the frequency of the Z evolution in order to optimize
the fidelity of the gates. While this might be possible, we
propose an alternative scheme exploiting global control
which takes full advantage of the fast timescales.

It is considerably simpler to understand the basic control
processes once we transform the single qubit Hamiltonian
into a frame rotating with the rf field. We thus make the
substitution

��� = exp� i�act

2
�e

z	��� , �5�

where ��� is the wave function in the stationary frame, and
��� is the wave function in the frame which rotates at the
same frequency as the field Bac. The Hamiltonian in the ro-
tating frame is

H̃Q = 	
��e
z + �BBac�e

x. �6�

The Hamiltonian given in Eq. �6� represents spin precession

or rotation around an axis in the n=	
�k̂+�BBacî direction.
In order to take full advantage of the fast timescales in the

system we consider an alternative approach for single qubit
rotations to the locally controlled case as we anticipate only
having limited control over ��A�. In this proposal we effec-
tively perform single qubit operations by rotating around the
x axis �when 
�=0� and around an axis which is slightly

rotated with respect to this axis described by H̃Q.

C. X rotations

In this section we describe the globally controlled qubit
operation in the context of an X rotation, by which we mean
a rotation around the x axis. To perform an X rotation, we
begin with the resonant magnetic field Bac tuned to the elec-
tron resonance obtained when no voltage is applied to the
corresponding A-gate �A=A0�, i.e.,

�ac = ��A0� . �7�

In the case when no voltage is applied to an A gate, electrons

will undergo a rotation around the x-axis n̂0= î, since

�=0. They will precess with an angular frequency of
�0=2�BBac. This is the natural frequency of rotation in the
system. In the absence of any external influences, every elec-
tron precesses at the same rate.

We now consider how to rotate one of the qubits �the
target qubit� with respect to the others �the spectator qubits�.
The speed of rotation of a detuned electron is greater than an
electron which is resonant with Bac; that is, ��A���0.
Therefore, if we detune an electron from the resonance, it
will perform a 2 rotation in less time than every other qubit

requires to do a 2 rotation around the î axis. In fact every
other qubit will undergo a rotation of

�x�A� = 2 −
2

��A�
�0 = 2 −

2


��BBac�2 + 	2�
��2
�BBac.

Since 
� is constrained, the maximum angle which may be
rotated in a single step is also constrained. By repeatedly
applying this operation and tuning the voltage on the A gate,
an X rotation by an arbitrary angle � may be constructed. It is
convenient to choose Bac such that any rotation up to �=
may be performed in a single step. This is possible for typi-
cal parameters when Bac�1.2�10−3 T. After this step, the
target qubit will not be rotated with respect to its original
state, but all the spectator qubits will have undergone a rota-
tion of Rx�−��.

The second step required is a correction that rotates every
qubit, both the target and spectator qubits, by Rx���. In this
step we bring every qubit in the system into resonance with
the magnetic field, and perform an equal X rotation on each
qubit. In the first step, each spectator qubit was rotated by
Rx�−��. In the second step everything is rotated by Rx���.
These angles cancel and therefore no net operation is per-
formed on the spectator qubits. The targeted qubit is effec-
tively not rotated at all by the first step. The second step
rotates the targeted qubit by Rx���. The targeted qubit there-
fore has an overall rotation of Rx���. The steps required for a
full X rotation are shown in Table II.

The overall time required for an X gate �i.e., Rx��� is
approximately tx=29.7 ns. Often a correction step can be
combined with other correction steps. Not including the cor-
rection step �Step 2�, the time required for an X gate is
around half this value at tx=14.8 ns. A numerical simulation
of this gate was calculated, and a typical evolution is shown
in Fig. 3, using the full Hamiltonian including both nuclear
and electronic spin.

D. Y rotations

To achieve a Y rotation, we make use of detuned rotations
around the axis:

TABLE II. Control steps in the single qubit X rotation showing
the operations effected on both target and spectator qubits.

Step Target qubit Spectator qubits
Time
�ns�

1 I Rx�−�� 14.8

2 Rx��� Rx��� 14.8

Overall Rx��� I 29.7

FIG. 2. Energy levels of the donor electron-nucleus system in a
magnetic field B and hyperfine coupling A. The notation is
�e

z =0,1 �logical qubit states� and �n
z = ↑ ,↓.
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n̂ = cos �î + sin �k̂ . �8�

Note, that we can tune the voltage on an A gate and therefore
A�VA� to produce an arbitrary angle ���max. The value of A
required may be calculated for an arbitrary angle �, because
we know that

tan � =

�

�BBac
. �9�

This equation allows us to solve for 
�, and therefore
A�VA�. The maximum angle which may be obtained is

tan �max =

�max

�BBac
. �10�

Now we consider rotations around this axis,

Rx��Rn��Rx��Rn��

= �cos �X − sin �Z��cos �X + sin �Z�

= cos 2�I − i sin 2�Y = Ry�4�� . �11�

We may apply Rx�� rotations in parallel on every qubit.
Rn�� rotations may be applied by detuning the target qubit.
This technique allows for arbitrary rotations on the target
qubit around the ĵ axis, up to a rotation of Ry�4�max�. For
rotations larger than this angle, one may simply repeat the
procedure.

After this operation is complete, a correction step may be
required. The target qubit will have undergone a rotation of
Ry�4�� and all spectators will have been rotated by an angle
Rx��� as they are in resonance with the magnetic field during
the entire operation. Therefore if the total time of the opera-
tion is t then �=2�BBt. To correct for this rotation an addi-
tional step is required. We rotate the each spectator by
Rx�−�� and effectively do nothing to the target qubit. This
step is identical to the first step when performing an X rota-
tion. Each step in this operation is shown in Table III.

For typical parameters expected for the Kane architecture
a rotation of Ry�� will take a total time of 89.0 ns with the
correction step, of which 50.7 ns is to create the Y gate, and
the remaining 38.3 ns is used to correct the rotation of the
target qubit with respect to every other qubit. A typical evo-
lution was numerically simulated and is shown in Fig. 4.

E. Hadamard gate and Z rotations

Another particularly useful gate in quantum algorithms
and quantum error correction is the Hadamard gate. For ref-
erence the Hadamard gate is defined for a single qubit as:

H =
1

2
�1 1

1 − 1
� =

1

2

�X + Z� = Rm�� , �12�

where m̂=1/
2�î+ k̂�. We may easily produce this gate by
detuning the electron spin from resonance. If we choose

�=�BB then we will rotate around the axis m̂. Similarly to
the X and Y gates, the Hadamard gate may require a correc-
tion step to cancel any rotation on the spectator qubits. The
steps in the Hadamard gate are showing in Table IV. The
Hadamard gate takes a total time of 29.7 ns with the correc-
tion applied to the spectators, but a total of only 10.5 ns
without the correction step. The Hadamard gate was simu-
lated numerically, and a typical evolution for this gate is
shown in Fig. 5.

TABLE III. Control steps in the single qubit Y rotation showing
the operations effected on both target and spectator qubits.

Step Target qubit Spectator qubits
Time
�ns�

1 Ry�4�� Rx��� 50.7

2 I Rx�−�� 38.3

overall Ry�4�� I 89.0

FIG. 3. Typical X gate evolution and timescales for input states
as indicated.

FIG. 4. Typical Y gate evolution and timescales for input states
as indiacted.
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We may perform an arbitrary Z rotation by noting the
identity

HRx���H = Rz��� . �13�

Therefore we can simply make an arbitrary Z rotation out of
existing elements. The steps for this gate are shown in Table
V. Only one correction step �Step 4� needs to be applied. The
total time required for this gate is 59.4 ns with the correction
step included, and 35.8 ns without the correction step. Again,
a typical evolution is shown in Fig. 6.

III. MULTIPLE QUBIT OPERATIONS

A. Exchange interaction based CNOT gate

The exchange interaction and single qubit unitaries may
be used to create a CNOT gate. The exchange interaction is
proportional to the overlap of the electron wave functions. A
simple approximation of the exchange interaction adequate
for our purposes, is given by the Herring-Flicker
approximation,1

Jmax�d� =
1.6

	�

e2

a�� d

a�	5/2

exp�− 2
d

a�	 , �14�

where a� is the effective Bohr radius for the electron, and d
is the separation between phosphorus donors. By changing
the voltage of the J gate between the phosphorus donors we

may tune the strength of the exchange interaction J as shown
in.21–23 Ideally the architecture will be able to tune between
J=0 and J=Jmax�d�.

In the rotating frame, the Hamiltonian which includes the
exchange interaction is

H̃J = �BBac��x
e1 + �x

e2� + 
�1�z
e1 + 
�2�z

e2 + J�e1 · �e2,

�15�

which is particularly simple to manipulate. Note that if

�1=
�2, and in particular if both qubits are tuned to the
resonant magnetic field meaning 
�1=
�2=0 the identical
single qubit rotations commute with the exchange interac-
tion. That is,

��BBac��x
e1 + �x

e2� + 
���z
e1 + �z

e2�,J�1 · �2� = 0. �16�

This implies that we may treat the global rotations and the
exchange interactions separately.

The controlled sign gate �1Z may be expressed as

�1Z = exp�i
I − Z

2
�

I − Z

2
	 . �17�

Using Hadamard gates, the CNOT gate may be expressed as

TABLE IV. Control steps in the single qubit Hadamard gate
showing the operations effected on both target and spectator qubits.

Step Target qubit Spectator qubits
Time
�ns�

1 H Rx��� 10.5

2 I Rx�−�� 19.2

Overall H I 29.7

TABLE V. Control steps in the single qubit Z rotation showing
the operations effected on both target and spectator qubits.

Step Target qubit Spectator qubits
Time
�ns�

1 H Rx��� 10.5

2 Rx��� Rx��� 14.8

3 H Rx��� 10.5

4 I Rx�−�−2�� 23.5

Overall Rz��� I 59.4

FIG. 5. Typical evolution and timescales of the Hadamard gate
for states as indicated.

FIG. 6. Typical evolution and timescales of the Z gate for states
as indicated.
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�1X = �I � H��1Z�I � H�

= �H � I�exp�i
I − X

2
�

I − X

2
	�H � I�

= �H � I��Rx�

2
	 � Rx�

2
	�

�exp�i


4
X � X	�H � I� . �18�

Equation �18� is an expression for the CNOT gate which is
mostly made up of gates which are straightforward to per-
form on our architecture, such as the Hadamard, and global
X rotations. The only difficult part of this gate is the term
exp�i /4X � X� which may be constructed in the following
way

exp�i


4
X � X	 = �X � I�exp�i



8
� · �	

��X � I�exp�i


8
� · �	 . �19�

In order to create this interaction correctly, we need to let the
qubits interact for a time tJ such that JtJ= /8.

The largest amount of time in the CNOT gate is in the
correction operation. In this step, as in previous gates, we
rotate the target qubits with respect to the spectator qubits,
and then until the spectator qubits have performed a whole
2 rotation. Unfortunately, for the parameters we have cho-
sen, this step turns out to be particularly long. In the absence
of this step, the CNOT gate requires only an operation time
of 96.5 ns.

The circuit diagram based on this construction �see Fig.
8�. The total time required for this gate, based on typical
parameters for the Kane architecture is 148.4 ns. A break-
down of the times required for each operation in the gate is
shown in Table VI. This gate was simulated numerically, and
a typical simulation is shown in Fig. 7. Note that during this
gate, corrections need to be performed only when they do not
commute with the next gate.

B. Swap gate

The swap gate may be performed particularly easily with
the exchange interaction. The swap gate S may be written

S = exp�i


4
�1 · �2	 . �20�

Assuming control of the exchange interaction, this gate may
be performed in a single operation with Jt= /4. This may
then require a correction step. Since this interaction is much
larger than the typical frequencies for single qubit rotations,
this gate is extremely fast, and to a good approximation does
not require a correction step. The speed of this gate also
indicates that a three qubit encoding24 may be successful.

C. Dipole–dipole based CNOT gate

The dipole–dipole interaction couples every pair of elec-
tronic spins in the system. The contribution which the
dipole–dipole interaction makes to the Hamiltonian is

HD = D��e1 · �e2 − 3��e1 · d̂� � ��e2 · d̂�� , �21�

where the strength of the dipole–dipole interaction D is given
by

D�d� =
�0

4

�B
2

d3 . �22�

Whereas the exchange interaction dies off exponentially with
distance, as shown in Eq. �14�, the dipole–dipole interaction
only dies off as 1 /d3. Therefore at larger separations, the
dipole–dipole interaction to dominates.

The direction in which we orientate our qubits w.r.t. the
magnetic field B is important. If we align the donors along

the x axis �î� or y axis � ĵ�, HD does not commute with
�z

e1 +�z
e2. This implies we may no longer look at our system

in a rotating frame. However, if we align our qubits in the z

axis �k̂� direction then the rotating frame is still valid, and the
rotating frame Hamiltonian is

TABLE VI. Control steps and times in the exchange based
CNOT gate.

Step Operation Time �ns�

1 H � I 29.7

2 exp i� 8�1 ·�2 0.01

3 X � I 14.8

4 exp i� 8�1 ·�2 0.01

5 X � I 14.8

6 Rx
�� 2 � � Rx

�� 2 � 7.4

7 H � I 29.7

8 Correction 51.9

Overall CNOT 148.4

FIG. 7. Evolution and timescales for the CNOT gate for the
states as indicated.
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H̃JD = �BBac��x
e1 + �x

e2� + 
�1�z
e1 + 
�2�z

e2 + J�e1 · �e2

+ D��e1 · �e2 − 3�z
e1 � �z

e2� . �23�

For simplicity we therefore choose to align our axes in the k̂
direction.

When the electrons are relatively widely spaced
�d�30 nm� single qubit rotations are much faster than the
speed of the interaction ��BBac�D� and the dipole–dipole
interaction dominates the exchange interaction �D�J�. In
order to specify a CNOT gate, we consider the case when the
electrons are tuned to the rotating magnetic field, i.e.,

�1=
�2=0.

Now

��BBac��x
e1 + �x

e2�,�J + D��e1 · �e2� = 0, �24�

therefore we consider the interaction �J+D��e1 ·�e2 sepa-
rately from the single qubit rotations �BBac��x

e1 +�x
e2�. Unfor-

tunately the same is not true of the −3D�z
e1 � �z

e2 term in the
Hamiltonian where

��z
e1 � �z

e2,�x
e1 + �x

e2� = 2i��y
e1 � �z

e2 + �z
e1 � �y

e2� , �25�

for example. Similarly we may calculate higher order com-
mutators. This leads to quite a complicated evolution of the
system. Fortunately it is possible to refocus25 much of the
evolution. However, these higher order terms also anticom-
mute with �x

e1 � I and therefore we may cancel many of them
by conjugation. With this approximation, it is possible to
create the CNOT gate using exactly the same pulse sequence
as was required when we ignored the dipole–dipole interac-
tion in Sec. III A. The circuit diagram for this circuit is
shown in Fig. 8. The interaction is now assumed to be solely
due to weak dipole–dipole interaction. In each interaction we
must allow the qubits to interact for the comparatively long
time of tD=1/D /8.

At a spacing of 30 nm we anticipate an extremely long
gate time of 4.6 ms. This time is dominated by the time
required for the interaction between qubits. A quantum com-
puter based on this scheme has no need for J gates.

D. CNOT gate with both exchange and dipole-dipole
interactions

In the intermediately spaced regions, neither the dipole–
dipole nor the exchange interaction dominate. In this case we
may use them to complement each other, and create a CNOT
gate as described in Secs. III A and III C. In this case the
interaction between electrons must be performed for a time
of tJD=1/J+D /8. This leads to a total gate time �for typi-
cal parameters at a spacing of 23 nm� of 4.0 �s.

During single qubit rotations it would be beneficial �al-
though not essential� to minimise the exchange interaction.
This may be accomplished through the application of voltage
to the J gates to isolate the electrons.

IV. PARALLEL GATE OPERATION

Parallel gates are an essential feature of scalable architec-
tures, and are performed naturally in this scheme. Each of the
gates may be performed in parallel. For example X rotations
may be performed on two qubits at the same time. This is
achieved by simply applying identical control pulses to both
qubits. Similarly, identical two-qubit operations may be per-
formed in parallel. For example, a CNOT may be performed
between qubits one and two, and between three and four, in
parallel.

In addition to applying identical gates to different qubits,
many other combinations are possible. Every gate takes a
multiple of the period of a spectator qubit �29.7 ns� to per-
form. After a whole number of periods, the spectators will be
in their original orientation. During this time, the correct
rotation is applied to the target qubits. The shorter operation
being applied in parallel may have to be padded by a number
of 2X rotations exactly the same way as the spectators. In
this way any two operations which do not act on the same
qubits may be applied in parallel. So, for example, an X
rotation on qubit 1, may be performed in parallel with a
CNOT on qubits 2 and 3.

Our scheme takes advantage of two key facts. First, each
gate only requires us to change the voltage on the local ‘A’
and ‘J’ gates. We do not need to modify the magnetic fields,
which would affect the operation of other qubits. This means
that each operation may be applied independently. Second,
each operation takes a whole number of periods of the spec-
tator qubits to perform. Much like a clock in a conventional
computer, this greatly simplifies timing issues in performing
gates in parallel.

V. READOUT AND INITIALIZATION

Readout is a crucial issue to be addressed for donor spin
based architectures. We will briefly describe several possible
readout schemes here.

Direct single-spin detection is very difficult since a single
spin interacts very weakly with its environment and hence
the measurement device. In spite of this, magnetic resonance
force microscopy �MRFM� has been suggested17,26–28 as one
of the most promising techniques to achieve such a direct
single-spin measurement. Two of the most promising spin-
cantilever modulation protocols to detect a single spin by
MRFM are: cyclic adiabatic inversion �CAI�29 and oscillat-
ing cantilever-driven adiabatic reversal �OSCAR�.30 The
MRFM technique also takes the advantage of the electron
spin quantum computer architecture discussed here. The re-
quired rf field for the MRFM measurement protocols is also
an essential element for the electron spin quantum gate op-
erations. Recently, the MRFM technique has been
demonstrated18 to detect an individual electron spin. But the
required averaging time is still too long to achieve the real-

FIG. 8. Circuit diagram for the CNOT gate.
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time readout of the single electron spin quantum state. Given
the steady improvement in experimental technique, the
MRFM has great potential to serves as an readout device for
spin-based qubit systems in the near future.

The spin-charge transduction idea of the original Kane
proposal �Fig. 9� called for the adiabatic spin-dependent
transfer1 of the qubit donor electron to an auxiliary donor
leaving a donor ion D+ and a doubly occupied donor D−. The
two electron state of this double donor system is condition-
ally entangled with the original nuclear qubit spin. Detection
of the final D+D− state by the SET constitutes a measurement
of the qubit nuclear spin. A problem with this scheme is the
shallow nature of the D− state �1.7 meV�, which may easily
ionize in the electric field required to induce the electron
transfer.

The dynamics of the spin dependent transition D0D0

→D+D− was investigated to assess the vulnerability of the
adiabatic readout scheme.15 A comparison to the field
strength required for adiabatic transfer, the typical D− state
dwell-times and SET timescales indicated that adiabatic
transfer would at the every least severely test SET measure-

ment capability. As a possible alternative to the adiabatic
Kane proposal, a resonant-based15 scheme has been proposed
in which an ac field is applied to the gates G1,2 resonant with
the transition D0D0→D+D−. Simulation results indicate a
good level of control is achievable for single-qubit address-
ing in this way using relatively low dc field strengths.

Another alternative19 relies on energy resolved readout
through the introduction of an ionised donor �the probe� to
the usual two donor system for spin readout. Controlling the
bias applied to the probe allows resonant charge transfer
from either the singlet or triplet state of the combined qubit-
reference system to the probe. By effecting spin dependent
tunneling to the ionized probe, rather than to the reference in
the two-donor scheme, we avoid potential problems due to
shallow the D− state. This can be thought of as using a
charge qubit to readout a spin qubit.

VI. CONCLUSION

We have proposed a scheme for solid state quantum com-
putation based on donor electron spins and global control,
using only weak local control. This scheme forms a natural
stepping stone and shares similarities with the existing
nuclear spin based Kane proposal. We have shown how, even
with limited control over the resonant frequencies of the
electronic spins and an always on rotating magnetic field,
Bac, this system may be used for quantum computation. This
scheme outperforms the naïve application of the canonical
scheme. Indeed, although electron dephasing times are faster
than the corresponding nuclear dephasing times, we find that
a typical operation time is also correspondingly faster with
with T2 /Tops approaching 106.
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